Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / drivers / media / dvb / frontends / mt2060.c
blob1305b0e63ce5a6b268c5203eb035393d746407a3
1 /*
2 * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
4 * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
22 /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
24 #include <linux/module.h>
25 #include <linux/delay.h>
26 #include <linux/dvb/frontend.h>
27 #include <linux/i2c.h>
29 #include "dvb_frontend.h"
31 #include "mt2060.h"
32 #include "mt2060_priv.h"
34 static int debug;
35 module_param(debug, int, 0644);
36 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
38 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
40 // Reads a single register
41 static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
43 struct i2c_msg msg[2] = {
44 { .addr = priv->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
45 { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
48 if (i2c_transfer(priv->i2c, msg, 2) != 2) {
49 printk(KERN_WARNING "mt2060 I2C read failed\n");
50 return -EREMOTEIO;
52 return 0;
55 // Writes a single register
56 static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
58 u8 buf[2] = { reg, val };
59 struct i2c_msg msg = {
60 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
63 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
64 printk(KERN_WARNING "mt2060 I2C write failed\n");
65 return -EREMOTEIO;
67 return 0;
70 // Writes a set of consecutive registers
71 static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
73 struct i2c_msg msg = {
74 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
76 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
77 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
78 return -EREMOTEIO;
80 return 0;
83 // Initialisation sequences
84 // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
85 static u8 mt2060_config1[] = {
86 REG_LO1C1,
87 0x3F, 0x74, 0x00, 0x08, 0x93
90 // FMCG=2, GP2=0, GP1=0
91 static u8 mt2060_config2[] = {
92 REG_MISC_CTRL,
93 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
96 // VGAG=3, V1CSE=1
98 #ifdef MT2060_SPURCHECK
99 /* The function below calculates the frequency offset between the output frequency if2
100 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
101 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
103 int I,J;
104 int dia,diamin,diff;
105 diamin=1000000;
106 for (I = 1; I < 10; I++) {
107 J = ((2*I*lo1)/lo2+1)/2;
108 diff = I*(int)lo1-J*(int)lo2;
109 if (diff < 0) diff=-diff;
110 dia = (diff-(int)if2);
111 if (dia < 0) dia=-dia;
112 if (diamin > dia) diamin=dia;
114 return diamin;
117 #define BANDWIDTH 4000 // kHz
119 /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
120 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
122 u32 Spur,Sp1,Sp2;
123 int I,J;
124 I=0;
125 J=1000;
127 Spur=mt2060_spurcalc(lo1,lo2,if2);
128 if (Spur < BANDWIDTH) {
129 /* Potential spurs detected */
130 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
131 (int)lo1,(int)lo2);
132 I=1000;
133 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
134 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
136 if (Sp1 < Sp2) {
137 J=-J; I=-I; Spur=Sp2;
138 } else
139 Spur=Sp1;
141 while (Spur < BANDWIDTH) {
142 I += J;
143 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
145 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
146 (int)(lo1+I),(int)(lo2+I));
148 return I;
150 #endif
152 #define IF2 36150 // IF2 frequency = 36.150 MHz
153 #define FREF 16000 // Quartz oscillator 16 MHz
155 static int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
157 struct mt2060_priv *priv;
158 int ret=0;
159 int i=0;
160 u32 freq;
161 u8 lnaband;
162 u32 f_lo1,f_lo2;
163 u32 div1,num1,div2,num2;
164 u8 b[8];
165 u32 if1;
167 priv = fe->tuner_priv;
169 if1 = priv->if1_freq;
170 b[0] = REG_LO1B1;
171 b[1] = 0xFF;
173 mt2060_writeregs(priv,b,2);
175 freq = params->frequency / 1000; // Hz -> kHz
176 priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;
178 f_lo1 = freq + if1 * 1000;
179 f_lo1 = (f_lo1 / 250) * 250;
180 f_lo2 = f_lo1 - freq - IF2;
181 // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
182 f_lo2 = ((f_lo2 + 25) / 50) * 50;
183 priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
185 #ifdef MT2060_SPURCHECK
186 // LO-related spurs detection and correction
187 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
188 f_lo1 += num1;
189 f_lo2 += num1;
190 #endif
191 //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
192 num1 = f_lo1 / (FREF / 64);
193 div1 = num1 / 64;
194 num1 &= 0x3f;
196 // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
197 num2 = f_lo2 * 64 / (FREF / 128);
198 div2 = num2 / 8192;
199 num2 &= 0x1fff;
201 if (freq <= 95000) lnaband = 0xB0; else
202 if (freq <= 180000) lnaband = 0xA0; else
203 if (freq <= 260000) lnaband = 0x90; else
204 if (freq <= 335000) lnaband = 0x80; else
205 if (freq <= 425000) lnaband = 0x70; else
206 if (freq <= 480000) lnaband = 0x60; else
207 if (freq <= 570000) lnaband = 0x50; else
208 if (freq <= 645000) lnaband = 0x40; else
209 if (freq <= 730000) lnaband = 0x30; else
210 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
212 b[0] = REG_LO1C1;
213 b[1] = lnaband | ((num1 >>2) & 0x0F);
214 b[2] = div1;
215 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
216 b[4] = num2 >> 4;
217 b[5] = ((num2 >>12) & 1) | (div2 << 1);
219 dprintk("IF1: %dMHz",(int)if1);
220 dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
221 dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
222 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
224 mt2060_writeregs(priv,b,6);
226 //Waits for pll lock or timeout
227 i = 0;
228 do {
229 mt2060_readreg(priv,REG_LO_STATUS,b);
230 if ((b[0] & 0x88)==0x88)
231 break;
232 msleep(4);
233 i++;
234 } while (i<10);
236 return ret;
239 static void mt2060_calibrate(struct mt2060_priv *priv)
241 u8 b = 0;
242 int i = 0;
244 if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
245 return;
246 if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
247 return;
249 /* initialize the clock output */
250 mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
252 do {
253 b |= (1 << 6); // FM1SS;
254 mt2060_writereg(priv, REG_LO2C1,b);
255 msleep(20);
257 if (i == 0) {
258 b |= (1 << 7); // FM1CA;
259 mt2060_writereg(priv, REG_LO2C1,b);
260 b &= ~(1 << 7); // FM1CA;
261 msleep(20);
264 b &= ~(1 << 6); // FM1SS
265 mt2060_writereg(priv, REG_LO2C1,b);
267 msleep(20);
268 i++;
269 } while (i < 9);
271 i = 0;
272 while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
273 msleep(20);
275 if (i < 10) {
276 mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
277 dprintk("calibration was successful: %d", (int)priv->fmfreq);
278 } else
279 dprintk("FMCAL timed out");
282 static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
284 struct mt2060_priv *priv = fe->tuner_priv;
285 *frequency = priv->frequency;
286 return 0;
289 static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
291 struct mt2060_priv *priv = fe->tuner_priv;
292 *bandwidth = priv->bandwidth;
293 return 0;
296 static int mt2060_init(struct dvb_frontend *fe)
298 struct mt2060_priv *priv = fe->tuner_priv;
299 return mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x33);
302 static int mt2060_sleep(struct dvb_frontend *fe)
304 struct mt2060_priv *priv = fe->tuner_priv;
305 return mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
308 static int mt2060_release(struct dvb_frontend *fe)
310 kfree(fe->tuner_priv);
311 fe->tuner_priv = NULL;
312 return 0;
315 static const struct dvb_tuner_ops mt2060_tuner_ops = {
316 .info = {
317 .name = "Microtune MT2060",
318 .frequency_min = 48000000,
319 .frequency_max = 860000000,
320 .frequency_step = 50000,
323 .release = mt2060_release,
325 .init = mt2060_init,
326 .sleep = mt2060_sleep,
328 .set_params = mt2060_set_params,
329 .get_frequency = mt2060_get_frequency,
330 .get_bandwidth = mt2060_get_bandwidth
333 /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
334 struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
336 struct mt2060_priv *priv = NULL;
337 u8 id = 0;
339 priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
340 if (priv == NULL)
341 return NULL;
343 priv->cfg = cfg;
344 priv->i2c = i2c;
345 priv->if1_freq = if1;
347 if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
348 kfree(priv);
349 return NULL;
352 if (id != PART_REV) {
353 kfree(priv);
354 return NULL;
356 printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
357 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
359 fe->tuner_priv = priv;
361 mt2060_calibrate(priv);
363 return fe;
365 EXPORT_SYMBOL(mt2060_attach);
367 MODULE_AUTHOR("Olivier DANET");
368 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
369 MODULE_LICENSE("GPL");