2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
10 #include <linux/device.h>
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/rslib.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/dma-mapping.h>
22 #define CAFE_NAND_CTRL1 0x00
23 #define CAFE_NAND_CTRL2 0x04
24 #define CAFE_NAND_CTRL3 0x08
25 #define CAFE_NAND_STATUS 0x0c
26 #define CAFE_NAND_IRQ 0x10
27 #define CAFE_NAND_IRQ_MASK 0x14
28 #define CAFE_NAND_DATA_LEN 0x18
29 #define CAFE_NAND_ADDR1 0x1c
30 #define CAFE_NAND_ADDR2 0x20
31 #define CAFE_NAND_TIMING1 0x24
32 #define CAFE_NAND_TIMING2 0x28
33 #define CAFE_NAND_TIMING3 0x2c
34 #define CAFE_NAND_NONMEM 0x30
35 #define CAFE_NAND_ECC_RESULT 0x3C
36 #define CAFE_NAND_DMA_CTRL 0x40
37 #define CAFE_NAND_DMA_ADDR0 0x44
38 #define CAFE_NAND_DMA_ADDR1 0x48
39 #define CAFE_NAND_ECC_SYN01 0x50
40 #define CAFE_NAND_ECC_SYN23 0x54
41 #define CAFE_NAND_ECC_SYN45 0x58
42 #define CAFE_NAND_ECC_SYN67 0x5c
43 #define CAFE_NAND_READ_DATA 0x1000
44 #define CAFE_NAND_WRITE_DATA 0x2000
46 #define CAFE_GLOBAL_CTRL 0x3004
47 #define CAFE_GLOBAL_IRQ 0x3008
48 #define CAFE_GLOBAL_IRQ_MASK 0x300c
49 #define CAFE_NAND_RESET 0x3034
51 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
52 #define CTRL1_CHIPSELECT (1<<19)
55 struct nand_chip nand
;
56 struct mtd_partition
*parts
;
59 struct rs_control
*rs
;
67 unsigned char *dmabuf
;
70 static int usedma
= 1;
71 module_param(usedma
, int, 0644);
73 static int skipbbt
= 0;
74 module_param(skipbbt
, int, 0644);
77 module_param(debug
, int, 0644);
79 static int regdebug
= 0;
80 module_param(regdebug
, int, 0644);
82 static int checkecc
= 1;
83 module_param(checkecc
, int, 0644);
85 static unsigned int numtimings
;
87 module_param_array(timing
, int, &numtimings
, 0644);
89 #ifdef CONFIG_MTD_PARTITIONS
90 static const char *part_probes
[] = { "RedBoot", NULL
};
93 /* Hrm. Why isn't this already conditional on something in the struct device? */
94 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
96 /* Make it easier to switch to PIO if we need to */
97 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
98 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
100 static int cafe_device_ready(struct mtd_info
*mtd
)
102 struct cafe_priv
*cafe
= mtd
->priv
;
103 int result
= !!(cafe_readl(cafe
, NAND_STATUS
) | 0x40000000);
104 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
106 cafe_writel(cafe
, irqs
, NAND_IRQ
);
108 cafe_dev_dbg(&cafe
->pdev
->dev
, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
109 result
?"":" not", irqs
, cafe_readl(cafe
, NAND_IRQ
),
110 cafe_readl(cafe
, GLOBAL_IRQ
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
116 static void cafe_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
118 struct cafe_priv
*cafe
= mtd
->priv
;
121 memcpy(cafe
->dmabuf
+ cafe
->datalen
, buf
, len
);
123 memcpy_toio(cafe
->mmio
+ CAFE_NAND_WRITE_DATA
+ cafe
->datalen
, buf
, len
);
125 cafe
->datalen
+= len
;
127 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
131 static void cafe_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
133 struct cafe_priv
*cafe
= mtd
->priv
;
136 memcpy(buf
, cafe
->dmabuf
+ cafe
->datalen
, len
);
138 memcpy_fromio(buf
, cafe
->mmio
+ CAFE_NAND_READ_DATA
+ cafe
->datalen
, len
);
140 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
142 cafe
->datalen
+= len
;
145 static uint8_t cafe_read_byte(struct mtd_info
*mtd
)
147 struct cafe_priv
*cafe
= mtd
->priv
;
150 cafe_read_buf(mtd
, &d
, 1);
151 cafe_dev_dbg(&cafe
->pdev
->dev
, "Read %02x\n", d
);
156 static void cafe_nand_cmdfunc(struct mtd_info
*mtd
, unsigned command
,
157 int column
, int page_addr
)
159 struct cafe_priv
*cafe
= mtd
->priv
;
162 uint32_t doneint
= 0x80000000;
164 cafe_dev_dbg(&cafe
->pdev
->dev
, "cmdfunc %02x, 0x%x, 0x%x\n",
165 command
, column
, page_addr
);
167 if (command
== NAND_CMD_ERASE2
|| command
== NAND_CMD_PAGEPROG
) {
168 /* Second half of a command we already calculated */
169 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | command
, NAND_CTRL2
);
171 cafe
->ctl2
&= ~(1<<30);
172 cafe_dev_dbg(&cafe
->pdev
->dev
, "Continue command, ctl1 %08x, #data %d\n",
173 cafe
->ctl1
, cafe
->nr_data
);
176 /* Reset ECC engine */
177 cafe_writel(cafe
, 0, NAND_CTRL2
);
179 /* Emulate NAND_CMD_READOOB on large-page chips */
180 if (mtd
->writesize
> 512 &&
181 command
== NAND_CMD_READOOB
) {
182 column
+= mtd
->writesize
;
183 command
= NAND_CMD_READ0
;
186 /* FIXME: Do we need to send read command before sending data
187 for small-page chips, to position the buffer correctly? */
190 cafe_writel(cafe
, column
, NAND_ADDR1
);
194 } else if (page_addr
!= -1) {
195 cafe_writel(cafe
, page_addr
& 0xffff, NAND_ADDR1
);
198 cafe_writel(cafe
, page_addr
, NAND_ADDR2
);
200 if (mtd
->size
> mtd
->writesize
<< 16)
204 cafe
->data_pos
= cafe
->datalen
= 0;
206 /* Set command valid bit, mask in the chip select bit */
207 ctl1
= 0x80000000 | command
| (cafe
->ctl1
& CTRL1_CHIPSELECT
);
209 /* Set RD or WR bits as appropriate */
210 if (command
== NAND_CMD_READID
|| command
== NAND_CMD_STATUS
) {
211 ctl1
|= (1<<26); /* rd */
212 /* Always 5 bytes, for now */
214 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
216 } else if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
217 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_RNDOUT
) {
218 ctl1
|= 1<<26; /* rd */
219 /* For now, assume just read to end of page */
220 cafe
->datalen
= mtd
->writesize
+ mtd
->oobsize
- column
;
221 } else if (command
== NAND_CMD_SEQIN
)
222 ctl1
|= 1<<25; /* wr */
224 /* Set number of address bytes */
226 ctl1
|= ((adrbytes
-1)|8) << 27;
228 if (command
== NAND_CMD_SEQIN
|| command
== NAND_CMD_ERASE1
) {
229 /* Ignore the first command of a pair; the hardware
230 deals with them both at once, later */
232 cafe_dev_dbg(&cafe
->pdev
->dev
, "Setup for delayed command, ctl1 %08x, dlen %x\n",
233 cafe
->ctl1
, cafe
->datalen
);
236 /* RNDOUT and READ0 commands need a following byte */
237 if (command
== NAND_CMD_RNDOUT
)
238 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_RNDOUTSTART
, NAND_CTRL2
);
239 else if (command
== NAND_CMD_READ0
&& mtd
->writesize
> 512)
240 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_READSTART
, NAND_CTRL2
);
243 cafe_dev_dbg(&cafe
->pdev
->dev
, "dlen %x, ctl1 %x, ctl2 %x\n",
244 cafe
->datalen
, ctl1
, cafe_readl(cafe
, NAND_CTRL2
));
246 /* NB: The datasheet lies -- we really should be subtracting 1 here */
247 cafe_writel(cafe
, cafe
->datalen
, NAND_DATA_LEN
);
248 cafe_writel(cafe
, 0x90000000, NAND_IRQ
);
249 if (usedma
&& (ctl1
& (3<<25))) {
250 uint32_t dmactl
= 0xc0000000 + cafe
->datalen
;
251 /* If WR or RD bits set, set up DMA */
252 if (ctl1
& (1<<26)) {
255 /* ... so it's done when the DMA is done, not just
257 doneint
= 0x10000000;
259 cafe_writel(cafe
, dmactl
, NAND_DMA_CTRL
);
263 if (unlikely(regdebug
)) {
265 printk("About to write command %08x to register 0\n", ctl1
);
266 for (i
=4; i
< 0x5c; i
+=4)
267 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
270 cafe_writel(cafe
, ctl1
, NAND_CTRL1
);
271 /* Apply this short delay always to ensure that we do wait tWB in
272 * any case on any machine. */
279 for (c
= 500000; c
!= 0; c
--) {
280 irqs
= cafe_readl(cafe
, NAND_IRQ
);
285 cafe_dev_dbg(&cafe
->pdev
->dev
, "Wait for ready, IRQ %x\n", irqs
);
288 cafe_writel(cafe
, doneint
, NAND_IRQ
);
289 cafe_dev_dbg(&cafe
->pdev
->dev
, "Command %x completed after %d usec, irqs %x (%x)\n",
290 command
, 500000-c
, irqs
, cafe_readl(cafe
, NAND_IRQ
));
293 WARN_ON(cafe
->ctl2
& (1<<30));
297 case NAND_CMD_CACHEDPROG
:
298 case NAND_CMD_PAGEPROG
:
299 case NAND_CMD_ERASE1
:
300 case NAND_CMD_ERASE2
:
303 case NAND_CMD_STATUS
:
304 case NAND_CMD_DEPLETE1
:
305 case NAND_CMD_RNDOUT
:
306 case NAND_CMD_STATUS_ERROR
:
307 case NAND_CMD_STATUS_ERROR0
:
308 case NAND_CMD_STATUS_ERROR1
:
309 case NAND_CMD_STATUS_ERROR2
:
310 case NAND_CMD_STATUS_ERROR3
:
311 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
314 nand_wait_ready(mtd
);
315 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
318 static void cafe_select_chip(struct mtd_info
*mtd
, int chipnr
)
320 struct cafe_priv
*cafe
= mtd
->priv
;
322 cafe_dev_dbg(&cafe
->pdev
->dev
, "select_chip %d\n", chipnr
);
324 /* Mask the appropriate bit into the stored value of ctl1
325 which will be used by cafe_nand_cmdfunc() */
327 cafe
->ctl1
|= CTRL1_CHIPSELECT
;
329 cafe
->ctl1
&= ~CTRL1_CHIPSELECT
;
332 static int cafe_nand_interrupt(int irq
, void *id
)
334 struct mtd_info
*mtd
= id
;
335 struct cafe_priv
*cafe
= mtd
->priv
;
336 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
337 cafe_writel(cafe
, irqs
& ~0x90000000, NAND_IRQ
);
341 cafe_dev_dbg(&cafe
->pdev
->dev
, "irq, bits %x (%x)\n", irqs
, cafe_readl(cafe
, NAND_IRQ
));
345 static void cafe_nand_bug(struct mtd_info
*mtd
)
350 static int cafe_nand_write_oob(struct mtd_info
*mtd
,
351 struct nand_chip
*chip
, int page
)
355 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
356 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
357 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
358 status
= chip
->waitfunc(mtd
, chip
);
360 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
363 /* Don't use -- use nand_read_oob_std for now */
364 static int cafe_nand_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
365 int page
, int sndcmd
)
367 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
368 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
372 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
373 * @mtd: mtd info structure
374 * @chip: nand chip info structure
375 * @buf: buffer to store read data
377 * The hw generator calculates the error syndrome automatically. Therefor
378 * we need a special oob layout and handling.
380 static int cafe_nand_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
383 struct cafe_priv
*cafe
= mtd
->priv
;
385 cafe_dev_dbg(&cafe
->pdev
->dev
, "ECC result %08x SYN1,2 %08x\n",
386 cafe_readl(cafe
, NAND_ECC_RESULT
),
387 cafe_readl(cafe
, NAND_ECC_SYN01
));
389 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
390 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
392 if (checkecc
&& cafe_readl(cafe
, NAND_ECC_RESULT
) & (1<<18)) {
393 unsigned short syn
[8], pat
[4];
395 u8
*oob
= chip
->oob_poi
;
398 for (i
=0; i
<8; i
+=2) {
399 uint32_t tmp
= cafe_readl(cafe
, NAND_ECC_SYN01
+ (i
*2));
400 syn
[i
] = cafe
->rs
->index_of
[tmp
& 0xfff];
401 syn
[i
+1] = cafe
->rs
->index_of
[(tmp
>> 16) & 0xfff];
404 n
= decode_rs16(cafe
->rs
, NULL
, NULL
, 1367, syn
, 0, pos
, 0,
407 for (i
= 0; i
< n
; i
++) {
410 /* The 12-bit symbols are mapped to bytes here */
416 /* high four bits do not correspond to data */
421 } else if (p
== 1365) {
422 buf
[2047] ^= pat
[i
] >> 4;
423 oob
[0] ^= pat
[i
] << 4;
424 } else if (p
> 1365) {
426 oob
[3*p
/2 - 2048] ^= pat
[i
] >> 4;
427 oob
[3*p
/2 - 2047] ^= pat
[i
] << 4;
429 oob
[3*p
/2 - 2049] ^= pat
[i
] >> 8;
430 oob
[3*p
/2 - 2048] ^= pat
[i
];
432 } else if ((p
& 1) == 1) {
433 buf
[3*p
/2] ^= pat
[i
] >> 4;
434 buf
[3*p
/2 + 1] ^= pat
[i
] << 4;
436 buf
[3*p
/2 - 1] ^= pat
[i
] >> 8;
437 buf
[3*p
/2] ^= pat
[i
];
442 dev_dbg(&cafe
->pdev
->dev
, "Failed to correct ECC at %08x\n",
443 cafe_readl(cafe
, NAND_ADDR2
) * 2048);
444 for (i
= 0; i
< 0x5c; i
+= 4)
445 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
446 mtd
->ecc_stats
.failed
++;
448 dev_dbg(&cafe
->pdev
->dev
, "Corrected %d symbol errors\n", n
);
449 mtd
->ecc_stats
.corrected
+= n
;
456 static struct nand_ecclayout cafe_oobinfo_2048
= {
458 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
459 .oobfree
= {{14, 50}}
462 /* Ick. The BBT code really ought to be able to work this bit out
463 for itself from the above, at least for the 2KiB case */
464 static uint8_t cafe_bbt_pattern_2048
[] = { 'B', 'b', 't', '0' };
465 static uint8_t cafe_mirror_pattern_2048
[] = { '1', 't', 'b', 'B' };
467 static uint8_t cafe_bbt_pattern_512
[] = { 0xBB };
468 static uint8_t cafe_mirror_pattern_512
[] = { 0xBC };
471 static struct nand_bbt_descr cafe_bbt_main_descr_2048
= {
472 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
473 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
478 .pattern
= cafe_bbt_pattern_2048
481 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048
= {
482 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
483 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
488 .pattern
= cafe_mirror_pattern_2048
491 static struct nand_ecclayout cafe_oobinfo_512
= {
493 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
497 static struct nand_bbt_descr cafe_bbt_main_descr_512
= {
498 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
499 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
504 .pattern
= cafe_bbt_pattern_512
507 static struct nand_bbt_descr cafe_bbt_mirror_descr_512
= {
508 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
509 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
514 .pattern
= cafe_mirror_pattern_512
518 static void cafe_nand_write_page_lowlevel(struct mtd_info
*mtd
,
519 struct nand_chip
*chip
, const uint8_t *buf
)
521 struct cafe_priv
*cafe
= mtd
->priv
;
523 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
524 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
526 /* Set up ECC autogeneration */
527 cafe
->ctl2
|= (1<<30);
530 static int cafe_nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
531 const uint8_t *buf
, int page
, int cached
, int raw
)
535 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
538 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
540 chip
->ecc
.write_page(mtd
, chip
, buf
);
543 * Cached progamming disabled for now, Not sure if its worth the
544 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
548 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
550 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
551 status
= chip
->waitfunc(mtd
, chip
);
553 * See if operation failed and additional status checks are
556 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
557 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
560 if (status
& NAND_STATUS_FAIL
)
563 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
564 status
= chip
->waitfunc(mtd
, chip
);
567 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
568 /* Send command to read back the data */
569 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
571 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
577 static int cafe_nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
582 /* F_2[X]/(X**6+X+1) */
583 static unsigned short __devinit
gf64_mul(u8 a
, u8 b
)
589 for (i
= 0; i
< 6; i
++) {
601 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
602 static u16 __devinit
gf4096_mul(u16 a
, u16 b
)
604 u8 ah
, al
, bh
, bl
, ch
, cl
;
611 ch
= gf64_mul(ah
^ al
, bh
^ bl
) ^ gf64_mul(al
, bl
);
612 cl
= gf64_mul(gf64_mul(ah
, bh
), 0x21) ^ gf64_mul(al
, bl
);
614 return (ch
<< 6) ^ cl
;
617 static int __devinit
cafe_mul(int x
)
621 return gf4096_mul(x
, 0xe01);
624 static int __devinit
cafe_nand_probe(struct pci_dev
*pdev
,
625 const struct pci_device_id
*ent
)
627 struct mtd_info
*mtd
;
628 struct cafe_priv
*cafe
;
629 struct mtd_partition
*parts
;
634 /* Very old versions shared the same PCI ident for all three
635 functions on the chip. Verify the class too... */
636 if ((pdev
->class >> 8) != PCI_CLASS_MEMORY_FLASH
)
639 err
= pci_enable_device(pdev
);
643 pci_set_master(pdev
);
645 mtd
= kzalloc(sizeof(*mtd
) + sizeof(struct cafe_priv
), GFP_KERNEL
);
647 dev_warn(&pdev
->dev
, "failed to alloc mtd_info\n");
650 cafe
= (void *)(&mtd
[1]);
653 mtd
->owner
= THIS_MODULE
;
656 cafe
->mmio
= pci_iomap(pdev
, 0, 0);
658 dev_warn(&pdev
->dev
, "failed to iomap\n");
662 cafe
->dmabuf
= dma_alloc_coherent(&cafe
->pdev
->dev
, 2112 + sizeof(struct nand_buffers
),
663 &cafe
->dmaaddr
, GFP_KERNEL
);
668 cafe
->nand
.buffers
= (void *)cafe
->dmabuf
+ 2112;
670 cafe
->rs
= init_rs_non_canonical(12, &cafe_mul
, 0, 1, 8);
676 cafe
->nand
.cmdfunc
= cafe_nand_cmdfunc
;
677 cafe
->nand
.dev_ready
= cafe_device_ready
;
678 cafe
->nand
.read_byte
= cafe_read_byte
;
679 cafe
->nand
.read_buf
= cafe_read_buf
;
680 cafe
->nand
.write_buf
= cafe_write_buf
;
681 cafe
->nand
.select_chip
= cafe_select_chip
;
683 cafe
->nand
.chip_delay
= 0;
685 /* Enable the following for a flash based bad block table */
686 cafe
->nand
.options
= NAND_USE_FLASH_BBT
| NAND_NO_AUTOINCR
| NAND_OWN_BUFFERS
;
689 cafe
->nand
.options
|= NAND_SKIP_BBTSCAN
;
690 cafe
->nand
.block_bad
= cafe_nand_block_bad
;
693 if (numtimings
&& numtimings
!= 3) {
694 dev_warn(&cafe
->pdev
->dev
, "%d timing register values ignored; precisely three are required\n", numtimings
);
697 if (numtimings
== 3) {
698 cafe_dev_dbg(&cafe
->pdev
->dev
, "Using provided timings (%08x %08x %08x)\n",
699 timing
[0], timing
[1], timing
[2]);
701 timing
[0] = cafe_readl(cafe
, NAND_TIMING1
);
702 timing
[1] = cafe_readl(cafe
, NAND_TIMING2
);
703 timing
[2] = cafe_readl(cafe
, NAND_TIMING3
);
705 if (timing
[0] | timing
[1] | timing
[2]) {
706 cafe_dev_dbg(&cafe
->pdev
->dev
, "Timing registers already set (%08x %08x %08x)\n",
707 timing
[0], timing
[1], timing
[2]);
709 dev_warn(&cafe
->pdev
->dev
, "Timing registers unset; using most conservative defaults\n");
710 timing
[0] = timing
[1] = timing
[2] = 0xffffffff;
714 /* Start off by resetting the NAND controller completely */
715 cafe_writel(cafe
, 1, NAND_RESET
);
716 cafe_writel(cafe
, 0, NAND_RESET
);
718 cafe_writel(cafe
, timing
[0], NAND_TIMING1
);
719 cafe_writel(cafe
, timing
[1], NAND_TIMING2
);
720 cafe_writel(cafe
, timing
[2], NAND_TIMING3
);
722 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
723 err
= request_irq(pdev
->irq
, &cafe_nand_interrupt
, IRQF_SHARED
,
726 dev_warn(&pdev
->dev
, "Could not register IRQ %d\n", pdev
->irq
);
730 /* Disable master reset, enable NAND clock */
731 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
734 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
735 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
736 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
738 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
739 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
741 /* Set up DMA address */
742 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
743 if (sizeof(cafe
->dmaaddr
) > 4)
744 /* Shift in two parts to shut the compiler up */
745 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
747 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
749 cafe_dev_dbg(&cafe
->pdev
->dev
, "Set DMA address to %x (virt %p)\n",
750 cafe_readl(cafe
, NAND_DMA_ADDR0
), cafe
->dmabuf
);
752 /* Enable NAND IRQ in global IRQ mask register */
753 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
754 cafe_dev_dbg(&cafe
->pdev
->dev
, "Control %x, IRQ mask %x\n",
755 cafe_readl(cafe
, GLOBAL_CTRL
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
757 /* Scan to find existence of the device */
758 if (nand_scan_ident(mtd
, 2)) {
763 cafe
->ctl2
= 1<<27; /* Reed-Solomon ECC */
764 if (mtd
->writesize
== 2048)
765 cafe
->ctl2
|= 1<<29; /* 2KiB page size */
767 /* Set up ECC according to the type of chip we found */
768 if (mtd
->writesize
== 2048) {
769 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_2048
;
770 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_2048
;
771 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_2048
;
772 } else if (mtd
->writesize
== 512) {
773 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_512
;
774 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_512
;
775 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_512
;
777 printk(KERN_WARNING
"Unexpected NAND flash writesize %d. Aborting\n",
781 cafe
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
782 cafe
->nand
.ecc
.size
= mtd
->writesize
;
783 cafe
->nand
.ecc
.bytes
= 14;
784 cafe
->nand
.ecc
.hwctl
= (void *)cafe_nand_bug
;
785 cafe
->nand
.ecc
.calculate
= (void *)cafe_nand_bug
;
786 cafe
->nand
.ecc
.correct
= (void *)cafe_nand_bug
;
787 cafe
->nand
.write_page
= cafe_nand_write_page
;
788 cafe
->nand
.ecc
.write_page
= cafe_nand_write_page_lowlevel
;
789 cafe
->nand
.ecc
.write_oob
= cafe_nand_write_oob
;
790 cafe
->nand
.ecc
.read_page
= cafe_nand_read_page
;
791 cafe
->nand
.ecc
.read_oob
= cafe_nand_read_oob
;
793 err
= nand_scan_tail(mtd
);
797 pci_set_drvdata(pdev
, mtd
);
799 /* We register the whole device first, separate from the partitions */
802 #ifdef CONFIG_MTD_PARTITIONS
803 nr_parts
= parse_mtd_partitions(mtd
, part_probes
, &parts
, 0);
806 dev_info(&cafe
->pdev
->dev
, "%d RedBoot partitions found\n", nr_parts
);
807 add_mtd_partitions(mtd
, parts
, nr_parts
);
813 /* Disable NAND IRQ in global IRQ mask register */
814 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
815 free_irq(pdev
->irq
, mtd
);
817 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
819 pci_iounmap(pdev
, cafe
->mmio
);
826 static void __devexit
cafe_nand_remove(struct pci_dev
*pdev
)
828 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
829 struct cafe_priv
*cafe
= mtd
->priv
;
832 /* Disable NAND IRQ in global IRQ mask register */
833 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
834 free_irq(pdev
->irq
, mtd
);
837 pci_iounmap(pdev
, cafe
->mmio
);
838 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
842 static struct pci_device_id cafe_nand_tbl
[] = {
843 { 0x11ab, 0x4100, PCI_ANY_ID
, PCI_ANY_ID
},
847 MODULE_DEVICE_TABLE(pci
, cafe_nand_tbl
);
849 static int cafe_nand_resume(struct pci_dev
*pdev
)
852 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
853 struct cafe_priv
*cafe
= mtd
->priv
;
855 /* Start off by resetting the NAND controller completely */
856 cafe_writel(cafe
, 1, NAND_RESET
);
857 cafe_writel(cafe
, 0, NAND_RESET
);
858 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
860 /* Restore timing configuration */
861 cafe_writel(cafe
, timing
[0], NAND_TIMING1
);
862 cafe_writel(cafe
, timing
[1], NAND_TIMING2
);
863 cafe_writel(cafe
, timing
[2], NAND_TIMING3
);
865 /* Disable master reset, enable NAND clock */
866 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
869 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
870 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
871 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
872 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
873 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
875 /* Set up DMA address */
876 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
877 if (sizeof(cafe
->dmaaddr
) > 4)
878 /* Shift in two parts to shut the compiler up */
879 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
881 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
883 /* Enable NAND IRQ in global IRQ mask register */
884 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
888 static struct pci_driver cafe_nand_pci_driver
= {
890 .id_table
= cafe_nand_tbl
,
891 .probe
= cafe_nand_probe
,
892 .remove
= __devexit_p(cafe_nand_remove
),
893 .resume
= cafe_nand_resume
,
896 static int cafe_nand_init(void)
898 return pci_register_driver(&cafe_nand_pci_driver
);
901 static void cafe_nand_exit(void)
903 pci_unregister_driver(&cafe_nand_pci_driver
);
905 module_init(cafe_nand_init
);
906 module_exit(cafe_nand_exit
);
908 MODULE_LICENSE("GPL");
909 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
910 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");