3 ** DMA management routines for first generation cache-coherent machines.
4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
6 ** (c) Copyright 2000 Grant Grundler
7 ** (c) Copyright 2000 Ryan Bradetich
8 ** (c) Copyright 2000 Hewlett-Packard Company
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
16 ** "Real Mode" operation refers to U2/Uturn chip operation.
17 ** U2/Uturn were designed to perform coherency checks w/o using
18 ** the I/O MMU - basically what x86 does.
20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
26 ** Drawbacks of using Real Mode are:
27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 ** o Ability to do scatter/gather in HW is lost.
30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
31 ** the coherency design originally worked out. Only PCX-W does.
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 <<<<<<< HEAD
:drivers
/parisc
/ccio
-dma
.c
48 #include <linux/iommu-helper.h>
49 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/parisc
/ccio
-dma
.c
51 #include <asm/byteorder.h>
52 #include <asm/cache.h> /* for L1_CACHE_BYTES */
53 #include <asm/uaccess.h>
57 #include <asm/hardware.h> /* for register_module() */
58 #include <asm/parisc-device.h>
61 ** Choose "ccio" since that's what HP-UX calls it.
62 ** Make it easier for folks to migrate from one to the other :^)
64 #define MODULE_NAME "ccio"
68 #undef DEBUG_CCIO_INIT
69 #undef DEBUG_CCIO_RUN_SG
73 * CCIO_SEARCH_TIME can help measure how fast the bitmap search is.
74 * impacts performance though - ditch it if you don't use it.
76 #define CCIO_SEARCH_TIME
79 #undef CCIO_SEARCH_TIME
83 #include <linux/proc_fs.h>
84 #include <asm/runway.h> /* for proc_runway_root */
86 #ifdef DEBUG_CCIO_INIT
87 #define DBG_INIT(x...) printk(x)
89 #define DBG_INIT(x...)
93 #define DBG_RUN(x...) printk(x)
99 #define DBG_RES(x...) printk(x)
101 #define DBG_RES(x...)
104 #ifdef DEBUG_CCIO_RUN_SG
105 #define DBG_RUN_SG(x...) printk(x)
107 #define DBG_RUN_SG(x...)
110 #define CCIO_INLINE inline
111 #define WRITE_U32(value, addr) __raw_writel(value, addr)
112 #define READ_U32(addr) __raw_readl(addr)
114 #define U2_IOA_RUNWAY 0x580
115 #define U2_BC_GSC 0x501
116 #define UTURN_IOA_RUNWAY 0x581
117 #define UTURN_BC_GSC 0x502
119 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
120 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
121 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
123 struct ioa_registers
{
124 /* Runway Supervisory Set */
126 uint32_t io_command
; /* Offset 12 */
127 uint32_t io_status
; /* Offset 13 */
128 uint32_t io_control
; /* Offset 14 */
131 /* Runway Auxiliary Register Set */
132 uint32_t io_err_resp
; /* Offset 0 */
133 uint32_t io_err_info
; /* Offset 1 */
134 uint32_t io_err_req
; /* Offset 2 */
135 uint32_t io_err_resp_hi
; /* Offset 3 */
136 uint32_t io_tlb_entry_m
; /* Offset 4 */
137 uint32_t io_tlb_entry_l
; /* Offset 5 */
139 uint32_t io_pdir_base
; /* Offset 7 */
140 uint32_t io_io_low_hv
; /* Offset 8 */
141 uint32_t io_io_high_hv
; /* Offset 9 */
143 uint32_t io_chain_id_mask
; /* Offset 11 */
145 uint32_t io_io_low
; /* Offset 14 */
146 uint32_t io_io_high
; /* Offset 15 */
153 ** Runway IO_CONTROL Register (+0x38)
155 ** The Runway IO_CONTROL register controls the forwarding of transactions.
157 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
158 ** | HV | TLB | reserved | HV | mode | reserved |
160 ** o mode field indicates the address translation of transactions
161 ** forwarded from Runway to GSC+:
162 ** Mode Name Value Definition
163 ** Off (default) 0 Opaque to matching addresses.
164 ** Include 1 Transparent for matching addresses.
165 ** Peek 3 Map matching addresses.
167 ** + "Off" mode: Runway transactions which match the I/O range
168 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
169 ** + "Include" mode: all addresses within the I/O range specified
170 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
171 ** forwarded. This is the I/O Adapter's normal operating mode.
172 ** + "Peek" mode: used during system configuration to initialize the
173 ** GSC+ bus. Runway Write_Shorts in the address range specified by
174 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
175 ** *AND* the GSC+ address is remapped to the Broadcast Physical
176 ** Address space by setting the 14 high order address bits of the
177 ** 32 bit GSC+ address to ones.
179 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
180 ** "Real" mode is the poweron default.
182 ** TLB Mode Value Description
183 ** Real 0 No TLB translation. Address is directly mapped and the
184 ** virtual address is composed of selected physical bits.
185 ** Error 1 Software fills the TLB manually.
186 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
189 ** IO_IO_LOW_HV +0x60 (HV dependent)
190 ** IO_IO_HIGH_HV +0x64 (HV dependent)
191 ** IO_IO_LOW +0x78 (Architected register)
192 ** IO_IO_HIGH +0x7c (Architected register)
194 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
195 ** I/O Adapter address space, respectively.
197 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
198 ** 11111111 | 11111111 | address |
200 ** Each LOW/HIGH pair describes a disjoint address space region.
201 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
202 ** with both sets of LOW/HIGH registers. If the address is in the range
203 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
204 ** for forwarded to the respective GSC+ bus.
205 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
206 ** an address space region.
208 ** In order for a Runway address to reside within GSC+ extended address space:
209 ** Runway Address [0:7] must identically compare to 8'b11111111
210 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
211 ** Runway Address [12:23] must be greater than or equal to
212 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
213 ** Runway Address [24:39] is not used in the comparison.
215 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
217 ** GSC+ Address[0:3] 4'b1111
218 ** GSC+ Address[4:29] Runway Address[12:37]
219 ** GSC+ Address[30:31] 2'b00
221 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
222 ** is interrogated and address space is defined. The operating system will
223 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
224 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
225 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
227 ** Writes to both sets of registers will take effect immediately, bypassing
228 ** the queues, which ensures that subsequent Runway transactions are checked
229 ** against the updated bounds values. However reads are queued, introducing
230 ** the possibility of a read being bypassed by a subsequent write to the same
231 ** register. This sequence can be avoided by having software wait for read
232 ** returns before issuing subsequent writes.
236 struct ioa_registers __iomem
*ioc_regs
; /* I/O MMU base address */
237 u8
*res_map
; /* resource map, bit == pdir entry */
238 u64
*pdir_base
; /* physical base address */
239 u32 pdir_size
; /* bytes, function of IOV Space size */
240 u32 res_hint
; /* next available IOVP -
242 u32 res_size
; /* size of resource map in bytes */
245 #ifdef CCIO_SEARCH_TIME
246 #define CCIO_SEARCH_SAMPLE 0x100
247 unsigned long avg_search
[CCIO_SEARCH_SAMPLE
];
248 unsigned long avg_idx
; /* current index into avg_search */
250 #ifdef CCIO_MAP_STATS
251 unsigned long used_pages
;
252 unsigned long msingle_calls
;
253 unsigned long msingle_pages
;
254 unsigned long msg_calls
;
255 unsigned long msg_pages
;
256 unsigned long usingle_calls
;
257 unsigned long usingle_pages
;
258 unsigned long usg_calls
;
259 unsigned long usg_pages
;
261 unsigned short cujo20_bug
;
263 /* STUFF We don't need in performance path */
264 u32 chainid_shift
; /* specify bit location of chain_id */
265 struct ioc
*next
; /* Linked list of discovered iocs */
266 const char *name
; /* device name from firmware */
267 unsigned int hw_path
; /* the hardware path this ioc is associatd with */
268 struct pci_dev
*fake_pci_dev
; /* the fake pci_dev for non-pci devs */
269 struct resource mmio_region
[2]; /* The "routed" MMIO regions */
272 static struct ioc
*ioc_list
;
273 static int ioc_count
;
275 /**************************************************************
277 * I/O Pdir Resource Management
279 * Bits set in the resource map are in use.
280 * Each bit can represent a number of pages.
281 * LSbs represent lower addresses (IOVA's).
283 * This was was copied from sba_iommu.c. Don't try to unify
284 * the two resource managers unless a way to have different
285 * allocation policies is also adjusted. We'd like to avoid
286 * I/O TLB thrashing by having resource allocation policy
287 * match the I/O TLB replacement policy.
289 ***************************************************************/
290 #define IOVP_SIZE PAGE_SIZE
291 #define IOVP_SHIFT PAGE_SHIFT
292 #define IOVP_MASK PAGE_MASK
294 /* Convert from IOVP to IOVA and vice versa. */
295 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
296 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
298 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
299 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
300 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
303 ** Don't worry about the 150% average search length on a miss.
304 ** If the search wraps around, and passes the res_hint, it will
305 ** cause the kernel to panic anyhow.
307 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
308 for(; res_ptr < res_end; ++res_ptr) { \
309 <<<<<<< HEAD:drivers/parisc/ccio-dma.c
310 if(0 == (*res_ptr
& mask
)) { \
312 res_idx
= (unsigned int)((unsigned long)res_ptr
- (unsigned long)ioc
->res_map
); \
313 ioc
->res_hint
= res_idx
+ (size
>> 3); \
314 goto resource_found
; \
320 idx
= (unsigned int)((unsigned long)res_ptr
- (unsigned long)ioc
->res_map
); \
321 ret
= iommu_is_span_boundary(idx
<< 3, pages_needed
, 0, boundary_size
);\
322 if ((0 == (*res_ptr
& mask
)) && !ret
) { \
325 ioc
->res_hint
= res_idx
+ (size
>> 3); \
326 goto resource_found
; \
329 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/parisc
/ccio
-dma
.c
331 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
332 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
333 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
334 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
335 res_ptr = (u##size *)&(ioc)->res_map[0]; \
336 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
339 ** Find available bit in this ioa's resource map.
340 ** Use a "circular" search:
341 ** o Most IOVA's are "temporary" - avg search time should be small.
342 ** o keep a history of what happened for debugging
345 ** Perf optimizations:
346 ** o search for log2(size) bits at a time.
347 ** o search for available resource bits using byte/word/whatever.
348 ** o use different search for "large" (eg > 4 pages) or "very large"
349 ** (eg > 16 pages) mappings.
353 * ccio_alloc_range - Allocate pages in the ioc's resource map.
354 * @ioc: The I/O Controller.
355 * @pages_needed: The requested number of pages to be mapped into the
358 * This function searches the resource map of the ioc to locate a range
359 * of available pages for the requested size.
362 <<<<<<< HEAD
:drivers
/parisc
/ccio
-dma
.c
363 ccio_alloc_range(struct ioc
*ioc
, size_t size
)
365 ccio_alloc_range(struct ioc
*ioc
, struct device
*dev
, size_t size
)
366 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/parisc
/ccio
-dma
.c
368 unsigned int pages_needed
= size
>> IOVP_SHIFT
;
369 unsigned int res_idx
;
370 <<<<<<< HEAD
:drivers
/parisc
/ccio
-dma
.c
372 unsigned long boundary_size
;
373 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/parisc
/ccio
-dma
.c
374 #ifdef CCIO_SEARCH_TIME
375 unsigned long cr_start
= mfctl(16);
378 BUG_ON(pages_needed
== 0);
379 BUG_ON((pages_needed
* IOVP_SIZE
) > DMA_CHUNK_SIZE
);
381 DBG_RES("%s() size: %d pages_needed %d\n",
382 __FUNCTION__
, size
, pages_needed
);
385 ** "seek and ye shall find"...praying never hurts either...
386 ** ggg sacrifices another 710 to the computer gods.
389 <<<<<<< HEAD
:drivers
/parisc
/ccio
-dma
.c
391 boundary_size
= ALIGN((unsigned long long)dma_get_seg_boundary(dev
) + 1,
392 1ULL << IOVP_SHIFT
) >> IOVP_SHIFT
;
394 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/parisc
/ccio
-dma
.c
395 if (pages_needed
<= 8) {
397 * LAN traffic will not thrash the TLB IFF the same NIC
398 * uses 8 adjacent pages to map separate payload data.
399 * ie the same byte in the resource bit map.
402 /* FIXME: bit search should shift it's way through
403 * an unsigned long - not byte at a time. As it is now,
404 * we effectively allocate this byte to this mapping.
406 unsigned long mask
= ~(~0UL >> pages_needed
);
407 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, mask
, 8);
409 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, 0xff, 8);
411 } else if (pages_needed
<= 16) {
412 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, 0xffff, 16);
413 } else if (pages_needed
<= 32) {
414 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, ~(unsigned int)0, 32);
416 } else if (pages_needed
<= 64) {
417 CCIO_FIND_FREE_MAPPING(ioc
, res_idx
, ~0UL, 64);
420 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
421 __FILE__
, __FUNCTION__
, pages_needed
);
424 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__
,
429 DBG_RES("%s() res_idx %d res_hint: %d\n",
430 __FUNCTION__
, res_idx
, ioc
->res_hint
);
432 #ifdef CCIO_SEARCH_TIME
434 unsigned long cr_end
= mfctl(16);
435 unsigned long tmp
= cr_end
- cr_start
;
436 /* check for roll over */
437 cr_start
= (cr_end
< cr_start
) ? -(tmp
) : (tmp
);
439 ioc
->avg_search
[ioc
->avg_idx
++] = cr_start
;
440 ioc
->avg_idx
&= CCIO_SEARCH_SAMPLE
- 1;
442 #ifdef CCIO_MAP_STATS
443 ioc
->used_pages
+= pages_needed
;
446 ** return the bit address.
451 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
452 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
453 BUG_ON((*res_ptr & mask) != mask); \
457 * ccio_free_range - Free pages from the ioc's resource map.
458 * @ioc: The I/O Controller.
459 * @iova: The I/O Virtual Address.
460 * @pages_mapped: The requested number of pages to be freed from the
463 * This function frees the resouces allocated for the iova.
466 ccio_free_range(struct ioc
*ioc
, dma_addr_t iova
, unsigned long pages_mapped
)
468 unsigned long iovp
= CCIO_IOVP(iova
);
469 unsigned int res_idx
= PDIR_INDEX(iovp
) >> 3;
471 BUG_ON(pages_mapped
== 0);
472 BUG_ON((pages_mapped
* IOVP_SIZE
) > DMA_CHUNK_SIZE
);
473 BUG_ON(pages_mapped
> BITS_PER_LONG
);
475 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
476 __FUNCTION__
, res_idx
, pages_mapped
);
478 #ifdef CCIO_MAP_STATS
479 ioc
->used_pages
-= pages_mapped
;
482 if(pages_mapped
<= 8) {
484 /* see matching comments in alloc_range */
485 unsigned long mask
= ~(~0UL >> pages_mapped
);
486 CCIO_FREE_MAPPINGS(ioc
, res_idx
, mask
, 8);
488 CCIO_FREE_MAPPINGS(ioc
, res_idx
, 0xff, 8);
490 } else if(pages_mapped
<= 16) {
491 CCIO_FREE_MAPPINGS(ioc
, res_idx
, 0xffff, 16);
492 } else if(pages_mapped
<= 32) {
493 CCIO_FREE_MAPPINGS(ioc
, res_idx
, ~(unsigned int)0, 32);
495 } else if(pages_mapped
<= 64) {
496 CCIO_FREE_MAPPINGS(ioc
, res_idx
, ~0UL, 64);
499 panic("%s:%s() Too many pages to unmap.\n", __FILE__
,
504 /****************************************************************
506 ** CCIO dma_ops support routines
508 *****************************************************************/
510 typedef unsigned long space_t
;
511 #define KERNEL_SPACE 0
514 ** DMA "Page Type" and Hints
515 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
516 ** set for subcacheline DMA transfers since we don't want to damage the
517 ** other part of a cacheline.
518 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
519 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
520 ** data can avoid this if the mapping covers full cache lines.
521 ** o STOP_MOST is needed for atomicity across cachelines.
522 ** Apparently only "some EISA devices" need this.
523 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
524 ** to use this hint iff the EISA devices needs this feature.
525 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
526 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
527 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
528 ** device can be fetched and multiply DMA streams will thrash the
529 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
530 ** and Invalidation of Prefetch Entries".
532 ** FIXME: the default hints need to be per GSC device - not global.
534 ** HP-UX dorks: linux device driver programming model is totally different
535 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
536 ** do special things to work on non-coherent platforms...linux has to
537 ** be much more careful with this.
539 #define IOPDIR_VALID 0x01UL
540 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
542 #define HINT_STOP_MOST 0x04UL /* LSL support */
544 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
546 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
547 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
551 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
552 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
553 ** when it passes in BIDIRECTIONAL flag.
555 static u32 hint_lookup
[] = {
556 [PCI_DMA_BIDIRECTIONAL
] = HINT_STOP_MOST
| HINT_SAFE_DMA
| IOPDIR_VALID
,
557 [PCI_DMA_TODEVICE
] = HINT_STOP_MOST
| HINT_PREFETCH
| IOPDIR_VALID
,
558 [PCI_DMA_FROMDEVICE
] = HINT_STOP_MOST
| IOPDIR_VALID
,
562 * ccio_io_pdir_entry - Initialize an I/O Pdir.
563 * @pdir_ptr: A pointer into I/O Pdir.
564 * @sid: The Space Identifier.
565 * @vba: The virtual address.
566 * @hints: The DMA Hint.
568 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
569 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
570 * entry consists of 8 bytes as shown below (MSB == bit 0):
574 * +------+----------------+-----------------------------------------------+
575 * | Phys | Virtual Index | Phys |
576 * | 0:3 | 0:11 | 4:19 |
577 * |4 bits| 12 bits | 16 bits |
578 * +------+----------------+-----------------------------------------------+
580 * +-----------------------+-----------------------------------------------+
581 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
582 * | 20:39 | | Enable |Enable | |Enable|DMA | |
583 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
584 * +-----------------------+-----------------------------------------------+
586 * The virtual index field is filled with the results of the LCI
587 * (Load Coherence Index) instruction. The 8 bits used for the virtual
588 * index are bits 12:19 of the value returned by LCI.
591 ccio_io_pdir_entry(u64
*pdir_ptr
, space_t sid
, unsigned long vba
,
594 register unsigned long pa
;
595 register unsigned long ci
; /* coherent index */
597 /* We currently only support kernel addresses */
598 BUG_ON(sid
!= KERNEL_SPACE
);
603 ** WORD 1 - low order word
604 ** "hints" parm includes the VALID bit!
605 ** "dep" clobbers the physical address offset bits as well.
607 pa
= virt_to_phys(vba
);
608 asm volatile("depw %1,31,12,%0" : "+r" (pa
) : "r" (hints
));
609 ((u32
*)pdir_ptr
)[1] = (u32
) pa
;
612 ** WORD 0 - high order word
617 ** get bits 12:15 of physical address
618 ** shift bits 16:31 of physical address
621 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci
) : "r" (pa
));
622 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa
) : "r" (pa
));
623 asm volatile ("depd %1,35,4,%0" : "+r" (pa
) : "r" (ci
));
628 ** get CPU coherency index bits
629 ** Grab virtual index [0:11]
630 ** Deposit virt_idx bits into I/O PDIR word
632 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci
) : "r" (vba
));
633 asm volatile ("extru %1,19,12,%0" : "+r" (ci
) : "r" (ci
));
634 asm volatile ("depw %1,15,12,%0" : "+r" (pa
) : "r" (ci
));
636 ((u32
*)pdir_ptr
)[0] = (u32
) pa
;
639 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
640 ** PCX-U/U+ do. (eg C200/C240)
641 ** PCX-T'? Don't know. (eg C110 or similar K-class)
643 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
644 ** Hopefully we can patch (NOP) these out at boot time somehow.
646 ** "Since PCX-U employs an offset hash that is incompatible with
647 ** the real mode coherence index generation of U2, the PDIR entry
648 ** must be flushed to memory to retain coherence."
650 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr
));
651 asm volatile("sync");
655 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
656 * @ioc: The I/O Controller.
657 * @iovp: The I/O Virtual Page.
658 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
660 * Purge invalid I/O PDIR entries from the I/O TLB.
662 * FIXME: Can we change the byte_cnt to pages_mapped?
664 static CCIO_INLINE
void
665 ccio_clear_io_tlb(struct ioc
*ioc
, dma_addr_t iovp
, size_t byte_cnt
)
667 u32 chain_size
= 1 << ioc
->chainid_shift
;
669 iovp
&= IOVP_MASK
; /* clear offset bits, just want pagenum */
670 byte_cnt
+= chain_size
;
672 while(byte_cnt
> chain_size
) {
673 WRITE_U32(CMD_TLB_PURGE
| iovp
, &ioc
->ioc_regs
->io_command
);
675 byte_cnt
-= chain_size
;
680 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
681 * @ioc: The I/O Controller.
682 * @iova: The I/O Virtual Address.
683 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
685 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
688 * FIXME: at some threshhold it might be "cheaper" to just blow
689 * away the entire I/O TLB instead of individual entries.
691 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
692 * PDIR entry - just once for each possible TLB entry.
693 * (We do need to maker I/O PDIR entries invalid regardless).
695 * FIXME: Can we change byte_cnt to pages_mapped?
697 static CCIO_INLINE
void
698 ccio_mark_invalid(struct ioc
*ioc
, dma_addr_t iova
, size_t byte_cnt
)
700 u32 iovp
= (u32
)CCIO_IOVP(iova
);
701 size_t saved_byte_cnt
;
703 /* round up to nearest page size */
704 saved_byte_cnt
= byte_cnt
= ALIGN(byte_cnt
, IOVP_SIZE
);
706 while(byte_cnt
> 0) {
707 /* invalidate one page at a time */
708 unsigned int idx
= PDIR_INDEX(iovp
);
709 char *pdir_ptr
= (char *) &(ioc
->pdir_base
[idx
]);
711 BUG_ON(idx
>= (ioc
->pdir_size
/ sizeof(u64
)));
712 pdir_ptr
[7] = 0; /* clear only VALID bit */
714 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
715 ** PCX-U/U+ do. (eg C200/C240)
716 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
718 ** Hopefully someone figures out how to patch (NOP) the
719 ** FDC/SYNC out at boot time.
721 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr
[7]));
724 byte_cnt
-= IOVP_SIZE
;
727 asm volatile("sync");
728 ccio_clear_io_tlb(ioc
, CCIO_IOVP(iova
), saved_byte_cnt
);
731 /****************************************************************
735 *****************************************************************/
738 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
739 * @dev: The PCI device.
740 * @mask: A bit mask describing the DMA address range of the device.
742 * This function implements the pci_dma_supported function.
745 ccio_dma_supported(struct device
*dev
, u64 mask
)
748 printk(KERN_ERR MODULE_NAME
": EISA/ISA/et al not supported\n");
753 /* only support 32-bit devices (ie PCI/GSC) */
754 return (int)(mask
== 0xffffffffUL
);
758 * ccio_map_single - Map an address range into the IOMMU.
759 * @dev: The PCI device.
760 * @addr: The start address of the DMA region.
761 * @size: The length of the DMA region.
762 * @direction: The direction of the DMA transaction (to/from device).
764 * This function implements the pci_map_single function.
767 ccio_map_single(struct device
*dev
, void *addr
, size_t size
,
768 enum dma_data_direction direction
)
776 unsigned long hint
= hint_lookup
[(int)direction
];
783 /* save offset bits */
784 offset
= ((unsigned long) addr
) & ~IOVP_MASK
;
786 /* round up to nearest IOVP_SIZE */
787 size
= ALIGN(size
+ offset
, IOVP_SIZE
);
788 spin_lock_irqsave(&ioc
->res_lock
, flags
);
790 #ifdef CCIO_MAP_STATS
791 ioc
->msingle_calls
++;
792 ioc
->msingle_pages
+= size
>> IOVP_SHIFT
;
795 <<<<<<< HEAD
:drivers
/parisc
/ccio
-dma
.c
796 idx
= ccio_alloc_range(ioc
, size
);
798 idx
= ccio_alloc_range(ioc
, dev
, size
);
799 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/parisc
/ccio
-dma
.c
800 iovp
= (dma_addr_t
)MKIOVP(idx
);
802 pdir_start
= &(ioc
->pdir_base
[idx
]);
804 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
805 __FUNCTION__
, addr
, (long)iovp
| offset
, size
);
807 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
808 if((size
% L1_CACHE_BYTES
) || ((unsigned long)addr
% L1_CACHE_BYTES
))
809 hint
|= HINT_SAFE_DMA
;
812 ccio_io_pdir_entry(pdir_start
, KERNEL_SPACE
, (unsigned long)addr
, hint
);
814 DBG_RUN(" pdir %p %08x%08x\n",
816 (u32
) (((u32
*) pdir_start
)[0]),
817 (u32
) (((u32
*) pdir_start
)[1]));
823 spin_unlock_irqrestore(&ioc
->res_lock
, flags
);
825 /* form complete address */
826 return CCIO_IOVA(iovp
, offset
);
830 * ccio_unmap_single - Unmap an address range from the IOMMU.
831 * @dev: The PCI device.
832 * @addr: The start address of the DMA region.
833 * @size: The length of the DMA region.
834 * @direction: The direction of the DMA transaction (to/from device).
836 * This function implements the pci_unmap_single function.
839 ccio_unmap_single(struct device
*dev
, dma_addr_t iova
, size_t size
,
840 enum dma_data_direction direction
)
844 dma_addr_t offset
= iova
& ~IOVP_MASK
;
849 DBG_RUN("%s() iovp 0x%lx/%x\n",
850 __FUNCTION__
, (long)iova
, size
);
852 iova
^= offset
; /* clear offset bits */
854 size
= ALIGN(size
, IOVP_SIZE
);
856 spin_lock_irqsave(&ioc
->res_lock
, flags
);
858 #ifdef CCIO_MAP_STATS
859 ioc
->usingle_calls
++;
860 ioc
->usingle_pages
+= size
>> IOVP_SHIFT
;
863 ccio_mark_invalid(ioc
, iova
, size
);
864 ccio_free_range(ioc
, iova
, (size
>> IOVP_SHIFT
));
865 spin_unlock_irqrestore(&ioc
->res_lock
, flags
);
869 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
870 * @dev: The PCI device.
871 * @size: The length of the DMA region.
872 * @dma_handle: The DMA address handed back to the device (not the cpu).
874 * This function implements the pci_alloc_consistent function.
877 ccio_alloc_consistent(struct device
*dev
, size_t size
, dma_addr_t
*dma_handle
, gfp_t flag
)
881 /* GRANT Need to establish hierarchy for non-PCI devs as well
882 ** and then provide matching gsc_map_xxx() functions for them as well.
885 /* only support PCI */
890 ret
= (void *) __get_free_pages(flag
, get_order(size
));
893 memset(ret
, 0, size
);
894 *dma_handle
= ccio_map_single(dev
, ret
, size
, PCI_DMA_BIDIRECTIONAL
);
901 * ccio_free_consistent - Free a consistent DMA mapping.
902 * @dev: The PCI device.
903 * @size: The length of the DMA region.
904 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
905 * @dma_handle: The device address returned from the ccio_alloc_consistent.
907 * This function implements the pci_free_consistent function.
910 ccio_free_consistent(struct device
*dev
, size_t size
, void *cpu_addr
,
911 dma_addr_t dma_handle
)
913 ccio_unmap_single(dev
, dma_handle
, size
, 0);
914 free_pages((unsigned long)cpu_addr
, get_order(size
));
918 ** Since 0 is a valid pdir_base index value, can't use that
919 ** to determine if a value is valid or not. Use a flag to indicate
920 ** the SG list entry contains a valid pdir index.
922 #define PIDE_FLAG 0x80000000UL
924 #ifdef CCIO_MAP_STATS
925 #define IOMMU_MAP_STATS
927 #include "iommu-helpers.h"
930 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
931 * @dev: The PCI device.
932 * @sglist: The scatter/gather list to be mapped in the IOMMU.
933 * @nents: The number of entries in the scatter/gather list.
934 * @direction: The direction of the DMA transaction (to/from device).
936 * This function implements the pci_map_sg function.
939 ccio_map_sg(struct device
*dev
, struct scatterlist
*sglist
, int nents
,
940 enum dma_data_direction direction
)
943 int coalesced
, filled
= 0;
945 unsigned long hint
= hint_lookup
[(int)direction
];
946 unsigned long prev_len
= 0, current_len
= 0;
952 DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__
, nents
);
954 /* Fast path single entry scatterlists. */
956 sg_dma_address(sglist
) = ccio_map_single(dev
,
957 (void *)sg_virt_addr(sglist
), sglist
->length
,
959 sg_dma_len(sglist
) = sglist
->length
;
963 for(i
= 0; i
< nents
; i
++)
964 prev_len
+= sglist
[i
].length
;
966 spin_lock_irqsave(&ioc
->res_lock
, flags
);
968 #ifdef CCIO_MAP_STATS
973 ** First coalesce the chunks and allocate I/O pdir space
975 ** If this is one DMA stream, we can properly map using the
976 ** correct virtual address associated with each DMA page.
977 ** w/o this association, we wouldn't have coherent DMA!
978 ** Access to the virtual address is what forces a two pass algorithm.
980 coalesced
= iommu_coalesce_chunks(ioc
, dev
, sglist
, nents
, ccio_alloc_range
);
983 ** Program the I/O Pdir
985 ** map the virtual addresses to the I/O Pdir
986 ** o dma_address will contain the pdir index
987 ** o dma_len will contain the number of bytes to map
988 ** o page/offset contain the virtual address.
990 filled
= iommu_fill_pdir(ioc
, sglist
, nents
, hint
, ccio_io_pdir_entry
);
992 spin_unlock_irqrestore(&ioc
->res_lock
, flags
);
994 BUG_ON(coalesced
!= filled
);
996 DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__
, filled
);
998 for (i
= 0; i
< filled
; i
++)
999 current_len
+= sg_dma_len(sglist
+ i
);
1001 BUG_ON(current_len
!= prev_len
);
1007 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
1008 * @dev: The PCI device.
1009 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
1010 * @nents: The number of entries in the scatter/gather list.
1011 * @direction: The direction of the DMA transaction (to/from device).
1013 * This function implements the pci_unmap_sg function.
1016 ccio_unmap_sg(struct device
*dev
, struct scatterlist
*sglist
, int nents
,
1017 enum dma_data_direction direction
)
1024 DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
1025 __FUNCTION__
, nents
, sg_virt_addr(sglist
), sglist
->length
);
1027 #ifdef CCIO_MAP_STATS
1031 while(sg_dma_len(sglist
) && nents
--) {
1033 #ifdef CCIO_MAP_STATS
1034 ioc
->usg_pages
+= sg_dma_len(sglist
) >> PAGE_SHIFT
;
1036 ccio_unmap_single(dev
, sg_dma_address(sglist
),
1037 sg_dma_len(sglist
), direction
);
1041 DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__
, nents
);
1044 static struct hppa_dma_ops ccio_ops
= {
1045 .dma_supported
= ccio_dma_supported
,
1046 .alloc_consistent
= ccio_alloc_consistent
,
1047 .alloc_noncoherent
= ccio_alloc_consistent
,
1048 .free_consistent
= ccio_free_consistent
,
1049 .map_single
= ccio_map_single
,
1050 .unmap_single
= ccio_unmap_single
,
1051 .map_sg
= ccio_map_sg
,
1052 .unmap_sg
= ccio_unmap_sg
,
1053 .dma_sync_single_for_cpu
= NULL
, /* NOP for U2/Uturn */
1054 .dma_sync_single_for_device
= NULL
, /* NOP for U2/Uturn */
1055 .dma_sync_sg_for_cpu
= NULL
, /* ditto */
1056 .dma_sync_sg_for_device
= NULL
, /* ditto */
1059 #ifdef CONFIG_PROC_FS
1060 static int ccio_proc_info(struct seq_file
*m
, void *p
)
1063 struct ioc
*ioc
= ioc_list
;
1065 while (ioc
!= NULL
) {
1066 unsigned int total_pages
= ioc
->res_size
<< 3;
1067 unsigned long avg
= 0, min
, max
;
1070 len
+= seq_printf(m
, "%s\n", ioc
->name
);
1072 len
+= seq_printf(m
, "Cujo 2.0 bug : %s\n",
1073 (ioc
->cujo20_bug
? "yes" : "no"));
1075 len
+= seq_printf(m
, "IO PDIR size : %d bytes (%d entries)\n",
1076 total_pages
* 8, total_pages
);
1078 #ifdef CCIO_MAP_STATS
1079 len
+= seq_printf(m
, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1080 total_pages
- ioc
->used_pages
, ioc
->used_pages
,
1081 (int)(ioc
->used_pages
* 100 / total_pages
));
1084 len
+= seq_printf(m
, "Resource bitmap : %d bytes (%d pages)\n",
1085 ioc
->res_size
, total_pages
);
1087 #ifdef CCIO_SEARCH_TIME
1088 min
= max
= ioc
->avg_search
[0];
1089 for(j
= 0; j
< CCIO_SEARCH_SAMPLE
; ++j
) {
1090 avg
+= ioc
->avg_search
[j
];
1091 if(ioc
->avg_search
[j
] > max
)
1092 max
= ioc
->avg_search
[j
];
1093 if(ioc
->avg_search
[j
] < min
)
1094 min
= ioc
->avg_search
[j
];
1096 avg
/= CCIO_SEARCH_SAMPLE
;
1097 len
+= seq_printf(m
, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1100 #ifdef CCIO_MAP_STATS
1101 len
+= seq_printf(m
, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1102 ioc
->msingle_calls
, ioc
->msingle_pages
,
1103 (int)((ioc
->msingle_pages
* 1000)/ioc
->msingle_calls
));
1105 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1106 min
= ioc
->usingle_calls
- ioc
->usg_calls
;
1107 max
= ioc
->usingle_pages
- ioc
->usg_pages
;
1108 len
+= seq_printf(m
, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1109 min
, max
, (int)((max
* 1000)/min
));
1111 len
+= seq_printf(m
, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1112 ioc
->msg_calls
, ioc
->msg_pages
,
1113 (int)((ioc
->msg_pages
* 1000)/ioc
->msg_calls
));
1115 len
+= seq_printf(m
, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1116 ioc
->usg_calls
, ioc
->usg_pages
,
1117 (int)((ioc
->usg_pages
* 1000)/ioc
->usg_calls
));
1118 #endif /* CCIO_MAP_STATS */
1126 static int ccio_proc_info_open(struct inode
*inode
, struct file
*file
)
1128 return single_open(file
, &ccio_proc_info
, NULL
);
1131 static const struct file_operations ccio_proc_info_fops
= {
1132 .owner
= THIS_MODULE
,
1133 .open
= ccio_proc_info_open
,
1135 .llseek
= seq_lseek
,
1136 .release
= single_release
,
1139 static int ccio_proc_bitmap_info(struct seq_file
*m
, void *p
)
1142 struct ioc
*ioc
= ioc_list
;
1144 while (ioc
!= NULL
) {
1145 u32
*res_ptr
= (u32
*)ioc
->res_map
;
1148 for (j
= 0; j
< (ioc
->res_size
/ sizeof(u32
)); j
++) {
1150 len
+= seq_puts(m
, "\n ");
1151 len
+= seq_printf(m
, "%08x", *res_ptr
);
1154 len
+= seq_puts(m
, "\n\n");
1156 break; /* XXX - remove me */
1162 static int ccio_proc_bitmap_open(struct inode
*inode
, struct file
*file
)
1164 return single_open(file
, &ccio_proc_bitmap_info
, NULL
);
1167 static const struct file_operations ccio_proc_bitmap_fops
= {
1168 .owner
= THIS_MODULE
,
1169 .open
= ccio_proc_bitmap_open
,
1171 .llseek
= seq_lseek
,
1172 .release
= single_release
,
1177 * ccio_find_ioc - Find the ioc in the ioc_list
1178 * @hw_path: The hardware path of the ioc.
1180 * This function searches the ioc_list for an ioc that matches
1181 * the provide hardware path.
1183 static struct ioc
* ccio_find_ioc(int hw_path
)
1189 for (i
= 0; i
< ioc_count
; i
++) {
1190 if (ioc
->hw_path
== hw_path
)
1200 * ccio_get_iommu - Find the iommu which controls this device
1201 * @dev: The parisc device.
1203 * This function searches through the registered IOMMU's and returns
1204 * the appropriate IOMMU for the device based on its hardware path.
1206 void * ccio_get_iommu(const struct parisc_device
*dev
)
1208 dev
= find_pa_parent_type(dev
, HPHW_IOA
);
1212 return ccio_find_ioc(dev
->hw_path
);
1215 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1217 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1218 * to/from certain pages. To avoid this happening, we mark these pages
1219 * as `used', and ensure that nothing will try to allocate from them.
1221 void ccio_cujo20_fixup(struct parisc_device
*cujo
, u32 iovp
)
1224 struct parisc_device
*dev
= parisc_parent(cujo
);
1225 struct ioc
*ioc
= ccio_get_iommu(dev
);
1228 ioc
->cujo20_bug
= 1;
1229 res_ptr
= ioc
->res_map
;
1230 idx
= PDIR_INDEX(iovp
) >> 3;
1232 while (idx
< ioc
->res_size
) {
1233 res_ptr
[idx
] |= 0xff;
1234 idx
+= PDIR_INDEX(CUJO_20_STEP
) >> 3;
1239 /* GRANT - is this needed for U2 or not? */
1242 ** Get the size of the I/O TLB for this I/O MMU.
1244 ** If spa_shift is non-zero (ie probably U2),
1245 ** then calculate the I/O TLB size using spa_shift.
1247 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1248 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1249 ** I think only Java (K/D/R-class too?) systems don't do this.
1252 ccio_get_iotlb_size(struct parisc_device
*dev
)
1254 if (dev
->spa_shift
== 0) {
1255 panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__
);
1257 return (1 << dev
->spa_shift
);
1261 /* Uturn supports 256 TLB entries */
1262 #define CCIO_CHAINID_SHIFT 8
1263 #define CCIO_CHAINID_MASK 0xff
1266 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1267 static const struct parisc_device_id ccio_tbl
[] = {
1268 { HPHW_IOA
, HVERSION_REV_ANY_ID
, U2_IOA_RUNWAY
, 0xb }, /* U2 */
1269 { HPHW_IOA
, HVERSION_REV_ANY_ID
, UTURN_IOA_RUNWAY
, 0xb }, /* UTurn */
1273 static int ccio_probe(struct parisc_device
*dev
);
1275 static struct parisc_driver ccio_driver
= {
1277 .id_table
= ccio_tbl
,
1278 .probe
= ccio_probe
,
1282 * ccio_ioc_init - Initalize the I/O Controller
1283 * @ioc: The I/O Controller.
1285 * Initalize the I/O Controller which includes setting up the
1286 * I/O Page Directory, the resource map, and initalizing the
1287 * U2/Uturn chip into virtual mode.
1290 ccio_ioc_init(struct ioc
*ioc
)
1293 unsigned int iov_order
;
1294 u32 iova_space_size
;
1297 ** Determine IOVA Space size from memory size.
1299 ** Ideally, PCI drivers would register the maximum number
1300 ** of DMA they can have outstanding for each device they
1301 ** own. Next best thing would be to guess how much DMA
1302 ** can be outstanding based on PCI Class/sub-class. Both
1303 ** methods still require some "extra" to support PCI
1304 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1307 iova_space_size
= (u32
) (num_physpages
/ count_parisc_driver(&ccio_driver
));
1309 /* limit IOVA space size to 1MB-1GB */
1311 if (iova_space_size
< (1 << (20 - PAGE_SHIFT
))) {
1312 iova_space_size
= 1 << (20 - PAGE_SHIFT
);
1314 } else if (iova_space_size
> (1 << (30 - PAGE_SHIFT
))) {
1315 iova_space_size
= 1 << (30 - PAGE_SHIFT
);
1320 ** iova space must be log2() in size.
1321 ** thus, pdir/res_map will also be log2().
1324 /* We could use larger page sizes in order to *decrease* the number
1325 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1327 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1328 ** since the pages must also be physically contiguous - typically
1329 ** this is the case under linux."
1332 iov_order
= get_order(iova_space_size
<< PAGE_SHIFT
);
1334 /* iova_space_size is now bytes, not pages */
1335 iova_space_size
= 1 << (iov_order
+ PAGE_SHIFT
);
1337 ioc
->pdir_size
= (iova_space_size
/ IOVP_SIZE
) * sizeof(u64
);
1339 BUG_ON(ioc
->pdir_size
> 8 * 1024 * 1024); /* max pdir size <= 8MB */
1341 /* Verify it's a power of two */
1342 BUG_ON((1 << get_order(ioc
->pdir_size
)) != (ioc
->pdir_size
>> PAGE_SHIFT
));
1344 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1345 __FUNCTION__
, ioc
->ioc_regs
,
1346 (unsigned long) num_physpages
>> (20 - PAGE_SHIFT
),
1347 iova_space_size
>>20,
1348 iov_order
+ PAGE_SHIFT
);
1350 ioc
->pdir_base
= (u64
*)__get_free_pages(GFP_KERNEL
,
1351 get_order(ioc
->pdir_size
));
1352 if(NULL
== ioc
->pdir_base
) {
1353 panic("%s() could not allocate I/O Page Table\n", __FUNCTION__
);
1355 memset(ioc
->pdir_base
, 0, ioc
->pdir_size
);
1357 BUG_ON((((unsigned long)ioc
->pdir_base
) & PAGE_MASK
) != (unsigned long)ioc
->pdir_base
);
1358 DBG_INIT(" base %p\n", ioc
->pdir_base
);
1360 /* resource map size dictated by pdir_size */
1361 ioc
->res_size
= (ioc
->pdir_size
/ sizeof(u64
)) >> 3;
1362 DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__
, ioc
->res_size
);
1364 ioc
->res_map
= (u8
*)__get_free_pages(GFP_KERNEL
,
1365 get_order(ioc
->res_size
));
1366 if(NULL
== ioc
->res_map
) {
1367 panic("%s() could not allocate resource map\n", __FUNCTION__
);
1369 memset(ioc
->res_map
, 0, ioc
->res_size
);
1371 /* Initialize the res_hint to 16 */
1374 /* Initialize the spinlock */
1375 spin_lock_init(&ioc
->res_lock
);
1378 ** Chainid is the upper most bits of an IOVP used to determine
1379 ** which TLB entry an IOVP will use.
1381 ioc
->chainid_shift
= get_order(iova_space_size
) + PAGE_SHIFT
- CCIO_CHAINID_SHIFT
;
1382 DBG_INIT(" chainid_shift 0x%x\n", ioc
->chainid_shift
);
1385 ** Initialize IOA hardware
1387 WRITE_U32(CCIO_CHAINID_MASK
<< ioc
->chainid_shift
,
1388 &ioc
->ioc_regs
->io_chain_id_mask
);
1390 WRITE_U32(virt_to_phys(ioc
->pdir_base
),
1391 &ioc
->ioc_regs
->io_pdir_base
);
1394 ** Go to "Virtual Mode"
1396 WRITE_U32(IOA_NORMAL_MODE
, &ioc
->ioc_regs
->io_control
);
1399 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1401 WRITE_U32(0, &ioc
->ioc_regs
->io_tlb_entry_m
);
1402 WRITE_U32(0, &ioc
->ioc_regs
->io_tlb_entry_l
);
1404 for(i
= 1 << CCIO_CHAINID_SHIFT
; i
; i
--) {
1405 WRITE_U32((CMD_TLB_DIRECT_WRITE
| (i
<< ioc
->chainid_shift
)),
1406 &ioc
->ioc_regs
->io_command
);
1411 ccio_init_resource(struct resource
*res
, char *name
, void __iomem
*ioaddr
)
1416 res
->flags
= IORESOURCE_MEM
;
1418 * bracing ((signed) ...) are required for 64bit kernel because
1419 * we only want to sign extend the lower 16 bits of the register.
1420 * The upper 16-bits of range registers are hardcoded to 0xffff.
1422 res
->start
= (unsigned long)((signed) READ_U32(ioaddr
) << 16);
1423 res
->end
= (unsigned long)((signed) (READ_U32(ioaddr
+ 4) << 16) - 1);
1426 * Check if this MMIO range is disable
1428 if (res
->end
+ 1 == res
->start
)
1431 /* On some platforms (e.g. K-Class), we have already registered
1432 * resources for devices reported by firmware. Some are children
1434 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1436 result
= insert_resource(&iomem_resource
, res
);
1438 printk(KERN_ERR
"%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1439 __FUNCTION__
, res
->start
, res
->end
);
1443 static void __init
ccio_init_resources(struct ioc
*ioc
)
1445 struct resource
*res
= ioc
->mmio_region
;
1446 char *name
= kmalloc(14, GFP_KERNEL
);
1448 snprintf(name
, 14, "GSC Bus [%d/]", ioc
->hw_path
);
1450 ccio_init_resource(res
, name
, &ioc
->ioc_regs
->io_io_low
);
1451 ccio_init_resource(res
+ 1, name
, &ioc
->ioc_regs
->io_io_low_hv
);
1454 static int new_ioc_area(struct resource
*res
, unsigned long size
,
1455 unsigned long min
, unsigned long max
, unsigned long align
)
1460 res
->start
= (max
- size
+ 1) &~ (align
- 1);
1461 res
->end
= res
->start
+ size
;
1463 /* We might be trying to expand the MMIO range to include
1464 * a child device that has already registered it's MMIO space.
1465 * Use "insert" instead of request_resource().
1467 if (!insert_resource(&iomem_resource
, res
))
1470 return new_ioc_area(res
, size
, min
, max
- size
, align
);
1473 static int expand_ioc_area(struct resource
*res
, unsigned long size
,
1474 unsigned long min
, unsigned long max
, unsigned long align
)
1476 unsigned long start
, len
;
1479 return new_ioc_area(res
, size
, min
, max
, align
);
1481 start
= (res
->start
- size
) &~ (align
- 1);
1482 len
= res
->end
- start
+ 1;
1484 if (!adjust_resource(res
, start
, len
))
1489 len
= ((size
+ res
->end
+ align
) &~ (align
- 1)) - start
;
1490 if (start
+ len
<= max
) {
1491 if (!adjust_resource(res
, start
, len
))
1499 * Dino calls this function. Beware that we may get called on systems
1500 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1501 * So it's legal to find no parent IOC.
1503 * Some other issues: one of the resources in the ioc may be unassigned.
1505 int ccio_allocate_resource(const struct parisc_device
*dev
,
1506 struct resource
*res
, unsigned long size
,
1507 unsigned long min
, unsigned long max
, unsigned long align
)
1509 struct resource
*parent
= &iomem_resource
;
1510 struct ioc
*ioc
= ccio_get_iommu(dev
);
1514 parent
= ioc
->mmio_region
;
1515 if (parent
->parent
&&
1516 !allocate_resource(parent
, res
, size
, min
, max
, align
, NULL
, NULL
))
1519 if ((parent
+ 1)->parent
&&
1520 !allocate_resource(parent
+ 1, res
, size
, min
, max
, align
,
1524 if (!expand_ioc_area(parent
, size
, min
, max
, align
)) {
1525 __raw_writel(((parent
->start
)>>16) | 0xffff0000,
1526 &ioc
->ioc_regs
->io_io_low
);
1527 __raw_writel(((parent
->end
)>>16) | 0xffff0000,
1528 &ioc
->ioc_regs
->io_io_high
);
1529 } else if (!expand_ioc_area(parent
+ 1, size
, min
, max
, align
)) {
1531 __raw_writel(((parent
->start
)>>16) | 0xffff0000,
1532 &ioc
->ioc_regs
->io_io_low_hv
);
1533 __raw_writel(((parent
->end
)>>16) | 0xffff0000,
1534 &ioc
->ioc_regs
->io_io_high_hv
);
1540 return allocate_resource(parent
, res
, size
, min
, max
, align
, NULL
,NULL
);
1543 int ccio_request_resource(const struct parisc_device
*dev
,
1544 struct resource
*res
)
1546 struct resource
*parent
;
1547 struct ioc
*ioc
= ccio_get_iommu(dev
);
1550 parent
= &iomem_resource
;
1551 } else if ((ioc
->mmio_region
->start
<= res
->start
) &&
1552 (res
->end
<= ioc
->mmio_region
->end
)) {
1553 parent
= ioc
->mmio_region
;
1554 } else if (((ioc
->mmio_region
+ 1)->start
<= res
->start
) &&
1555 (res
->end
<= (ioc
->mmio_region
+ 1)->end
)) {
1556 parent
= ioc
->mmio_region
+ 1;
1561 /* "transparent" bus bridges need to register MMIO resources
1562 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1563 * registered their resources in the PDC "bus walk" (See
1564 * arch/parisc/kernel/inventory.c).
1566 return insert_resource(parent
, res
);
1570 * ccio_probe - Determine if ccio should claim this device.
1571 * @dev: The device which has been found
1573 * Determine if ccio should claim this chip (return 0) or not (return 1).
1574 * If so, initialize the chip and tell other partners in crime they
1577 static int __init
ccio_probe(struct parisc_device
*dev
)
1580 struct ioc
*ioc
, **ioc_p
= &ioc_list
;
1581 struct proc_dir_entry
*info_entry
, *bitmap_entry
;
1583 ioc
= kzalloc(sizeof(struct ioc
), GFP_KERNEL
);
1585 printk(KERN_ERR MODULE_NAME
": memory allocation failure\n");
1589 ioc
->name
= dev
->id
.hversion
== U2_IOA_RUNWAY
? "U2" : "UTurn";
1591 printk(KERN_INFO
"Found %s at 0x%lx\n", ioc
->name
, dev
->hpa
.start
);
1593 for (i
= 0; i
< ioc_count
; i
++) {
1594 ioc_p
= &(*ioc_p
)->next
;
1598 ioc
->hw_path
= dev
->hw_path
;
1599 ioc
->ioc_regs
= ioremap_nocache(dev
->hpa
.start
, 4096);
1601 ccio_init_resources(ioc
);
1602 hppa_dma_ops
= &ccio_ops
;
1603 dev
->dev
.platform_data
= kzalloc(sizeof(struct pci_hba_data
), GFP_KERNEL
);
1605 /* if this fails, no I/O cards will work, so may as well bug */
1606 BUG_ON(dev
->dev
.platform_data
== NULL
);
1607 HBA_DATA(dev
->dev
.platform_data
)->iommu
= ioc
;
1609 if (ioc_count
== 0) {
1610 info_entry
= create_proc_entry(MODULE_NAME
, 0, proc_runway_root
);
1612 info_entry
->proc_fops
= &ccio_proc_info_fops
;
1614 bitmap_entry
= create_proc_entry(MODULE_NAME
"-bitmap", 0, proc_runway_root
);
1616 bitmap_entry
->proc_fops
= &ccio_proc_bitmap_fops
;
1621 parisc_vmerge_boundary
= IOVP_SIZE
;
1622 parisc_vmerge_max_size
= BITS_PER_LONG
* IOVP_SIZE
;
1628 * ccio_init - ccio initialization procedure.
1630 * Register this driver.
1632 void __init
ccio_init(void)
1634 register_parisc_driver(&ccio_driver
);