Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob86380ad7981dad13fea6de28f18bbe39131280f6
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
34 * Ring handler.
36 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
37 const unsigned int queue)
39 int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
42 * Check if we are requesting a reqular TX ring,
43 * or if we are requesting a Beacon or Atim ring.
44 * For Atim rings, we should check if it is supported.
46 if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
47 return &rt2x00dev->tx[queue];
49 if (!rt2x00dev->bcn || !beacon)
50 return NULL;
52 if (queue == IEEE80211_TX_QUEUE_BEACON)
53 return &rt2x00dev->bcn[0];
54 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
55 return &rt2x00dev->bcn[1];
57 return NULL;
59 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
62 * Link tuning handlers
64 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
65 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
66 =======
67 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
68 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
70 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
71 =======
72 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
73 return;
76 * Reset link information.
77 * Both the currently active vgc level as well as
78 * the link tuner counter should be reset. Resetting
79 * the counter is important for devices where the
80 * device should only perform link tuning during the
81 * first minute after being enabled.
83 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
84 rt2x00dev->link.count = 0;
85 rt2x00dev->link.vgc_level = 0;
87 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
88 =======
90 * Reset the link tuner.
92 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
95 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
98 * Clear all (possibly) pre-existing quality statistics.
100 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
101 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
104 * The RX and TX percentage should start at 50%
105 * this will assure we will get at least get some
106 * decent value when the link tuner starts.
107 * The value will be dropped and overwritten with
108 * the correct (measured )value anyway during the
109 * first run of the link tuner.
111 rt2x00dev->link.qual.rx_percentage = 50;
112 rt2x00dev->link.qual.tx_percentage = 50;
114 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
116 * Reset the link tuner.
118 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
119 =======
120 rt2x00lib_reset_link_tuner(rt2x00dev);
121 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
123 queue_delayed_work(rt2x00dev->hw->workqueue,
124 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
127 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
129 cancel_delayed_work_sync(&rt2x00dev->link.work);
132 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
133 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
135 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136 return;
138 rt2x00lib_stop_link_tuner(rt2x00dev);
139 rt2x00lib_start_link_tuner(rt2x00dev);
142 =======
143 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
145 * Ring initialization
147 static void rt2x00lib_init_rxrings(struct rt2x00_dev *rt2x00dev)
149 struct data_ring *ring = rt2x00dev->rx;
150 unsigned int i;
152 if (!rt2x00dev->ops->lib->init_rxentry)
153 return;
155 if (ring->data_addr)
156 memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
158 for (i = 0; i < ring->stats.limit; i++)
159 rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &ring->entry[i]);
161 rt2x00_ring_index_clear(ring);
164 static void rt2x00lib_init_txrings(struct rt2x00_dev *rt2x00dev)
166 struct data_ring *ring;
167 unsigned int i;
169 if (!rt2x00dev->ops->lib->init_txentry)
170 return;
172 txringall_for_each(rt2x00dev, ring) {
173 if (ring->data_addr)
174 memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
176 for (i = 0; i < ring->stats.limit; i++)
177 rt2x00dev->ops->lib->init_txentry(rt2x00dev,
178 &ring->entry[i]);
180 rt2x00_ring_index_clear(ring);
185 * Radio control handlers.
187 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
189 int status;
192 * Don't enable the radio twice.
193 * And check if the hardware button has been disabled.
195 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
196 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
197 return 0;
200 * Initialize all data rings.
202 rt2x00lib_init_rxrings(rt2x00dev);
203 rt2x00lib_init_txrings(rt2x00dev);
206 * Enable radio.
208 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
209 STATE_RADIO_ON);
210 if (status)
211 return status;
213 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
216 * Enable RX.
218 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
221 * Start the TX queues.
223 ieee80211_start_queues(rt2x00dev->hw);
225 return 0;
228 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
230 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
231 return;
234 * Stop all scheduled work.
236 if (work_pending(&rt2x00dev->beacon_work))
237 cancel_work_sync(&rt2x00dev->beacon_work);
238 if (work_pending(&rt2x00dev->filter_work))
239 cancel_work_sync(&rt2x00dev->filter_work);
240 if (work_pending(&rt2x00dev->config_work))
241 cancel_work_sync(&rt2x00dev->config_work);
244 * Stop the TX queues.
246 ieee80211_stop_queues(rt2x00dev->hw);
249 * Disable RX.
251 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
254 * Disable radio.
256 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
259 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
262 * When we are disabling the RX, we should also stop the link tuner.
264 if (state == STATE_RADIO_RX_OFF)
265 rt2x00lib_stop_link_tuner(rt2x00dev);
267 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
270 * When we are enabling the RX, we should also start the link tuner.
272 if (state == STATE_RADIO_RX_ON &&
273 is_interface_present(&rt2x00dev->interface))
274 rt2x00lib_start_link_tuner(rt2x00dev);
277 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
279 enum antenna rx = rt2x00dev->link.ant.active.rx;
280 enum antenna tx = rt2x00dev->link.ant.active.tx;
281 int sample_a =
282 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
283 int sample_b =
284 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
287 * We are done sampling. Now we should evaluate the results.
289 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
292 * During the last period we have sampled the RSSI
293 * from both antenna's. It now is time to determine
294 * which antenna demonstrated the best performance.
295 * When we are already on the antenna with the best
296 * performance, then there really is nothing for us
297 * left to do.
299 if (sample_a == sample_b)
300 return;
302 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
303 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) {
304 if (sample_a > sample_b && rx == ANTENNA_B)
305 rx = ANTENNA_A;
306 else if (rx == ANTENNA_A)
307 rx = ANTENNA_B;
309 =======
310 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
311 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
312 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
314 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
315 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) {
316 if (sample_a > sample_b && tx == ANTENNA_B)
317 tx = ANTENNA_A;
318 else if (tx == ANTENNA_A)
319 tx = ANTENNA_B;
321 =======
322 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
323 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
324 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
326 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
329 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
331 enum antenna rx = rt2x00dev->link.ant.active.rx;
332 enum antenna tx = rt2x00dev->link.ant.active.tx;
333 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
334 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
337 * Legacy driver indicates that we should swap antenna's
338 * when the difference in RSSI is greater that 5. This
339 * also should be done when the RSSI was actually better
340 * then the previous sample.
341 * When the difference exceeds the threshold we should
342 * sample the rssi from the other antenna to make a valid
343 * comparison between the 2 antennas.
345 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
346 if ((rssi_curr - rssi_old) > -5 || (rssi_curr - rssi_old) < 5)
347 =======
348 if (abs(rssi_curr - rssi_old) < 5)
349 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
350 return;
352 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
354 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
355 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
357 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
358 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
360 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
363 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
366 * Determine if software diversity is enabled for
367 * either the TX or RX antenna (or both).
368 * Always perform this check since within the link
369 * tuner interval the configuration might have changed.
371 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
372 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
374 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
375 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
376 rt2x00dev->default_ant.rx != ANTENNA_SW_DIVERSITY)
377 =======
378 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
379 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
380 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
381 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
382 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
383 rt2x00dev->default_ant.tx != ANTENNA_SW_DIVERSITY)
384 =======
385 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
386 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
387 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
389 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
390 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
391 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
392 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
393 =======
394 rt2x00dev->link.ant.flags = 0;
395 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
396 return;
400 * If we have only sampled the data over the last period
401 * we should now harvest the data. Otherwise just evaluate
402 * the data. The latter should only be performed once
403 * every 2 seconds.
405 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
406 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
407 else if (rt2x00dev->link.count & 1)
408 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
411 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
413 int avg_rssi = rssi;
416 * Update global RSSI
418 if (link->qual.avg_rssi)
419 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
420 link->qual.avg_rssi = avg_rssi;
423 * Update antenna RSSI
425 if (link->ant.rssi_ant)
426 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
427 link->ant.rssi_ant = rssi;
430 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
432 if (qual->rx_failed || qual->rx_success)
433 qual->rx_percentage =
434 (qual->rx_success * 100) /
435 (qual->rx_failed + qual->rx_success);
436 else
437 qual->rx_percentage = 50;
439 if (qual->tx_failed || qual->tx_success)
440 qual->tx_percentage =
441 (qual->tx_success * 100) /
442 (qual->tx_failed + qual->tx_success);
443 else
444 qual->tx_percentage = 50;
446 qual->rx_success = 0;
447 qual->rx_failed = 0;
448 qual->tx_success = 0;
449 qual->tx_failed = 0;
452 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
453 int rssi)
455 int rssi_percentage = 0;
456 int signal;
459 * We need a positive value for the RSSI.
461 if (rssi < 0)
462 rssi += rt2x00dev->rssi_offset;
465 * Calculate the different percentages,
466 * which will be used for the signal.
468 if (rt2x00dev->rssi_offset)
469 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
472 * Add the individual percentages and use the WEIGHT
473 * defines to calculate the current link signal.
475 signal = ((WEIGHT_RSSI * rssi_percentage) +
476 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
477 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
479 return (signal > 100) ? 100 : signal;
482 static void rt2x00lib_link_tuner(struct work_struct *work)
484 struct rt2x00_dev *rt2x00dev =
485 container_of(work, struct rt2x00_dev, link.work.work);
488 * When the radio is shutting down we should
489 * immediately cease all link tuning.
491 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
492 return;
495 * Update statistics.
497 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
498 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
499 rt2x00dev->link.qual.rx_failed;
502 * Only perform the link tuning when Link tuning
503 * has been enabled (This could have been disabled from the EEPROM).
505 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
506 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
509 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
510 * Evaluate antenna setup.
512 rt2x00lib_evaluate_antenna(rt2x00dev);
515 =======
516 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
517 * Precalculate a portion of the link signal which is
518 * in based on the tx/rx success/failure counters.
520 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
523 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2x00dev.c
524 =======
525 * Evaluate antenna setup, make this the last step since this could
526 * possibly reset some statistics.
528 rt2x00lib_evaluate_antenna(rt2x00dev);
531 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2x00dev.c
532 * Increase tuner counter, and reschedule the next link tuner run.
534 rt2x00dev->link.count++;
535 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
536 LINK_TUNE_INTERVAL);
539 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
541 struct rt2x00_dev *rt2x00dev =
542 container_of(work, struct rt2x00_dev, filter_work);
543 unsigned int filter = rt2x00dev->packet_filter;
546 * Since we had stored the filter inside interface.filter,
547 * we should now clear that field. Otherwise the driver will
548 * assume nothing has changed (*total_flags will be compared
549 * to interface.filter to determine if any action is required).
551 rt2x00dev->packet_filter = 0;
553 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
554 filter, &filter, 0, NULL);
557 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
559 struct rt2x00_dev *rt2x00dev =
560 container_of(work, struct rt2x00_dev, config_work);
561 struct ieee80211_bss_conf bss_conf;
563 bss_conf.use_short_preamble =
564 test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
567 * FIXME: shouldn't invoke it this way because all other contents
568 * of bss_conf is invalid.
570 rt2x00mac_bss_info_changed(rt2x00dev->hw, rt2x00dev->interface.id,
571 &bss_conf, BSS_CHANGED_ERP_PREAMBLE);
575 * Interrupt context handlers.
577 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
579 struct rt2x00_dev *rt2x00dev =
580 container_of(work, struct rt2x00_dev, beacon_work);
581 struct data_ring *ring =
582 rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
583 struct data_entry *entry = rt2x00_get_data_entry(ring);
584 struct sk_buff *skb;
586 skb = ieee80211_beacon_get(rt2x00dev->hw,
587 rt2x00dev->interface.id,
588 &entry->tx_status.control);
589 if (!skb)
590 return;
592 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
593 &entry->tx_status.control);
595 dev_kfree_skb(skb);
598 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
600 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
601 return;
603 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
605 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
607 void rt2x00lib_txdone(struct data_entry *entry,
608 const int status, const int retry)
610 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
611 struct ieee80211_tx_status *tx_status = &entry->tx_status;
612 struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
613 int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
614 int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
615 status == TX_FAIL_OTHER);
618 * Update TX statistics.
620 tx_status->flags = 0;
621 tx_status->ack_signal = 0;
622 tx_status->excessive_retries = (status == TX_FAIL_RETRY);
623 tx_status->retry_count = retry;
624 rt2x00dev->link.qual.tx_success += success;
625 rt2x00dev->link.qual.tx_failed += retry + fail;
627 if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
628 if (success)
629 tx_status->flags |= IEEE80211_TX_STATUS_ACK;
630 else
631 stats->dot11ACKFailureCount++;
634 tx_status->queue_length = entry->ring->stats.limit;
635 tx_status->queue_number = tx_status->control.queue;
637 if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
638 if (success)
639 stats->dot11RTSSuccessCount++;
640 else
641 stats->dot11RTSFailureCount++;
645 * Send the tx_status to mac80211 & debugfs.
646 * mac80211 will clean up the skb structure.
648 get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
649 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
650 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
651 entry->skb = NULL;
653 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
655 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
656 struct rxdata_entry_desc *desc)
658 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
659 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
660 struct ieee80211_hw_mode *mode;
661 struct ieee80211_rate *rate;
662 struct ieee80211_hdr *hdr;
663 unsigned int i;
664 int val = 0;
665 u16 fc;
668 * Update RX statistics.
670 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
671 for (i = 0; i < mode->num_rates; i++) {
672 rate = &mode->rates[i];
675 * When frame was received with an OFDM bitrate,
676 * the signal is the PLCP value. If it was received with
677 * a CCK bitrate the signal is the rate in 0.5kbit/s.
679 if (!desc->ofdm)
680 val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
681 else
682 val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
684 if (val == desc->signal) {
685 val = rate->val;
686 break;
691 * Only update link status if this is a beacon frame carrying our bssid.
693 hdr = (struct ieee80211_hdr*)skb->data;
694 fc = le16_to_cpu(hdr->frame_control);
695 if (is_beacon(fc) && desc->my_bss)
696 rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi);
698 rt2x00dev->link.qual.rx_success++;
700 rx_status->rate = val;
701 rx_status->signal =
702 rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
703 rx_status->ssi = desc->rssi;
704 rx_status->flag = desc->flags;
705 rx_status->antenna = rt2x00dev->link.ant.active.rx;
708 * Send frame to mac80211 & debugfs
710 get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
711 rt2x00debug_dump_frame(rt2x00dev, skb);
712 ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
714 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
717 * TX descriptor initializer
719 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
720 struct sk_buff *skb,
721 struct ieee80211_tx_control *control)
723 struct txdata_entry_desc desc;
724 struct skb_desc *skbdesc = get_skb_desc(skb);
725 struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
726 int tx_rate;
727 int bitrate;
728 int length;
729 int duration;
730 int residual;
731 u16 frame_control;
732 u16 seq_ctrl;
734 memset(&desc, 0, sizeof(desc));
736 desc.cw_min = skbdesc->ring->tx_params.cw_min;
737 desc.cw_max = skbdesc->ring->tx_params.cw_max;
738 desc.aifs = skbdesc->ring->tx_params.aifs;
741 * Identify queue
743 if (control->queue < rt2x00dev->hw->queues)
744 desc.queue = control->queue;
745 else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
746 control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
747 desc.queue = QUEUE_MGMT;
748 else
749 desc.queue = QUEUE_OTHER;
752 * Read required fields from ieee80211 header.
754 frame_control = le16_to_cpu(ieee80211hdr->frame_control);
755 seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
757 tx_rate = control->tx_rate;
760 * Check whether this frame is to be acked
762 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
763 __set_bit(ENTRY_TXD_ACK, &desc.flags);
766 * Check if this is a RTS/CTS frame
768 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
769 __set_bit(ENTRY_TXD_BURST, &desc.flags);
770 if (is_rts_frame(frame_control)) {
771 __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
772 __set_bit(ENTRY_TXD_ACK, &desc.flags);
773 } else
774 __clear_bit(ENTRY_TXD_ACK, &desc.flags);
775 if (control->rts_cts_rate)
776 tx_rate = control->rts_cts_rate;
780 * Check for OFDM
782 if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
783 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
786 * Check if more fragments are pending
788 if (ieee80211_get_morefrag(ieee80211hdr)) {
789 __set_bit(ENTRY_TXD_BURST, &desc.flags);
790 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
794 * Beacons and probe responses require the tsf timestamp
795 * to be inserted into the frame.
797 if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
798 is_probe_resp(frame_control))
799 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
802 * Determine with what IFS priority this frame should be send.
803 * Set ifs to IFS_SIFS when the this is not the first fragment,
804 * or this fragment came after RTS/CTS.
806 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
807 test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
808 desc.ifs = IFS_SIFS;
809 else
810 desc.ifs = IFS_BACKOFF;
813 * PLCP setup
814 * Length calculation depends on OFDM/CCK rate.
816 desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
817 desc.service = 0x04;
819 length = skbdesc->data_len + FCS_LEN;
820 if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
821 desc.length_high = (length >> 6) & 0x3f;
822 desc.length_low = length & 0x3f;
823 } else {
824 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
827 * Convert length to microseconds.
829 residual = get_duration_res(length, bitrate);
830 duration = get_duration(length, bitrate);
832 if (residual != 0) {
833 duration++;
836 * Check if we need to set the Length Extension
838 if (bitrate == 110 && residual <= 30)
839 desc.service |= 0x80;
842 desc.length_high = (duration >> 8) & 0xff;
843 desc.length_low = duration & 0xff;
846 * When preamble is enabled we should set the
847 * preamble bit for the signal.
849 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
850 desc.signal |= 0x08;
853 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control);
856 * Update ring entry.
858 skbdesc->entry->skb = skb;
859 memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
862 * The frame has been completely initialized and ready
863 * for sending to the device. The caller will push the
864 * frame to the device, but we are going to push the
865 * frame to debugfs here.
867 skbdesc->frame_type = DUMP_FRAME_TX;
868 rt2x00debug_dump_frame(rt2x00dev, skb);
870 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
873 * Driver initialization handlers.
875 static void rt2x00lib_channel(struct ieee80211_channel *entry,
876 const int channel, const int tx_power,
877 const int value)
879 entry->chan = channel;
880 if (channel <= 14)
881 entry->freq = 2407 + (5 * channel);
882 else
883 entry->freq = 5000 + (5 * channel);
884 entry->val = value;
885 entry->flag =
886 IEEE80211_CHAN_W_IBSS |
887 IEEE80211_CHAN_W_ACTIVE_SCAN |
888 IEEE80211_CHAN_W_SCAN;
889 entry->power_level = tx_power;
890 entry->antenna_max = 0xff;
893 static void rt2x00lib_rate(struct ieee80211_rate *entry,
894 const int rate, const int mask,
895 const int plcp, const int flags)
897 entry->rate = rate;
898 entry->val =
899 DEVICE_SET_RATE_FIELD(rate, RATE) |
900 DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
901 DEVICE_SET_RATE_FIELD(plcp, PLCP);
902 entry->flags = flags;
903 entry->val2 = entry->val;
904 if (entry->flags & IEEE80211_RATE_PREAMBLE2)
905 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
906 entry->min_rssi_ack = 0;
907 entry->min_rssi_ack_delta = 0;
910 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
911 struct hw_mode_spec *spec)
913 struct ieee80211_hw *hw = rt2x00dev->hw;
914 struct ieee80211_hw_mode *hwmodes;
915 struct ieee80211_channel *channels;
916 struct ieee80211_rate *rates;
917 unsigned int i;
918 unsigned char tx_power;
920 hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
921 if (!hwmodes)
922 goto exit;
924 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
925 if (!channels)
926 goto exit_free_modes;
928 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
929 if (!rates)
930 goto exit_free_channels;
933 * Initialize Rate list.
935 rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
936 0x00, IEEE80211_RATE_CCK);
937 rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
938 0x01, IEEE80211_RATE_CCK_2);
939 rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
940 0x02, IEEE80211_RATE_CCK_2);
941 rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
942 0x03, IEEE80211_RATE_CCK_2);
944 if (spec->num_rates > 4) {
945 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
946 0x0b, IEEE80211_RATE_OFDM);
947 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
948 0x0f, IEEE80211_RATE_OFDM);
949 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
950 0x0a, IEEE80211_RATE_OFDM);
951 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
952 0x0e, IEEE80211_RATE_OFDM);
953 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
954 0x09, IEEE80211_RATE_OFDM);
955 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
956 0x0d, IEEE80211_RATE_OFDM);
957 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
958 0x08, IEEE80211_RATE_OFDM);
959 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
960 0x0c, IEEE80211_RATE_OFDM);
964 * Initialize Channel list.
966 for (i = 0; i < spec->num_channels; i++) {
967 if (spec->channels[i].channel <= 14)
968 tx_power = spec->tx_power_bg[i];
969 else if (spec->tx_power_a)
970 tx_power = spec->tx_power_a[i];
971 else
972 tx_power = spec->tx_power_default;
974 rt2x00lib_channel(&channels[i],
975 spec->channels[i].channel, tx_power, i);
979 * Intitialize 802.11b
980 * Rates: CCK.
981 * Channels: OFDM.
983 if (spec->num_modes > HWMODE_B) {
984 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
985 hwmodes[HWMODE_B].num_channels = 14;
986 hwmodes[HWMODE_B].num_rates = 4;
987 hwmodes[HWMODE_B].channels = channels;
988 hwmodes[HWMODE_B].rates = rates;
992 * Intitialize 802.11g
993 * Rates: CCK, OFDM.
994 * Channels: OFDM.
996 if (spec->num_modes > HWMODE_G) {
997 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
998 hwmodes[HWMODE_G].num_channels = 14;
999 hwmodes[HWMODE_G].num_rates = spec->num_rates;
1000 hwmodes[HWMODE_G].channels = channels;
1001 hwmodes[HWMODE_G].rates = rates;
1005 * Intitialize 802.11a
1006 * Rates: OFDM.
1007 * Channels: OFDM, UNII, HiperLAN2.
1009 if (spec->num_modes > HWMODE_A) {
1010 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
1011 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
1012 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
1013 hwmodes[HWMODE_A].channels = &channels[14];
1014 hwmodes[HWMODE_A].rates = &rates[4];
1017 if (spec->num_modes > HWMODE_G &&
1018 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
1019 goto exit_free_rates;
1021 if (spec->num_modes > HWMODE_B &&
1022 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
1023 goto exit_free_rates;
1025 if (spec->num_modes > HWMODE_A &&
1026 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
1027 goto exit_free_rates;
1029 rt2x00dev->hwmodes = hwmodes;
1031 return 0;
1033 exit_free_rates:
1034 kfree(rates);
1036 exit_free_channels:
1037 kfree(channels);
1039 exit_free_modes:
1040 kfree(hwmodes);
1042 exit:
1043 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
1044 return -ENOMEM;
1047 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1049 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
1050 ieee80211_unregister_hw(rt2x00dev->hw);
1052 if (likely(rt2x00dev->hwmodes)) {
1053 kfree(rt2x00dev->hwmodes->channels);
1054 kfree(rt2x00dev->hwmodes->rates);
1055 kfree(rt2x00dev->hwmodes);
1056 rt2x00dev->hwmodes = NULL;
1060 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1062 struct hw_mode_spec *spec = &rt2x00dev->spec;
1063 int status;
1066 * Initialize HW modes.
1068 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1069 if (status)
1070 return status;
1073 * Register HW.
1075 status = ieee80211_register_hw(rt2x00dev->hw);
1076 if (status) {
1077 rt2x00lib_remove_hw(rt2x00dev);
1078 return status;
1081 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
1083 return 0;
1087 * Initialization/uninitialization handlers.
1089 static int rt2x00lib_alloc_entries(struct data_ring *ring,
1090 const u16 max_entries, const u16 data_size,
1091 const u16 desc_size)
1093 struct data_entry *entry;
1094 unsigned int i;
1096 ring->stats.limit = max_entries;
1097 ring->data_size = data_size;
1098 ring->desc_size = desc_size;
1101 * Allocate all ring entries.
1103 entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
1104 if (!entry)
1105 return -ENOMEM;
1107 for (i = 0; i < ring->stats.limit; i++) {
1108 entry[i].flags = 0;
1109 entry[i].ring = ring;
1110 entry[i].skb = NULL;
1111 entry[i].entry_idx = i;
1114 ring->entry = entry;
1116 return 0;
1119 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
1121 struct data_ring *ring;
1124 * Allocate the RX ring.
1126 if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
1127 rt2x00dev->ops->rxd_size))
1128 return -ENOMEM;
1131 * First allocate the TX rings.
1133 txring_for_each(rt2x00dev, ring) {
1134 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
1135 rt2x00dev->ops->txd_size))
1136 return -ENOMEM;
1139 if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1140 return 0;
1143 * Allocate the BEACON ring.
1145 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
1146 MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
1147 return -ENOMEM;
1150 * Allocate the Atim ring.
1152 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
1153 DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
1154 return -ENOMEM;
1156 return 0;
1159 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
1161 struct data_ring *ring;
1163 ring_for_each(rt2x00dev, ring) {
1164 kfree(ring->entry);
1165 ring->entry = NULL;
1169 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1171 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1172 return;
1175 * Unregister rfkill.
1177 rt2x00rfkill_unregister(rt2x00dev);
1180 * Allow the HW to uninitialize.
1182 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1185 * Free allocated ring entries.
1187 rt2x00lib_free_ring_entries(rt2x00dev);
1190 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1192 int status;
1194 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1195 return 0;
1198 * Allocate all ring entries.
1200 status = rt2x00lib_alloc_ring_entries(rt2x00dev);
1201 if (status) {
1202 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
1203 return status;
1207 * Initialize the device.
1209 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1210 if (status)
1211 goto exit;
1213 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1216 * Register the rfkill handler.
1218 status = rt2x00rfkill_register(rt2x00dev);
1219 if (status)
1220 goto exit_unitialize;
1222 return 0;
1224 exit_unitialize:
1225 rt2x00lib_uninitialize(rt2x00dev);
1227 exit:
1228 rt2x00lib_free_ring_entries(rt2x00dev);
1230 return status;
1233 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1235 int retval;
1237 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1238 return 0;
1241 * If this is the first interface which is added,
1242 * we should load the firmware now.
1244 if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) {
1245 retval = rt2x00lib_load_firmware(rt2x00dev);
1246 if (retval)
1247 return retval;
1251 * Initialize the device.
1253 retval = rt2x00lib_initialize(rt2x00dev);
1254 if (retval)
1255 return retval;
1258 * Enable radio.
1260 retval = rt2x00lib_enable_radio(rt2x00dev);
1261 if (retval) {
1262 rt2x00lib_uninitialize(rt2x00dev);
1263 return retval;
1266 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1268 return 0;
1271 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1273 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1274 return;
1277 * Perhaps we can add something smarter here,
1278 * but for now just disabling the radio should do.
1280 rt2x00lib_disable_radio(rt2x00dev);
1282 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1286 * driver allocation handlers.
1288 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
1290 struct data_ring *ring;
1291 unsigned int index;
1294 * We need the following rings:
1295 * RX: 1
1296 * TX: hw->queues
1297 * Beacon: 1 (if required)
1298 * Atim: 1 (if required)
1300 rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
1301 (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
1303 ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
1304 if (!ring) {
1305 ERROR(rt2x00dev, "Ring allocation failed.\n");
1306 return -ENOMEM;
1310 * Initialize pointers
1312 rt2x00dev->rx = ring;
1313 rt2x00dev->tx = &rt2x00dev->rx[1];
1314 if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1315 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
1318 * Initialize ring parameters.
1319 * RX: queue_idx = 0
1320 * TX: queue_idx = IEEE80211_TX_QUEUE_DATA0 + index
1321 * TX: cw_min: 2^5 = 32.
1322 * TX: cw_max: 2^10 = 1024.
1324 rt2x00dev->rx->rt2x00dev = rt2x00dev;
1325 rt2x00dev->rx->queue_idx = 0;
1327 index = IEEE80211_TX_QUEUE_DATA0;
1328 txring_for_each(rt2x00dev, ring) {
1329 ring->rt2x00dev = rt2x00dev;
1330 ring->queue_idx = index++;
1331 ring->tx_params.aifs = 2;
1332 ring->tx_params.cw_min = 5;
1333 ring->tx_params.cw_max = 10;
1336 return 0;
1339 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
1341 kfree(rt2x00dev->rx);
1342 rt2x00dev->rx = NULL;
1343 rt2x00dev->tx = NULL;
1344 rt2x00dev->bcn = NULL;
1347 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1349 int retval = -ENOMEM;
1352 * Let the driver probe the device to detect the capabilities.
1354 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1355 if (retval) {
1356 ERROR(rt2x00dev, "Failed to allocate device.\n");
1357 goto exit;
1361 * Initialize configuration work.
1363 INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1364 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1365 INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1366 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1369 * Reset current working type.
1371 rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
1374 * Allocate ring array.
1376 retval = rt2x00lib_alloc_rings(rt2x00dev);
1377 if (retval)
1378 goto exit;
1381 * Initialize ieee80211 structure.
1383 retval = rt2x00lib_probe_hw(rt2x00dev);
1384 if (retval) {
1385 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1386 goto exit;
1390 * Allocatie rfkill.
1392 retval = rt2x00rfkill_allocate(rt2x00dev);
1393 if (retval)
1394 goto exit;
1397 * Open the debugfs entry.
1399 rt2x00debug_register(rt2x00dev);
1401 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1403 return 0;
1405 exit:
1406 rt2x00lib_remove_dev(rt2x00dev);
1408 return retval;
1410 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1412 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1414 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1417 * Disable radio.
1419 rt2x00lib_disable_radio(rt2x00dev);
1422 * Uninitialize device.
1424 rt2x00lib_uninitialize(rt2x00dev);
1427 * Close debugfs entry.
1429 rt2x00debug_deregister(rt2x00dev);
1432 * Free rfkill
1434 rt2x00rfkill_free(rt2x00dev);
1437 * Free ieee80211_hw memory.
1439 rt2x00lib_remove_hw(rt2x00dev);
1442 * Free firmware image.
1444 rt2x00lib_free_firmware(rt2x00dev);
1447 * Free ring structures.
1449 rt2x00lib_free_rings(rt2x00dev);
1451 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1454 * Device state handlers
1456 #ifdef CONFIG_PM
1457 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1459 int retval;
1461 NOTICE(rt2x00dev, "Going to sleep.\n");
1462 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1465 * Only continue if mac80211 has open interfaces.
1467 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1468 goto exit;
1469 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1472 * Disable radio and unitialize all items
1473 * that must be recreated on resume.
1475 rt2x00lib_stop(rt2x00dev);
1476 rt2x00lib_uninitialize(rt2x00dev);
1477 rt2x00debug_deregister(rt2x00dev);
1479 exit:
1481 * Set device mode to sleep for power management.
1483 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1484 if (retval)
1485 return retval;
1487 return 0;
1489 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1491 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1493 struct interface *intf = &rt2x00dev->interface;
1494 int retval;
1496 NOTICE(rt2x00dev, "Waking up.\n");
1499 * Open the debugfs entry.
1501 rt2x00debug_register(rt2x00dev);
1504 * Only continue if mac80211 had open interfaces.
1506 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1507 return 0;
1510 * Reinitialize device and all active interfaces.
1512 retval = rt2x00lib_start(rt2x00dev);
1513 if (retval)
1514 goto exit;
1517 * Reconfigure device.
1519 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1520 if (!rt2x00dev->hw->conf.radio_enabled)
1521 rt2x00lib_disable_radio(rt2x00dev);
1523 rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1524 rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1525 rt2x00lib_config_type(rt2x00dev, intf->type);
1528 * We are ready again to receive requests from mac80211.
1530 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1533 * It is possible that during that mac80211 has attempted
1534 * to send frames while we were suspending or resuming.
1535 * In that case we have disabled the TX queue and should
1536 * now enable it again
1538 ieee80211_start_queues(rt2x00dev->hw);
1541 * When in Master or Ad-hoc mode,
1542 * restart Beacon transmitting by faking a beacondone event.
1544 if (intf->type == IEEE80211_IF_TYPE_AP ||
1545 intf->type == IEEE80211_IF_TYPE_IBSS)
1546 rt2x00lib_beacondone(rt2x00dev);
1548 return 0;
1550 exit:
1551 rt2x00lib_disable_radio(rt2x00dev);
1552 rt2x00lib_uninitialize(rt2x00dev);
1553 rt2x00debug_deregister(rt2x00dev);
1555 return retval;
1557 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1558 #endif /* CONFIG_PM */
1561 * rt2x00lib module information.
1563 MODULE_AUTHOR(DRV_PROJECT);
1564 MODULE_VERSION(DRV_VERSION);
1565 MODULE_DESCRIPTION("rt2x00 library");
1566 MODULE_LICENSE("GPL");