Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / drivers / dma / fsldma.c
blob72692309398af7cc214fae1ce2254c8da31d26bd
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA contorller is also added.
15 * This is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/dmaengine.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/of_platform.h>
32 #include "fsldma.h"
34 static void dma_init(struct fsl_dma_chan *fsl_chan)
36 /* Reset the channel */
37 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
39 switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
40 case FSL_DMA_IP_85XX:
41 /* Set the channel to below modes:
42 * EIE - Error interrupt enable
43 * EOSIE - End of segments interrupt enable (basic mode)
44 * EOLNIE - End of links interrupt enable
46 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
47 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
48 break;
49 case FSL_DMA_IP_83XX:
50 /* Set the channel to below modes:
51 * EOTIE - End-of-transfer interrupt enable
53 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE,
54 32);
55 break;
60 static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val)
62 DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
65 static u32 get_sr(struct fsl_dma_chan *fsl_chan)
67 return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
70 static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
71 struct fsl_dma_ld_hw *hw, u32 count)
73 hw->count = CPU_TO_DMA(fsl_chan, count, 32);
76 static void set_desc_src(struct fsl_dma_chan *fsl_chan,
77 struct fsl_dma_ld_hw *hw, dma_addr_t src)
79 u64 snoop_bits;
81 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
82 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
83 hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
86 static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
87 struct fsl_dma_ld_hw *hw, dma_addr_t dest)
89 u64 snoop_bits;
91 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
92 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
93 hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
96 static void set_desc_next(struct fsl_dma_chan *fsl_chan,
97 struct fsl_dma_ld_hw *hw, dma_addr_t next)
99 u64 snoop_bits;
101 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
102 ? FSL_DMA_SNEN : 0;
103 hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
106 static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
108 DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
111 static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
113 return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
116 static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
118 DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
121 static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
123 return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
126 static u32 get_bcr(struct fsl_dma_chan *fsl_chan)
128 return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32);
131 static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
133 u32 sr = get_sr(fsl_chan);
134 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
137 static void dma_start(struct fsl_dma_chan *fsl_chan)
139 u32 mr_set = 0;;
141 if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
142 DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
143 mr_set |= FSL_DMA_MR_EMP_EN;
144 } else
145 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
146 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
147 & ~FSL_DMA_MR_EMP_EN, 32);
149 if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
150 mr_set |= FSL_DMA_MR_EMS_EN;
151 else
152 mr_set |= FSL_DMA_MR_CS;
154 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
155 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
156 | mr_set, 32);
159 static void dma_halt(struct fsl_dma_chan *fsl_chan)
161 int i = 0;
162 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
163 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA,
164 32);
165 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
166 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS
167 | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32);
169 while (!dma_is_idle(fsl_chan) && (i++ < 100))
170 udelay(10);
171 if (i >= 100 && !dma_is_idle(fsl_chan))
172 dev_err(fsl_chan->dev, "DMA halt timeout!\n");
175 static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
176 struct fsl_desc_sw *desc)
178 desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
179 DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL,
180 64);
183 static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
184 struct fsl_desc_sw *new_desc)
186 struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
188 if (list_empty(&fsl_chan->ld_queue))
189 return;
191 /* Link to the new descriptor physical address and
192 * Enable End-of-segment interrupt for
193 * the last link descriptor.
194 * (the previous node's next link descriptor)
196 * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
198 queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
199 new_desc->async_tx.phys | FSL_DMA_EOSIE |
200 (((fsl_chan->feature & FSL_DMA_IP_MASK)
201 == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
205 * fsl_chan_set_src_loop_size - Set source address hold transfer size
206 * @fsl_chan : Freescale DMA channel
207 * @size : Address loop size, 0 for disable loop
209 * The set source address hold transfer size. The source
210 * address hold or loop transfer size is when the DMA transfer
211 * data from source address (SA), if the loop size is 4, the DMA will
212 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
213 * SA + 1 ... and so on.
215 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
217 switch (size) {
218 case 0:
219 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
220 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
221 (~FSL_DMA_MR_SAHE), 32);
222 break;
223 case 1:
224 case 2:
225 case 4:
226 case 8:
227 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
228 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
229 FSL_DMA_MR_SAHE | (__ilog2(size) << 14),
230 32);
231 break;
236 * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
237 * @fsl_chan : Freescale DMA channel
238 * @size : Address loop size, 0 for disable loop
240 * The set destination address hold transfer size. The destination
241 * address hold or loop transfer size is when the DMA transfer
242 * data to destination address (TA), if the loop size is 4, the DMA will
243 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
244 * TA + 1 ... and so on.
246 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
248 switch (size) {
249 case 0:
250 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
251 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
252 (~FSL_DMA_MR_DAHE), 32);
253 break;
254 case 1:
255 case 2:
256 case 4:
257 case 8:
258 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
259 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
260 FSL_DMA_MR_DAHE | (__ilog2(size) << 16),
261 32);
262 break;
267 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
268 * @fsl_chan : Freescale DMA channel
269 * @size : Pause control size, 0 for disable external pause control.
270 * The maximum is 1024.
272 * The Freescale DMA channel can be controlled by the external
273 * signal DREQ#. The pause control size is how many bytes are allowed
274 * to transfer before pausing the channel, after which a new assertion
275 * of DREQ# resumes channel operation.
277 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size)
279 if (size > 1024)
280 return;
282 if (size) {
283 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
284 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
285 | ((__ilog2(size) << 24) & 0x0f000000),
286 32);
287 fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
288 } else
289 fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
293 * fsl_chan_toggle_ext_start - Toggle channel external start status
294 * @fsl_chan : Freescale DMA channel
295 * @enable : 0 is disabled, 1 is enabled.
297 * If enable the external start, the channel can be started by an
298 * external DMA start pin. So the dma_start() does not start the
299 * transfer immediately. The DMA channel will wait for the
300 * control pin asserted.
302 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
304 if (enable)
305 fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
306 else
307 fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
310 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
312 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
313 struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
314 unsigned long flags;
315 dma_cookie_t cookie;
317 /* cookie increment and adding to ld_queue must be atomic */
318 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
320 cookie = fsl_chan->common.cookie;
321 cookie++;
322 if (cookie < 0)
323 cookie = 1;
324 desc->async_tx.cookie = cookie;
325 fsl_chan->common.cookie = desc->async_tx.cookie;
327 append_ld_queue(fsl_chan, desc);
328 list_splice_init(&desc->async_tx.tx_list, fsl_chan->ld_queue.prev);
330 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
332 return cookie;
336 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
337 * @fsl_chan : Freescale DMA channel
339 * Return - The descriptor allocated. NULL for failed.
341 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
342 struct fsl_dma_chan *fsl_chan)
344 dma_addr_t pdesc;
345 struct fsl_desc_sw *desc_sw;
347 desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
348 if (desc_sw) {
349 memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
350 dma_async_tx_descriptor_init(&desc_sw->async_tx,
351 &fsl_chan->common);
352 desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
353 INIT_LIST_HEAD(&desc_sw->async_tx.tx_list);
354 desc_sw->async_tx.phys = pdesc;
357 return desc_sw;
362 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
363 * @fsl_chan : Freescale DMA channel
365 * This function will create a dma pool for descriptor allocation.
367 * Return - The number of descriptors allocated.
369 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
371 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
372 LIST_HEAD(tmp_list);
374 /* We need the descriptor to be aligned to 32bytes
375 * for meeting FSL DMA specification requirement.
377 fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
378 fsl_chan->dev, sizeof(struct fsl_desc_sw),
379 32, 0);
380 if (!fsl_chan->desc_pool) {
381 dev_err(fsl_chan->dev, "No memory for channel %d "
382 "descriptor dma pool.\n", fsl_chan->id);
383 return 0;
386 return 1;
390 * fsl_dma_free_chan_resources - Free all resources of the channel.
391 * @fsl_chan : Freescale DMA channel
393 static void fsl_dma_free_chan_resources(struct dma_chan *chan)
395 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
396 struct fsl_desc_sw *desc, *_desc;
397 unsigned long flags;
399 dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
400 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
401 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
402 #ifdef FSL_DMA_LD_DEBUG
403 dev_dbg(fsl_chan->dev,
404 "LD %p will be released.\n", desc);
405 #endif
406 list_del(&desc->node);
407 /* free link descriptor */
408 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
410 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
411 dma_pool_destroy(fsl_chan->desc_pool);
414 static struct dma_async_tx_descriptor *
415 fsl_dma_prep_interrupt(struct dma_chan *chan)
417 struct fsl_dma_chan *fsl_chan;
418 struct fsl_desc_sw *new;
420 if (!chan)
421 return NULL;
423 fsl_chan = to_fsl_chan(chan);
425 new = fsl_dma_alloc_descriptor(fsl_chan);
426 if (!new) {
427 dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
428 return NULL;
431 new->async_tx.cookie = -EBUSY;
432 new->async_tx.ack = 0;
434 /* Insert the link descriptor to the LD ring */
435 list_add_tail(&new->node, &new->async_tx.tx_list);
437 /* Set End-of-link to the last link descriptor of new list*/
438 set_ld_eol(fsl_chan, new);
440 return &new->async_tx;
443 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
444 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
445 size_t len, unsigned long flags)
447 struct fsl_dma_chan *fsl_chan;
448 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
449 size_t copy;
450 LIST_HEAD(link_chain);
452 if (!chan)
453 return NULL;
455 if (!len)
456 return NULL;
458 fsl_chan = to_fsl_chan(chan);
460 do {
462 /* Allocate the link descriptor from DMA pool */
463 new = fsl_dma_alloc_descriptor(fsl_chan);
464 if (!new) {
465 dev_err(fsl_chan->dev,
466 "No free memory for link descriptor\n");
467 return NULL;
469 #ifdef FSL_DMA_LD_DEBUG
470 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
471 #endif
473 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
475 set_desc_cnt(fsl_chan, &new->hw, copy);
476 set_desc_src(fsl_chan, &new->hw, dma_src);
477 set_desc_dest(fsl_chan, &new->hw, dma_dest);
479 if (!first)
480 first = new;
481 else
482 set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
484 new->async_tx.cookie = 0;
485 new->async_tx.ack = 1;
487 prev = new;
488 len -= copy;
489 dma_src += copy;
490 dma_dest += copy;
492 /* Insert the link descriptor to the LD ring */
493 list_add_tail(&new->node, &first->async_tx.tx_list);
494 } while (len);
496 new->async_tx.ack = 0; /* client is in control of this ack */
497 new->async_tx.cookie = -EBUSY;
499 /* Set End-of-link to the last link descriptor of new list*/
500 set_ld_eol(fsl_chan, new);
502 return first ? &first->async_tx : NULL;
506 * fsl_dma_update_completed_cookie - Update the completed cookie.
507 * @fsl_chan : Freescale DMA channel
509 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
511 struct fsl_desc_sw *cur_desc, *desc;
512 dma_addr_t ld_phy;
514 ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
516 if (ld_phy) {
517 cur_desc = NULL;
518 list_for_each_entry(desc, &fsl_chan->ld_queue, node)
519 if (desc->async_tx.phys == ld_phy) {
520 cur_desc = desc;
521 break;
524 if (cur_desc && cur_desc->async_tx.cookie) {
525 if (dma_is_idle(fsl_chan))
526 fsl_chan->completed_cookie =
527 cur_desc->async_tx.cookie;
528 else
529 fsl_chan->completed_cookie =
530 cur_desc->async_tx.cookie - 1;
536 * fsl_chan_ld_cleanup - Clean up link descriptors
537 * @fsl_chan : Freescale DMA channel
539 * This function clean up the ld_queue of DMA channel.
540 * If 'in_intr' is set, the function will move the link descriptor to
541 * the recycle list. Otherwise, free it directly.
543 static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
545 struct fsl_desc_sw *desc, *_desc;
546 unsigned long flags;
548 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
550 dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
551 fsl_chan->completed_cookie);
552 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
553 dma_async_tx_callback callback;
554 void *callback_param;
556 if (dma_async_is_complete(desc->async_tx.cookie,
557 fsl_chan->completed_cookie, fsl_chan->common.cookie)
558 == DMA_IN_PROGRESS)
559 break;
561 callback = desc->async_tx.callback;
562 callback_param = desc->async_tx.callback_param;
564 /* Remove from ld_queue list */
565 list_del(&desc->node);
567 dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
568 desc);
569 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
571 /* Run the link descriptor callback function */
572 if (callback) {
573 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
574 dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
575 desc);
576 callback(callback_param);
577 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
580 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
584 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
585 * @fsl_chan : Freescale DMA channel
587 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
589 struct list_head *ld_node;
590 dma_addr_t next_dest_addr;
591 unsigned long flags;
593 if (!dma_is_idle(fsl_chan))
594 return;
596 dma_halt(fsl_chan);
598 /* If there are some link descriptors
599 * not transfered in queue. We need to start it.
601 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
603 /* Find the first un-transfer desciptor */
604 for (ld_node = fsl_chan->ld_queue.next;
605 (ld_node != &fsl_chan->ld_queue)
606 && (dma_async_is_complete(
607 to_fsl_desc(ld_node)->async_tx.cookie,
608 fsl_chan->completed_cookie,
609 fsl_chan->common.cookie) == DMA_SUCCESS);
610 ld_node = ld_node->next);
612 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
614 if (ld_node != &fsl_chan->ld_queue) {
615 /* Get the ld start address from ld_queue */
616 next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
617 dev_dbg(fsl_chan->dev, "xfer LDs staring from %p\n",
618 (void *)next_dest_addr);
619 set_cdar(fsl_chan, next_dest_addr);
620 dma_start(fsl_chan);
621 } else {
622 set_cdar(fsl_chan, 0);
623 set_ndar(fsl_chan, 0);
628 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
629 * @fsl_chan : Freescale DMA channel
631 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
633 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
635 #ifdef FSL_DMA_LD_DEBUG
636 struct fsl_desc_sw *ld;
637 unsigned long flags;
639 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
640 if (list_empty(&fsl_chan->ld_queue)) {
641 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
642 return;
645 dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
646 list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
647 int i;
648 dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
649 fsl_chan->id, ld->async_tx.phys);
650 for (i = 0; i < 8; i++)
651 dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
652 i, *(((u32 *)&ld->hw) + i));
654 dev_dbg(fsl_chan->dev, "----------------\n");
655 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
656 #endif
658 fsl_chan_xfer_ld_queue(fsl_chan);
661 static void fsl_dma_dependency_added(struct dma_chan *chan)
663 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
665 fsl_chan_ld_cleanup(fsl_chan);
669 * fsl_dma_is_complete - Determine the DMA status
670 * @fsl_chan : Freescale DMA channel
672 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
673 dma_cookie_t cookie,
674 dma_cookie_t *done,
675 dma_cookie_t *used)
677 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
678 dma_cookie_t last_used;
679 dma_cookie_t last_complete;
681 fsl_chan_ld_cleanup(fsl_chan);
683 last_used = chan->cookie;
684 last_complete = fsl_chan->completed_cookie;
686 if (done)
687 *done = last_complete;
689 if (used)
690 *used = last_used;
692 return dma_async_is_complete(cookie, last_complete, last_used);
695 static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
697 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
698 u32 stat;
700 stat = get_sr(fsl_chan);
701 dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
702 fsl_chan->id, stat);
703 set_sr(fsl_chan, stat); /* Clear the event register */
705 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
706 if (!stat)
707 return IRQ_NONE;
709 if (stat & FSL_DMA_SR_TE)
710 dev_err(fsl_chan->dev, "Transfer Error!\n");
712 /* Programming Error
713 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
714 * triger a PE interrupt.
716 if (stat & FSL_DMA_SR_PE) {
717 dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
718 if (get_bcr(fsl_chan) == 0) {
719 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
720 * Now, update the completed cookie, and continue the
721 * next uncompleted transfer.
723 fsl_dma_update_completed_cookie(fsl_chan);
724 fsl_chan_xfer_ld_queue(fsl_chan);
726 stat &= ~FSL_DMA_SR_PE;
729 /* If the link descriptor segment transfer finishes,
730 * we will recycle the used descriptor.
732 if (stat & FSL_DMA_SR_EOSI) {
733 dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
734 dev_dbg(fsl_chan->dev, "event: clndar %p, nlndar %p\n",
735 (void *)get_cdar(fsl_chan), (void *)get_ndar(fsl_chan));
736 stat &= ~FSL_DMA_SR_EOSI;
737 fsl_dma_update_completed_cookie(fsl_chan);
740 /* If it current transfer is the end-of-transfer,
741 * we should clear the Channel Start bit for
742 * prepare next transfer.
744 if (stat & (FSL_DMA_SR_EOLNI | FSL_DMA_SR_EOCDI)) {
745 dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
746 stat &= ~FSL_DMA_SR_EOLNI;
747 fsl_chan_xfer_ld_queue(fsl_chan);
750 if (stat)
751 dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
752 stat);
754 dev_dbg(fsl_chan->dev, "event: Exit\n");
755 tasklet_schedule(&fsl_chan->tasklet);
756 return IRQ_HANDLED;
759 static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
761 struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
762 u32 gsr;
763 int ch_nr;
765 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
766 : in_le32(fdev->reg_base);
767 ch_nr = (32 - ffs(gsr)) / 8;
769 return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
770 fdev->chan[ch_nr]) : IRQ_NONE;
773 static void dma_do_tasklet(unsigned long data)
775 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
776 fsl_chan_ld_cleanup(fsl_chan);
779 #ifdef FSL_DMA_CALLBACKTEST
780 static void fsl_dma_callback_test(struct fsl_dma_chan *fsl_chan)
782 if (fsl_chan)
783 dev_info(fsl_chan->dev, "selftest: callback is ok!\n");
785 #endif
787 #ifdef CONFIG_FSL_DMA_SELFTEST
788 static int fsl_dma_self_test(struct fsl_dma_chan *fsl_chan)
790 struct dma_chan *chan;
791 int err = 0;
792 dma_addr_t dma_dest, dma_src;
793 dma_cookie_t cookie;
794 u8 *src, *dest;
795 int i;
796 size_t test_size;
797 struct dma_async_tx_descriptor *tx1, *tx2, *tx3;
799 test_size = 4096;
801 src = kmalloc(test_size * 2, GFP_KERNEL);
802 if (!src) {
803 dev_err(fsl_chan->dev,
804 "selftest: Cannot alloc memory for test!\n");
805 err = -ENOMEM;
806 goto out;
809 dest = src + test_size;
811 for (i = 0; i < test_size; i++)
812 src[i] = (u8) i;
814 chan = &fsl_chan->common;
816 if (fsl_dma_alloc_chan_resources(chan) < 1) {
817 dev_err(fsl_chan->dev,
818 "selftest: Cannot alloc resources for DMA\n");
819 err = -ENODEV;
820 goto out;
823 /* TX 1 */
824 dma_src = dma_map_single(fsl_chan->dev, src, test_size / 2,
825 DMA_TO_DEVICE);
826 dma_dest = dma_map_single(fsl_chan->dev, dest, test_size / 2,
827 DMA_FROM_DEVICE);
828 tx1 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 2, 0);
829 async_tx_ack(tx1);
831 cookie = fsl_dma_tx_submit(tx1);
832 fsl_dma_memcpy_issue_pending(chan);
833 msleep(2);
835 if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
836 dev_err(fsl_chan->dev, "selftest: Time out!\n");
837 err = -ENODEV;
838 goto out;
841 /* Test free and re-alloc channel resources */
842 fsl_dma_free_chan_resources(chan);
844 if (fsl_dma_alloc_chan_resources(chan) < 1) {
845 dev_err(fsl_chan->dev,
846 "selftest: Cannot alloc resources for DMA\n");
847 err = -ENODEV;
848 goto free_resources;
851 /* Continue to test
852 * TX 2
854 dma_src = dma_map_single(fsl_chan->dev, src + test_size / 2,
855 test_size / 4, DMA_TO_DEVICE);
856 dma_dest = dma_map_single(fsl_chan->dev, dest + test_size / 2,
857 test_size / 4, DMA_FROM_DEVICE);
858 tx2 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
859 async_tx_ack(tx2);
861 /* TX 3 */
862 dma_src = dma_map_single(fsl_chan->dev, src + test_size * 3 / 4,
863 test_size / 4, DMA_TO_DEVICE);
864 dma_dest = dma_map_single(fsl_chan->dev, dest + test_size * 3 / 4,
865 test_size / 4, DMA_FROM_DEVICE);
866 tx3 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
867 async_tx_ack(tx3);
869 /* Interrupt tx test */
870 tx1 = fsl_dma_prep_interrupt(chan);
871 async_tx_ack(tx1);
872 cookie = fsl_dma_tx_submit(tx1);
874 /* Test exchanging the prepared tx sort */
875 cookie = fsl_dma_tx_submit(tx3);
876 cookie = fsl_dma_tx_submit(tx2);
878 #ifdef FSL_DMA_CALLBACKTEST
879 if (dma_has_cap(DMA_INTERRUPT, ((struct fsl_dma_device *)
880 dev_get_drvdata(fsl_chan->dev->parent))->common.cap_mask)) {
881 tx3->callback = fsl_dma_callback_test;
882 tx3->callback_param = fsl_chan;
884 #endif
885 fsl_dma_memcpy_issue_pending(chan);
886 msleep(2);
888 if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
889 dev_err(fsl_chan->dev, "selftest: Time out!\n");
890 err = -ENODEV;
891 goto free_resources;
894 err = memcmp(src, dest, test_size);
895 if (err) {
896 for (i = 0; (*(src + i) == *(dest + i)) && (i < test_size);
897 i++);
898 dev_err(fsl_chan->dev, "selftest: Test failed, data %d/%ld is "
899 "error! src 0x%x, dest 0x%x\n",
900 i, (long)test_size, *(src + i), *(dest + i));
903 free_resources:
904 fsl_dma_free_chan_resources(chan);
905 out:
906 kfree(src);
907 return err;
909 #endif
911 static int __devinit of_fsl_dma_chan_probe(struct of_device *dev,
912 const struct of_device_id *match)
914 struct fsl_dma_device *fdev;
915 struct fsl_dma_chan *new_fsl_chan;
916 int err;
918 fdev = dev_get_drvdata(dev->dev.parent);
919 BUG_ON(!fdev);
921 /* alloc channel */
922 new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
923 if (!new_fsl_chan) {
924 dev_err(&dev->dev, "No free memory for allocating "
925 "dma channels!\n");
926 err = -ENOMEM;
927 goto err;
930 /* get dma channel register base */
931 err = of_address_to_resource(dev->node, 0, &new_fsl_chan->reg);
932 if (err) {
933 dev_err(&dev->dev, "Can't get %s property 'reg'\n",
934 dev->node->full_name);
935 goto err;
938 new_fsl_chan->feature = *(u32 *)match->data;
940 if (!fdev->feature)
941 fdev->feature = new_fsl_chan->feature;
943 /* If the DMA device's feature is different than its channels',
944 * report the bug.
946 WARN_ON(fdev->feature != new_fsl_chan->feature);
948 new_fsl_chan->dev = &dev->dev;
949 new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
950 new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
952 new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
953 if (new_fsl_chan->id > FSL_DMA_MAX_CHANS_PER_DEVICE) {
954 dev_err(&dev->dev, "There is no %d channel!\n",
955 new_fsl_chan->id);
956 err = -EINVAL;
957 goto err;
959 fdev->chan[new_fsl_chan->id] = new_fsl_chan;
960 tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
961 (unsigned long)new_fsl_chan);
963 /* Init the channel */
964 dma_init(new_fsl_chan);
966 /* Clear cdar registers */
967 set_cdar(new_fsl_chan, 0);
969 switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
970 case FSL_DMA_IP_85XX:
971 new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
972 new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
973 case FSL_DMA_IP_83XX:
974 new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
975 new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
978 spin_lock_init(&new_fsl_chan->desc_lock);
979 INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
981 new_fsl_chan->common.device = &fdev->common;
983 /* Add the channel to DMA device channel list */
984 list_add_tail(&new_fsl_chan->common.device_node,
985 &fdev->common.channels);
986 fdev->common.chancnt++;
988 new_fsl_chan->irq = irq_of_parse_and_map(dev->node, 0);
989 if (new_fsl_chan->irq != NO_IRQ) {
990 err = request_irq(new_fsl_chan->irq,
991 &fsl_dma_chan_do_interrupt, IRQF_SHARED,
992 "fsldma-channel", new_fsl_chan);
993 if (err) {
994 dev_err(&dev->dev, "DMA channel %s request_irq error "
995 "with return %d\n", dev->node->full_name, err);
996 goto err;
1000 #ifdef CONFIG_FSL_DMA_SELFTEST
1001 err = fsl_dma_self_test(new_fsl_chan);
1002 if (err)
1003 goto err;
1004 #endif
1006 dev_info(&dev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
1007 match->compatible, new_fsl_chan->irq);
1009 return 0;
1010 err:
1011 dma_halt(new_fsl_chan);
1012 iounmap(new_fsl_chan->reg_base);
1013 free_irq(new_fsl_chan->irq, new_fsl_chan);
1014 list_del(&new_fsl_chan->common.device_node);
1015 kfree(new_fsl_chan);
1016 return err;
1019 const u32 mpc8540_dma_ip_feature = FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN;
1020 const u32 mpc8349_dma_ip_feature = FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN;
1022 static struct of_device_id of_fsl_dma_chan_ids[] = {
1024 .compatible = "fsl,mpc8540-dma-channel",
1025 .data = (void *)&mpc8540_dma_ip_feature,
1028 .compatible = "fsl,mpc8349-dma-channel",
1029 .data = (void *)&mpc8349_dma_ip_feature,
1034 static struct of_platform_driver of_fsl_dma_chan_driver = {
1035 .name = "of-fsl-dma-channel",
1036 .match_table = of_fsl_dma_chan_ids,
1037 .probe = of_fsl_dma_chan_probe,
1040 static __init int of_fsl_dma_chan_init(void)
1042 return of_register_platform_driver(&of_fsl_dma_chan_driver);
1045 static int __devinit of_fsl_dma_probe(struct of_device *dev,
1046 const struct of_device_id *match)
1048 int err;
1049 unsigned int irq;
1050 struct fsl_dma_device *fdev;
1052 fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
1053 if (!fdev) {
1054 dev_err(&dev->dev, "No enough memory for 'priv'\n");
1055 err = -ENOMEM;
1056 goto err;
1058 fdev->dev = &dev->dev;
1059 INIT_LIST_HEAD(&fdev->common.channels);
1061 /* get DMA controller register base */
1062 err = of_address_to_resource(dev->node, 0, &fdev->reg);
1063 if (err) {
1064 dev_err(&dev->dev, "Can't get %s property 'reg'\n",
1065 dev->node->full_name);
1066 goto err;
1069 dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
1070 "controller at %p...\n",
1071 match->compatible, (void *)fdev->reg.start);
1072 fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
1073 - fdev->reg.start + 1);
1075 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1076 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1077 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1078 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1079 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1080 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1081 fdev->common.device_is_tx_complete = fsl_dma_is_complete;
1082 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1083 fdev->common.device_dependency_added = fsl_dma_dependency_added;
1084 fdev->common.dev = &dev->dev;
1086 irq = irq_of_parse_and_map(dev->node, 0);
1087 if (irq != NO_IRQ) {
1088 err = request_irq(irq, &fsl_dma_do_interrupt, IRQF_SHARED,
1089 "fsldma-device", fdev);
1090 if (err) {
1091 dev_err(&dev->dev, "DMA device request_irq error "
1092 "with return %d\n", err);
1093 goto err;
1097 dev_set_drvdata(&(dev->dev), fdev);
1098 of_platform_bus_probe(dev->node, of_fsl_dma_chan_ids, &dev->dev);
1100 dma_async_device_register(&fdev->common);
1101 return 0;
1103 err:
1104 iounmap(fdev->reg_base);
1105 kfree(fdev);
1106 return err;
1109 static struct of_device_id of_fsl_dma_ids[] = {
1110 { .compatible = "fsl,mpc8540-dma", },
1111 { .compatible = "fsl,mpc8349-dma", },
1115 static struct of_platform_driver of_fsl_dma_driver = {
1116 .name = "of-fsl-dma",
1117 .match_table = of_fsl_dma_ids,
1118 .probe = of_fsl_dma_probe,
1121 static __init int of_fsl_dma_init(void)
1123 return of_register_platform_driver(&of_fsl_dma_driver);
1126 subsys_initcall(of_fsl_dma_chan_init);
1127 subsys_initcall(of_fsl_dma_init);