4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
40 #include "intelfbhw.h"
43 int min_m
, max_m
, min_m1
, max_m1
;
44 int min_m2
, max_m2
, min_n
, max_n
;
45 int min_p
, max_p
, min_p1
, max_p1
;
46 int min_vco
, max_vco
, p_transition_clk
, ref_clk
;
47 int p_inc_lo
, p_inc_hi
;
54 static struct pll_min_max plls
[PLLS_MAX
] = {
58 930000, 1400000, 165000, 48000,
64 1400000, 2800000, 200000, 96000,
68 int intelfbhw_get_chipset(struct pci_dev
*pdev
, struct intelfb_info
*dinfo
)
74 switch (pdev
->device
) {
75 case PCI_DEVICE_ID_INTEL_830M
:
76 dinfo
->name
= "Intel(R) 830M";
77 dinfo
->chipset
= INTEL_830M
;
79 dinfo
->pll_index
= PLLS_I8xx
;
81 case PCI_DEVICE_ID_INTEL_845G
:
82 dinfo
->name
= "Intel(R) 845G";
83 dinfo
->chipset
= INTEL_845G
;
85 dinfo
->pll_index
= PLLS_I8xx
;
87 case PCI_DEVICE_ID_INTEL_85XGM
:
90 dinfo
->pll_index
= PLLS_I8xx
;
91 pci_read_config_dword(pdev
, INTEL_85X_CAPID
, &tmp
);
92 switch ((tmp
>> INTEL_85X_VARIANT_SHIFT
) &
93 INTEL_85X_VARIANT_MASK
) {
94 case INTEL_VAR_855GME
:
95 dinfo
->name
= "Intel(R) 855GME";
96 dinfo
->chipset
= INTEL_855GME
;
99 dinfo
->name
= "Intel(R) 855GM";
100 dinfo
->chipset
= INTEL_855GM
;
102 case INTEL_VAR_852GME
:
103 dinfo
->name
= "Intel(R) 852GME";
104 dinfo
->chipset
= INTEL_852GME
;
106 case INTEL_VAR_852GM
:
107 dinfo
->name
= "Intel(R) 852GM";
108 dinfo
->chipset
= INTEL_852GM
;
111 dinfo
->name
= "Intel(R) 852GM/855GM";
112 dinfo
->chipset
= INTEL_85XGM
;
116 case PCI_DEVICE_ID_INTEL_865G
:
117 dinfo
->name
= "Intel(R) 865G";
118 dinfo
->chipset
= INTEL_865G
;
120 dinfo
->pll_index
= PLLS_I8xx
;
122 case PCI_DEVICE_ID_INTEL_915G
:
123 dinfo
->name
= "Intel(R) 915G";
124 dinfo
->chipset
= INTEL_915G
;
126 dinfo
->pll_index
= PLLS_I9xx
;
128 case PCI_DEVICE_ID_INTEL_915GM
:
129 dinfo
->name
= "Intel(R) 915GM";
130 dinfo
->chipset
= INTEL_915GM
;
132 dinfo
->pll_index
= PLLS_I9xx
;
134 case PCI_DEVICE_ID_INTEL_945G
:
135 dinfo
->name
= "Intel(R) 945G";
136 dinfo
->chipset
= INTEL_945G
;
138 dinfo
->pll_index
= PLLS_I9xx
;
140 case PCI_DEVICE_ID_INTEL_945GM
:
141 dinfo
->name
= "Intel(R) 945GM";
142 dinfo
->chipset
= INTEL_945GM
;
144 dinfo
->pll_index
= PLLS_I9xx
;
151 int intelfbhw_get_memory(struct pci_dev
*pdev
, int *aperture_size
,
154 struct pci_dev
*bridge_dev
;
158 if (!pdev
|| !aperture_size
|| !stolen_size
)
161 /* Find the bridge device. It is always 0:0.0 */
162 if (!(bridge_dev
= pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
163 ERR_MSG("cannot find bridge device\n");
167 /* Get the fb aperture size and "stolen" memory amount. */
169 pci_read_config_word(bridge_dev
, INTEL_GMCH_CTRL
, &tmp
);
170 pci_dev_put(bridge_dev
);
172 switch (pdev
->device
) {
173 case PCI_DEVICE_ID_INTEL_915G
:
174 case PCI_DEVICE_ID_INTEL_915GM
:
175 case PCI_DEVICE_ID_INTEL_945G
:
176 case PCI_DEVICE_ID_INTEL_945GM
:
177 /* 915 and 945 chipsets support a 256MB aperture.
178 Aperture size is determined by inspected the
179 base address of the aperture. */
180 if (pci_resource_start(pdev
, 2) & 0x08000000)
181 *aperture_size
= MB(128);
183 *aperture_size
= MB(256);
186 if ((tmp
& INTEL_GMCH_MEM_MASK
) == INTEL_GMCH_MEM_64M
)
187 *aperture_size
= MB(64);
189 *aperture_size
= MB(128);
193 /* Stolen memory size is reduced by the GTT and the popup.
194 GTT is 1K per MB of aperture size, and popup is 4K. */
195 stolen_overhead
= (*aperture_size
/ MB(1)) + 4;
196 switch(pdev
->device
) {
197 case PCI_DEVICE_ID_INTEL_830M
:
198 case PCI_DEVICE_ID_INTEL_845G
:
199 switch (tmp
& INTEL_830_GMCH_GMS_MASK
) {
200 case INTEL_830_GMCH_GMS_STOLEN_512
:
201 *stolen_size
= KB(512) - KB(stolen_overhead
);
203 case INTEL_830_GMCH_GMS_STOLEN_1024
:
204 *stolen_size
= MB(1) - KB(stolen_overhead
);
206 case INTEL_830_GMCH_GMS_STOLEN_8192
:
207 *stolen_size
= MB(8) - KB(stolen_overhead
);
209 case INTEL_830_GMCH_GMS_LOCAL
:
210 ERR_MSG("only local memory found\n");
212 case INTEL_830_GMCH_GMS_DISABLED
:
213 ERR_MSG("video memory is disabled\n");
216 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
217 tmp
& INTEL_830_GMCH_GMS_MASK
);
222 switch (tmp
& INTEL_855_GMCH_GMS_MASK
) {
223 case INTEL_855_GMCH_GMS_STOLEN_1M
:
224 *stolen_size
= MB(1) - KB(stolen_overhead
);
226 case INTEL_855_GMCH_GMS_STOLEN_4M
:
227 *stolen_size
= MB(4) - KB(stolen_overhead
);
229 case INTEL_855_GMCH_GMS_STOLEN_8M
:
230 *stolen_size
= MB(8) - KB(stolen_overhead
);
232 case INTEL_855_GMCH_GMS_STOLEN_16M
:
233 *stolen_size
= MB(16) - KB(stolen_overhead
);
235 case INTEL_855_GMCH_GMS_STOLEN_32M
:
236 *stolen_size
= MB(32) - KB(stolen_overhead
);
238 case INTEL_915G_GMCH_GMS_STOLEN_48M
:
239 *stolen_size
= MB(48) - KB(stolen_overhead
);
241 case INTEL_915G_GMCH_GMS_STOLEN_64M
:
242 *stolen_size
= MB(64) - KB(stolen_overhead
);
244 case INTEL_855_GMCH_GMS_DISABLED
:
245 ERR_MSG("video memory is disabled\n");
248 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
249 tmp
& INTEL_855_GMCH_GMS_MASK
);
255 int intelfbhw_check_non_crt(struct intelfb_info
*dinfo
)
259 if (INREG(LVDS
) & PORT_ENABLE
)
261 if (INREG(DVOA
) & PORT_ENABLE
)
263 if (INREG(DVOB
) & PORT_ENABLE
)
265 if (INREG(DVOC
) & PORT_ENABLE
)
271 const char * intelfbhw_dvo_to_string(int dvo
)
275 else if (dvo
& DVOB_PORT
)
277 else if (dvo
& DVOC_PORT
)
279 else if (dvo
& LVDS_PORT
)
286 int intelfbhw_validate_mode(struct intelfb_info
*dinfo
,
287 struct fb_var_screeninfo
*var
)
293 DBG_MSG("intelfbhw_validate_mode\n");
296 bytes_per_pixel
= var
->bits_per_pixel
/ 8;
297 if (bytes_per_pixel
== 3)
300 /* Check if enough video memory. */
301 tmp
= var
->yres_virtual
* var
->xres_virtual
* bytes_per_pixel
;
302 if (tmp
> dinfo
->fb
.size
) {
303 WRN_MSG("Not enough video ram for mode "
304 "(%d KByte vs %d KByte).\n",
305 BtoKB(tmp
), BtoKB(dinfo
->fb
.size
));
309 /* Check if x/y limits are OK. */
310 if (var
->xres
- 1 > HACTIVE_MASK
) {
311 WRN_MSG("X resolution too large (%d vs %d).\n",
312 var
->xres
, HACTIVE_MASK
+ 1);
315 if (var
->yres
- 1 > VACTIVE_MASK
) {
316 WRN_MSG("Y resolution too large (%d vs %d).\n",
317 var
->yres
, VACTIVE_MASK
+ 1);
321 WRN_MSG("X resolution too small (%d vs 4).\n", var
->xres
);
325 WRN_MSG("Y resolution too small (%d vs 4).\n", var
->yres
);
329 /* Check for doublescan modes. */
330 if (var
->vmode
& FB_VMODE_DOUBLE
) {
331 WRN_MSG("Mode is double-scan.\n");
335 if ((var
->vmode
& FB_VMODE_INTERLACED
) && (var
->yres
& 1)) {
336 WRN_MSG("Odd number of lines in interlaced mode\n");
340 /* Check if clock is OK. */
341 tmp
= 1000000000 / var
->pixclock
;
342 if (tmp
< MIN_CLOCK
) {
343 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
344 (tmp
+ 500) / 1000, MIN_CLOCK
/ 1000);
347 if (tmp
> MAX_CLOCK
) {
348 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
349 (tmp
+ 500) / 1000, MAX_CLOCK
/ 1000);
356 int intelfbhw_pan_display(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
358 struct intelfb_info
*dinfo
= GET_DINFO(info
);
359 u32 offset
, xoffset
, yoffset
;
362 DBG_MSG("intelfbhw_pan_display\n");
365 xoffset
= ROUND_DOWN_TO(var
->xoffset
, 8);
366 yoffset
= var
->yoffset
;
368 if ((xoffset
+ var
->xres
> var
->xres_virtual
) ||
369 (yoffset
+ var
->yres
> var
->yres_virtual
))
372 offset
= (yoffset
* dinfo
->pitch
) +
373 (xoffset
* var
->bits_per_pixel
) / 8;
375 offset
+= dinfo
->fb
.offset
<< 12;
377 dinfo
->vsync
.pan_offset
= offset
;
378 if ((var
->activate
& FB_ACTIVATE_VBL
) &&
379 !intelfbhw_enable_irq(dinfo
))
380 dinfo
->vsync
.pan_display
= 1;
382 dinfo
->vsync
.pan_display
= 0;
383 OUTREG(DSPABASE
, offset
);
389 /* Blank the screen. */
390 void intelfbhw_do_blank(int blank
, struct fb_info
*info
)
392 struct intelfb_info
*dinfo
= GET_DINFO(info
);
396 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank
);
399 /* Turn plane A on or off */
400 tmp
= INREG(DSPACNTR
);
402 tmp
&= ~DISPPLANE_PLANE_ENABLE
;
404 tmp
|= DISPPLANE_PLANE_ENABLE
;
405 OUTREG(DSPACNTR
, tmp
);
407 tmp
= INREG(DSPABASE
);
408 OUTREG(DSPABASE
, tmp
);
410 /* Turn off/on the HW cursor */
412 DBG_MSG("cursor_on is %d\n", dinfo
->cursor_on
);
414 if (dinfo
->cursor_on
) {
416 intelfbhw_cursor_hide(dinfo
);
418 intelfbhw_cursor_show(dinfo
);
419 dinfo
->cursor_on
= 1;
421 dinfo
->cursor_blanked
= blank
;
424 tmp
= INREG(ADPA
) & ~ADPA_DPMS_CONTROL_MASK
;
426 case FB_BLANK_UNBLANK
:
427 case FB_BLANK_NORMAL
:
430 case FB_BLANK_VSYNC_SUSPEND
:
433 case FB_BLANK_HSYNC_SUSPEND
:
436 case FB_BLANK_POWERDOWN
:
446 void intelfbhw_setcolreg(struct intelfb_info
*dinfo
, unsigned regno
,
447 unsigned red
, unsigned green
, unsigned blue
,
450 u32 palette_reg
= (dinfo
->pipe
== PIPE_A
) ?
451 PALETTE_A
: PALETTE_B
;
454 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
455 regno
, red
, green
, blue
);
458 OUTREG(palette_reg
+ (regno
<< 2),
459 (red
<< PALETTE_8_RED_SHIFT
) |
460 (green
<< PALETTE_8_GREEN_SHIFT
) |
461 (blue
<< PALETTE_8_BLUE_SHIFT
));
465 int intelfbhw_read_hw_state(struct intelfb_info
*dinfo
,
466 struct intelfb_hwstate
*hw
, int flag
)
471 DBG_MSG("intelfbhw_read_hw_state\n");
477 /* Read in as much of the HW state as possible. */
478 hw
->vga0_divisor
= INREG(VGA0_DIVISOR
);
479 hw
->vga1_divisor
= INREG(VGA1_DIVISOR
);
480 hw
->vga_pd
= INREG(VGAPD
);
481 hw
->dpll_a
= INREG(DPLL_A
);
482 hw
->dpll_b
= INREG(DPLL_B
);
483 hw
->fpa0
= INREG(FPA0
);
484 hw
->fpa1
= INREG(FPA1
);
485 hw
->fpb0
= INREG(FPB0
);
486 hw
->fpb1
= INREG(FPB1
);
492 /* This seems to be a problem with the 852GM/855GM */
493 for (i
= 0; i
< PALETTE_8_ENTRIES
; i
++) {
494 hw
->palette_a
[i
] = INREG(PALETTE_A
+ (i
<< 2));
495 hw
->palette_b
[i
] = INREG(PALETTE_B
+ (i
<< 2));
502 hw
->htotal_a
= INREG(HTOTAL_A
);
503 hw
->hblank_a
= INREG(HBLANK_A
);
504 hw
->hsync_a
= INREG(HSYNC_A
);
505 hw
->vtotal_a
= INREG(VTOTAL_A
);
506 hw
->vblank_a
= INREG(VBLANK_A
);
507 hw
->vsync_a
= INREG(VSYNC_A
);
508 hw
->src_size_a
= INREG(SRC_SIZE_A
);
509 hw
->bclrpat_a
= INREG(BCLRPAT_A
);
510 hw
->htotal_b
= INREG(HTOTAL_B
);
511 hw
->hblank_b
= INREG(HBLANK_B
);
512 hw
->hsync_b
= INREG(HSYNC_B
);
513 hw
->vtotal_b
= INREG(VTOTAL_B
);
514 hw
->vblank_b
= INREG(VBLANK_B
);
515 hw
->vsync_b
= INREG(VSYNC_B
);
516 hw
->src_size_b
= INREG(SRC_SIZE_B
);
517 hw
->bclrpat_b
= INREG(BCLRPAT_B
);
522 hw
->adpa
= INREG(ADPA
);
523 hw
->dvoa
= INREG(DVOA
);
524 hw
->dvob
= INREG(DVOB
);
525 hw
->dvoc
= INREG(DVOC
);
526 hw
->dvoa_srcdim
= INREG(DVOA_SRCDIM
);
527 hw
->dvob_srcdim
= INREG(DVOB_SRCDIM
);
528 hw
->dvoc_srcdim
= INREG(DVOC_SRCDIM
);
529 hw
->lvds
= INREG(LVDS
);
534 hw
->pipe_a_conf
= INREG(PIPEACONF
);
535 hw
->pipe_b_conf
= INREG(PIPEBCONF
);
536 hw
->disp_arb
= INREG(DISPARB
);
541 hw
->cursor_a_control
= INREG(CURSOR_A_CONTROL
);
542 hw
->cursor_b_control
= INREG(CURSOR_B_CONTROL
);
543 hw
->cursor_a_base
= INREG(CURSOR_A_BASEADDR
);
544 hw
->cursor_b_base
= INREG(CURSOR_B_BASEADDR
);
549 for (i
= 0; i
< 4; i
++) {
550 hw
->cursor_a_palette
[i
] = INREG(CURSOR_A_PALETTE0
+ (i
<< 2));
551 hw
->cursor_b_palette
[i
] = INREG(CURSOR_B_PALETTE0
+ (i
<< 2));
557 hw
->cursor_size
= INREG(CURSOR_SIZE
);
562 hw
->disp_a_ctrl
= INREG(DSPACNTR
);
563 hw
->disp_b_ctrl
= INREG(DSPBCNTR
);
564 hw
->disp_a_base
= INREG(DSPABASE
);
565 hw
->disp_b_base
= INREG(DSPBBASE
);
566 hw
->disp_a_stride
= INREG(DSPASTRIDE
);
567 hw
->disp_b_stride
= INREG(DSPBSTRIDE
);
572 hw
->vgacntrl
= INREG(VGACNTRL
);
577 hw
->add_id
= INREG(ADD_ID
);
582 for (i
= 0; i
< 7; i
++) {
583 hw
->swf0x
[i
] = INREG(SWF00
+ (i
<< 2));
584 hw
->swf1x
[i
] = INREG(SWF10
+ (i
<< 2));
586 hw
->swf3x
[i
] = INREG(SWF30
+ (i
<< 2));
589 for (i
= 0; i
< 8; i
++)
590 hw
->fence
[i
] = INREG(FENCE
+ (i
<< 2));
592 hw
->instpm
= INREG(INSTPM
);
593 hw
->mem_mode
= INREG(MEM_MODE
);
594 hw
->fw_blc_0
= INREG(FW_BLC_0
);
595 hw
->fw_blc_1
= INREG(FW_BLC_1
);
597 hw
->hwstam
= INREG16(HWSTAM
);
598 hw
->ier
= INREG16(IER
);
599 hw
->iir
= INREG16(IIR
);
600 hw
->imr
= INREG16(IMR
);
606 static int calc_vclock3(int index
, int m
, int n
, int p
)
608 if (p
== 0 || n
== 0)
610 return plls
[index
].ref_clk
* m
/ n
/ p
;
613 static int calc_vclock(int index
, int m1
, int m2
, int n
, int p1
, int p2
,
616 struct pll_min_max
*pll
= &plls
[index
];
619 m
= (5 * (m1
+ 2)) + (m2
+ 2);
621 vco
= pll
->ref_clk
* m
/ n
;
623 if (index
== PLLS_I8xx
)
624 p
= ((p1
+ 2) * (1 << (p2
+ 1)));
626 p
= ((p1
) * (p2
? 5 : 10));
631 static void intelfbhw_get_p1p2(struct intelfb_info
*dinfo
, int dpll
,
632 int *o_p1
, int *o_p2
)
636 if (IS_I9XX(dinfo
)) {
637 if (dpll
& DPLL_P1_FORCE_DIV2
)
640 p1
= (dpll
>> DPLL_P1_SHIFT
) & 0xff;
644 p2
= (dpll
>> DPLL_I9XX_P2_SHIFT
) & DPLL_P2_MASK
;
646 if (dpll
& DPLL_P1_FORCE_DIV2
)
649 p1
= (dpll
>> DPLL_P1_SHIFT
) & DPLL_P1_MASK
;
650 p2
= (dpll
>> DPLL_P2_SHIFT
) & DPLL_P2_MASK
;
659 void intelfbhw_print_hw_state(struct intelfb_info
*dinfo
,
660 struct intelfb_hwstate
*hw
)
663 int i
, m1
, m2
, n
, p1
, p2
;
664 int index
= dinfo
->pll_index
;
665 DBG_MSG("intelfbhw_print_hw_state\n");
669 /* Read in as much of the HW state as possible. */
670 printk("hw state dump start\n");
671 printk(" VGA0_DIVISOR: 0x%08x\n", hw
->vga0_divisor
);
672 printk(" VGA1_DIVISOR: 0x%08x\n", hw
->vga1_divisor
);
673 printk(" VGAPD: 0x%08x\n", hw
->vga_pd
);
674 n
= (hw
->vga0_divisor
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
675 m1
= (hw
->vga0_divisor
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
676 m2
= (hw
->vga0_divisor
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
678 intelfbhw_get_p1p2(dinfo
, hw
->vga_pd
, &p1
, &p2
);
680 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
682 printk(" VGA0: clock is %d\n",
683 calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
685 n
= (hw
->vga1_divisor
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
686 m1
= (hw
->vga1_divisor
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
687 m2
= (hw
->vga1_divisor
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
689 intelfbhw_get_p1p2(dinfo
, hw
->vga_pd
, &p1
, &p2
);
690 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
692 printk(" VGA1: clock is %d\n",
693 calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
695 printk(" DPLL_A: 0x%08x\n", hw
->dpll_a
);
696 printk(" DPLL_B: 0x%08x\n", hw
->dpll_b
);
697 printk(" FPA0: 0x%08x\n", hw
->fpa0
);
698 printk(" FPA1: 0x%08x\n", hw
->fpa1
);
699 printk(" FPB0: 0x%08x\n", hw
->fpb0
);
700 printk(" FPB1: 0x%08x\n", hw
->fpb1
);
702 n
= (hw
->fpa0
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
703 m1
= (hw
->fpa0
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
704 m2
= (hw
->fpa0
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
706 intelfbhw_get_p1p2(dinfo
, hw
->dpll_a
, &p1
, &p2
);
708 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
710 printk(" PLLA0: clock is %d\n",
711 calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
713 n
= (hw
->fpa1
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
714 m1
= (hw
->fpa1
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
715 m2
= (hw
->fpa1
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
717 intelfbhw_get_p1p2(dinfo
, hw
->dpll_a
, &p1
, &p2
);
719 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
721 printk(" PLLA1: clock is %d\n",
722 calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
725 printk(" PALETTE_A:\n");
726 for (i
= 0; i
< PALETTE_8_ENTRIES
)
727 printk(" %3d: 0x%08x\n", i
, hw
->palette_a
[i
]);
728 printk(" PALETTE_B:\n");
729 for (i
= 0; i
< PALETTE_8_ENTRIES
)
730 printk(" %3d: 0x%08x\n", i
, hw
->palette_b
[i
]);
733 printk(" HTOTAL_A: 0x%08x\n", hw
->htotal_a
);
734 printk(" HBLANK_A: 0x%08x\n", hw
->hblank_a
);
735 printk(" HSYNC_A: 0x%08x\n", hw
->hsync_a
);
736 printk(" VTOTAL_A: 0x%08x\n", hw
->vtotal_a
);
737 printk(" VBLANK_A: 0x%08x\n", hw
->vblank_a
);
738 printk(" VSYNC_A: 0x%08x\n", hw
->vsync_a
);
739 printk(" SRC_SIZE_A: 0x%08x\n", hw
->src_size_a
);
740 printk(" BCLRPAT_A: 0x%08x\n", hw
->bclrpat_a
);
741 printk(" HTOTAL_B: 0x%08x\n", hw
->htotal_b
);
742 printk(" HBLANK_B: 0x%08x\n", hw
->hblank_b
);
743 printk(" HSYNC_B: 0x%08x\n", hw
->hsync_b
);
744 printk(" VTOTAL_B: 0x%08x\n", hw
->vtotal_b
);
745 printk(" VBLANK_B: 0x%08x\n", hw
->vblank_b
);
746 printk(" VSYNC_B: 0x%08x\n", hw
->vsync_b
);
747 printk(" SRC_SIZE_B: 0x%08x\n", hw
->src_size_b
);
748 printk(" BCLRPAT_B: 0x%08x\n", hw
->bclrpat_b
);
750 printk(" ADPA: 0x%08x\n", hw
->adpa
);
751 printk(" DVOA: 0x%08x\n", hw
->dvoa
);
752 printk(" DVOB: 0x%08x\n", hw
->dvob
);
753 printk(" DVOC: 0x%08x\n", hw
->dvoc
);
754 printk(" DVOA_SRCDIM: 0x%08x\n", hw
->dvoa_srcdim
);
755 printk(" DVOB_SRCDIM: 0x%08x\n", hw
->dvob_srcdim
);
756 printk(" DVOC_SRCDIM: 0x%08x\n", hw
->dvoc_srcdim
);
757 printk(" LVDS: 0x%08x\n", hw
->lvds
);
759 printk(" PIPEACONF: 0x%08x\n", hw
->pipe_a_conf
);
760 printk(" PIPEBCONF: 0x%08x\n", hw
->pipe_b_conf
);
761 printk(" DISPARB: 0x%08x\n", hw
->disp_arb
);
763 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw
->cursor_a_control
);
764 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw
->cursor_b_control
);
765 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw
->cursor_a_base
);
766 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw
->cursor_b_base
);
768 printk(" CURSOR_A_PALETTE: ");
769 for (i
= 0; i
< 4; i
++) {
770 printk("0x%08x", hw
->cursor_a_palette
[i
]);
775 printk(" CURSOR_B_PALETTE: ");
776 for (i
= 0; i
< 4; i
++) {
777 printk("0x%08x", hw
->cursor_b_palette
[i
]);
783 printk(" CURSOR_SIZE: 0x%08x\n", hw
->cursor_size
);
785 printk(" DSPACNTR: 0x%08x\n", hw
->disp_a_ctrl
);
786 printk(" DSPBCNTR: 0x%08x\n", hw
->disp_b_ctrl
);
787 printk(" DSPABASE: 0x%08x\n", hw
->disp_a_base
);
788 printk(" DSPBBASE: 0x%08x\n", hw
->disp_b_base
);
789 printk(" DSPASTRIDE: 0x%08x\n", hw
->disp_a_stride
);
790 printk(" DSPBSTRIDE: 0x%08x\n", hw
->disp_b_stride
);
792 printk(" VGACNTRL: 0x%08x\n", hw
->vgacntrl
);
793 printk(" ADD_ID: 0x%08x\n", hw
->add_id
);
795 for (i
= 0; i
< 7; i
++) {
796 printk(" SWF0%d 0x%08x\n", i
,
799 for (i
= 0; i
< 7; i
++) {
800 printk(" SWF1%d 0x%08x\n", i
,
803 for (i
= 0; i
< 3; i
++) {
804 printk(" SWF3%d 0x%08x\n", i
,
807 for (i
= 0; i
< 8; i
++)
808 printk(" FENCE%d 0x%08x\n", i
,
811 printk(" INSTPM 0x%08x\n", hw
->instpm
);
812 printk(" MEM_MODE 0x%08x\n", hw
->mem_mode
);
813 printk(" FW_BLC_0 0x%08x\n", hw
->fw_blc_0
);
814 printk(" FW_BLC_1 0x%08x\n", hw
->fw_blc_1
);
816 printk(" HWSTAM 0x%04x\n", hw
->hwstam
);
817 printk(" IER 0x%04x\n", hw
->ier
);
818 printk(" IIR 0x%04x\n", hw
->iir
);
819 printk(" IMR 0x%04x\n", hw
->imr
);
820 printk("hw state dump end\n");
826 /* Split the M parameter into M1 and M2. */
827 static int splitm(int index
, unsigned int m
, unsigned int *retm1
,
832 struct pll_min_max
*pll
= &plls
[index
];
834 /* no point optimising too much - brute force m */
835 for (m1
= pll
->min_m1
; m1
< pll
->max_m1
+ 1; m1
++) {
836 for (m2
= pll
->min_m2
; m2
< pll
->max_m2
+ 1; m2
++) {
837 testm
= (5 * (m1
+ 2)) + (m2
+ 2);
839 *retm1
= (unsigned int)m1
;
840 *retm2
= (unsigned int)m2
;
848 /* Split the P parameter into P1 and P2. */
849 static int splitp(int index
, unsigned int p
, unsigned int *retp1
,
853 struct pll_min_max
*pll
= &plls
[index
];
855 if (index
== PLLS_I9xx
) {
856 p2
= (p
% 10) ? 1 : 0;
858 p1
= p
/ (p2
? 5 : 10);
860 *retp1
= (unsigned int)p1
;
861 *retp2
= (unsigned int)p2
;
869 p1
= (p
/ (1 << (p2
+ 1))) - 2;
870 if (p
% 4 == 0 && p1
< pll
->min_p1
) {
872 p1
= (p
/ (1 << (p2
+ 1))) - 2;
874 if (p1
< pll
->min_p1
|| p1
> pll
->max_p1
||
875 (p1
+ 2) * (1 << (p2
+ 1)) != p
) {
878 *retp1
= (unsigned int)p1
;
879 *retp2
= (unsigned int)p2
;
884 static int calc_pll_params(int index
, int clock
, u32
*retm1
, u32
*retm2
,
885 u32
*retn
, u32
*retp1
, u32
*retp2
, u32
*retclock
)
887 u32 m1
, m2
, n
, p1
, p2
, n1
, testm
;
888 u32 f_vco
, p
, p_best
= 0, m
, f_out
= 0;
889 u32 err_max
, err_target
, err_best
= 10000000;
890 u32 n_best
= 0, m_best
= 0, f_best
, f_err
;
891 u32 p_min
, p_max
, p_inc
, div_max
;
892 struct pll_min_max
*pll
= &plls
[index
];
894 /* Accept 0.5% difference, but aim for 0.1% */
895 err_max
= 5 * clock
/ 1000;
896 err_target
= clock
/ 1000;
898 DBG_MSG("Clock is %d\n", clock
);
900 div_max
= pll
->max_vco
/ clock
;
902 p_inc
= (clock
<= pll
->p_transition_clk
) ? pll
->p_inc_lo
: pll
->p_inc_hi
;
904 p_max
= ROUND_DOWN_TO(div_max
, p_inc
);
905 if (p_min
< pll
->min_p
)
907 if (p_max
> pll
->max_p
)
910 DBG_MSG("p range is %d-%d (%d)\n", p_min
, p_max
, p_inc
);
914 if (splitp(index
, p
, &p1
, &p2
)) {
915 WRN_MSG("cannot split p = %d\n", p
);
923 m
= ROUND_UP_TO(f_vco
* n
, pll
->ref_clk
) / pll
->ref_clk
;
928 for (testm
= m
- 1; testm
<= m
; testm
++) {
929 f_out
= calc_vclock3(index
, testm
, n
, p
);
930 if (splitm(index
, testm
, &m1
, &m2
)) {
931 WRN_MSG("cannot split m = %d\n",
936 f_err
= clock
- f_out
;
937 else/* slightly bias the error for bigger clocks */
938 f_err
= f_out
- clock
+ 1;
940 if (f_err
< err_best
) {
949 } while ((n
<= pll
->max_n
) && (f_out
>= clock
));
951 } while ((p
<= p_max
));
954 WRN_MSG("cannot find parameters for clock %d\n", clock
);
960 splitm(index
, m
, &m1
, &m2
);
961 splitp(index
, p
, &p1
, &p2
);
964 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
965 "f: %d (%d), VCO: %d\n",
966 m
, m1
, m2
, n
, n1
, p
, p1
, p2
,
967 calc_vclock3(index
, m
, n
, p
),
968 calc_vclock(index
, m1
, m2
, n1
, p1
, p2
, 0),
969 calc_vclock3(index
, m
, n
, p
) * p
);
975 *retclock
= calc_vclock(index
, m1
, m2
, n1
, p1
, p2
, 0);
980 static __inline__
int check_overflow(u32 value
, u32 limit
,
981 const char *description
)
984 WRN_MSG("%s value %d exceeds limit %d\n",
985 description
, value
, limit
);
991 /* It is assumed that hw is filled in with the initial state information. */
992 int intelfbhw_mode_to_hw(struct intelfb_info
*dinfo
,
993 struct intelfb_hwstate
*hw
,
994 struct fb_var_screeninfo
*var
)
997 u32
*dpll
, *fp0
, *fp1
;
998 u32 m1
, m2
, n
, p1
, p2
, clock_target
, clock
;
999 u32 hsync_start
, hsync_end
, hblank_start
, hblank_end
, htotal
, hactive
;
1000 u32 vsync_start
, vsync_end
, vblank_start
, vblank_end
, vtotal
, vactive
;
1001 u32 vsync_pol
, hsync_pol
;
1002 u32
*vs
, *vb
, *vt
, *hs
, *hb
, *ht
, *ss
, *pipe_conf
;
1003 u32 stride_alignment
;
1005 DBG_MSG("intelfbhw_mode_to_hw\n");
1008 hw
->vgacntrl
|= VGA_DISABLE
;
1010 /* Check whether pipe A or pipe B is enabled. */
1011 if (hw
->pipe_a_conf
& PIPECONF_ENABLE
)
1013 else if (hw
->pipe_b_conf
& PIPECONF_ENABLE
)
1016 /* Set which pipe's registers will be set. */
1017 if (pipe
== PIPE_B
) {
1027 ss
= &hw
->src_size_b
;
1028 pipe_conf
= &hw
->pipe_b_conf
;
1039 ss
= &hw
->src_size_a
;
1040 pipe_conf
= &hw
->pipe_a_conf
;
1043 /* Use ADPA register for sync control. */
1044 hw
->adpa
&= ~ADPA_USE_VGA_HVPOLARITY
;
1047 hsync_pol
= (var
->sync
& FB_SYNC_HOR_HIGH_ACT
) ?
1048 ADPA_SYNC_ACTIVE_HIGH
: ADPA_SYNC_ACTIVE_LOW
;
1049 vsync_pol
= (var
->sync
& FB_SYNC_VERT_HIGH_ACT
) ?
1050 ADPA_SYNC_ACTIVE_HIGH
: ADPA_SYNC_ACTIVE_LOW
;
1051 hw
->adpa
&= ~((ADPA_SYNC_ACTIVE_MASK
<< ADPA_VSYNC_ACTIVE_SHIFT
) |
1052 (ADPA_SYNC_ACTIVE_MASK
<< ADPA_HSYNC_ACTIVE_SHIFT
));
1053 hw
->adpa
|= (hsync_pol
<< ADPA_HSYNC_ACTIVE_SHIFT
) |
1054 (vsync_pol
<< ADPA_VSYNC_ACTIVE_SHIFT
);
1056 /* Connect correct pipe to the analog port DAC */
1057 hw
->adpa
&= ~(PIPE_MASK
<< ADPA_PIPE_SELECT_SHIFT
);
1058 hw
->adpa
|= (pipe
<< ADPA_PIPE_SELECT_SHIFT
);
1060 /* Set DPMS state to D0 (on) */
1061 hw
->adpa
&= ~ADPA_DPMS_CONTROL_MASK
;
1062 hw
->adpa
|= ADPA_DPMS_D0
;
1064 hw
->adpa
|= ADPA_DAC_ENABLE
;
1066 *dpll
|= (DPLL_VCO_ENABLE
| DPLL_VGA_MODE_DISABLE
);
1067 *dpll
&= ~(DPLL_RATE_SELECT_MASK
| DPLL_REFERENCE_SELECT_MASK
);
1068 *dpll
|= (DPLL_REFERENCE_DEFAULT
| DPLL_RATE_SELECT_FP0
);
1070 /* Desired clock in kHz */
1071 clock_target
= 1000000000 / var
->pixclock
;
1073 if (calc_pll_params(dinfo
->pll_index
, clock_target
, &m1
, &m2
,
1074 &n
, &p1
, &p2
, &clock
)) {
1075 WRN_MSG("calc_pll_params failed\n");
1079 /* Check for overflow. */
1080 if (check_overflow(p1
, DPLL_P1_MASK
, "PLL P1 parameter"))
1082 if (check_overflow(p2
, DPLL_P2_MASK
, "PLL P2 parameter"))
1084 if (check_overflow(m1
, FP_DIVISOR_MASK
, "PLL M1 parameter"))
1086 if (check_overflow(m2
, FP_DIVISOR_MASK
, "PLL M2 parameter"))
1088 if (check_overflow(n
, FP_DIVISOR_MASK
, "PLL N parameter"))
1091 *dpll
&= ~DPLL_P1_FORCE_DIV2
;
1092 *dpll
&= ~((DPLL_P2_MASK
<< DPLL_P2_SHIFT
) |
1093 (DPLL_P1_MASK
<< DPLL_P1_SHIFT
));
1095 if (IS_I9XX(dinfo
)) {
1096 *dpll
|= (p2
<< DPLL_I9XX_P2_SHIFT
);
1097 *dpll
|= (1 << (p1
- 1)) << DPLL_P1_SHIFT
;
1099 *dpll
|= (p2
<< DPLL_P2_SHIFT
) | (p1
<< DPLL_P1_SHIFT
);
1101 *fp0
= (n
<< FP_N_DIVISOR_SHIFT
) |
1102 (m1
<< FP_M1_DIVISOR_SHIFT
) |
1103 (m2
<< FP_M2_DIVISOR_SHIFT
);
1106 hw
->dvob
&= ~PORT_ENABLE
;
1107 hw
->dvoc
&= ~PORT_ENABLE
;
1109 /* Use display plane A. */
1110 hw
->disp_a_ctrl
|= DISPPLANE_PLANE_ENABLE
;
1111 hw
->disp_a_ctrl
&= ~DISPPLANE_GAMMA_ENABLE
;
1112 hw
->disp_a_ctrl
&= ~DISPPLANE_PIXFORMAT_MASK
;
1113 switch (intelfb_var_to_depth(var
)) {
1115 hw
->disp_a_ctrl
|= DISPPLANE_8BPP
| DISPPLANE_GAMMA_ENABLE
;
1118 hw
->disp_a_ctrl
|= DISPPLANE_15_16BPP
;
1121 hw
->disp_a_ctrl
|= DISPPLANE_16BPP
;
1124 hw
->disp_a_ctrl
|= DISPPLANE_32BPP_NO_ALPHA
;
1127 hw
->disp_a_ctrl
&= ~(PIPE_MASK
<< DISPPLANE_SEL_PIPE_SHIFT
);
1128 hw
->disp_a_ctrl
|= (pipe
<< DISPPLANE_SEL_PIPE_SHIFT
);
1130 /* Set CRTC registers. */
1131 hactive
= var
->xres
;
1132 hsync_start
= hactive
+ var
->right_margin
;
1133 hsync_end
= hsync_start
+ var
->hsync_len
;
1134 htotal
= hsync_end
+ var
->left_margin
;
1135 hblank_start
= hactive
;
1136 hblank_end
= htotal
;
1138 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1139 hactive
, hsync_start
, hsync_end
, htotal
, hblank_start
,
1142 vactive
= var
->yres
;
1143 if (var
->vmode
& FB_VMODE_INTERLACED
)
1144 vactive
--; /* the chip adds 2 halflines automatically */
1145 vsync_start
= vactive
+ var
->lower_margin
;
1146 vsync_end
= vsync_start
+ var
->vsync_len
;
1147 vtotal
= vsync_end
+ var
->upper_margin
;
1148 vblank_start
= vactive
;
1149 vblank_end
= vtotal
;
1150 vblank_end
= vsync_end
+ 1;
1152 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1153 vactive
, vsync_start
, vsync_end
, vtotal
, vblank_start
,
1156 /* Adjust for register values, and check for overflow. */
1158 if (check_overflow(hactive
, HACTIVE_MASK
, "CRTC hactive"))
1161 if (check_overflow(hsync_start
, HSYNCSTART_MASK
, "CRTC hsync_start"))
1164 if (check_overflow(hsync_end
, HSYNCEND_MASK
, "CRTC hsync_end"))
1167 if (check_overflow(htotal
, HTOTAL_MASK
, "CRTC htotal"))
1170 if (check_overflow(hblank_start
, HBLANKSTART_MASK
, "CRTC hblank_start"))
1173 if (check_overflow(hblank_end
, HBLANKEND_MASK
, "CRTC hblank_end"))
1177 if (check_overflow(vactive
, VACTIVE_MASK
, "CRTC vactive"))
1180 if (check_overflow(vsync_start
, VSYNCSTART_MASK
, "CRTC vsync_start"))
1183 if (check_overflow(vsync_end
, VSYNCEND_MASK
, "CRTC vsync_end"))
1186 if (check_overflow(vtotal
, VTOTAL_MASK
, "CRTC vtotal"))
1189 if (check_overflow(vblank_start
, VBLANKSTART_MASK
, "CRTC vblank_start"))
1192 if (check_overflow(vblank_end
, VBLANKEND_MASK
, "CRTC vblank_end"))
1195 *ht
= (htotal
<< HTOTAL_SHIFT
) | (hactive
<< HACTIVE_SHIFT
);
1196 *hb
= (hblank_start
<< HBLANKSTART_SHIFT
) |
1197 (hblank_end
<< HSYNCEND_SHIFT
);
1198 *hs
= (hsync_start
<< HSYNCSTART_SHIFT
) | (hsync_end
<< HSYNCEND_SHIFT
);
1200 *vt
= (vtotal
<< VTOTAL_SHIFT
) | (vactive
<< VACTIVE_SHIFT
);
1201 *vb
= (vblank_start
<< VBLANKSTART_SHIFT
) |
1202 (vblank_end
<< VSYNCEND_SHIFT
);
1203 *vs
= (vsync_start
<< VSYNCSTART_SHIFT
) | (vsync_end
<< VSYNCEND_SHIFT
);
1204 *ss
= (hactive
<< SRC_SIZE_HORIZ_SHIFT
) |
1205 (vactive
<< SRC_SIZE_VERT_SHIFT
);
1207 hw
->disp_a_stride
= dinfo
->pitch
;
1208 DBG_MSG("pitch is %d\n", hw
->disp_a_stride
);
1210 hw
->disp_a_base
= hw
->disp_a_stride
* var
->yoffset
+
1211 var
->xoffset
* var
->bits_per_pixel
/ 8;
1213 hw
->disp_a_base
+= dinfo
->fb
.offset
<< 12;
1215 /* Check stride alignment. */
1216 stride_alignment
= IS_I9XX(dinfo
) ? STRIDE_ALIGNMENT_I9XX
:
1218 if (hw
->disp_a_stride
% stride_alignment
!= 0) {
1219 WRN_MSG("display stride %d has bad alignment %d\n",
1220 hw
->disp_a_stride
, stride_alignment
);
1224 /* Set the palette to 8-bit mode. */
1225 *pipe_conf
&= ~PIPECONF_GAMMA
;
1227 if (var
->vmode
& FB_VMODE_INTERLACED
)
1228 *pipe_conf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
1230 *pipe_conf
&= ~PIPECONF_INTERLACE_MASK
;
1235 /* Program a (non-VGA) video mode. */
1236 int intelfbhw_program_mode(struct intelfb_info
*dinfo
,
1237 const struct intelfb_hwstate
*hw
, int blank
)
1241 const u32
*dpll
, *fp0
, *fp1
, *pipe_conf
;
1242 const u32
*hs
, *ht
, *hb
, *vs
, *vt
, *vb
, *ss
;
1243 u32 dpll_reg
, fp0_reg
, fp1_reg
, pipe_conf_reg
, pipe_stat_reg
;
1244 u32 hsync_reg
, htotal_reg
, hblank_reg
;
1245 u32 vsync_reg
, vtotal_reg
, vblank_reg
;
1247 u32 count
, tmp_val
[3];
1249 /* Assume single pipe, display plane A, analog CRT. */
1252 DBG_MSG("intelfbhw_program_mode\n");
1256 tmp
= INREG(VGACNTRL
);
1258 OUTREG(VGACNTRL
, tmp
);
1260 /* Check whether pipe A or pipe B is enabled. */
1261 if (hw
->pipe_a_conf
& PIPECONF_ENABLE
)
1263 else if (hw
->pipe_b_conf
& PIPECONF_ENABLE
)
1268 if (pipe
== PIPE_B
) {
1272 pipe_conf
= &hw
->pipe_b_conf
;
1279 ss
= &hw
->src_size_b
;
1283 pipe_conf_reg
= PIPEBCONF
;
1284 pipe_stat_reg
= PIPEBSTAT
;
1285 hsync_reg
= HSYNC_B
;
1286 htotal_reg
= HTOTAL_B
;
1287 hblank_reg
= HBLANK_B
;
1288 vsync_reg
= VSYNC_B
;
1289 vtotal_reg
= VTOTAL_B
;
1290 vblank_reg
= VBLANK_B
;
1291 src_size_reg
= SRC_SIZE_B
;
1296 pipe_conf
= &hw
->pipe_a_conf
;
1303 ss
= &hw
->src_size_a
;
1307 pipe_conf_reg
= PIPEACONF
;
1308 pipe_stat_reg
= PIPEASTAT
;
1309 hsync_reg
= HSYNC_A
;
1310 htotal_reg
= HTOTAL_A
;
1311 hblank_reg
= HBLANK_A
;
1312 vsync_reg
= VSYNC_A
;
1313 vtotal_reg
= VTOTAL_A
;
1314 vblank_reg
= VBLANK_A
;
1315 src_size_reg
= SRC_SIZE_A
;
1319 tmp
= INREG(pipe_conf_reg
);
1320 tmp
&= ~PIPECONF_ENABLE
;
1321 OUTREG(pipe_conf_reg
, tmp
);
1325 tmp_val
[count
% 3] = INREG(PIPEA_DSL
);
1326 if ((tmp_val
[0] == tmp_val
[1]) && (tmp_val
[1] == tmp_val
[2]))
1330 if (count
% 200 == 0) {
1331 tmp
= INREG(pipe_conf_reg
);
1332 tmp
&= ~PIPECONF_ENABLE
;
1333 OUTREG(pipe_conf_reg
, tmp
);
1335 } while (count
< 2000);
1337 OUTREG(ADPA
, INREG(ADPA
) & ~ADPA_DAC_ENABLE
);
1339 /* Disable planes A and B. */
1340 tmp
= INREG(DSPACNTR
);
1341 tmp
&= ~DISPPLANE_PLANE_ENABLE
;
1342 OUTREG(DSPACNTR
, tmp
);
1343 tmp
= INREG(DSPBCNTR
);
1344 tmp
&= ~DISPPLANE_PLANE_ENABLE
;
1345 OUTREG(DSPBCNTR
, tmp
);
1347 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1350 OUTREG(DVOB
, INREG(DVOB
) & ~PORT_ENABLE
);
1351 OUTREG(DVOC
, INREG(DVOC
) & ~PORT_ENABLE
);
1352 OUTREG(ADPA
, INREG(ADPA
) & ~ADPA_DAC_ENABLE
);
1356 tmp
&= ~ADPA_DPMS_CONTROL_MASK
;
1357 tmp
|= ADPA_DPMS_D3
;
1360 /* do some funky magic - xyzzy */
1361 OUTREG(0x61204, 0xabcd0000);
1364 tmp
= INREG(dpll_reg
);
1365 tmp
&= ~DPLL_VCO_ENABLE
;
1366 OUTREG(dpll_reg
, tmp
);
1368 /* Set PLL parameters */
1369 OUTREG(fp0_reg
, *fp0
);
1370 OUTREG(fp1_reg
, *fp1
);
1373 OUTREG(dpll_reg
, *dpll
);
1376 OUTREG(DVOB
, hw
->dvob
);
1377 OUTREG(DVOC
, hw
->dvoc
);
1379 /* undo funky magic */
1380 OUTREG(0x61204, 0x00000000);
1383 OUTREG(ADPA
, INREG(ADPA
) | ADPA_DAC_ENABLE
);
1384 OUTREG(ADPA
, (hw
->adpa
& ~(ADPA_DPMS_CONTROL_MASK
)) | ADPA_DPMS_D3
);
1386 /* Set pipe parameters */
1387 OUTREG(hsync_reg
, *hs
);
1388 OUTREG(hblank_reg
, *hb
);
1389 OUTREG(htotal_reg
, *ht
);
1390 OUTREG(vsync_reg
, *vs
);
1391 OUTREG(vblank_reg
, *vb
);
1392 OUTREG(vtotal_reg
, *vt
);
1393 OUTREG(src_size_reg
, *ss
);
1395 switch (dinfo
->info
->var
.vmode
& (FB_VMODE_INTERLACED
|
1396 FB_VMODE_ODD_FLD_FIRST
)) {
1397 case FB_VMODE_INTERLACED
| FB_VMODE_ODD_FLD_FIRST
:
1398 OUTREG(pipe_stat_reg
, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN
);
1400 case FB_VMODE_INTERLACED
: /* even lines first */
1401 OUTREG(pipe_stat_reg
, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN
);
1403 default: /* non-interlaced */
1404 OUTREG(pipe_stat_reg
, 0xFFFF); /* clear all status bits only */
1407 OUTREG(pipe_conf_reg
, *pipe_conf
| PIPECONF_ENABLE
);
1411 tmp
&= ~ADPA_DPMS_CONTROL_MASK
;
1412 tmp
|= ADPA_DPMS_D0
;
1415 /* setup display plane */
1416 if (dinfo
->pdev
->device
== PCI_DEVICE_ID_INTEL_830M
) {
1418 * i830M errata: the display plane must be enabled
1419 * to allow writes to the other bits in the plane
1422 tmp
= INREG(DSPACNTR
);
1423 if ((tmp
& DISPPLANE_PLANE_ENABLE
) != DISPPLANE_PLANE_ENABLE
) {
1424 tmp
|= DISPPLANE_PLANE_ENABLE
;
1425 OUTREG(DSPACNTR
, tmp
);
1427 hw
->disp_a_ctrl
|DISPPLANE_PLANE_ENABLE
);
1432 OUTREG(DSPACNTR
, hw
->disp_a_ctrl
& ~DISPPLANE_PLANE_ENABLE
);
1433 OUTREG(DSPASTRIDE
, hw
->disp_a_stride
);
1434 OUTREG(DSPABASE
, hw
->disp_a_base
);
1438 tmp
= INREG(DSPACNTR
);
1439 tmp
|= DISPPLANE_PLANE_ENABLE
;
1440 OUTREG(DSPACNTR
, tmp
);
1441 OUTREG(DSPABASE
, hw
->disp_a_base
);
1447 /* forward declarations */
1448 static void refresh_ring(struct intelfb_info
*dinfo
);
1449 static void reset_state(struct intelfb_info
*dinfo
);
1450 static void do_flush(struct intelfb_info
*dinfo
);
1452 static u32
get_ring_space(struct intelfb_info
*dinfo
)
1456 if (dinfo
->ring_tail
>= dinfo
->ring_head
)
1457 ring_space
= dinfo
->ring
.size
-
1458 (dinfo
->ring_tail
- dinfo
->ring_head
);
1460 ring_space
= dinfo
->ring_head
- dinfo
->ring_tail
;
1462 if (ring_space
> RING_MIN_FREE
)
1463 ring_space
-= RING_MIN_FREE
;
1470 static int wait_ring(struct intelfb_info
*dinfo
, int n
)
1474 u32 last_head
= INREG(PRI_RING_HEAD
) & RING_HEAD_MASK
;
1477 DBG_MSG("wait_ring: %d\n", n
);
1480 end
= jiffies
+ (HZ
* 3);
1481 while (dinfo
->ring_space
< n
) {
1482 dinfo
->ring_head
= INREG(PRI_RING_HEAD
) & RING_HEAD_MASK
;
1483 dinfo
->ring_space
= get_ring_space(dinfo
);
1485 if (dinfo
->ring_head
!= last_head
) {
1486 end
= jiffies
+ (HZ
* 3);
1487 last_head
= dinfo
->ring_head
;
1490 if (time_before(end
, jiffies
)) {
1494 refresh_ring(dinfo
);
1496 end
= jiffies
+ (HZ
* 3);
1499 WRN_MSG("ring buffer : space: %d wanted %d\n",
1500 dinfo
->ring_space
, n
);
1501 WRN_MSG("lockup - turning off hardware "
1503 dinfo
->ring_lockup
= 1;
1512 static void do_flush(struct intelfb_info
*dinfo
)
1515 OUT_RING(MI_FLUSH
| MI_WRITE_DIRTY_STATE
| MI_INVALIDATE_MAP_CACHE
);
1520 void intelfbhw_do_sync(struct intelfb_info
*dinfo
)
1523 DBG_MSG("intelfbhw_do_sync\n");
1530 * Send a flush, then wait until the ring is empty. This is what
1531 * the XFree86 driver does, and actually it doesn't seem a lot worse
1532 * than the recommended method (both have problems).
1535 wait_ring(dinfo
, dinfo
->ring
.size
- RING_MIN_FREE
);
1536 dinfo
->ring_space
= dinfo
->ring
.size
- RING_MIN_FREE
;
1539 static void refresh_ring(struct intelfb_info
*dinfo
)
1542 DBG_MSG("refresh_ring\n");
1545 dinfo
->ring_head
= INREG(PRI_RING_HEAD
) & RING_HEAD_MASK
;
1546 dinfo
->ring_tail
= INREG(PRI_RING_TAIL
) & RING_TAIL_MASK
;
1547 dinfo
->ring_space
= get_ring_space(dinfo
);
1550 static void reset_state(struct intelfb_info
*dinfo
)
1556 DBG_MSG("reset_state\n");
1559 for (i
= 0; i
< FENCE_NUM
; i
++)
1560 OUTREG(FENCE
+ (i
<< 2), 0);
1562 /* Flush the ring buffer if it's enabled. */
1563 tmp
= INREG(PRI_RING_LENGTH
);
1564 if (tmp
& RING_ENABLE
) {
1566 DBG_MSG("reset_state: ring was enabled\n");
1568 refresh_ring(dinfo
);
1569 intelfbhw_do_sync(dinfo
);
1573 OUTREG(PRI_RING_LENGTH
, 0);
1574 OUTREG(PRI_RING_HEAD
, 0);
1575 OUTREG(PRI_RING_TAIL
, 0);
1576 OUTREG(PRI_RING_START
, 0);
1579 /* Stop the 2D engine, and turn off the ring buffer. */
1580 void intelfbhw_2d_stop(struct intelfb_info
*dinfo
)
1583 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1584 dinfo
->accel
, dinfo
->ring_active
);
1590 dinfo
->ring_active
= 0;
1595 * Enable the ring buffer, and initialise the 2D engine.
1596 * It is assumed that the graphics engine has been stopped by previously
1597 * calling intelfb_2d_stop().
1599 void intelfbhw_2d_start(struct intelfb_info
*dinfo
)
1602 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1603 dinfo
->accel
, dinfo
->ring_active
);
1609 /* Initialise the primary ring buffer. */
1610 OUTREG(PRI_RING_LENGTH
, 0);
1611 OUTREG(PRI_RING_TAIL
, 0);
1612 OUTREG(PRI_RING_HEAD
, 0);
1614 OUTREG(PRI_RING_START
, dinfo
->ring
.physical
& RING_START_MASK
);
1615 OUTREG(PRI_RING_LENGTH
,
1616 ((dinfo
->ring
.size
- GTT_PAGE_SIZE
) & RING_LENGTH_MASK
) |
1617 RING_NO_REPORT
| RING_ENABLE
);
1618 refresh_ring(dinfo
);
1619 dinfo
->ring_active
= 1;
1622 /* 2D fillrect (solid fill or invert) */
1623 void intelfbhw_do_fillrect(struct intelfb_info
*dinfo
, u32 x
, u32 y
, u32 w
,
1624 u32 h
, u32 color
, u32 pitch
, u32 bpp
, u32 rop
)
1626 u32 br00
, br09
, br13
, br14
, br16
;
1629 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1630 "rop 0x%02x\n", x
, y
, w
, h
, color
, pitch
, bpp
, rop
);
1633 br00
= COLOR_BLT_CMD
;
1634 br09
= dinfo
->fb_start
+ (y
* pitch
+ x
* (bpp
/ 8));
1635 br13
= (rop
<< ROP_SHIFT
) | pitch
;
1636 br14
= (h
<< HEIGHT_SHIFT
) | ((w
* (bpp
/ 8)) << WIDTH_SHIFT
);
1641 br13
|= COLOR_DEPTH_8
;
1644 br13
|= COLOR_DEPTH_16
;
1647 br13
|= COLOR_DEPTH_32
;
1648 br00
|= WRITE_ALPHA
| WRITE_RGB
;
1662 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo
->ring_head
,
1663 dinfo
->ring_tail
, dinfo
->ring_space
);
1668 intelfbhw_do_bitblt(struct intelfb_info
*dinfo
, u32 curx
, u32 cury
,
1669 u32 dstx
, u32 dsty
, u32 w
, u32 h
, u32 pitch
, u32 bpp
)
1671 u32 br00
, br09
, br11
, br12
, br13
, br22
, br23
, br26
;
1674 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1675 curx
, cury
, dstx
, dsty
, w
, h
, pitch
, bpp
);
1678 br00
= XY_SRC_COPY_BLT_CMD
;
1679 br09
= dinfo
->fb_start
;
1680 br11
= (pitch
<< PITCH_SHIFT
);
1681 br12
= dinfo
->fb_start
;
1682 br13
= (SRC_ROP_GXCOPY
<< ROP_SHIFT
) | (pitch
<< PITCH_SHIFT
);
1683 br22
= (dstx
<< WIDTH_SHIFT
) | (dsty
<< HEIGHT_SHIFT
);
1684 br23
= ((dstx
+ w
) << WIDTH_SHIFT
) |
1685 ((dsty
+ h
) << HEIGHT_SHIFT
);
1686 br26
= (curx
<< WIDTH_SHIFT
) | (cury
<< HEIGHT_SHIFT
);
1690 br13
|= COLOR_DEPTH_8
;
1693 br13
|= COLOR_DEPTH_16
;
1696 br13
|= COLOR_DEPTH_32
;
1697 br00
|= WRITE_ALPHA
| WRITE_RGB
;
1713 int intelfbhw_do_drawglyph(struct intelfb_info
*dinfo
, u32 fg
, u32 bg
, u32 w
,
1714 u32 h
, const u8
* cdat
, u32 x
, u32 y
, u32 pitch
,
1717 int nbytes
, ndwords
, pad
, tmp
;
1718 u32 br00
, br09
, br13
, br18
, br19
, br22
, br23
;
1719 int dat
, ix
, iy
, iw
;
1723 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x
, y
, w
, h
);
1726 /* size in bytes of a padded scanline */
1727 nbytes
= ROUND_UP_TO(w
, 16) / 8;
1729 /* Total bytes of padded scanline data to write out. */
1730 nbytes
= nbytes
* h
;
1733 * Check if the glyph data exceeds the immediate mode limit.
1734 * It would take a large font (1K pixels) to hit this limit.
1736 if (nbytes
> MAX_MONO_IMM_SIZE
)
1739 /* Src data is packaged a dword (32-bit) at a time. */
1740 ndwords
= ROUND_UP_TO(nbytes
, 4) / 4;
1743 * Ring has to be padded to a quad word. But because the command starts
1744 with 7 bytes, pad only if there is an even number of ndwords
1746 pad
= !(ndwords
% 2);
1748 tmp
= (XY_MONO_SRC_IMM_BLT_CMD
& DW_LENGTH_MASK
) + ndwords
;
1749 br00
= (XY_MONO_SRC_IMM_BLT_CMD
& ~DW_LENGTH_MASK
) | tmp
;
1750 br09
= dinfo
->fb_start
;
1751 br13
= (SRC_ROP_GXCOPY
<< ROP_SHIFT
) | (pitch
<< PITCH_SHIFT
);
1754 br22
= (x
<< WIDTH_SHIFT
) | (y
<< HEIGHT_SHIFT
);
1755 br23
= ((x
+ w
) << WIDTH_SHIFT
) | ((y
+ h
) << HEIGHT_SHIFT
);
1759 br13
|= COLOR_DEPTH_8
;
1762 br13
|= COLOR_DEPTH_16
;
1765 br13
|= COLOR_DEPTH_32
;
1766 br00
|= WRITE_ALPHA
| WRITE_RGB
;
1770 START_RING(8 + ndwords
);
1779 iw
= ROUND_UP_TO(w
, 8) / 8;
1782 for (j
= 0; j
< 2; ++j
) {
1783 for (i
= 0; i
< 2; ++i
) {
1784 if (ix
!= iw
|| i
== 0)
1785 dat
|= cdat
[iy
*iw
+ ix
++] << (i
+j
*2)*8;
1787 if (ix
== iw
&& iy
!= (h
-1)) {
1801 /* HW cursor functions. */
1802 void intelfbhw_cursor_init(struct intelfb_info
*dinfo
)
1807 DBG_MSG("intelfbhw_cursor_init\n");
1810 if (dinfo
->mobile
|| IS_I9XX(dinfo
)) {
1811 if (!dinfo
->cursor
.physical
)
1813 tmp
= INREG(CURSOR_A_CONTROL
);
1814 tmp
&= ~(CURSOR_MODE_MASK
| CURSOR_MOBILE_GAMMA_ENABLE
|
1815 CURSOR_MEM_TYPE_LOCAL
|
1816 (1 << CURSOR_PIPE_SELECT_SHIFT
));
1817 tmp
|= CURSOR_MODE_DISABLE
;
1818 OUTREG(CURSOR_A_CONTROL
, tmp
);
1819 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1821 tmp
= INREG(CURSOR_CONTROL
);
1822 tmp
&= ~(CURSOR_FORMAT_MASK
| CURSOR_GAMMA_ENABLE
|
1823 CURSOR_ENABLE
| CURSOR_STRIDE_MASK
);
1824 tmp
= CURSOR_FORMAT_3C
;
1825 OUTREG(CURSOR_CONTROL
, tmp
);
1826 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.offset
<< 12);
1827 tmp
= (64 << CURSOR_SIZE_H_SHIFT
) |
1828 (64 << CURSOR_SIZE_V_SHIFT
);
1829 OUTREG(CURSOR_SIZE
, tmp
);
1833 void intelfbhw_cursor_hide(struct intelfb_info
*dinfo
)
1838 DBG_MSG("intelfbhw_cursor_hide\n");
1841 dinfo
->cursor_on
= 0;
1842 if (dinfo
->mobile
|| IS_I9XX(dinfo
)) {
1843 if (!dinfo
->cursor
.physical
)
1845 tmp
= INREG(CURSOR_A_CONTROL
);
1846 tmp
&= ~CURSOR_MODE_MASK
;
1847 tmp
|= CURSOR_MODE_DISABLE
;
1848 OUTREG(CURSOR_A_CONTROL
, tmp
);
1850 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1852 tmp
= INREG(CURSOR_CONTROL
);
1853 tmp
&= ~CURSOR_ENABLE
;
1854 OUTREG(CURSOR_CONTROL
, tmp
);
1858 void intelfbhw_cursor_show(struct intelfb_info
*dinfo
)
1863 DBG_MSG("intelfbhw_cursor_show\n");
1866 dinfo
->cursor_on
= 1;
1868 if (dinfo
->cursor_blanked
)
1871 if (dinfo
->mobile
|| IS_I9XX(dinfo
)) {
1872 if (!dinfo
->cursor
.physical
)
1874 tmp
= INREG(CURSOR_A_CONTROL
);
1875 tmp
&= ~CURSOR_MODE_MASK
;
1876 tmp
|= CURSOR_MODE_64_4C_AX
;
1877 OUTREG(CURSOR_A_CONTROL
, tmp
);
1879 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1881 tmp
= INREG(CURSOR_CONTROL
);
1882 tmp
|= CURSOR_ENABLE
;
1883 OUTREG(CURSOR_CONTROL
, tmp
);
1887 void intelfbhw_cursor_setpos(struct intelfb_info
*dinfo
, int x
, int y
)
1892 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x
, y
);
1896 * Sets the position. The coordinates are assumed to already
1897 * have any offset adjusted. Assume that the cursor is never
1898 * completely off-screen, and that x, y are always >= 0.
1901 tmp
= ((x
& CURSOR_POS_MASK
) << CURSOR_X_SHIFT
) |
1902 ((y
& CURSOR_POS_MASK
) << CURSOR_Y_SHIFT
);
1903 OUTREG(CURSOR_A_POSITION
, tmp
);
1906 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1909 void intelfbhw_cursor_setcolor(struct intelfb_info
*dinfo
, u32 bg
, u32 fg
)
1912 DBG_MSG("intelfbhw_cursor_setcolor\n");
1915 OUTREG(CURSOR_A_PALETTE0
, bg
& CURSOR_PALETTE_MASK
);
1916 OUTREG(CURSOR_A_PALETTE1
, fg
& CURSOR_PALETTE_MASK
);
1917 OUTREG(CURSOR_A_PALETTE2
, fg
& CURSOR_PALETTE_MASK
);
1918 OUTREG(CURSOR_A_PALETTE3
, bg
& CURSOR_PALETTE_MASK
);
1921 void intelfbhw_cursor_load(struct intelfb_info
*dinfo
, int width
, int height
,
1924 u8 __iomem
*addr
= (u8 __iomem
*)dinfo
->cursor
.virtual;
1925 int i
, j
, w
= width
/ 8;
1926 int mod
= width
% 8, t_mask
, d_mask
;
1929 DBG_MSG("intelfbhw_cursor_load\n");
1932 if (!dinfo
->cursor
.virtual)
1935 t_mask
= 0xff >> mod
;
1936 d_mask
= ~(0xff >> mod
);
1937 for (i
= height
; i
--; ) {
1938 for (j
= 0; j
< w
; j
++) {
1939 writeb(0x00, addr
+ j
);
1940 writeb(*(data
++), addr
+ j
+8);
1943 writeb(t_mask
, addr
+ j
);
1944 writeb(*(data
++) & d_mask
, addr
+ j
+8);
1950 void intelfbhw_cursor_reset(struct intelfb_info
*dinfo
)
1952 u8 __iomem
*addr
= (u8 __iomem
*)dinfo
->cursor
.virtual;
1956 DBG_MSG("intelfbhw_cursor_reset\n");
1959 if (!dinfo
->cursor
.virtual)
1962 for (i
= 64; i
--; ) {
1963 for (j
= 0; j
< 8; j
++) {
1964 writeb(0xff, addr
+ j
+0);
1965 writeb(0x00, addr
+ j
+8);
1971 static irqreturn_t
intelfbhw_irq(int irq
, void *dev_id
)
1974 struct intelfb_info
*dinfo
= dev_id
;
1976 spin_lock(&dinfo
->int_lock
);
1979 if (dinfo
->info
->var
.vmode
& FB_VMODE_INTERLACED
)
1980 tmp
&= PIPE_A_EVENT_INTERRUPT
;
1982 tmp
&= VSYNC_PIPE_A_INTERRUPT
; /* non-interlaced */
1985 spin_unlock(&dinfo
->int_lock
);
1986 return IRQ_RETVAL(0); /* not us */
1989 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
1990 OUTREG(PIPEASTAT
, INREG(PIPEASTAT
));
1993 if (dinfo
->vsync
.pan_display
) {
1994 dinfo
->vsync
.pan_display
= 0;
1995 OUTREG(DSPABASE
, dinfo
->vsync
.pan_offset
);
1998 dinfo
->vsync
.count
++;
1999 wake_up_interruptible(&dinfo
->vsync
.wait
);
2001 spin_unlock(&dinfo
->int_lock
);
2003 return IRQ_RETVAL(1);
2006 int intelfbhw_enable_irq(struct intelfb_info
*dinfo
)
2009 if (!test_and_set_bit(0, &dinfo
->irq_flags
)) {
2010 if (request_irq(dinfo
->pdev
->irq
, intelfbhw_irq
, IRQF_SHARED
,
2011 "intelfb", dinfo
)) {
2012 clear_bit(0, &dinfo
->irq_flags
);
2016 spin_lock_irq(&dinfo
->int_lock
);
2017 OUTREG16(HWSTAM
, 0xfffe); /* i830 DRM uses ffff */
2020 spin_lock_irq(&dinfo
->int_lock
);
2022 if (dinfo
->info
->var
.vmode
& FB_VMODE_INTERLACED
)
2023 tmp
= PIPE_A_EVENT_INTERRUPT
;
2025 tmp
= VSYNC_PIPE_A_INTERRUPT
; /* non-interlaced */
2026 if (tmp
!= INREG16(IER
)) {
2027 DBG_MSG("changing IER to 0x%X\n", tmp
);
2031 spin_unlock_irq(&dinfo
->int_lock
);
2035 void intelfbhw_disable_irq(struct intelfb_info
*dinfo
)
2037 if (test_and_clear_bit(0, &dinfo
->irq_flags
)) {
2038 if (dinfo
->vsync
.pan_display
) {
2039 dinfo
->vsync
.pan_display
= 0;
2040 OUTREG(DSPABASE
, dinfo
->vsync
.pan_offset
);
2042 spin_lock_irq(&dinfo
->int_lock
);
2043 OUTREG16(HWSTAM
, 0xffff);
2044 OUTREG16(IMR
, 0xffff);
2047 OUTREG16(IIR
, INREG16(IIR
)); /* clear IRQ requests */
2048 spin_unlock_irq(&dinfo
->int_lock
);
2050 free_irq(dinfo
->pdev
->irq
, dinfo
);
2054 int intelfbhw_wait_for_vsync(struct intelfb_info
*dinfo
, u32 pipe
)
2056 struct intelfb_vsync
*vsync
;
2062 vsync
= &dinfo
->vsync
;
2068 ret
= intelfbhw_enable_irq(dinfo
);
2072 count
= vsync
->count
;
2073 ret
= wait_event_interruptible_timeout(vsync
->wait
,
2074 count
!= vsync
->count
, HZ
/ 10);
2078 DBG_MSG("wait_for_vsync timed out!\n");