Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / drivers / parisc / ccio-dma.c
blob61b6a7f23831207781d702fc0d80611deb645365
1 /*
2 ** ccio-dma.c:
3 ** DMA management routines for first generation cache-coherent machines.
4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 ** (c) Copyright 2000 Grant Grundler
7 ** (c) Copyright 2000 Ryan Bradetich
8 ** (c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
16 ** "Real Mode" operation refers to U2/Uturn chip operation.
17 ** U2/Uturn were designed to perform coherency checks w/o using
18 ** the I/O MMU - basically what x86 does.
20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
26 ** Drawbacks of using Real Mode are:
27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 ** o Ability to do scatter/gather in HW is lost.
30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
31 ** the coherency design originally worked out. Only PCX-W does.
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 <<<<<<< HEAD:drivers/parisc/ccio-dma.c
47 =======
48 #include <linux/iommu-helper.h>
49 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/parisc/ccio-dma.c
51 #include <asm/byteorder.h>
52 #include <asm/cache.h> /* for L1_CACHE_BYTES */
53 #include <asm/uaccess.h>
54 #include <asm/page.h>
55 #include <asm/dma.h>
56 #include <asm/io.h>
57 #include <asm/hardware.h> /* for register_module() */
58 #include <asm/parisc-device.h>
60 /*
61 ** Choose "ccio" since that's what HP-UX calls it.
62 ** Make it easier for folks to migrate from one to the other :^)
64 #define MODULE_NAME "ccio"
66 #undef DEBUG_CCIO_RES
67 #undef DEBUG_CCIO_RUN
68 #undef DEBUG_CCIO_INIT
69 #undef DEBUG_CCIO_RUN_SG
71 #ifdef CONFIG_PROC_FS
73 * CCIO_SEARCH_TIME can help measure how fast the bitmap search is.
74 * impacts performance though - ditch it if you don't use it.
76 #define CCIO_SEARCH_TIME
77 #undef CCIO_MAP_STATS
78 #else
79 #undef CCIO_SEARCH_TIME
80 #undef CCIO_MAP_STATS
81 #endif
83 #include <linux/proc_fs.h>
84 #include <asm/runway.h> /* for proc_runway_root */
86 #ifdef DEBUG_CCIO_INIT
87 #define DBG_INIT(x...) printk(x)
88 #else
89 #define DBG_INIT(x...)
90 #endif
92 #ifdef DEBUG_CCIO_RUN
93 #define DBG_RUN(x...) printk(x)
94 #else
95 #define DBG_RUN(x...)
96 #endif
98 #ifdef DEBUG_CCIO_RES
99 #define DBG_RES(x...) printk(x)
100 #else
101 #define DBG_RES(x...)
102 #endif
104 #ifdef DEBUG_CCIO_RUN_SG
105 #define DBG_RUN_SG(x...) printk(x)
106 #else
107 #define DBG_RUN_SG(x...)
108 #endif
110 #define CCIO_INLINE inline
111 #define WRITE_U32(value, addr) __raw_writel(value, addr)
112 #define READ_U32(addr) __raw_readl(addr)
114 #define U2_IOA_RUNWAY 0x580
115 #define U2_BC_GSC 0x501
116 #define UTURN_IOA_RUNWAY 0x581
117 #define UTURN_BC_GSC 0x502
119 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
120 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
121 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
123 struct ioa_registers {
124 /* Runway Supervisory Set */
125 int32_t unused1[12];
126 uint32_t io_command; /* Offset 12 */
127 uint32_t io_status; /* Offset 13 */
128 uint32_t io_control; /* Offset 14 */
129 int32_t unused2[1];
131 /* Runway Auxiliary Register Set */
132 uint32_t io_err_resp; /* Offset 0 */
133 uint32_t io_err_info; /* Offset 1 */
134 uint32_t io_err_req; /* Offset 2 */
135 uint32_t io_err_resp_hi; /* Offset 3 */
136 uint32_t io_tlb_entry_m; /* Offset 4 */
137 uint32_t io_tlb_entry_l; /* Offset 5 */
138 uint32_t unused3[1];
139 uint32_t io_pdir_base; /* Offset 7 */
140 uint32_t io_io_low_hv; /* Offset 8 */
141 uint32_t io_io_high_hv; /* Offset 9 */
142 uint32_t unused4[1];
143 uint32_t io_chain_id_mask; /* Offset 11 */
144 uint32_t unused5[2];
145 uint32_t io_io_low; /* Offset 14 */
146 uint32_t io_io_high; /* Offset 15 */
150 ** IOA Registers
151 ** -------------
153 ** Runway IO_CONTROL Register (+0x38)
155 ** The Runway IO_CONTROL register controls the forwarding of transactions.
157 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
158 ** | HV | TLB | reserved | HV | mode | reserved |
160 ** o mode field indicates the address translation of transactions
161 ** forwarded from Runway to GSC+:
162 ** Mode Name Value Definition
163 ** Off (default) 0 Opaque to matching addresses.
164 ** Include 1 Transparent for matching addresses.
165 ** Peek 3 Map matching addresses.
167 ** + "Off" mode: Runway transactions which match the I/O range
168 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
169 ** + "Include" mode: all addresses within the I/O range specified
170 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
171 ** forwarded. This is the I/O Adapter's normal operating mode.
172 ** + "Peek" mode: used during system configuration to initialize the
173 ** GSC+ bus. Runway Write_Shorts in the address range specified by
174 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
175 ** *AND* the GSC+ address is remapped to the Broadcast Physical
176 ** Address space by setting the 14 high order address bits of the
177 ** 32 bit GSC+ address to ones.
179 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
180 ** "Real" mode is the poweron default.
182 ** TLB Mode Value Description
183 ** Real 0 No TLB translation. Address is directly mapped and the
184 ** virtual address is composed of selected physical bits.
185 ** Error 1 Software fills the TLB manually.
186 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
189 ** IO_IO_LOW_HV +0x60 (HV dependent)
190 ** IO_IO_HIGH_HV +0x64 (HV dependent)
191 ** IO_IO_LOW +0x78 (Architected register)
192 ** IO_IO_HIGH +0x7c (Architected register)
194 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
195 ** I/O Adapter address space, respectively.
197 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
198 ** 11111111 | 11111111 | address |
200 ** Each LOW/HIGH pair describes a disjoint address space region.
201 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
202 ** with both sets of LOW/HIGH registers. If the address is in the range
203 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
204 ** for forwarded to the respective GSC+ bus.
205 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
206 ** an address space region.
208 ** In order for a Runway address to reside within GSC+ extended address space:
209 ** Runway Address [0:7] must identically compare to 8'b11111111
210 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
211 ** Runway Address [12:23] must be greater than or equal to
212 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
213 ** Runway Address [24:39] is not used in the comparison.
215 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
216 ** as follows:
217 ** GSC+ Address[0:3] 4'b1111
218 ** GSC+ Address[4:29] Runway Address[12:37]
219 ** GSC+ Address[30:31] 2'b00
221 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
222 ** is interrogated and address space is defined. The operating system will
223 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
224 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
225 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
227 ** Writes to both sets of registers will take effect immediately, bypassing
228 ** the queues, which ensures that subsequent Runway transactions are checked
229 ** against the updated bounds values. However reads are queued, introducing
230 ** the possibility of a read being bypassed by a subsequent write to the same
231 ** register. This sequence can be avoided by having software wait for read
232 ** returns before issuing subsequent writes.
235 struct ioc {
236 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
237 u8 *res_map; /* resource map, bit == pdir entry */
238 u64 *pdir_base; /* physical base address */
239 u32 pdir_size; /* bytes, function of IOV Space size */
240 u32 res_hint; /* next available IOVP -
241 circular search */
242 u32 res_size; /* size of resource map in bytes */
243 spinlock_t res_lock;
245 #ifdef CCIO_SEARCH_TIME
246 #define CCIO_SEARCH_SAMPLE 0x100
247 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
248 unsigned long avg_idx; /* current index into avg_search */
249 #endif
250 #ifdef CCIO_MAP_STATS
251 unsigned long used_pages;
252 unsigned long msingle_calls;
253 unsigned long msingle_pages;
254 unsigned long msg_calls;
255 unsigned long msg_pages;
256 unsigned long usingle_calls;
257 unsigned long usingle_pages;
258 unsigned long usg_calls;
259 unsigned long usg_pages;
260 #endif
261 unsigned short cujo20_bug;
263 /* STUFF We don't need in performance path */
264 u32 chainid_shift; /* specify bit location of chain_id */
265 struct ioc *next; /* Linked list of discovered iocs */
266 const char *name; /* device name from firmware */
267 unsigned int hw_path; /* the hardware path this ioc is associatd with */
268 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
269 struct resource mmio_region[2]; /* The "routed" MMIO regions */
272 static struct ioc *ioc_list;
273 static int ioc_count;
275 /**************************************************************
277 * I/O Pdir Resource Management
279 * Bits set in the resource map are in use.
280 * Each bit can represent a number of pages.
281 * LSbs represent lower addresses (IOVA's).
283 * This was was copied from sba_iommu.c. Don't try to unify
284 * the two resource managers unless a way to have different
285 * allocation policies is also adjusted. We'd like to avoid
286 * I/O TLB thrashing by having resource allocation policy
287 * match the I/O TLB replacement policy.
289 ***************************************************************/
290 #define IOVP_SIZE PAGE_SIZE
291 #define IOVP_SHIFT PAGE_SHIFT
292 #define IOVP_MASK PAGE_MASK
294 /* Convert from IOVP to IOVA and vice versa. */
295 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
296 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
298 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
299 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
300 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
303 ** Don't worry about the 150% average search length on a miss.
304 ** If the search wraps around, and passes the res_hint, it will
305 ** cause the kernel to panic anyhow.
307 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
308 for(; res_ptr < res_end; ++res_ptr) { \
309 <<<<<<< HEAD:drivers/parisc/ccio-dma.c
310 if(0 == (*res_ptr & mask)) { \
311 *res_ptr |= mask; \
312 res_idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
313 ioc->res_hint = res_idx + (size >> 3); \
314 goto resource_found; \
317 =======
318 int ret;\
319 unsigned int idx;\
320 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
321 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
322 if ((0 == (*res_ptr & mask)) && !ret) { \
323 *res_ptr |= mask; \
324 res_idx = idx;\
325 ioc->res_hint = res_idx + (size >> 3); \
326 goto resource_found; \
329 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/parisc/ccio-dma.c
331 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
332 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
333 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
334 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
335 res_ptr = (u##size *)&(ioc)->res_map[0]; \
336 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
339 ** Find available bit in this ioa's resource map.
340 ** Use a "circular" search:
341 ** o Most IOVA's are "temporary" - avg search time should be small.
342 ** o keep a history of what happened for debugging
343 ** o KISS.
345 ** Perf optimizations:
346 ** o search for log2(size) bits at a time.
347 ** o search for available resource bits using byte/word/whatever.
348 ** o use different search for "large" (eg > 4 pages) or "very large"
349 ** (eg > 16 pages) mappings.
353 * ccio_alloc_range - Allocate pages in the ioc's resource map.
354 * @ioc: The I/O Controller.
355 * @pages_needed: The requested number of pages to be mapped into the
356 * I/O Pdir...
358 * This function searches the resource map of the ioc to locate a range
359 * of available pages for the requested size.
361 static int
362 <<<<<<< HEAD:drivers/parisc/ccio-dma.c
363 ccio_alloc_range(struct ioc *ioc, size_t size)
364 =======
365 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
366 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/parisc/ccio-dma.c
368 unsigned int pages_needed = size >> IOVP_SHIFT;
369 unsigned int res_idx;
370 <<<<<<< HEAD:drivers/parisc/ccio-dma.c
371 =======
372 unsigned long boundary_size;
373 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/parisc/ccio-dma.c
374 #ifdef CCIO_SEARCH_TIME
375 unsigned long cr_start = mfctl(16);
376 #endif
378 BUG_ON(pages_needed == 0);
379 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
381 DBG_RES("%s() size: %d pages_needed %d\n",
382 __FUNCTION__, size, pages_needed);
385 ** "seek and ye shall find"...praying never hurts either...
386 ** ggg sacrifices another 710 to the computer gods.
389 <<<<<<< HEAD:drivers/parisc/ccio-dma.c
390 =======
391 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
392 1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
394 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/parisc/ccio-dma.c
395 if (pages_needed <= 8) {
397 * LAN traffic will not thrash the TLB IFF the same NIC
398 * uses 8 adjacent pages to map separate payload data.
399 * ie the same byte in the resource bit map.
401 #if 0
402 /* FIXME: bit search should shift it's way through
403 * an unsigned long - not byte at a time. As it is now,
404 * we effectively allocate this byte to this mapping.
406 unsigned long mask = ~(~0UL >> pages_needed);
407 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
408 #else
409 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
410 #endif
411 } else if (pages_needed <= 16) {
412 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
413 } else if (pages_needed <= 32) {
414 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
415 #ifdef __LP64__
416 } else if (pages_needed <= 64) {
417 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
418 #endif
419 } else {
420 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
421 __FILE__, __FUNCTION__, pages_needed);
424 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
425 __FUNCTION__);
427 resource_found:
429 DBG_RES("%s() res_idx %d res_hint: %d\n",
430 __FUNCTION__, res_idx, ioc->res_hint);
432 #ifdef CCIO_SEARCH_TIME
434 unsigned long cr_end = mfctl(16);
435 unsigned long tmp = cr_end - cr_start;
436 /* check for roll over */
437 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
439 ioc->avg_search[ioc->avg_idx++] = cr_start;
440 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
441 #endif
442 #ifdef CCIO_MAP_STATS
443 ioc->used_pages += pages_needed;
444 #endif
446 ** return the bit address.
448 return res_idx << 3;
451 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
452 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
453 BUG_ON((*res_ptr & mask) != mask); \
454 *res_ptr &= ~(mask);
457 * ccio_free_range - Free pages from the ioc's resource map.
458 * @ioc: The I/O Controller.
459 * @iova: The I/O Virtual Address.
460 * @pages_mapped: The requested number of pages to be freed from the
461 * I/O Pdir.
463 * This function frees the resouces allocated for the iova.
465 static void
466 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
468 unsigned long iovp = CCIO_IOVP(iova);
469 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
471 BUG_ON(pages_mapped == 0);
472 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
473 BUG_ON(pages_mapped > BITS_PER_LONG);
475 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
476 __FUNCTION__, res_idx, pages_mapped);
478 #ifdef CCIO_MAP_STATS
479 ioc->used_pages -= pages_mapped;
480 #endif
482 if(pages_mapped <= 8) {
483 #if 0
484 /* see matching comments in alloc_range */
485 unsigned long mask = ~(~0UL >> pages_mapped);
486 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
487 #else
488 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8);
489 #endif
490 } else if(pages_mapped <= 16) {
491 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16);
492 } else if(pages_mapped <= 32) {
493 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
494 #ifdef __LP64__
495 } else if(pages_mapped <= 64) {
496 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
497 #endif
498 } else {
499 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
500 __FUNCTION__);
504 /****************************************************************
506 ** CCIO dma_ops support routines
508 *****************************************************************/
510 typedef unsigned long space_t;
511 #define KERNEL_SPACE 0
514 ** DMA "Page Type" and Hints
515 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
516 ** set for subcacheline DMA transfers since we don't want to damage the
517 ** other part of a cacheline.
518 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
519 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
520 ** data can avoid this if the mapping covers full cache lines.
521 ** o STOP_MOST is needed for atomicity across cachelines.
522 ** Apparently only "some EISA devices" need this.
523 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
524 ** to use this hint iff the EISA devices needs this feature.
525 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
526 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
527 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
528 ** device can be fetched and multiply DMA streams will thrash the
529 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
530 ** and Invalidation of Prefetch Entries".
532 ** FIXME: the default hints need to be per GSC device - not global.
534 ** HP-UX dorks: linux device driver programming model is totally different
535 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
536 ** do special things to work on non-coherent platforms...linux has to
537 ** be much more careful with this.
539 #define IOPDIR_VALID 0x01UL
540 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
541 #ifdef CONFIG_EISA
542 #define HINT_STOP_MOST 0x04UL /* LSL support */
543 #else
544 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
545 #endif
546 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
547 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
551 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
552 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
553 ** when it passes in BIDIRECTIONAL flag.
555 static u32 hint_lookup[] = {
556 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
557 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
558 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
562 * ccio_io_pdir_entry - Initialize an I/O Pdir.
563 * @pdir_ptr: A pointer into I/O Pdir.
564 * @sid: The Space Identifier.
565 * @vba: The virtual address.
566 * @hints: The DMA Hint.
568 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
569 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
570 * entry consists of 8 bytes as shown below (MSB == bit 0):
573 * WORD 0:
574 * +------+----------------+-----------------------------------------------+
575 * | Phys | Virtual Index | Phys |
576 * | 0:3 | 0:11 | 4:19 |
577 * |4 bits| 12 bits | 16 bits |
578 * +------+----------------+-----------------------------------------------+
579 * WORD 1:
580 * +-----------------------+-----------------------------------------------+
581 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
582 * | 20:39 | | Enable |Enable | |Enable|DMA | |
583 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
584 * +-----------------------+-----------------------------------------------+
586 * The virtual index field is filled with the results of the LCI
587 * (Load Coherence Index) instruction. The 8 bits used for the virtual
588 * index are bits 12:19 of the value returned by LCI.
590 void CCIO_INLINE
591 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
592 unsigned long hints)
594 register unsigned long pa;
595 register unsigned long ci; /* coherent index */
597 /* We currently only support kernel addresses */
598 BUG_ON(sid != KERNEL_SPACE);
600 mtsp(sid,1);
603 ** WORD 1 - low order word
604 ** "hints" parm includes the VALID bit!
605 ** "dep" clobbers the physical address offset bits as well.
607 pa = virt_to_phys(vba);
608 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
609 ((u32 *)pdir_ptr)[1] = (u32) pa;
612 ** WORD 0 - high order word
615 #ifdef __LP64__
617 ** get bits 12:15 of physical address
618 ** shift bits 16:31 of physical address
619 ** and deposit them
621 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
622 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
623 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
624 #else
625 pa = 0;
626 #endif
628 ** get CPU coherency index bits
629 ** Grab virtual index [0:11]
630 ** Deposit virt_idx bits into I/O PDIR word
632 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
633 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
634 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
636 ((u32 *)pdir_ptr)[0] = (u32) pa;
639 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
640 ** PCX-U/U+ do. (eg C200/C240)
641 ** PCX-T'? Don't know. (eg C110 or similar K-class)
643 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
644 ** Hopefully we can patch (NOP) these out at boot time somehow.
646 ** "Since PCX-U employs an offset hash that is incompatible with
647 ** the real mode coherence index generation of U2, the PDIR entry
648 ** must be flushed to memory to retain coherence."
650 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
651 asm volatile("sync");
655 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
656 * @ioc: The I/O Controller.
657 * @iovp: The I/O Virtual Page.
658 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
660 * Purge invalid I/O PDIR entries from the I/O TLB.
662 * FIXME: Can we change the byte_cnt to pages_mapped?
664 static CCIO_INLINE void
665 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
667 u32 chain_size = 1 << ioc->chainid_shift;
669 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
670 byte_cnt += chain_size;
672 while(byte_cnt > chain_size) {
673 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
674 iovp += chain_size;
675 byte_cnt -= chain_size;
680 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
681 * @ioc: The I/O Controller.
682 * @iova: The I/O Virtual Address.
683 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
685 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
686 * TLB entries.
688 * FIXME: at some threshhold it might be "cheaper" to just blow
689 * away the entire I/O TLB instead of individual entries.
691 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
692 * PDIR entry - just once for each possible TLB entry.
693 * (We do need to maker I/O PDIR entries invalid regardless).
695 * FIXME: Can we change byte_cnt to pages_mapped?
697 static CCIO_INLINE void
698 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
700 u32 iovp = (u32)CCIO_IOVP(iova);
701 size_t saved_byte_cnt;
703 /* round up to nearest page size */
704 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
706 while(byte_cnt > 0) {
707 /* invalidate one page at a time */
708 unsigned int idx = PDIR_INDEX(iovp);
709 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
711 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
712 pdir_ptr[7] = 0; /* clear only VALID bit */
714 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
715 ** PCX-U/U+ do. (eg C200/C240)
716 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
718 ** Hopefully someone figures out how to patch (NOP) the
719 ** FDC/SYNC out at boot time.
721 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
723 iovp += IOVP_SIZE;
724 byte_cnt -= IOVP_SIZE;
727 asm volatile("sync");
728 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
731 /****************************************************************
733 ** CCIO dma_ops
735 *****************************************************************/
738 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
739 * @dev: The PCI device.
740 * @mask: A bit mask describing the DMA address range of the device.
742 * This function implements the pci_dma_supported function.
744 static int
745 ccio_dma_supported(struct device *dev, u64 mask)
747 if(dev == NULL) {
748 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
749 BUG();
750 return 0;
753 /* only support 32-bit devices (ie PCI/GSC) */
754 return (int)(mask == 0xffffffffUL);
758 * ccio_map_single - Map an address range into the IOMMU.
759 * @dev: The PCI device.
760 * @addr: The start address of the DMA region.
761 * @size: The length of the DMA region.
762 * @direction: The direction of the DMA transaction (to/from device).
764 * This function implements the pci_map_single function.
766 static dma_addr_t
767 ccio_map_single(struct device *dev, void *addr, size_t size,
768 enum dma_data_direction direction)
770 int idx;
771 struct ioc *ioc;
772 unsigned long flags;
773 dma_addr_t iovp;
774 dma_addr_t offset;
775 u64 *pdir_start;
776 unsigned long hint = hint_lookup[(int)direction];
778 BUG_ON(!dev);
779 ioc = GET_IOC(dev);
781 BUG_ON(size <= 0);
783 /* save offset bits */
784 offset = ((unsigned long) addr) & ~IOVP_MASK;
786 /* round up to nearest IOVP_SIZE */
787 size = ALIGN(size + offset, IOVP_SIZE);
788 spin_lock_irqsave(&ioc->res_lock, flags);
790 #ifdef CCIO_MAP_STATS
791 ioc->msingle_calls++;
792 ioc->msingle_pages += size >> IOVP_SHIFT;
793 #endif
795 <<<<<<< HEAD:drivers/parisc/ccio-dma.c
796 idx = ccio_alloc_range(ioc, size);
797 =======
798 idx = ccio_alloc_range(ioc, dev, size);
799 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/parisc/ccio-dma.c
800 iovp = (dma_addr_t)MKIOVP(idx);
802 pdir_start = &(ioc->pdir_base[idx]);
804 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
805 __FUNCTION__, addr, (long)iovp | offset, size);
807 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
808 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
809 hint |= HINT_SAFE_DMA;
811 while(size > 0) {
812 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
814 DBG_RUN(" pdir %p %08x%08x\n",
815 pdir_start,
816 (u32) (((u32 *) pdir_start)[0]),
817 (u32) (((u32 *) pdir_start)[1]));
818 ++pdir_start;
819 addr += IOVP_SIZE;
820 size -= IOVP_SIZE;
823 spin_unlock_irqrestore(&ioc->res_lock, flags);
825 /* form complete address */
826 return CCIO_IOVA(iovp, offset);
830 * ccio_unmap_single - Unmap an address range from the IOMMU.
831 * @dev: The PCI device.
832 * @addr: The start address of the DMA region.
833 * @size: The length of the DMA region.
834 * @direction: The direction of the DMA transaction (to/from device).
836 * This function implements the pci_unmap_single function.
838 static void
839 ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
840 enum dma_data_direction direction)
842 struct ioc *ioc;
843 unsigned long flags;
844 dma_addr_t offset = iova & ~IOVP_MASK;
846 BUG_ON(!dev);
847 ioc = GET_IOC(dev);
849 DBG_RUN("%s() iovp 0x%lx/%x\n",
850 __FUNCTION__, (long)iova, size);
852 iova ^= offset; /* clear offset bits */
853 size += offset;
854 size = ALIGN(size, IOVP_SIZE);
856 spin_lock_irqsave(&ioc->res_lock, flags);
858 #ifdef CCIO_MAP_STATS
859 ioc->usingle_calls++;
860 ioc->usingle_pages += size >> IOVP_SHIFT;
861 #endif
863 ccio_mark_invalid(ioc, iova, size);
864 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
865 spin_unlock_irqrestore(&ioc->res_lock, flags);
869 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
870 * @dev: The PCI device.
871 * @size: The length of the DMA region.
872 * @dma_handle: The DMA address handed back to the device (not the cpu).
874 * This function implements the pci_alloc_consistent function.
876 static void *
877 ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
879 void *ret;
880 #if 0
881 /* GRANT Need to establish hierarchy for non-PCI devs as well
882 ** and then provide matching gsc_map_xxx() functions for them as well.
884 if(!hwdev) {
885 /* only support PCI */
886 *dma_handle = 0;
887 return 0;
889 #endif
890 ret = (void *) __get_free_pages(flag, get_order(size));
892 if (ret) {
893 memset(ret, 0, size);
894 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
897 return ret;
901 * ccio_free_consistent - Free a consistent DMA mapping.
902 * @dev: The PCI device.
903 * @size: The length of the DMA region.
904 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
905 * @dma_handle: The device address returned from the ccio_alloc_consistent.
907 * This function implements the pci_free_consistent function.
909 static void
910 ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
911 dma_addr_t dma_handle)
913 ccio_unmap_single(dev, dma_handle, size, 0);
914 free_pages((unsigned long)cpu_addr, get_order(size));
918 ** Since 0 is a valid pdir_base index value, can't use that
919 ** to determine if a value is valid or not. Use a flag to indicate
920 ** the SG list entry contains a valid pdir index.
922 #define PIDE_FLAG 0x80000000UL
924 #ifdef CCIO_MAP_STATS
925 #define IOMMU_MAP_STATS
926 #endif
927 #include "iommu-helpers.h"
930 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
931 * @dev: The PCI device.
932 * @sglist: The scatter/gather list to be mapped in the IOMMU.
933 * @nents: The number of entries in the scatter/gather list.
934 * @direction: The direction of the DMA transaction (to/from device).
936 * This function implements the pci_map_sg function.
938 static int
939 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
940 enum dma_data_direction direction)
942 struct ioc *ioc;
943 int coalesced, filled = 0;
944 unsigned long flags;
945 unsigned long hint = hint_lookup[(int)direction];
946 unsigned long prev_len = 0, current_len = 0;
947 int i;
949 BUG_ON(!dev);
950 ioc = GET_IOC(dev);
952 DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
954 /* Fast path single entry scatterlists. */
955 if (nents == 1) {
956 sg_dma_address(sglist) = ccio_map_single(dev,
957 (void *)sg_virt_addr(sglist), sglist->length,
958 direction);
959 sg_dma_len(sglist) = sglist->length;
960 return 1;
963 for(i = 0; i < nents; i++)
964 prev_len += sglist[i].length;
966 spin_lock_irqsave(&ioc->res_lock, flags);
968 #ifdef CCIO_MAP_STATS
969 ioc->msg_calls++;
970 #endif
973 ** First coalesce the chunks and allocate I/O pdir space
975 ** If this is one DMA stream, we can properly map using the
976 ** correct virtual address associated with each DMA page.
977 ** w/o this association, we wouldn't have coherent DMA!
978 ** Access to the virtual address is what forces a two pass algorithm.
980 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
983 ** Program the I/O Pdir
985 ** map the virtual addresses to the I/O Pdir
986 ** o dma_address will contain the pdir index
987 ** o dma_len will contain the number of bytes to map
988 ** o page/offset contain the virtual address.
990 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
992 spin_unlock_irqrestore(&ioc->res_lock, flags);
994 BUG_ON(coalesced != filled);
996 DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
998 for (i = 0; i < filled; i++)
999 current_len += sg_dma_len(sglist + i);
1001 BUG_ON(current_len != prev_len);
1003 return filled;
1007 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
1008 * @dev: The PCI device.
1009 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
1010 * @nents: The number of entries in the scatter/gather list.
1011 * @direction: The direction of the DMA transaction (to/from device).
1013 * This function implements the pci_unmap_sg function.
1015 static void
1016 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
1017 enum dma_data_direction direction)
1019 struct ioc *ioc;
1021 BUG_ON(!dev);
1022 ioc = GET_IOC(dev);
1024 DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
1025 __FUNCTION__, nents, sg_virt_addr(sglist), sglist->length);
1027 #ifdef CCIO_MAP_STATS
1028 ioc->usg_calls++;
1029 #endif
1031 while(sg_dma_len(sglist) && nents--) {
1033 #ifdef CCIO_MAP_STATS
1034 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1035 #endif
1036 ccio_unmap_single(dev, sg_dma_address(sglist),
1037 sg_dma_len(sglist), direction);
1038 ++sglist;
1041 DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
1044 static struct hppa_dma_ops ccio_ops = {
1045 .dma_supported = ccio_dma_supported,
1046 .alloc_consistent = ccio_alloc_consistent,
1047 .alloc_noncoherent = ccio_alloc_consistent,
1048 .free_consistent = ccio_free_consistent,
1049 .map_single = ccio_map_single,
1050 .unmap_single = ccio_unmap_single,
1051 .map_sg = ccio_map_sg,
1052 .unmap_sg = ccio_unmap_sg,
1053 .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
1054 .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
1055 .dma_sync_sg_for_cpu = NULL, /* ditto */
1056 .dma_sync_sg_for_device = NULL, /* ditto */
1059 #ifdef CONFIG_PROC_FS
1060 static int ccio_proc_info(struct seq_file *m, void *p)
1062 int len = 0;
1063 struct ioc *ioc = ioc_list;
1065 while (ioc != NULL) {
1066 unsigned int total_pages = ioc->res_size << 3;
1067 unsigned long avg = 0, min, max;
1068 int j;
1070 len += seq_printf(m, "%s\n", ioc->name);
1072 len += seq_printf(m, "Cujo 2.0 bug : %s\n",
1073 (ioc->cujo20_bug ? "yes" : "no"));
1075 len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1076 total_pages * 8, total_pages);
1078 #ifdef CCIO_MAP_STATS
1079 len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1080 total_pages - ioc->used_pages, ioc->used_pages,
1081 (int)(ioc->used_pages * 100 / total_pages));
1082 #endif
1084 len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1085 ioc->res_size, total_pages);
1087 #ifdef CCIO_SEARCH_TIME
1088 min = max = ioc->avg_search[0];
1089 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1090 avg += ioc->avg_search[j];
1091 if(ioc->avg_search[j] > max)
1092 max = ioc->avg_search[j];
1093 if(ioc->avg_search[j] < min)
1094 min = ioc->avg_search[j];
1096 avg /= CCIO_SEARCH_SAMPLE;
1097 len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1098 min, avg, max);
1099 #endif
1100 #ifdef CCIO_MAP_STATS
1101 len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1102 ioc->msingle_calls, ioc->msingle_pages,
1103 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1105 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1106 min = ioc->usingle_calls - ioc->usg_calls;
1107 max = ioc->usingle_pages - ioc->usg_pages;
1108 len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1109 min, max, (int)((max * 1000)/min));
1111 len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1112 ioc->msg_calls, ioc->msg_pages,
1113 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1115 len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1116 ioc->usg_calls, ioc->usg_pages,
1117 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1118 #endif /* CCIO_MAP_STATS */
1120 ioc = ioc->next;
1123 return 0;
1126 static int ccio_proc_info_open(struct inode *inode, struct file *file)
1128 return single_open(file, &ccio_proc_info, NULL);
1131 static const struct file_operations ccio_proc_info_fops = {
1132 .owner = THIS_MODULE,
1133 .open = ccio_proc_info_open,
1134 .read = seq_read,
1135 .llseek = seq_lseek,
1136 .release = single_release,
1139 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1141 int len = 0;
1142 struct ioc *ioc = ioc_list;
1144 while (ioc != NULL) {
1145 u32 *res_ptr = (u32 *)ioc->res_map;
1146 int j;
1148 for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1149 if ((j & 7) == 0)
1150 len += seq_puts(m, "\n ");
1151 len += seq_printf(m, "%08x", *res_ptr);
1152 res_ptr++;
1154 len += seq_puts(m, "\n\n");
1155 ioc = ioc->next;
1156 break; /* XXX - remove me */
1159 return 0;
1162 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1164 return single_open(file, &ccio_proc_bitmap_info, NULL);
1167 static const struct file_operations ccio_proc_bitmap_fops = {
1168 .owner = THIS_MODULE,
1169 .open = ccio_proc_bitmap_open,
1170 .read = seq_read,
1171 .llseek = seq_lseek,
1172 .release = single_release,
1174 #endif
1177 * ccio_find_ioc - Find the ioc in the ioc_list
1178 * @hw_path: The hardware path of the ioc.
1180 * This function searches the ioc_list for an ioc that matches
1181 * the provide hardware path.
1183 static struct ioc * ccio_find_ioc(int hw_path)
1185 int i;
1186 struct ioc *ioc;
1188 ioc = ioc_list;
1189 for (i = 0; i < ioc_count; i++) {
1190 if (ioc->hw_path == hw_path)
1191 return ioc;
1193 ioc = ioc->next;
1196 return NULL;
1200 * ccio_get_iommu - Find the iommu which controls this device
1201 * @dev: The parisc device.
1203 * This function searches through the registered IOMMU's and returns
1204 * the appropriate IOMMU for the device based on its hardware path.
1206 void * ccio_get_iommu(const struct parisc_device *dev)
1208 dev = find_pa_parent_type(dev, HPHW_IOA);
1209 if (!dev)
1210 return NULL;
1212 return ccio_find_ioc(dev->hw_path);
1215 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1217 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1218 * to/from certain pages. To avoid this happening, we mark these pages
1219 * as `used', and ensure that nothing will try to allocate from them.
1221 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1223 unsigned int idx;
1224 struct parisc_device *dev = parisc_parent(cujo);
1225 struct ioc *ioc = ccio_get_iommu(dev);
1226 u8 *res_ptr;
1228 ioc->cujo20_bug = 1;
1229 res_ptr = ioc->res_map;
1230 idx = PDIR_INDEX(iovp) >> 3;
1232 while (idx < ioc->res_size) {
1233 res_ptr[idx] |= 0xff;
1234 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1238 #if 0
1239 /* GRANT - is this needed for U2 or not? */
1242 ** Get the size of the I/O TLB for this I/O MMU.
1244 ** If spa_shift is non-zero (ie probably U2),
1245 ** then calculate the I/O TLB size using spa_shift.
1247 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1248 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1249 ** I think only Java (K/D/R-class too?) systems don't do this.
1251 static int
1252 ccio_get_iotlb_size(struct parisc_device *dev)
1254 if (dev->spa_shift == 0) {
1255 panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__);
1257 return (1 << dev->spa_shift);
1259 #else
1261 /* Uturn supports 256 TLB entries */
1262 #define CCIO_CHAINID_SHIFT 8
1263 #define CCIO_CHAINID_MASK 0xff
1264 #endif /* 0 */
1266 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1267 static const struct parisc_device_id ccio_tbl[] = {
1268 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1269 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1270 { 0, }
1273 static int ccio_probe(struct parisc_device *dev);
1275 static struct parisc_driver ccio_driver = {
1276 .name = "ccio",
1277 .id_table = ccio_tbl,
1278 .probe = ccio_probe,
1282 * ccio_ioc_init - Initalize the I/O Controller
1283 * @ioc: The I/O Controller.
1285 * Initalize the I/O Controller which includes setting up the
1286 * I/O Page Directory, the resource map, and initalizing the
1287 * U2/Uturn chip into virtual mode.
1289 static void
1290 ccio_ioc_init(struct ioc *ioc)
1292 int i;
1293 unsigned int iov_order;
1294 u32 iova_space_size;
1297 ** Determine IOVA Space size from memory size.
1299 ** Ideally, PCI drivers would register the maximum number
1300 ** of DMA they can have outstanding for each device they
1301 ** own. Next best thing would be to guess how much DMA
1302 ** can be outstanding based on PCI Class/sub-class. Both
1303 ** methods still require some "extra" to support PCI
1304 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1307 iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver));
1309 /* limit IOVA space size to 1MB-1GB */
1311 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1312 iova_space_size = 1 << (20 - PAGE_SHIFT);
1313 #ifdef __LP64__
1314 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1315 iova_space_size = 1 << (30 - PAGE_SHIFT);
1316 #endif
1320 ** iova space must be log2() in size.
1321 ** thus, pdir/res_map will also be log2().
1324 /* We could use larger page sizes in order to *decrease* the number
1325 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1327 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1328 ** since the pages must also be physically contiguous - typically
1329 ** this is the case under linux."
1332 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1334 /* iova_space_size is now bytes, not pages */
1335 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1337 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1339 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1341 /* Verify it's a power of two */
1342 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1344 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1345 __FUNCTION__, ioc->ioc_regs,
1346 (unsigned long) num_physpages >> (20 - PAGE_SHIFT),
1347 iova_space_size>>20,
1348 iov_order + PAGE_SHIFT);
1350 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1351 get_order(ioc->pdir_size));
1352 if(NULL == ioc->pdir_base) {
1353 panic("%s() could not allocate I/O Page Table\n", __FUNCTION__);
1355 memset(ioc->pdir_base, 0, ioc->pdir_size);
1357 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1358 DBG_INIT(" base %p\n", ioc->pdir_base);
1360 /* resource map size dictated by pdir_size */
1361 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1362 DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);
1364 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1365 get_order(ioc->res_size));
1366 if(NULL == ioc->res_map) {
1367 panic("%s() could not allocate resource map\n", __FUNCTION__);
1369 memset(ioc->res_map, 0, ioc->res_size);
1371 /* Initialize the res_hint to 16 */
1372 ioc->res_hint = 16;
1374 /* Initialize the spinlock */
1375 spin_lock_init(&ioc->res_lock);
1378 ** Chainid is the upper most bits of an IOVP used to determine
1379 ** which TLB entry an IOVP will use.
1381 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1382 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1385 ** Initialize IOA hardware
1387 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1388 &ioc->ioc_regs->io_chain_id_mask);
1390 WRITE_U32(virt_to_phys(ioc->pdir_base),
1391 &ioc->ioc_regs->io_pdir_base);
1394 ** Go to "Virtual Mode"
1396 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1399 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1401 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1402 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1404 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1405 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1406 &ioc->ioc_regs->io_command);
1410 static void __init
1411 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1413 int result;
1415 res->parent = NULL;
1416 res->flags = IORESOURCE_MEM;
1418 * bracing ((signed) ...) are required for 64bit kernel because
1419 * we only want to sign extend the lower 16 bits of the register.
1420 * The upper 16-bits of range registers are hardcoded to 0xffff.
1422 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1423 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1424 res->name = name;
1426 * Check if this MMIO range is disable
1428 if (res->end + 1 == res->start)
1429 return;
1431 /* On some platforms (e.g. K-Class), we have already registered
1432 * resources for devices reported by firmware. Some are children
1433 * of ccio.
1434 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1436 result = insert_resource(&iomem_resource, res);
1437 if (result < 0) {
1438 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1439 __FUNCTION__, res->start, res->end);
1443 static void __init ccio_init_resources(struct ioc *ioc)
1445 struct resource *res = ioc->mmio_region;
1446 char *name = kmalloc(14, GFP_KERNEL);
1448 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1450 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1451 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1454 static int new_ioc_area(struct resource *res, unsigned long size,
1455 unsigned long min, unsigned long max, unsigned long align)
1457 if (max <= min)
1458 return -EBUSY;
1460 res->start = (max - size + 1) &~ (align - 1);
1461 res->end = res->start + size;
1463 /* We might be trying to expand the MMIO range to include
1464 * a child device that has already registered it's MMIO space.
1465 * Use "insert" instead of request_resource().
1467 if (!insert_resource(&iomem_resource, res))
1468 return 0;
1470 return new_ioc_area(res, size, min, max - size, align);
1473 static int expand_ioc_area(struct resource *res, unsigned long size,
1474 unsigned long min, unsigned long max, unsigned long align)
1476 unsigned long start, len;
1478 if (!res->parent)
1479 return new_ioc_area(res, size, min, max, align);
1481 start = (res->start - size) &~ (align - 1);
1482 len = res->end - start + 1;
1483 if (start >= min) {
1484 if (!adjust_resource(res, start, len))
1485 return 0;
1488 start = res->start;
1489 len = ((size + res->end + align) &~ (align - 1)) - start;
1490 if (start + len <= max) {
1491 if (!adjust_resource(res, start, len))
1492 return 0;
1495 return -EBUSY;
1499 * Dino calls this function. Beware that we may get called on systems
1500 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1501 * So it's legal to find no parent IOC.
1503 * Some other issues: one of the resources in the ioc may be unassigned.
1505 int ccio_allocate_resource(const struct parisc_device *dev,
1506 struct resource *res, unsigned long size,
1507 unsigned long min, unsigned long max, unsigned long align)
1509 struct resource *parent = &iomem_resource;
1510 struct ioc *ioc = ccio_get_iommu(dev);
1511 if (!ioc)
1512 goto out;
1514 parent = ioc->mmio_region;
1515 if (parent->parent &&
1516 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1517 return 0;
1519 if ((parent + 1)->parent &&
1520 !allocate_resource(parent + 1, res, size, min, max, align,
1521 NULL, NULL))
1522 return 0;
1524 if (!expand_ioc_area(parent, size, min, max, align)) {
1525 __raw_writel(((parent->start)>>16) | 0xffff0000,
1526 &ioc->ioc_regs->io_io_low);
1527 __raw_writel(((parent->end)>>16) | 0xffff0000,
1528 &ioc->ioc_regs->io_io_high);
1529 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1530 parent++;
1531 __raw_writel(((parent->start)>>16) | 0xffff0000,
1532 &ioc->ioc_regs->io_io_low_hv);
1533 __raw_writel(((parent->end)>>16) | 0xffff0000,
1534 &ioc->ioc_regs->io_io_high_hv);
1535 } else {
1536 return -EBUSY;
1539 out:
1540 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1543 int ccio_request_resource(const struct parisc_device *dev,
1544 struct resource *res)
1546 struct resource *parent;
1547 struct ioc *ioc = ccio_get_iommu(dev);
1549 if (!ioc) {
1550 parent = &iomem_resource;
1551 } else if ((ioc->mmio_region->start <= res->start) &&
1552 (res->end <= ioc->mmio_region->end)) {
1553 parent = ioc->mmio_region;
1554 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1555 (res->end <= (ioc->mmio_region + 1)->end)) {
1556 parent = ioc->mmio_region + 1;
1557 } else {
1558 return -EBUSY;
1561 /* "transparent" bus bridges need to register MMIO resources
1562 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1563 * registered their resources in the PDC "bus walk" (See
1564 * arch/parisc/kernel/inventory.c).
1566 return insert_resource(parent, res);
1570 * ccio_probe - Determine if ccio should claim this device.
1571 * @dev: The device which has been found
1573 * Determine if ccio should claim this chip (return 0) or not (return 1).
1574 * If so, initialize the chip and tell other partners in crime they
1575 * have work to do.
1577 static int __init ccio_probe(struct parisc_device *dev)
1579 int i;
1580 struct ioc *ioc, **ioc_p = &ioc_list;
1581 struct proc_dir_entry *info_entry, *bitmap_entry;
1583 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1584 if (ioc == NULL) {
1585 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1586 return 1;
1589 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1591 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start);
1593 for (i = 0; i < ioc_count; i++) {
1594 ioc_p = &(*ioc_p)->next;
1596 *ioc_p = ioc;
1598 ioc->hw_path = dev->hw_path;
1599 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1600 ccio_ioc_init(ioc);
1601 ccio_init_resources(ioc);
1602 hppa_dma_ops = &ccio_ops;
1603 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1605 /* if this fails, no I/O cards will work, so may as well bug */
1606 BUG_ON(dev->dev.platform_data == NULL);
1607 HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1609 if (ioc_count == 0) {
1610 info_entry = create_proc_entry(MODULE_NAME, 0, proc_runway_root);
1611 if (info_entry)
1612 info_entry->proc_fops = &ccio_proc_info_fops;
1614 bitmap_entry = create_proc_entry(MODULE_NAME"-bitmap", 0, proc_runway_root);
1615 if (bitmap_entry)
1616 bitmap_entry->proc_fops = &ccio_proc_bitmap_fops;
1619 ioc_count++;
1621 parisc_vmerge_boundary = IOVP_SIZE;
1622 parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE;
1623 parisc_has_iommu();
1624 return 0;
1628 * ccio_init - ccio initialization procedure.
1630 * Register this driver.
1632 void __init ccio_init(void)
1634 register_parisc_driver(&ccio_driver);