2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
34 #include <asm/hardware.h>
35 #include <asm/delay.h>
38 #include <asm/arch/hardware.h>
39 #include <asm/arch/pxa-regs.h>
40 #include <asm/arch/regs-ssp.h>
41 #include <asm/arch/ssp.h>
42 #include <asm/arch/pxa2xx_spi.h>
44 MODULE_AUTHOR("Stephen Street");
45 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
46 MODULE_LICENSE("GPL");
50 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
51 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
52 #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
54 <<<<<<< HEAD
:drivers
/spi
/pxa2xx_spi
.c
55 /* for testing SSCR1 changes that require SSP restart, basically
56 * everything except the service and interrupt enables */
57 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
60 * for testing SSCR1 changes that require SSP restart, basically
61 * everything except the service and interrupt enables, the pxa270 developer
62 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
63 * list, but the PXA255 dev man says all bits without really meaning the
64 * service and interrupt enables
66 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/spi/pxa2xx_spi.c
68 | SSCR1_ECRA
| SSCR1_ECRB
| SSCR1_SCLKDIR \
69 <<<<<<< HEAD
:drivers
/spi
/pxa2xx_spi
.c
70 | SSCR1_RWOT
| SSCR1_TRAIL
| SSCR1_PINTE \
71 | SSCR1_STRF
| SSCR1_EFWR
|SSCR1_RFT \
72 | SSCR1_TFT
| SSCR1_SPH
| SSCR1_SPO
| SSCR1_LBM
)
74 | SSCR1_SFRMDIR
| SSCR1_RWOT
| SSCR1_TRAIL \
75 | SSCR1_IFS
| SSCR1_STRF
| SSCR1_EFWR \
76 | SSCR1_RFT
| SSCR1_TFT
| SSCR1_MWDS \
77 | SSCR1_SPH
| SSCR1_SPO
| SSCR1_LBM
)
78 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/spi
/pxa2xx_spi
.c
80 #define DEFINE_SSP_REG(reg, off) \
81 static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
82 static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
84 DEFINE_SSP_REG(SSCR0
, 0x00)
85 DEFINE_SSP_REG(SSCR1
, 0x04)
86 DEFINE_SSP_REG(SSSR
, 0x08)
87 DEFINE_SSP_REG(SSITR
, 0x0c)
88 DEFINE_SSP_REG(SSDR
, 0x10)
89 DEFINE_SSP_REG(SSTO
, 0x28)
90 DEFINE_SSP_REG(SSPSP
, 0x2c)
92 #define START_STATE ((void*)0)
93 #define RUNNING_STATE ((void*)1)
94 #define DONE_STATE ((void*)2)
95 #define ERROR_STATE ((void*)-1)
97 #define QUEUE_RUNNING 0
98 #define QUEUE_STOPPED 1
101 /* Driver model hookup */
102 struct platform_device
*pdev
;
105 struct ssp_device
*ssp
;
107 /* SPI framework hookup */
108 enum pxa_ssp_type ssp_type
;
109 struct spi_master
*master
;
112 struct pxa2xx_spi_master
*master_info
;
114 /* DMA setup stuff */
119 /* SSP register addresses */
129 /* Driver message queue */
130 struct workqueue_struct
*workqueue
;
131 struct work_struct pump_messages
;
133 struct list_head queue
;
137 /* Message Transfer pump */
138 struct tasklet_struct pump_transfers
;
140 /* Current message transfer state info */
141 struct spi_message
* cur_msg
;
142 struct spi_transfer
* cur_transfer
;
143 struct chip_data
*cur_chip
;
157 int (*write
)(struct driver_data
*drv_data
);
158 int (*read
)(struct driver_data
*drv_data
);
159 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
160 void (*cs_control
)(u32 command
);
176 int (*write
)(struct driver_data
*drv_data
);
177 int (*read
)(struct driver_data
*drv_data
);
178 void (*cs_control
)(u32 command
);
181 static void pump_messages(struct work_struct
*work
);
183 static int flush(struct driver_data
*drv_data
)
185 unsigned long limit
= loops_per_jiffy
<< 1;
187 void *reg
= drv_data
->ioaddr
;
190 while (read_SSSR(reg
) & SSSR_RNE
) {
193 } while ((read_SSSR(reg
) & SSSR_BSY
) && limit
--);
194 write_SSSR(SSSR_ROR
, reg
);
199 static void null_cs_control(u32 command
)
203 static int null_writer(struct driver_data
*drv_data
)
205 void *reg
= drv_data
->ioaddr
;
206 u8 n_bytes
= drv_data
->n_bytes
;
208 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
209 || (drv_data
->tx
== drv_data
->tx_end
))
213 drv_data
->tx
+= n_bytes
;
218 static int null_reader(struct driver_data
*drv_data
)
220 void *reg
= drv_data
->ioaddr
;
221 u8 n_bytes
= drv_data
->n_bytes
;
223 while ((read_SSSR(reg
) & SSSR_RNE
)
224 && (drv_data
->rx
< drv_data
->rx_end
)) {
226 drv_data
->rx
+= n_bytes
;
229 return drv_data
->rx
== drv_data
->rx_end
;
232 static int u8_writer(struct driver_data
*drv_data
)
234 void *reg
= drv_data
->ioaddr
;
236 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
237 || (drv_data
->tx
== drv_data
->tx_end
))
240 write_SSDR(*(u8
*)(drv_data
->tx
), reg
);
246 static int u8_reader(struct driver_data
*drv_data
)
248 void *reg
= drv_data
->ioaddr
;
250 while ((read_SSSR(reg
) & SSSR_RNE
)
251 && (drv_data
->rx
< drv_data
->rx_end
)) {
252 *(u8
*)(drv_data
->rx
) = read_SSDR(reg
);
256 return drv_data
->rx
== drv_data
->rx_end
;
259 static int u16_writer(struct driver_data
*drv_data
)
261 void *reg
= drv_data
->ioaddr
;
263 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
264 || (drv_data
->tx
== drv_data
->tx_end
))
267 write_SSDR(*(u16
*)(drv_data
->tx
), reg
);
273 static int u16_reader(struct driver_data
*drv_data
)
275 void *reg
= drv_data
->ioaddr
;
277 while ((read_SSSR(reg
) & SSSR_RNE
)
278 && (drv_data
->rx
< drv_data
->rx_end
)) {
279 *(u16
*)(drv_data
->rx
) = read_SSDR(reg
);
283 return drv_data
->rx
== drv_data
->rx_end
;
286 static int u32_writer(struct driver_data
*drv_data
)
288 void *reg
= drv_data
->ioaddr
;
290 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
291 || (drv_data
->tx
== drv_data
->tx_end
))
294 write_SSDR(*(u32
*)(drv_data
->tx
), reg
);
300 static int u32_reader(struct driver_data
*drv_data
)
302 void *reg
= drv_data
->ioaddr
;
304 while ((read_SSSR(reg
) & SSSR_RNE
)
305 && (drv_data
->rx
< drv_data
->rx_end
)) {
306 *(u32
*)(drv_data
->rx
) = read_SSDR(reg
);
310 return drv_data
->rx
== drv_data
->rx_end
;
313 static void *next_transfer(struct driver_data
*drv_data
)
315 struct spi_message
*msg
= drv_data
->cur_msg
;
316 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
318 /* Move to next transfer */
319 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
320 drv_data
->cur_transfer
=
321 list_entry(trans
->transfer_list
.next
,
324 return RUNNING_STATE
;
329 static int map_dma_buffers(struct driver_data
*drv_data
)
331 struct spi_message
*msg
= drv_data
->cur_msg
;
332 struct device
*dev
= &msg
->spi
->dev
;
334 if (!drv_data
->cur_chip
->enable_dma
)
337 if (msg
->is_dma_mapped
)
338 return drv_data
->rx_dma
&& drv_data
->tx_dma
;
340 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
343 /* Modify setup if rx buffer is null */
344 if (drv_data
->rx
== NULL
) {
345 *drv_data
->null_dma_buf
= 0;
346 drv_data
->rx
= drv_data
->null_dma_buf
;
347 drv_data
->rx_map_len
= 4;
349 drv_data
->rx_map_len
= drv_data
->len
;
352 /* Modify setup if tx buffer is null */
353 if (drv_data
->tx
== NULL
) {
354 *drv_data
->null_dma_buf
= 0;
355 drv_data
->tx
= drv_data
->null_dma_buf
;
356 drv_data
->tx_map_len
= 4;
358 drv_data
->tx_map_len
= drv_data
->len
;
360 /* Stream map the rx buffer */
361 drv_data
->rx_dma
= dma_map_single(dev
, drv_data
->rx
,
362 drv_data
->rx_map_len
,
364 if (dma_mapping_error(drv_data
->rx_dma
))
367 /* Stream map the tx buffer */
368 drv_data
->tx_dma
= dma_map_single(dev
, drv_data
->tx
,
369 drv_data
->tx_map_len
,
372 if (dma_mapping_error(drv_data
->tx_dma
)) {
373 dma_unmap_single(dev
, drv_data
->rx_dma
,
374 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
381 static void unmap_dma_buffers(struct driver_data
*drv_data
)
385 if (!drv_data
->dma_mapped
)
388 if (!drv_data
->cur_msg
->is_dma_mapped
) {
389 dev
= &drv_data
->cur_msg
->spi
->dev
;
390 dma_unmap_single(dev
, drv_data
->rx_dma
,
391 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
392 dma_unmap_single(dev
, drv_data
->tx_dma
,
393 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
396 drv_data
->dma_mapped
= 0;
399 /* caller already set message->status; dma and pio irqs are blocked */
400 static void giveback(struct driver_data
*drv_data
)
402 struct spi_transfer
* last_transfer
;
404 struct spi_message
*msg
;
406 spin_lock_irqsave(&drv_data
->lock
, flags
);
407 msg
= drv_data
->cur_msg
;
408 drv_data
->cur_msg
= NULL
;
409 drv_data
->cur_transfer
= NULL
;
410 drv_data
->cur_chip
= NULL
;
411 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
412 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
414 last_transfer
= list_entry(msg
->transfers
.prev
,
418 if (!last_transfer
->cs_change
)
419 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
423 msg
->complete(msg
->context
);
426 static int wait_ssp_rx_stall(void *ioaddr
)
428 unsigned long limit
= loops_per_jiffy
<< 1;
430 while ((read_SSSR(ioaddr
) & SSSR_BSY
) && limit
--)
436 static int wait_dma_channel_stop(int channel
)
438 unsigned long limit
= loops_per_jiffy
<< 1;
440 while (!(DCSR(channel
) & DCSR_STOPSTATE
) && limit
--)
446 void dma_error_stop(struct driver_data
*drv_data
, const char *msg
)
448 void *reg
= drv_data
->ioaddr
;
451 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
452 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
453 write_SSSR(drv_data
->clear_sr
, reg
);
454 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
455 if (drv_data
->ssp_type
!= PXA25x_SSP
)
458 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
460 unmap_dma_buffers(drv_data
);
462 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
464 drv_data
->cur_msg
->state
= ERROR_STATE
;
465 tasklet_schedule(&drv_data
->pump_transfers
);
468 static void dma_transfer_complete(struct driver_data
*drv_data
)
470 void *reg
= drv_data
->ioaddr
;
471 struct spi_message
*msg
= drv_data
->cur_msg
;
473 /* Clear and disable interrupts on SSP and DMA channels*/
474 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
475 write_SSSR(drv_data
->clear_sr
, reg
);
476 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
477 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
479 if (wait_dma_channel_stop(drv_data
->rx_channel
) == 0)
480 dev_err(&drv_data
->pdev
->dev
,
481 "dma_handler: dma rx channel stop failed\n");
483 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
484 dev_err(&drv_data
->pdev
->dev
,
485 "dma_transfer: ssp rx stall failed\n");
487 unmap_dma_buffers(drv_data
);
489 /* update the buffer pointer for the amount completed in dma */
490 drv_data
->rx
+= drv_data
->len
-
491 (DCMD(drv_data
->rx_channel
) & DCMD_LENGTH
);
493 /* read trailing data from fifo, it does not matter how many
494 * bytes are in the fifo just read until buffer is full
495 * or fifo is empty, which ever occurs first */
496 drv_data
->read(drv_data
);
498 /* return count of what was actually read */
499 msg
->actual_length
+= drv_data
->len
-
500 (drv_data
->rx_end
- drv_data
->rx
);
502 /* Release chip select if requested, transfer delays are
503 * handled in pump_transfers */
504 if (drv_data
->cs_change
)
505 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
507 /* Move to next transfer */
508 msg
->state
= next_transfer(drv_data
);
510 /* Schedule transfer tasklet */
511 tasklet_schedule(&drv_data
->pump_transfers
);
514 static void dma_handler(int channel
, void *data
)
516 struct driver_data
*drv_data
= data
;
517 u32 irq_status
= DCSR(channel
) & DMA_INT_MASK
;
519 if (irq_status
& DCSR_BUSERR
) {
521 if (channel
== drv_data
->tx_channel
)
522 dma_error_stop(drv_data
,
524 "bad bus address on tx channel");
526 dma_error_stop(drv_data
,
528 "bad bus address on rx channel");
532 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
533 if ((channel
== drv_data
->tx_channel
)
534 && (irq_status
& DCSR_ENDINTR
)
535 && (drv_data
->ssp_type
== PXA25x_SSP
)) {
537 /* Wait for rx to stall */
538 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
539 dev_err(&drv_data
->pdev
->dev
,
540 "dma_handler: ssp rx stall failed\n");
542 /* finish this transfer, start the next */
543 dma_transfer_complete(drv_data
);
547 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
550 void *reg
= drv_data
->ioaddr
;
552 irq_status
= read_SSSR(reg
) & drv_data
->mask_sr
;
553 if (irq_status
& SSSR_ROR
) {
554 dma_error_stop(drv_data
, "dma_transfer: fifo overrun");
558 /* Check for false positive timeout */
559 if ((irq_status
& SSSR_TINT
)
560 && (DCSR(drv_data
->tx_channel
) & DCSR_RUN
)) {
561 write_SSSR(SSSR_TINT
, reg
);
565 if (irq_status
& SSSR_TINT
|| drv_data
->rx
== drv_data
->rx_end
) {
567 /* Clear and disable timeout interrupt, do the rest in
568 * dma_transfer_complete */
569 if (drv_data
->ssp_type
!= PXA25x_SSP
)
572 /* finish this transfer, start the next */
573 dma_transfer_complete(drv_data
);
578 /* Opps problem detected */
582 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
584 void *reg
= drv_data
->ioaddr
;
586 /* Stop and reset SSP */
587 write_SSSR(drv_data
->clear_sr
, reg
);
588 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
589 if (drv_data
->ssp_type
!= PXA25x_SSP
)
592 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
594 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
596 drv_data
->cur_msg
->state
= ERROR_STATE
;
597 tasklet_schedule(&drv_data
->pump_transfers
);
600 static void int_transfer_complete(struct driver_data
*drv_data
)
602 void *reg
= drv_data
->ioaddr
;
605 write_SSSR(drv_data
->clear_sr
, reg
);
606 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
607 if (drv_data
->ssp_type
!= PXA25x_SSP
)
610 /* Update total byte transfered return count actual bytes read */
611 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
612 (drv_data
->rx_end
- drv_data
->rx
);
614 /* Release chip select if requested, transfer delays are
615 * handled in pump_transfers */
616 if (drv_data
->cs_change
)
617 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
619 /* Move to next transfer */
620 drv_data
->cur_msg
->state
= next_transfer(drv_data
);
622 /* Schedule transfer tasklet */
623 tasklet_schedule(&drv_data
->pump_transfers
);
626 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
628 void *reg
= drv_data
->ioaddr
;
630 u32 irq_mask
= (read_SSCR1(reg
) & SSCR1_TIE
) ?
631 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
633 u32 irq_status
= read_SSSR(reg
) & irq_mask
;
635 if (irq_status
& SSSR_ROR
) {
636 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
640 if (irq_status
& SSSR_TINT
) {
641 write_SSSR(SSSR_TINT
, reg
);
642 if (drv_data
->read(drv_data
)) {
643 int_transfer_complete(drv_data
);
648 /* Drain rx fifo, Fill tx fifo and prevent overruns */
650 if (drv_data
->read(drv_data
)) {
651 int_transfer_complete(drv_data
);
654 } while (drv_data
->write(drv_data
));
656 if (drv_data
->read(drv_data
)) {
657 int_transfer_complete(drv_data
);
661 if (drv_data
->tx
== drv_data
->tx_end
) {
662 write_SSCR1(read_SSCR1(reg
) & ~SSCR1_TIE
, reg
);
663 /* PXA25x_SSP has no timeout, read trailing bytes */
664 if (drv_data
->ssp_type
== PXA25x_SSP
) {
665 if (!wait_ssp_rx_stall(reg
))
667 int_error_stop(drv_data
, "interrupt_transfer: "
671 if (!drv_data
->read(drv_data
))
673 int_error_stop(drv_data
,
674 "interrupt_transfer: "
675 "trailing byte read failed");
678 int_transfer_complete(drv_data
);
682 /* We did something */
686 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
688 struct driver_data
*drv_data
= dev_id
;
689 void *reg
= drv_data
->ioaddr
;
691 if (!drv_data
->cur_msg
) {
693 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
694 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
695 if (drv_data
->ssp_type
!= PXA25x_SSP
)
697 write_SSSR(drv_data
->clear_sr
, reg
);
699 dev_err(&drv_data
->pdev
->dev
, "bad message state "
700 "in interrupt handler\n");
706 return drv_data
->transfer_handler(drv_data
);
709 int set_dma_burst_and_threshold(struct chip_data
*chip
, struct spi_device
*spi
,
710 u8 bits_per_word
, u32
*burst_code
,
713 struct pxa2xx_spi_chip
*chip_info
=
714 (struct pxa2xx_spi_chip
*)spi
->controller_data
;
721 /* Set the threshold (in registers) to equal the same amount of data
722 * as represented by burst size (in bytes). The computation below
723 * is (burst_size rounded up to nearest 8 byte, word or long word)
724 * divided by (bytes/register); the tx threshold is the inverse of
725 * the rx, so that there will always be enough data in the rx fifo
726 * to satisfy a burst, and there will always be enough space in the
727 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
728 * there is not enough space), there must always remain enough empty
729 * space in the rx fifo for any data loaded to the tx fifo.
730 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
731 * will be 8, or half the fifo;
732 * The threshold can only be set to 2, 4 or 8, but not 16, because
733 * to burst 16 to the tx fifo, the fifo would have to be empty;
734 * however, the minimum fifo trigger level is 1, and the tx will
735 * request service when the fifo is at this level, with only 15 spaces.
738 /* find bytes/word */
739 if (bits_per_word
<= 8)
741 else if (bits_per_word
<= 16)
746 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
748 req_burst_size
= chip_info
->dma_burst_size
;
750 switch (chip
->dma_burst_size
) {
752 /* if the default burst size is not set,
754 chip
->dma_burst_size
= DCMD_BURST8
;
766 if (req_burst_size
<= 8) {
767 *burst_code
= DCMD_BURST8
;
769 } else if (req_burst_size
<= 16) {
770 if (bytes_per_word
== 1) {
771 /* don't burst more than 1/2 the fifo */
772 *burst_code
= DCMD_BURST8
;
776 *burst_code
= DCMD_BURST16
;
780 if (bytes_per_word
== 1) {
781 /* don't burst more than 1/2 the fifo */
782 *burst_code
= DCMD_BURST8
;
785 } else if (bytes_per_word
== 2) {
786 /* don't burst more than 1/2 the fifo */
787 *burst_code
= DCMD_BURST16
;
791 *burst_code
= DCMD_BURST32
;
796 thresh_words
= burst_bytes
/ bytes_per_word
;
798 /* thresh_words will be between 2 and 8 */
799 *threshold
= (SSCR1_RxTresh(thresh_words
) & SSCR1_RFT
)
800 | (SSCR1_TxTresh(16-thresh_words
) & SSCR1_TFT
);
805 static unsigned int ssp_get_clk_div(struct ssp_device
*ssp
, int rate
)
807 unsigned long ssp_clk
= clk_get_rate(ssp
->clk
);
809 if (ssp
->type
== PXA25x_SSP
)
810 return ((ssp_clk
/ (2 * rate
) - 1) & 0xff) << 8;
812 return ((ssp_clk
/ rate
- 1) & 0xfff) << 8;
815 static void pump_transfers(unsigned long data
)
817 struct driver_data
*drv_data
= (struct driver_data
*)data
;
818 struct spi_message
*message
= NULL
;
819 struct spi_transfer
*transfer
= NULL
;
820 struct spi_transfer
*previous
= NULL
;
821 struct chip_data
*chip
= NULL
;
822 struct ssp_device
*ssp
= drv_data
->ssp
;
823 void *reg
= drv_data
->ioaddr
;
829 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
830 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
832 /* Get current state information */
833 message
= drv_data
->cur_msg
;
834 transfer
= drv_data
->cur_transfer
;
835 chip
= drv_data
->cur_chip
;
837 /* Handle for abort */
838 if (message
->state
== ERROR_STATE
) {
839 message
->status
= -EIO
;
844 /* Handle end of message */
845 if (message
->state
== DONE_STATE
) {
851 /* Delay if requested at end of transfer*/
852 if (message
->state
== RUNNING_STATE
) {
853 previous
= list_entry(transfer
->transfer_list
.prev
,
856 if (previous
->delay_usecs
)
857 udelay(previous
->delay_usecs
);
860 /* Check transfer length */
861 if (transfer
->len
> 8191)
863 dev_warn(&drv_data
->pdev
->dev
, "pump_transfers: transfer "
864 "length greater than 8191\n");
865 message
->status
= -EINVAL
;
870 /* Setup the transfer state based on the type of transfer */
871 if (flush(drv_data
) == 0) {
872 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
873 message
->status
= -EIO
;
877 drv_data
->n_bytes
= chip
->n_bytes
;
878 drv_data
->dma_width
= chip
->dma_width
;
879 drv_data
->cs_control
= chip
->cs_control
;
880 drv_data
->tx
= (void *)transfer
->tx_buf
;
881 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
882 drv_data
->rx
= transfer
->rx_buf
;
883 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
884 drv_data
->rx_dma
= transfer
->rx_dma
;
885 drv_data
->tx_dma
= transfer
->tx_dma
;
886 drv_data
->len
= transfer
->len
& DCMD_LENGTH
;
887 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
888 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
889 drv_data
->cs_change
= transfer
->cs_change
;
891 /* Change speed and bit per word on a per transfer */
893 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
895 bits
= chip
->bits_per_word
;
896 speed
= chip
->speed_hz
;
898 if (transfer
->speed_hz
)
899 speed
= transfer
->speed_hz
;
901 if (transfer
->bits_per_word
)
902 bits
= transfer
->bits_per_word
;
904 clk_div
= ssp_get_clk_div(ssp
, speed
);
907 drv_data
->n_bytes
= 1;
908 drv_data
->dma_width
= DCMD_WIDTH1
;
909 drv_data
->read
= drv_data
->read
!= null_reader
?
910 u8_reader
: null_reader
;
911 drv_data
->write
= drv_data
->write
!= null_writer
?
912 u8_writer
: null_writer
;
913 } else if (bits
<= 16) {
914 drv_data
->n_bytes
= 2;
915 drv_data
->dma_width
= DCMD_WIDTH2
;
916 drv_data
->read
= drv_data
->read
!= null_reader
?
917 u16_reader
: null_reader
;
918 drv_data
->write
= drv_data
->write
!= null_writer
?
919 u16_writer
: null_writer
;
920 } else if (bits
<= 32) {
921 drv_data
->n_bytes
= 4;
922 drv_data
->dma_width
= DCMD_WIDTH4
;
923 drv_data
->read
= drv_data
->read
!= null_reader
?
924 u32_reader
: null_reader
;
925 drv_data
->write
= drv_data
->write
!= null_writer
?
926 u32_writer
: null_writer
;
928 /* if bits/word is changed in dma mode, then must check the
929 * thresholds and burst also */
930 if (chip
->enable_dma
) {
931 if (set_dma_burst_and_threshold(chip
, message
->spi
,
934 if (printk_ratelimit())
935 dev_warn(&message
->spi
->dev
,
937 "DMA burst size reduced to "
938 "match bits_per_word\n");
943 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
945 | (bits
> 16 ? SSCR0_EDSS
: 0);
948 message
->state
= RUNNING_STATE
;
950 /* Try to map dma buffer and do a dma transfer if successful */
951 if ((drv_data
->dma_mapped
= map_dma_buffers(drv_data
))) {
953 /* Ensure we have the correct interrupt handler */
954 drv_data
->transfer_handler
= dma_transfer
;
956 /* Setup rx DMA Channel */
957 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
958 DSADR(drv_data
->rx_channel
) = drv_data
->ssdr_physical
;
959 DTADR(drv_data
->rx_channel
) = drv_data
->rx_dma
;
960 if (drv_data
->rx
== drv_data
->null_dma_buf
)
961 /* No target address increment */
962 DCMD(drv_data
->rx_channel
) = DCMD_FLOWSRC
963 | drv_data
->dma_width
967 DCMD(drv_data
->rx_channel
) = DCMD_INCTRGADDR
969 | drv_data
->dma_width
973 /* Setup tx DMA Channel */
974 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
975 DSADR(drv_data
->tx_channel
) = drv_data
->tx_dma
;
976 DTADR(drv_data
->tx_channel
) = drv_data
->ssdr_physical
;
977 if (drv_data
->tx
== drv_data
->null_dma_buf
)
978 /* No source address increment */
979 DCMD(drv_data
->tx_channel
) = DCMD_FLOWTRG
980 | drv_data
->dma_width
984 DCMD(drv_data
->tx_channel
) = DCMD_INCSRCADDR
986 | drv_data
->dma_width
990 /* Enable dma end irqs on SSP to detect end of transfer */
991 if (drv_data
->ssp_type
== PXA25x_SSP
)
992 DCMD(drv_data
->tx_channel
) |= DCMD_ENDIRQEN
;
994 <<<<<<< HEAD
:drivers
/spi
/pxa2xx_spi
.c
995 /* Fix me, need to handle cs polarity */
996 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
999 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/spi
/pxa2xx_spi
.c
1000 /* Clear status and start DMA engine */
1001 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1002 write_SSSR(drv_data
->clear_sr
, reg
);
1003 DCSR(drv_data
->rx_channel
) |= DCSR_RUN
;
1004 DCSR(drv_data
->tx_channel
) |= DCSR_RUN
;
1006 /* Ensure we have the correct interrupt handler */
1007 drv_data
->transfer_handler
= interrupt_transfer
;
1009 <<<<<<< HEAD
:drivers
/spi
/pxa2xx_spi
.c
1010 /* Fix me, need to handle cs polarity */
1011 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
1014 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/spi
/pxa2xx_spi
.c
1016 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1017 write_SSSR(drv_data
->clear_sr
, reg
);
1020 /* see if we need to reload the config registers */
1021 if ((read_SSCR0(reg
) != cr0
)
1022 || (read_SSCR1(reg
) & SSCR1_CHANGE_MASK
) !=
1023 (cr1
& SSCR1_CHANGE_MASK
)) {
1025 <<<<<<< HEAD
:drivers
/spi
/pxa2xx_spi
.c
1027 /* stop the SSP, and update the other bits */
1028 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/spi
/pxa2xx_spi
.c
1029 write_SSCR0(cr0
& ~SSCR0_SSE
, reg
);
1030 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1031 write_SSTO(chip
->timeout
, reg
);
1032 <<<<<<< HEAD
:drivers
/spi
/pxa2xx_spi
.c
1033 write_SSCR1(cr1
, reg
);
1035 /* first set CR1 without interrupt and service enables */
1036 write_SSCR1(cr1
& SSCR1_CHANGE_MASK
, reg
);
1037 /* restart the SSP */
1038 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/spi
/pxa2xx_spi
.c
1039 write_SSCR0(cr0
, reg
);
1040 <<<<<<< HEAD
:drivers
/spi
/pxa2xx_spi
.c
1043 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/spi
/pxa2xx_spi
.c
1045 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1046 write_SSTO(chip
->timeout
, reg
);
1047 <<<<<<< HEAD
:drivers
/spi
/pxa2xx_spi
.c
1048 write_SSCR1(cr1
, reg
);
1050 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/spi
/pxa2xx_spi
.c
1052 <<<<<<< HEAD
:drivers
/spi
/pxa2xx_spi
.c
1055 /* FIXME, need to handle cs polarity,
1056 * this driver uses struct pxa2xx_spi_chip.cs_control to
1057 * specify a CS handling function, and it ignores most
1058 * struct spi_device.mode[s], including SPI_CS_HIGH */
1059 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
1061 /* after chip select, release the data by enabling service
1062 * requests and interrupts, without changing any mode bits */
1063 write_SSCR1(cr1
, reg
);
1064 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/spi
/pxa2xx_spi
.c
1067 static void pump_messages(struct work_struct
*work
)
1069 struct driver_data
*drv_data
=
1070 container_of(work
, struct driver_data
, pump_messages
);
1071 unsigned long flags
;
1073 /* Lock queue and check for queue work */
1074 spin_lock_irqsave(&drv_data
->lock
, flags
);
1075 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1077 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1081 /* Make sure we are not already running a message */
1082 if (drv_data
->cur_msg
) {
1083 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1087 /* Extract head of queue */
1088 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1089 struct spi_message
, queue
);
1090 list_del_init(&drv_data
->cur_msg
->queue
);
1092 /* Initial message state*/
1093 drv_data
->cur_msg
->state
= START_STATE
;
1094 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1095 struct spi_transfer
,
1098 /* prepare to setup the SSP, in pump_transfers, using the per
1099 * chip configuration */
1100 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1102 /* Mark as busy and launch transfers */
1103 tasklet_schedule(&drv_data
->pump_transfers
);
1106 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1109 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1111 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1112 unsigned long flags
;
1114 spin_lock_irqsave(&drv_data
->lock
, flags
);
1116 if (drv_data
->run
== QUEUE_STOPPED
) {
1117 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1121 msg
->actual_length
= 0;
1122 msg
->status
= -EINPROGRESS
;
1123 msg
->state
= START_STATE
;
1125 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1127 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1128 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1130 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1135 /* the spi->mode bits understood by this driver: */
1136 #define MODEBITS (SPI_CPOL | SPI_CPHA)
1138 static int setup(struct spi_device
*spi
)
1140 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1141 struct chip_data
*chip
;
1142 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1143 struct ssp_device
*ssp
= drv_data
->ssp
;
1144 unsigned int clk_div
;
1146 if (!spi
->bits_per_word
)
1147 spi
->bits_per_word
= 8;
1149 if (drv_data
->ssp_type
!= PXA25x_SSP
1150 && (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 32)) {
1151 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1152 "b/w not 4-32 for type non-PXA25x_SSP\n",
1153 drv_data
->ssp_type
, spi
->bits_per_word
);
1156 else if (drv_data
->ssp_type
== PXA25x_SSP
1157 && (spi
->bits_per_word
< 4
1158 || spi
->bits_per_word
> 16)) {
1159 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1160 "b/w not 4-16 for type PXA25x_SSP\n",
1161 drv_data
->ssp_type
, spi
->bits_per_word
);
1165 if (spi
->mode
& ~MODEBITS
) {
1166 dev_dbg(&spi
->dev
, "setup: unsupported mode bits %x\n",
1167 spi
->mode
& ~MODEBITS
);
1171 /* Only alloc on first setup */
1172 chip
= spi_get_ctldata(spi
);
1174 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1177 "failed setup: can't allocate chip data\n");
1181 chip
->cs_control
= null_cs_control
;
1182 chip
->enable_dma
= 0;
1183 chip
->timeout
= 1000;
1184 chip
->threshold
= SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
1185 chip
->dma_burst_size
= drv_data
->master_info
->enable_dma
?
1189 /* protocol drivers may change the chip settings, so...
1190 * if chip_info exists, use it */
1191 chip_info
= spi
->controller_data
;
1193 /* chip_info isn't always needed */
1196 if (chip_info
->cs_control
)
1197 chip
->cs_control
= chip_info
->cs_control
;
1199 chip
->timeout
= chip_info
->timeout
;
1201 chip
->threshold
= (SSCR1_RxTresh(chip_info
->rx_threshold
) &
1203 (SSCR1_TxTresh(chip_info
->tx_threshold
) &
1206 chip
->enable_dma
= chip_info
->dma_burst_size
!= 0
1207 && drv_data
->master_info
->enable_dma
;
1208 chip
->dma_threshold
= 0;
1210 if (chip_info
->enable_loopback
)
1211 chip
->cr1
= SSCR1_LBM
;
1214 /* set dma burst and threshold outside of chip_info path so that if
1215 * chip_info goes away after setting chip->enable_dma, the
1216 * burst and threshold can still respond to changes in bits_per_word */
1217 if (chip
->enable_dma
) {
1218 /* set up legal burst and threshold for dma */
1219 if (set_dma_burst_and_threshold(chip
, spi
, spi
->bits_per_word
,
1220 &chip
->dma_burst_size
,
1221 &chip
->dma_threshold
)) {
1222 dev_warn(&spi
->dev
, "in setup: DMA burst size reduced "
1223 "to match bits_per_word\n");
1227 clk_div
= ssp_get_clk_div(ssp
, spi
->max_speed_hz
);
1228 chip
->speed_hz
= spi
->max_speed_hz
;
1232 | SSCR0_DataSize(spi
->bits_per_word
> 16 ?
1233 spi
->bits_per_word
- 16 : spi
->bits_per_word
)
1235 | (spi
->bits_per_word
> 16 ? SSCR0_EDSS
: 0);
1236 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1237 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1238 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1240 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1241 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1242 dev_dbg(&spi
->dev
, "%d bits/word, %ld Hz, mode %d\n",
1244 clk_get_rate(ssp
->clk
)
1245 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1248 dev_dbg(&spi
->dev
, "%d bits/word, %ld Hz, mode %d\n",
1250 clk_get_rate(ssp
->clk
)
1251 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1254 if (spi
->bits_per_word
<= 8) {
1256 chip
->dma_width
= DCMD_WIDTH1
;
1257 chip
->read
= u8_reader
;
1258 chip
->write
= u8_writer
;
1259 } else if (spi
->bits_per_word
<= 16) {
1261 chip
->dma_width
= DCMD_WIDTH2
;
1262 chip
->read
= u16_reader
;
1263 chip
->write
= u16_writer
;
1264 } else if (spi
->bits_per_word
<= 32) {
1265 chip
->cr0
|= SSCR0_EDSS
;
1267 chip
->dma_width
= DCMD_WIDTH4
;
1268 chip
->read
= u32_reader
;
1269 chip
->write
= u32_writer
;
1271 dev_err(&spi
->dev
, "invalid wordsize\n");
1274 chip
->bits_per_word
= spi
->bits_per_word
;
1276 spi_set_ctldata(spi
, chip
);
1281 static void cleanup(struct spi_device
*spi
)
1283 struct chip_data
*chip
= spi_get_ctldata(spi
);
1288 static int __init
init_queue(struct driver_data
*drv_data
)
1290 INIT_LIST_HEAD(&drv_data
->queue
);
1291 spin_lock_init(&drv_data
->lock
);
1293 drv_data
->run
= QUEUE_STOPPED
;
1296 tasklet_init(&drv_data
->pump_transfers
,
1297 pump_transfers
, (unsigned long)drv_data
);
1299 INIT_WORK(&drv_data
->pump_messages
, pump_messages
);
1300 drv_data
->workqueue
= create_singlethread_workqueue(
1301 drv_data
->master
->dev
.parent
->bus_id
);
1302 if (drv_data
->workqueue
== NULL
)
1308 static int start_queue(struct driver_data
*drv_data
)
1310 unsigned long flags
;
1312 spin_lock_irqsave(&drv_data
->lock
, flags
);
1314 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1315 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1319 drv_data
->run
= QUEUE_RUNNING
;
1320 drv_data
->cur_msg
= NULL
;
1321 drv_data
->cur_transfer
= NULL
;
1322 drv_data
->cur_chip
= NULL
;
1323 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1325 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1330 static int stop_queue(struct driver_data
*drv_data
)
1332 unsigned long flags
;
1333 unsigned limit
= 500;
1336 spin_lock_irqsave(&drv_data
->lock
, flags
);
1338 /* This is a bit lame, but is optimized for the common execution path.
1339 * A wait_queue on the drv_data->busy could be used, but then the common
1340 * execution path (pump_messages) would be required to call wake_up or
1341 * friends on every SPI message. Do this instead */
1342 drv_data
->run
= QUEUE_STOPPED
;
1343 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1344 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1346 spin_lock_irqsave(&drv_data
->lock
, flags
);
1349 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1352 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1357 static int destroy_queue(struct driver_data
*drv_data
)
1361 status
= stop_queue(drv_data
);
1362 /* we are unloading the module or failing to load (only two calls
1363 * to this routine), and neither call can handle a return value.
1364 * However, destroy_workqueue calls flush_workqueue, and that will
1365 * block until all work is done. If the reason that stop_queue
1366 * timed out is that the work will never finish, then it does no
1367 * good to call destroy_workqueue, so return anyway. */
1371 destroy_workqueue(drv_data
->workqueue
);
1376 static int __init
pxa2xx_spi_probe(struct platform_device
*pdev
)
1378 struct device
*dev
= &pdev
->dev
;
1379 struct pxa2xx_spi_master
*platform_info
;
1380 struct spi_master
*master
;
1381 struct driver_data
*drv_data
= 0;
1382 struct ssp_device
*ssp
;
1385 platform_info
= dev
->platform_data
;
1387 ssp
= ssp_request(pdev
->id
, pdev
->name
);
1389 dev_err(&pdev
->dev
, "failed to request SSP%d\n", pdev
->id
);
1393 /* Allocate master with space for drv_data and null dma buffer */
1394 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1396 dev_err(&pdev
->dev
, "can not alloc spi_master\n");
1400 drv_data
= spi_master_get_devdata(master
);
1401 drv_data
->master
= master
;
1402 drv_data
->master_info
= platform_info
;
1403 drv_data
->pdev
= pdev
;
1404 drv_data
->ssp
= ssp
;
1406 master
->bus_num
= pdev
->id
;
1407 master
->num_chipselect
= platform_info
->num_chipselect
;
1408 master
->cleanup
= cleanup
;
1409 master
->setup
= setup
;
1410 master
->transfer
= transfer
;
1412 drv_data
->ssp_type
= ssp
->type
;
1413 drv_data
->null_dma_buf
= (u32
*)ALIGN((u32
)(drv_data
+
1414 sizeof(struct driver_data
)), 8);
1416 drv_data
->ioaddr
= ssp
->mmio_base
;
1417 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1418 if (ssp
->type
== PXA25x_SSP
) {
1419 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1420 drv_data
->dma_cr1
= 0;
1421 drv_data
->clear_sr
= SSSR_ROR
;
1422 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1424 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1425 drv_data
->dma_cr1
= SSCR1_TSRE
| SSCR1_RSRE
| SSCR1_TINTE
;
1426 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1427 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1430 status
= request_irq(ssp
->irq
, ssp_int
, 0, dev
->bus_id
, drv_data
);
1432 dev_err(&pdev
->dev
, "can not get IRQ\n");
1433 goto out_error_master_alloc
;
1436 /* Setup DMA if requested */
1437 drv_data
->tx_channel
= -1;
1438 drv_data
->rx_channel
= -1;
1439 if (platform_info
->enable_dma
) {
1441 /* Get two DMA channels (rx and tx) */
1442 drv_data
->rx_channel
= pxa_request_dma("pxa2xx_spi_ssp_rx",
1446 if (drv_data
->rx_channel
< 0) {
1447 dev_err(dev
, "problem (%d) requesting rx channel\n",
1448 drv_data
->rx_channel
);
1450 goto out_error_irq_alloc
;
1452 drv_data
->tx_channel
= pxa_request_dma("pxa2xx_spi_ssp_tx",
1456 if (drv_data
->tx_channel
< 0) {
1457 dev_err(dev
, "problem (%d) requesting tx channel\n",
1458 drv_data
->tx_channel
);
1460 goto out_error_dma_alloc
;
1463 DRCMR(ssp
->drcmr_rx
) = DRCMR_MAPVLD
| drv_data
->rx_channel
;
1464 DRCMR(ssp
->drcmr_tx
) = DRCMR_MAPVLD
| drv_data
->tx_channel
;
1467 /* Enable SOC clock */
1468 clk_enable(ssp
->clk
);
1470 /* Load default SSP configuration */
1471 write_SSCR0(0, drv_data
->ioaddr
);
1472 write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data
->ioaddr
);
1473 write_SSCR0(SSCR0_SerClkDiv(2)
1475 | SSCR0_DataSize(8),
1477 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1478 write_SSTO(0, drv_data
->ioaddr
);
1479 write_SSPSP(0, drv_data
->ioaddr
);
1481 /* Initial and start queue */
1482 status
= init_queue(drv_data
);
1484 dev_err(&pdev
->dev
, "problem initializing queue\n");
1485 goto out_error_clock_enabled
;
1487 status
= start_queue(drv_data
);
1489 dev_err(&pdev
->dev
, "problem starting queue\n");
1490 goto out_error_clock_enabled
;
1493 /* Register with the SPI framework */
1494 platform_set_drvdata(pdev
, drv_data
);
1495 status
= spi_register_master(master
);
1497 dev_err(&pdev
->dev
, "problem registering spi master\n");
1498 goto out_error_queue_alloc
;
1503 out_error_queue_alloc
:
1504 destroy_queue(drv_data
);
1506 out_error_clock_enabled
:
1507 clk_disable(ssp
->clk
);
1509 out_error_dma_alloc
:
1510 if (drv_data
->tx_channel
!= -1)
1511 pxa_free_dma(drv_data
->tx_channel
);
1512 if (drv_data
->rx_channel
!= -1)
1513 pxa_free_dma(drv_data
->rx_channel
);
1515 out_error_irq_alloc
:
1516 free_irq(ssp
->irq
, drv_data
);
1518 out_error_master_alloc
:
1519 spi_master_put(master
);
1524 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1526 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1527 struct ssp_device
*ssp
= drv_data
->ssp
;
1533 /* Remove the queue */
1534 status
= destroy_queue(drv_data
);
1536 /* the kernel does not check the return status of this
1537 * this routine (mod->exit, within the kernel). Therefore
1538 * nothing is gained by returning from here, the module is
1539 * going away regardless, and we should not leave any more
1540 * resources allocated than necessary. We cannot free the
1541 * message memory in drv_data->queue, but we can release the
1542 * resources below. I think the kernel should honor -EBUSY
1544 dev_err(&pdev
->dev
, "pxa2xx_spi_remove: workqueue will not "
1545 "complete, message memory not freed\n");
1547 /* Disable the SSP at the peripheral and SOC level */
1548 write_SSCR0(0, drv_data
->ioaddr
);
1549 clk_disable(ssp
->clk
);
1552 if (drv_data
->master_info
->enable_dma
) {
1553 DRCMR(ssp
->drcmr_rx
) = 0;
1554 DRCMR(ssp
->drcmr_tx
) = 0;
1555 pxa_free_dma(drv_data
->tx_channel
);
1556 pxa_free_dma(drv_data
->rx_channel
);
1560 free_irq(ssp
->irq
, drv_data
);
1565 /* Disconnect from the SPI framework */
1566 spi_unregister_master(drv_data
->master
);
1568 /* Prevent double remove */
1569 platform_set_drvdata(pdev
, NULL
);
1574 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1578 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1579 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1584 static int pxa2xx_spi_suspend(struct platform_device
*pdev
, pm_message_t state
)
1586 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1587 struct ssp_device
*ssp
= drv_data
->ssp
;
1590 status
= stop_queue(drv_data
);
1593 write_SSCR0(0, drv_data
->ioaddr
);
1594 clk_disable(ssp
->clk
);
1599 static int pxa2xx_spi_resume(struct platform_device
*pdev
)
1601 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1602 struct ssp_device
*ssp
= drv_data
->ssp
;
1605 /* Enable the SSP clock */
1606 clk_disable(ssp
->clk
);
1608 /* Start the queue running */
1609 status
= start_queue(drv_data
);
1611 dev_err(&pdev
->dev
, "problem starting queue (%d)\n", status
);
1618 #define pxa2xx_spi_suspend NULL
1619 #define pxa2xx_spi_resume NULL
1620 #endif /* CONFIG_PM */
1622 static struct platform_driver driver
= {
1624 .name
= "pxa2xx-spi",
1625 .bus
= &platform_bus_type
,
1626 .owner
= THIS_MODULE
,
1628 .remove
= pxa2xx_spi_remove
,
1629 .shutdown
= pxa2xx_spi_shutdown
,
1630 .suspend
= pxa2xx_spi_suspend
,
1631 .resume
= pxa2xx_spi_resume
,
1634 static int __init
pxa2xx_spi_init(void)
1636 return platform_driver_probe(&driver
, pxa2xx_spi_probe
);
1638 module_init(pxa2xx_spi_init
);
1640 static void __exit
pxa2xx_spi_exit(void)
1642 platform_driver_unregister(&driver
);
1644 module_exit(pxa2xx_spi_exit
);