1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
33 #include "e1000_mac.h"
37 static s32
igb_set_default_fc(struct e1000_hw
*hw
);
38 static s32
igb_set_fc_watermarks(struct e1000_hw
*hw
);
39 static u32
igb_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
);
42 * e1000_remove_device - Free device specific structure
43 * @hw: pointer to the HW structure
45 * If a device specific structure was allocated, this function will
48 void igb_remove_device(struct e1000_hw
*hw
)
50 /* Freeing the dev_spec member of e1000_hw structure */
54 static void igb_read_pci_cfg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
56 struct igb_adapter
*adapter
= hw
->back
;
58 pci_read_config_word(adapter
->pdev
, reg
, value
);
61 static s32
igb_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
63 struct igb_adapter
*adapter
= hw
->back
;
66 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
68 return -E1000_ERR_CONFIG
;
70 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
76 * e1000_get_bus_info_pcie - Get PCIe bus information
77 * @hw: pointer to the HW structure
79 * Determines and stores the system bus information for a particular
80 * network interface. The following bus information is determined and stored:
81 * bus speed, bus width, type (PCIe), and PCIe function.
83 s32
igb_get_bus_info_pcie(struct e1000_hw
*hw
)
85 struct e1000_bus_info
*bus
= &hw
->bus
;
88 u16 pcie_link_status
, pci_header_type
;
90 bus
->type
= e1000_bus_type_pci_express
;
91 bus
->speed
= e1000_bus_speed_2500
;
93 ret_val
= igb_read_pcie_cap_reg(hw
,
97 bus
->width
= e1000_bus_width_unknown
;
99 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
100 PCIE_LINK_WIDTH_MASK
) >>
101 PCIE_LINK_WIDTH_SHIFT
);
103 igb_read_pci_cfg(hw
, PCI_HEADER_TYPE_REGISTER
, &pci_header_type
);
104 if (pci_header_type
& PCI_HEADER_TYPE_MULTIFUNC
) {
105 status
= rd32(E1000_STATUS
);
106 bus
->func
= (status
& E1000_STATUS_FUNC_MASK
)
107 >> E1000_STATUS_FUNC_SHIFT
;
116 * e1000_clear_vfta - Clear VLAN filter table
117 * @hw: pointer to the HW structure
119 * Clears the register array which contains the VLAN filter table by
120 * setting all the values to 0.
122 void igb_clear_vfta(struct e1000_hw
*hw
)
126 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
127 array_wr32(E1000_VFTA
, offset
, 0);
133 * e1000_write_vfta - Write value to VLAN filter table
134 * @hw: pointer to the HW structure
135 * @offset: register offset in VLAN filter table
136 * @value: register value written to VLAN filter table
138 * Writes value at the given offset in the register array which stores
139 * the VLAN filter table.
141 void igb_write_vfta(struct e1000_hw
*hw
, u32 offset
, u32 value
)
143 array_wr32(E1000_VFTA
, offset
, value
);
148 * e1000_init_rx_addrs - Initialize receive address's
149 * @hw: pointer to the HW structure
150 * @rar_count: receive address registers
152 * Setups the receive address registers by setting the base receive address
153 * register to the devices MAC address and clearing all the other receive
154 * address registers to 0.
156 void igb_init_rx_addrs(struct e1000_hw
*hw
, u16 rar_count
)
160 /* Setup the receive address */
161 hw_dbg(hw
, "Programming MAC Address into RAR[0]\n");
163 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
165 /* Zero out the other (rar_entry_count - 1) receive addresses */
166 hw_dbg(hw
, "Clearing RAR[1-%u]\n", rar_count
-1);
167 for (i
= 1; i
< rar_count
; i
++) {
168 array_wr32(E1000_RA
, (i
<< 1), 0);
170 array_wr32(E1000_RA
, ((i
<< 1) + 1), 0);
176 * e1000_check_alt_mac_addr - Check for alternate MAC addr
177 * @hw: pointer to the HW structure
179 * Checks the nvm for an alternate MAC address. An alternate MAC address
180 * can be setup by pre-boot software and must be treated like a permanent
181 * address and must override the actual permanent MAC address. If an
182 * alternate MAC address is fopund it is saved in the hw struct and
183 * prgrammed into RAR0 and the cuntion returns success, otherwise the
184 * fucntion returns an error.
186 s32
igb_check_alt_mac_addr(struct e1000_hw
*hw
)
190 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
191 u8 alt_mac_addr
[ETH_ALEN
];
193 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
194 &nvm_alt_mac_addr_offset
);
196 hw_dbg(hw
, "NVM Read Error\n");
200 if (nvm_alt_mac_addr_offset
== 0xFFFF) {
201 ret_val
= -(E1000_NOT_IMPLEMENTED
);
205 if (hw
->bus
.func
== E1000_FUNC_1
)
206 nvm_alt_mac_addr_offset
+= ETH_ALEN
/sizeof(u16
);
208 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
209 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
210 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, offset
, 1, &nvm_data
);
212 hw_dbg(hw
, "NVM Read Error\n");
216 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
217 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
220 /* if multicast bit is set, the alternate address will not be used */
221 if (alt_mac_addr
[0] & 0x01) {
222 ret_val
= -(E1000_NOT_IMPLEMENTED
);
226 for (i
= 0; i
< ETH_ALEN
; i
++)
227 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
] = alt_mac_addr
[i
];
229 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.perm_addr
, 0);
236 * e1000_rar_set - Set receive address register
237 * @hw: pointer to the HW structure
238 * @addr: pointer to the receive address
239 * @index: receive address array register
241 * Sets the receive address array register at index to the address passed
244 void igb_rar_set(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
246 u32 rar_low
, rar_high
;
249 * HW expects these in little endian so we reverse the byte order
250 * from network order (big endian) to little endian
252 rar_low
= ((u32
) addr
[0] |
253 ((u32
) addr
[1] << 8) |
254 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
256 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
258 if (!hw
->mac
.disable_av
)
259 rar_high
|= E1000_RAH_AV
;
261 array_wr32(E1000_RA
, (index
<< 1), rar_low
);
262 array_wr32(E1000_RA
, ((index
<< 1) + 1), rar_high
);
266 * e1000_mta_set - Set multicast filter table address
267 * @hw: pointer to the HW structure
268 * @hash_value: determines the MTA register and bit to set
270 * The multicast table address is a register array of 32-bit registers.
271 * The hash_value is used to determine what register the bit is in, the
272 * current value is read, the new bit is OR'd in and the new value is
273 * written back into the register.
275 static void igb_mta_set(struct e1000_hw
*hw
, u32 hash_value
)
277 u32 hash_bit
, hash_reg
, mta
;
280 * The MTA is a register array of 32-bit registers. It is
281 * treated like an array of (32*mta_reg_count) bits. We want to
282 * set bit BitArray[hash_value]. So we figure out what register
283 * the bit is in, read it, OR in the new bit, then write
284 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
285 * mask to bits 31:5 of the hash value which gives us the
286 * register we're modifying. The hash bit within that register
287 * is determined by the lower 5 bits of the hash value.
289 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
290 hash_bit
= hash_value
& 0x1F;
292 mta
= array_rd32(E1000_MTA
, hash_reg
);
294 mta
|= (1 << hash_bit
);
296 array_wr32(E1000_MTA
, hash_reg
, mta
);
301 * e1000_update_mc_addr_list - Update Multicast addresses
302 * @hw: pointer to the HW structure
303 * @mc_addr_list: array of multicast addresses to program
304 * @mc_addr_count: number of multicast addresses to program
305 * @rar_used_count: the first RAR register free to program
306 * @rar_count: total number of supported Receive Address Registers
308 * Updates the Receive Address Registers and Multicast Table Array.
309 * The caller must have a packed mc_addr_list of multicast addresses.
310 * The parameter rar_count will usually be hw->mac.rar_entry_count
311 * unless there are workarounds that change this.
313 void igb_update_mc_addr_list(struct e1000_hw
*hw
,
314 u8
*mc_addr_list
, u32 mc_addr_count
,
315 u32 rar_used_count
, u32 rar_count
)
321 * Load the first set of multicast addresses into the exact
322 * filters (RAR). If there are not enough to fill the RAR
323 * array, clear the filters.
325 for (i
= rar_used_count
; i
< rar_count
; i
++) {
327 hw
->mac
.ops
.rar_set(hw
, mc_addr_list
, i
);
329 mc_addr_list
+= ETH_ALEN
;
331 array_wr32(E1000_RA
, i
<< 1, 0);
333 array_wr32(E1000_RA
, (i
<< 1) + 1, 0);
338 /* Clear the old settings from the MTA */
339 hw_dbg(hw
, "Clearing MTA\n");
340 for (i
= 0; i
< hw
->mac
.mta_reg_count
; i
++) {
341 array_wr32(E1000_MTA
, i
, 0);
345 /* Load any remaining multicast addresses into the hash table. */
346 for (; mc_addr_count
> 0; mc_addr_count
--) {
347 hash_value
= igb_hash_mc_addr(hw
, mc_addr_list
);
348 hw_dbg(hw
, "Hash value = 0x%03X\n", hash_value
);
349 igb_mta_set(hw
, hash_value
);
350 mc_addr_list
+= ETH_ALEN
;
355 * e1000_hash_mc_addr - Generate a multicast hash value
356 * @hw: pointer to the HW structure
357 * @mc_addr: pointer to a multicast address
359 * Generates a multicast address hash value which is used to determine
360 * the multicast filter table array address and new table value. See
363 static u32
igb_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
365 u32 hash_value
, hash_mask
;
368 /* Register count multiplied by bits per register */
369 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
372 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
373 * where 0xFF would still fall within the hash mask.
375 while (hash_mask
>> bit_shift
!= 0xFF)
379 * The portion of the address that is used for the hash table
380 * is determined by the mc_filter_type setting.
381 * The algorithm is such that there is a total of 8 bits of shifting.
382 * The bit_shift for a mc_filter_type of 0 represents the number of
383 * left-shifts where the MSB of mc_addr[5] would still fall within
384 * the hash_mask. Case 0 does this exactly. Since there are a total
385 * of 8 bits of shifting, then mc_addr[4] will shift right the
386 * remaining number of bits. Thus 8 - bit_shift. The rest of the
387 * cases are a variation of this algorithm...essentially raising the
388 * number of bits to shift mc_addr[5] left, while still keeping the
389 * 8-bit shifting total.
391 * For example, given the following Destination MAC Address and an
392 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
393 * we can see that the bit_shift for case 0 is 4. These are the hash
394 * values resulting from each mc_filter_type...
395 * [0] [1] [2] [3] [4] [5]
399 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
400 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
401 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
402 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
404 switch (hw
->mac
.mc_filter_type
) {
419 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
420 (((u16
) mc_addr
[5]) << bit_shift
)));
426 * e1000_clear_hw_cntrs_base - Clear base hardware counters
427 * @hw: pointer to the HW structure
429 * Clears the base hardware counters by reading the counter registers.
431 void igb_clear_hw_cntrs_base(struct e1000_hw
*hw
)
435 temp
= rd32(E1000_CRCERRS
);
436 temp
= rd32(E1000_SYMERRS
);
437 temp
= rd32(E1000_MPC
);
438 temp
= rd32(E1000_SCC
);
439 temp
= rd32(E1000_ECOL
);
440 temp
= rd32(E1000_MCC
);
441 temp
= rd32(E1000_LATECOL
);
442 temp
= rd32(E1000_COLC
);
443 temp
= rd32(E1000_DC
);
444 temp
= rd32(E1000_SEC
);
445 temp
= rd32(E1000_RLEC
);
446 temp
= rd32(E1000_XONRXC
);
447 temp
= rd32(E1000_XONTXC
);
448 temp
= rd32(E1000_XOFFRXC
);
449 temp
= rd32(E1000_XOFFTXC
);
450 temp
= rd32(E1000_FCRUC
);
451 temp
= rd32(E1000_GPRC
);
452 temp
= rd32(E1000_BPRC
);
453 temp
= rd32(E1000_MPRC
);
454 temp
= rd32(E1000_GPTC
);
455 temp
= rd32(E1000_GORCL
);
456 temp
= rd32(E1000_GORCH
);
457 temp
= rd32(E1000_GOTCL
);
458 temp
= rd32(E1000_GOTCH
);
459 temp
= rd32(E1000_RNBC
);
460 temp
= rd32(E1000_RUC
);
461 temp
= rd32(E1000_RFC
);
462 temp
= rd32(E1000_ROC
);
463 temp
= rd32(E1000_RJC
);
464 temp
= rd32(E1000_TORL
);
465 temp
= rd32(E1000_TORH
);
466 temp
= rd32(E1000_TOTL
);
467 temp
= rd32(E1000_TOTH
);
468 temp
= rd32(E1000_TPR
);
469 temp
= rd32(E1000_TPT
);
470 temp
= rd32(E1000_MPTC
);
471 temp
= rd32(E1000_BPTC
);
475 * e1000_check_for_copper_link - Check for link (Copper)
476 * @hw: pointer to the HW structure
478 * Checks to see of the link status of the hardware has changed. If a
479 * change in link status has been detected, then we read the PHY registers
480 * to get the current speed/duplex if link exists.
482 s32
igb_check_for_copper_link(struct e1000_hw
*hw
)
484 struct e1000_mac_info
*mac
= &hw
->mac
;
489 * We only want to go out to the PHY registers to see if Auto-Neg
490 * has completed and/or if our link status has changed. The
491 * get_link_status flag is set upon receiving a Link Status
492 * Change or Rx Sequence Error interrupt.
494 if (!mac
->get_link_status
) {
500 * First we want to see if the MII Status Register reports
501 * link. If so, then we want to get the current speed/duplex
504 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
509 goto out
; /* No link detected */
511 mac
->get_link_status
= false;
514 * Check if there was DownShift, must be checked
515 * immediately after link-up
517 igb_check_downshift(hw
);
520 * If we are forcing speed/duplex, then we simply return since
521 * we have already determined whether we have link or not.
524 ret_val
= -E1000_ERR_CONFIG
;
529 * Auto-Neg is enabled. Auto Speed Detection takes care
530 * of MAC speed/duplex configuration. So we only need to
531 * configure Collision Distance in the MAC.
533 igb_config_collision_dist(hw
);
536 * Configure Flow Control now that Auto-Neg has completed.
537 * First, we need to restore the desired flow control
538 * settings because we may have had to re-autoneg with a
539 * different link partner.
541 ret_val
= igb_config_fc_after_link_up(hw
);
543 hw_dbg(hw
, "Error configuring flow control\n");
550 * e1000_setup_link - Setup flow control and link settings
551 * @hw: pointer to the HW structure
553 * Determines which flow control settings to use, then configures flow
554 * control. Calls the appropriate media-specific link configuration
555 * function. Assuming the adapter has a valid link partner, a valid link
556 * should be established. Assumes the hardware has previously been reset
557 * and the transmitter and receiver are not enabled.
559 s32
igb_setup_link(struct e1000_hw
*hw
)
564 * In the case of the phy reset being blocked, we already have a link.
565 * We do not need to set it up again.
567 if (igb_check_reset_block(hw
))
570 ret_val
= igb_set_default_fc(hw
);
575 * We want to save off the original Flow Control configuration just
576 * in case we get disconnected and then reconnected into a different
577 * hub or switch with different Flow Control capabilities.
579 hw
->fc
.original_type
= hw
->fc
.type
;
581 hw_dbg(hw
, "After fix-ups FlowControl is now = %x\n", hw
->fc
.type
);
583 /* Call the necessary media_type subroutine to configure the link. */
584 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
589 * Initialize the flow control address, type, and PAUSE timer
590 * registers to their default values. This is done even if flow
591 * control is disabled, because it does not hurt anything to
592 * initialize these registers.
595 "Initializing the Flow Control address, type and timer regs\n");
596 wr32(E1000_FCT
, FLOW_CONTROL_TYPE
);
597 wr32(E1000_FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
598 wr32(E1000_FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
600 wr32(E1000_FCTTV
, hw
->fc
.pause_time
);
602 ret_val
= igb_set_fc_watermarks(hw
);
609 * e1000_config_collision_dist - Configure collision distance
610 * @hw: pointer to the HW structure
612 * Configures the collision distance to the default value and is used
613 * during link setup. Currently no func pointer exists and all
614 * implementations are handled in the generic version of this function.
616 void igb_config_collision_dist(struct e1000_hw
*hw
)
620 tctl
= rd32(E1000_TCTL
);
622 tctl
&= ~E1000_TCTL_COLD
;
623 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
625 wr32(E1000_TCTL
, tctl
);
630 * e1000_set_fc_watermarks - Set flow control high/low watermarks
631 * @hw: pointer to the HW structure
633 * Sets the flow control high/low threshold (watermark) registers. If
634 * flow control XON frame transmission is enabled, then set XON frame
635 * tansmission as well.
637 static s32
igb_set_fc_watermarks(struct e1000_hw
*hw
)
640 u32 fcrtl
= 0, fcrth
= 0;
643 * Set the flow control receive threshold registers. Normally,
644 * these registers will be set to a default threshold that may be
645 * adjusted later by the driver's runtime code. However, if the
646 * ability to transmit pause frames is not enabled, then these
647 * registers will be set to 0.
649 if (hw
->fc
.type
& e1000_fc_tx_pause
) {
651 * We need to set up the Receive Threshold high and low water
652 * marks as well as (optionally) enabling the transmission of
655 fcrtl
= hw
->fc
.low_water
;
657 fcrtl
|= E1000_FCRTL_XONE
;
659 fcrth
= hw
->fc
.high_water
;
661 wr32(E1000_FCRTL
, fcrtl
);
662 wr32(E1000_FCRTH
, fcrth
);
668 * e1000_set_default_fc - Set flow control default values
669 * @hw: pointer to the HW structure
671 * Read the EEPROM for the default values for flow control and store the
674 static s32
igb_set_default_fc(struct e1000_hw
*hw
)
680 * Read and store word 0x0F of the EEPROM. This word contains bits
681 * that determine the hardware's default PAUSE (flow control) mode,
682 * a bit that determines whether the HW defaults to enabling or
683 * disabling auto-negotiation, and the direction of the
684 * SW defined pins. If there is no SW over-ride of the flow
685 * control setting, then the variable hw->fc will
686 * be initialized based on a value in the EEPROM.
688 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1,
692 hw_dbg(hw
, "NVM Read Error\n");
696 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
697 hw
->fc
.type
= e1000_fc_none
;
698 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) ==
700 hw
->fc
.type
= e1000_fc_tx_pause
;
702 hw
->fc
.type
= e1000_fc_full
;
709 * e1000_force_mac_fc - Force the MAC's flow control settings
710 * @hw: pointer to the HW structure
712 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
713 * device control register to reflect the adapter settings. TFCE and RFCE
714 * need to be explicitly set by software when a copper PHY is used because
715 * autonegotiation is managed by the PHY rather than the MAC. Software must
716 * also configure these bits when link is forced on a fiber connection.
718 s32
igb_force_mac_fc(struct e1000_hw
*hw
)
723 ctrl
= rd32(E1000_CTRL
);
726 * Because we didn't get link via the internal auto-negotiation
727 * mechanism (we either forced link or we got link via PHY
728 * auto-neg), we have to manually enable/disable transmit an
729 * receive flow control.
731 * The "Case" statement below enables/disable flow control
732 * according to the "hw->fc.type" parameter.
734 * The possible values of the "fc" parameter are:
735 * 0: Flow control is completely disabled
736 * 1: Rx flow control is enabled (we can receive pause
737 * frames but not send pause frames).
738 * 2: Tx flow control is enabled (we can send pause frames
739 * frames but we do not receive pause frames).
740 * 3: Both Rx and TX flow control (symmetric) is enabled.
741 * other: No other values should be possible at this point.
743 hw_dbg(hw
, "hw->fc.type = %u\n", hw
->fc
.type
);
745 switch (hw
->fc
.type
) {
747 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
749 case e1000_fc_rx_pause
:
750 ctrl
&= (~E1000_CTRL_TFCE
);
751 ctrl
|= E1000_CTRL_RFCE
;
753 case e1000_fc_tx_pause
:
754 ctrl
&= (~E1000_CTRL_RFCE
);
755 ctrl
|= E1000_CTRL_TFCE
;
758 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
761 hw_dbg(hw
, "Flow control param set incorrectly\n");
762 ret_val
= -E1000_ERR_CONFIG
;
766 wr32(E1000_CTRL
, ctrl
);
773 * e1000_config_fc_after_link_up - Configures flow control after link
774 * @hw: pointer to the HW structure
776 * Checks the status of auto-negotiation after link up to ensure that the
777 * speed and duplex were not forced. If the link needed to be forced, then
778 * flow control needs to be forced also. If auto-negotiation is enabled
779 * and did not fail, then we configure flow control based on our link
782 s32
igb_config_fc_after_link_up(struct e1000_hw
*hw
)
784 struct e1000_mac_info
*mac
= &hw
->mac
;
786 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
790 * Check for the case where we have fiber media and auto-neg failed
791 * so we had to force link. In this case, we need to force the
792 * configuration of the MAC to match the "fc" parameter.
794 if (mac
->autoneg_failed
) {
795 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
796 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
797 ret_val
= igb_force_mac_fc(hw
);
799 if (hw
->phy
.media_type
== e1000_media_type_copper
)
800 ret_val
= igb_force_mac_fc(hw
);
804 hw_dbg(hw
, "Error forcing flow control settings\n");
809 * Check for the case where we have copper media and auto-neg is
810 * enabled. In this case, we need to check and see if Auto-Neg
811 * has completed, and if so, how the PHY and link partner has
812 * flow control configured.
814 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
816 * Read the MII Status Register and check to see if AutoNeg
817 * has completed. We read this twice because this reg has
818 * some "sticky" (latched) bits.
820 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, PHY_STATUS
,
824 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, PHY_STATUS
,
829 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
830 hw_dbg(hw
, "Copper PHY and Auto Neg "
831 "has not completed.\n");
836 * The AutoNeg process has completed, so we now need to
837 * read both the Auto Negotiation Advertisement
838 * Register (Address 4) and the Auto_Negotiation Base
839 * Page Ability Register (Address 5) to determine how
840 * flow control was negotiated.
842 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, PHY_AUTONEG_ADV
,
846 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, PHY_LP_ABILITY
,
847 &mii_nway_lp_ability_reg
);
852 * Two bits in the Auto Negotiation Advertisement Register
853 * (Address 4) and two bits in the Auto Negotiation Base
854 * Page Ability Register (Address 5) determine flow control
855 * for both the PHY and the link partner. The following
856 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
857 * 1999, describes these PAUSE resolution bits and how flow
858 * control is determined based upon these settings.
859 * NOTE: DC = Don't Care
861 * LOCAL DEVICE | LINK PARTNER
862 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
863 *-------|---------|-------|---------|--------------------
864 * 0 | 0 | DC | DC | e1000_fc_none
865 * 0 | 1 | 0 | DC | e1000_fc_none
866 * 0 | 1 | 1 | 0 | e1000_fc_none
867 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
868 * 1 | 0 | 0 | DC | e1000_fc_none
869 * 1 | DC | 1 | DC | e1000_fc_full
870 * 1 | 1 | 0 | 0 | e1000_fc_none
871 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
873 * Are both PAUSE bits set to 1? If so, this implies
874 * Symmetric Flow Control is enabled at both ends. The
875 * ASM_DIR bits are irrelevant per the spec.
877 * For Symmetric Flow Control:
879 * LOCAL DEVICE | LINK PARTNER
880 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
881 *-------|---------|-------|---------|--------------------
882 * 1 | DC | 1 | DC | E1000_fc_full
885 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
886 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
888 * Now we need to check if the user selected RX ONLY
889 * of pause frames. In this case, we had to advertise
890 * FULL flow control because we could not advertise RX
891 * ONLY. Hence, we must now check to see if we need to
892 * turn OFF the TRANSMISSION of PAUSE frames.
894 if (hw
->fc
.original_type
== e1000_fc_full
) {
895 hw
->fc
.type
= e1000_fc_full
;
896 hw_dbg(hw
, "Flow Control = FULL.\r\n");
898 hw
->fc
.type
= e1000_fc_rx_pause
;
899 hw_dbg(hw
, "Flow Control = "
900 "RX PAUSE frames only.\r\n");
904 * For receiving PAUSE frames ONLY.
906 * LOCAL DEVICE | LINK PARTNER
907 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
908 *-------|---------|-------|---------|--------------------
909 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
911 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
912 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
913 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
914 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
915 hw
->fc
.type
= e1000_fc_tx_pause
;
916 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\r\n");
919 * For transmitting PAUSE frames ONLY.
921 * LOCAL DEVICE | LINK PARTNER
922 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
923 *-------|---------|-------|---------|--------------------
924 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
926 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
927 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
928 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
929 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
930 hw
->fc
.type
= e1000_fc_rx_pause
;
931 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\r\n");
934 * Per the IEEE spec, at this point flow control should be
935 * disabled. However, we want to consider that we could
936 * be connected to a legacy switch that doesn't advertise
937 * desired flow control, but can be forced on the link
938 * partner. So if we advertised no flow control, that is
939 * what we will resolve to. If we advertised some kind of
940 * receive capability (Rx Pause Only or Full Flow Control)
941 * and the link partner advertised none, we will configure
942 * ourselves to enable Rx Flow Control only. We can do
943 * this safely for two reasons: If the link partner really
944 * didn't want flow control enabled, and we enable Rx, no
945 * harm done since we won't be receiving any PAUSE frames
946 * anyway. If the intent on the link partner was to have
947 * flow control enabled, then by us enabling RX only, we
948 * can at least receive pause frames and process them.
949 * This is a good idea because in most cases, since we are
950 * predominantly a server NIC, more times than not we will
951 * be asked to delay transmission of packets than asking
952 * our link partner to pause transmission of frames.
954 else if ((hw
->fc
.original_type
== e1000_fc_none
||
955 hw
->fc
.original_type
== e1000_fc_tx_pause
) ||
956 hw
->fc
.strict_ieee
) {
957 hw
->fc
.type
= e1000_fc_none
;
958 hw_dbg(hw
, "Flow Control = NONE.\r\n");
960 hw
->fc
.type
= e1000_fc_rx_pause
;
961 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\r\n");
965 * Now we need to do one last check... If we auto-
966 * negotiated to HALF DUPLEX, flow control should not be
967 * enabled per IEEE 802.3 spec.
969 ret_val
= hw
->mac
.ops
.get_speed_and_duplex(hw
, &speed
, &duplex
);
971 hw_dbg(hw
, "Error getting link speed and duplex\n");
975 if (duplex
== HALF_DUPLEX
)
976 hw
->fc
.type
= e1000_fc_none
;
979 * Now we call a subroutine to actually force the MAC
980 * controller to use the correct flow control settings.
982 ret_val
= igb_force_mac_fc(hw
);
984 hw_dbg(hw
, "Error forcing flow control settings\n");
994 * e1000_get_speed_and_duplex_copper - Retreive current speed/duplex
995 * @hw: pointer to the HW structure
996 * @speed: stores the current speed
997 * @duplex: stores the current duplex
999 * Read the status register for the current speed/duplex and store the current
1000 * speed and duplex for copper connections.
1002 s32
igb_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
,
1007 status
= rd32(E1000_STATUS
);
1008 if (status
& E1000_STATUS_SPEED_1000
) {
1009 *speed
= SPEED_1000
;
1010 hw_dbg(hw
, "1000 Mbs, ");
1011 } else if (status
& E1000_STATUS_SPEED_100
) {
1013 hw_dbg(hw
, "100 Mbs, ");
1016 hw_dbg(hw
, "10 Mbs, ");
1019 if (status
& E1000_STATUS_FD
) {
1020 *duplex
= FULL_DUPLEX
;
1021 hw_dbg(hw
, "Full Duplex\n");
1023 *duplex
= HALF_DUPLEX
;
1024 hw_dbg(hw
, "Half Duplex\n");
1031 * e1000_get_hw_semaphore - Acquire hardware semaphore
1032 * @hw: pointer to the HW structure
1034 * Acquire the HW semaphore to access the PHY or NVM
1036 s32
igb_get_hw_semaphore(struct e1000_hw
*hw
)
1040 s32 timeout
= hw
->nvm
.word_size
+ 1;
1043 /* Get the SW semaphore */
1044 while (i
< timeout
) {
1045 swsm
= rd32(E1000_SWSM
);
1046 if (!(swsm
& E1000_SWSM_SMBI
))
1054 hw_dbg(hw
, "Driver can't access device - SMBI bit is set.\n");
1055 ret_val
= -E1000_ERR_NVM
;
1059 /* Get the FW semaphore. */
1060 for (i
= 0; i
< timeout
; i
++) {
1061 swsm
= rd32(E1000_SWSM
);
1062 wr32(E1000_SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1064 /* Semaphore acquired if bit latched */
1065 if (rd32(E1000_SWSM
) & E1000_SWSM_SWESMBI
)
1072 /* Release semaphores */
1073 igb_put_hw_semaphore(hw
);
1074 hw_dbg(hw
, "Driver can't access the NVM\n");
1075 ret_val
= -E1000_ERR_NVM
;
1084 * e1000_put_hw_semaphore - Release hardware semaphore
1085 * @hw: pointer to the HW structure
1087 * Release hardware semaphore used to access the PHY or NVM
1089 void igb_put_hw_semaphore(struct e1000_hw
*hw
)
1093 swsm
= rd32(E1000_SWSM
);
1095 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1097 wr32(E1000_SWSM
, swsm
);
1101 * e1000_get_auto_rd_done - Check for auto read completion
1102 * @hw: pointer to the HW structure
1104 * Check EEPROM for Auto Read done bit.
1106 s32
igb_get_auto_rd_done(struct e1000_hw
*hw
)
1112 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1113 if (rd32(E1000_EECD
) & E1000_EECD_AUTO_RD
)
1119 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1120 hw_dbg(hw
, "Auto read by HW from NVM has not completed.\n");
1121 ret_val
= -E1000_ERR_RESET
;
1130 * e1000_valid_led_default - Verify a valid default LED config
1131 * @hw: pointer to the HW structure
1132 * @data: pointer to the NVM (EEPROM)
1134 * Read the EEPROM for the current default LED configuration. If the
1135 * LED configuration is not valid, set to a valid LED configuration.
1137 static s32
igb_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1141 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1143 hw_dbg(hw
, "NVM Read Error\n");
1147 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1148 *data
= ID_LED_DEFAULT
;
1155 * e1000_id_led_init -
1156 * @hw: pointer to the HW structure
1159 s32
igb_id_led_init(struct e1000_hw
*hw
)
1161 struct e1000_mac_info
*mac
= &hw
->mac
;
1163 const u32 ledctl_mask
= 0x000000FF;
1164 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1165 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1167 const u16 led_mask
= 0x0F;
1169 ret_val
= igb_valid_led_default(hw
, &data
);
1173 mac
->ledctl_default
= rd32(E1000_LEDCTL
);
1174 mac
->ledctl_mode1
= mac
->ledctl_default
;
1175 mac
->ledctl_mode2
= mac
->ledctl_default
;
1177 for (i
= 0; i
< 4; i
++) {
1178 temp
= (data
>> (i
<< 2)) & led_mask
;
1180 case ID_LED_ON1_DEF2
:
1181 case ID_LED_ON1_ON2
:
1182 case ID_LED_ON1_OFF2
:
1183 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1184 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1186 case ID_LED_OFF1_DEF2
:
1187 case ID_LED_OFF1_ON2
:
1188 case ID_LED_OFF1_OFF2
:
1189 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1190 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1197 case ID_LED_DEF1_ON2
:
1198 case ID_LED_ON1_ON2
:
1199 case ID_LED_OFF1_ON2
:
1200 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1201 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1203 case ID_LED_DEF1_OFF2
:
1204 case ID_LED_ON1_OFF2
:
1205 case ID_LED_OFF1_OFF2
:
1206 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1207 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1220 * e1000_cleanup_led - Set LED config to default operation
1221 * @hw: pointer to the HW structure
1223 * Remove the current LED configuration and set the LED configuration
1224 * to the default value, saved from the EEPROM.
1226 s32
igb_cleanup_led(struct e1000_hw
*hw
)
1228 wr32(E1000_LEDCTL
, hw
->mac
.ledctl_default
);
1233 * e1000_blink_led - Blink LED
1234 * @hw: pointer to the HW structure
1236 * Blink the led's which are set to be on.
1238 s32
igb_blink_led(struct e1000_hw
*hw
)
1240 u32 ledctl_blink
= 0;
1243 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1244 /* always blink LED0 for PCI-E fiber */
1245 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1246 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1249 * set the blink bit for each LED that's "on" (0x0E)
1252 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1253 for (i
= 0; i
< 4; i
++)
1254 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1255 E1000_LEDCTL_MODE_LED_ON
)
1256 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1260 wr32(E1000_LEDCTL
, ledctl_blink
);
1266 * e1000_led_off - Turn LED off
1267 * @hw: pointer to the HW structure
1271 s32
igb_led_off(struct e1000_hw
*hw
)
1275 switch (hw
->phy
.media_type
) {
1276 case e1000_media_type_fiber
:
1277 ctrl
= rd32(E1000_CTRL
);
1278 ctrl
|= E1000_CTRL_SWDPIN0
;
1279 ctrl
|= E1000_CTRL_SWDPIO0
;
1280 wr32(E1000_CTRL
, ctrl
);
1282 case e1000_media_type_copper
:
1283 wr32(E1000_LEDCTL
, hw
->mac
.ledctl_mode1
);
1293 * e1000_disable_pcie_master - Disables PCI-express master access
1294 * @hw: pointer to the HW structure
1296 * Returns 0 (0) if successful, else returns -10
1297 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1298 * the master requests to be disabled.
1300 * Disables PCI-Express master access and verifies there are no pending
1303 s32
igb_disable_pcie_master(struct e1000_hw
*hw
)
1306 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1309 if (hw
->bus
.type
!= e1000_bus_type_pci_express
)
1312 ctrl
= rd32(E1000_CTRL
);
1313 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1314 wr32(E1000_CTRL
, ctrl
);
1317 if (!(rd32(E1000_STATUS
) &
1318 E1000_STATUS_GIO_MASTER_ENABLE
))
1325 hw_dbg(hw
, "Master requests are pending.\n");
1326 ret_val
= -E1000_ERR_MASTER_REQUESTS_PENDING
;
1335 * e1000_reset_adaptive - Reset Adaptive Interframe Spacing
1336 * @hw: pointer to the HW structure
1338 * Reset the Adaptive Interframe Spacing throttle to default values.
1340 void igb_reset_adaptive(struct e1000_hw
*hw
)
1342 struct e1000_mac_info
*mac
= &hw
->mac
;
1344 if (!mac
->adaptive_ifs
) {
1345 hw_dbg(hw
, "Not in Adaptive IFS mode!\n");
1349 if (!mac
->ifs_params_forced
) {
1350 mac
->current_ifs_val
= 0;
1351 mac
->ifs_min_val
= IFS_MIN
;
1352 mac
->ifs_max_val
= IFS_MAX
;
1353 mac
->ifs_step_size
= IFS_STEP
;
1354 mac
->ifs_ratio
= IFS_RATIO
;
1357 mac
->in_ifs_mode
= false;
1364 * e1000_update_adaptive - Update Adaptive Interframe Spacing
1365 * @hw: pointer to the HW structure
1367 * Update the Adaptive Interframe Spacing Throttle value based on the
1368 * time between transmitted packets and time between collisions.
1370 void igb_update_adaptive(struct e1000_hw
*hw
)
1372 struct e1000_mac_info
*mac
= &hw
->mac
;
1374 if (!mac
->adaptive_ifs
) {
1375 hw_dbg(hw
, "Not in Adaptive IFS mode!\n");
1379 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1380 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1381 mac
->in_ifs_mode
= true;
1382 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1383 if (!mac
->current_ifs_val
)
1384 mac
->current_ifs_val
= mac
->ifs_min_val
;
1386 mac
->current_ifs_val
+=
1389 mac
->current_ifs_val
);
1393 if (mac
->in_ifs_mode
&&
1394 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1395 mac
->current_ifs_val
= 0;
1396 mac
->in_ifs_mode
= false;
1405 * e1000_validate_mdi_setting - Verify MDI/MDIx settings
1406 * @hw: pointer to the HW structure
1408 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1409 * set, which is forced to MDI mode only.
1411 s32
igb_validate_mdi_setting(struct e1000_hw
*hw
)
1415 if (!hw
->mac
.autoneg
&& (hw
->phy
.mdix
== 0 || hw
->phy
.mdix
== 3)) {
1416 hw_dbg(hw
, "Invalid MDI setting detected\n");
1418 ret_val
= -E1000_ERR_CONFIG
;
1427 * e1000_write_8bit_ctrl_reg - Write a 8bit CTRL register
1428 * @hw: pointer to the HW structure
1429 * @reg: 32bit register offset such as E1000_SCTL
1430 * @offset: register offset to write to
1431 * @data: data to write at register offset
1433 * Writes an address/data control type register. There are several of these
1434 * and they all have the format address << 8 | data and bit 31 is polled for
1437 s32
igb_write_8bit_ctrl_reg(struct e1000_hw
*hw
, u32 reg
,
1438 u32 offset
, u8 data
)
1440 u32 i
, regvalue
= 0;
1443 /* Set up the address and data */
1444 regvalue
= ((u32
)data
) | (offset
<< E1000_GEN_CTL_ADDRESS_SHIFT
);
1445 wr32(reg
, regvalue
);
1447 /* Poll the ready bit to see if the MDI read completed */
1448 for (i
= 0; i
< E1000_GEN_POLL_TIMEOUT
; i
++) {
1450 regvalue
= rd32(reg
);
1451 if (regvalue
& E1000_GEN_CTL_READY
)
1454 if (!(regvalue
& E1000_GEN_CTL_READY
)) {
1455 hw_dbg(hw
, "Reg %08x did not indicate ready\n", reg
);
1456 ret_val
= -E1000_ERR_PHY
;
1465 * e1000_enable_mng_pass_thru - Enable processing of ARP's
1466 * @hw: pointer to the HW structure
1468 * Verifies the hardware needs to allow ARPs to be processed by the host.
1470 bool igb_enable_mng_pass_thru(struct e1000_hw
*hw
)
1474 bool ret_val
= false;
1476 if (!hw
->mac
.asf_firmware_present
)
1479 manc
= rd32(E1000_MANC
);
1481 if (!(manc
& E1000_MANC_RCV_TCO_EN
) ||
1482 !(manc
& E1000_MANC_EN_MAC_ADDR_FILTER
))
1485 if (hw
->mac
.arc_subsystem_valid
) {
1486 fwsm
= rd32(E1000_FWSM
);
1487 factps
= rd32(E1000_FACTPS
);
1489 if (!(factps
& E1000_FACTPS_MNGCG
) &&
1490 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
1491 (e1000_mng_mode_pt
<< E1000_FWSM_MODE_SHIFT
))) {
1496 if ((manc
& E1000_MANC_SMBUS_EN
) &&
1497 !(manc
& E1000_MANC_ASF_EN
)) {