Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / fs / jffs2 / readinode.c
blobe512a93d624954e04b70ab0a27bf85eb43a61fea
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/crc32.h>
17 #include <linux/pagemap.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/compiler.h>
20 #include "nodelist.h"
23 * Check the data CRC of the node.
25 * Returns: 0 if the data CRC is correct;
26 * 1 - if incorrect;
27 * error code if an error occured.
29 static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
31 struct jffs2_raw_node_ref *ref = tn->fn->raw;
32 int err = 0, pointed = 0;
33 struct jffs2_eraseblock *jeb;
34 unsigned char *buffer;
35 uint32_t crc, ofs, len;
36 size_t retlen;
38 BUG_ON(tn->csize == 0);
40 /* Calculate how many bytes were already checked */
41 ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
42 len = tn->csize;
44 if (jffs2_is_writebuffered(c)) {
45 int adj = ofs % c->wbuf_pagesize;
46 if (likely(adj))
47 adj = c->wbuf_pagesize - adj;
49 if (adj >= tn->csize) {
50 dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
51 ref_offset(ref), tn->csize, ofs);
52 goto adj_acc;
55 ofs += adj;
56 len -= adj;
59 dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
60 ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
62 #ifndef __ECOS
63 /* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
64 * adding and jffs2_flash_read_end() interface. */
65 if (c->mtd->point) {
66 err = c->mtd->point(c->mtd, ofs, len, &retlen, &buffer);
67 if (!err && retlen < len) {
68 JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
69 c->mtd->unpoint(c->mtd, buffer, ofs, retlen);
70 } else if (err)
71 JFFS2_WARNING("MTD point failed: error code %d.\n", err);
72 else
73 pointed = 1; /* succefully pointed to device */
75 #endif
77 if (!pointed) {
78 buffer = kmalloc(len, GFP_KERNEL);
79 if (unlikely(!buffer))
80 return -ENOMEM;
82 /* TODO: this is very frequent pattern, make it a separate
83 * routine */
84 err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
85 if (err) {
86 JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
87 goto free_out;
90 if (retlen != len) {
91 JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
92 err = -EIO;
93 goto free_out;
97 /* Continue calculating CRC */
98 crc = crc32(tn->partial_crc, buffer, len);
99 if(!pointed)
100 kfree(buffer);
101 #ifndef __ECOS
102 else
103 c->mtd->unpoint(c->mtd, buffer, ofs, len);
104 #endif
106 if (crc != tn->data_crc) {
107 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
108 ref_offset(ref), tn->data_crc, crc);
109 return 1;
112 adj_acc:
113 jeb = &c->blocks[ref->flash_offset / c->sector_size];
114 len = ref_totlen(c, jeb, ref);
115 /* If it should be REF_NORMAL, it'll get marked as such when
116 we build the fragtree, shortly. No need to worry about GC
117 moving it while it's marked REF_PRISTINE -- GC won't happen
118 till we've finished checking every inode anyway. */
119 ref->flash_offset |= REF_PRISTINE;
121 * Mark the node as having been checked and fix the
122 * accounting accordingly.
124 spin_lock(&c->erase_completion_lock);
125 jeb->used_size += len;
126 jeb->unchecked_size -= len;
127 c->used_size += len;
128 c->unchecked_size -= len;
129 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
130 spin_unlock(&c->erase_completion_lock);
132 return 0;
134 free_out:
135 if(!pointed)
136 kfree(buffer);
137 #ifndef __ECOS
138 else
139 c->mtd->unpoint(c->mtd, buffer, ofs, len);
140 #endif
141 return err;
145 * Helper function for jffs2_add_older_frag_to_fragtree().
147 * Checks the node if we are in the checking stage.
149 static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
151 int ret;
153 BUG_ON(ref_obsolete(tn->fn->raw));
155 /* We only check the data CRC of unchecked nodes */
156 if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
157 return 0;
159 dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
160 tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
162 ret = check_node_data(c, tn);
163 if (unlikely(ret < 0)) {
164 JFFS2_ERROR("check_node_data() returned error: %d.\n",
165 ret);
166 } else if (unlikely(ret > 0)) {
167 dbg_readinode("CRC error, mark it obsolete.\n");
168 jffs2_mark_node_obsolete(c, tn->fn->raw);
171 return ret;
174 static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
176 struct rb_node *next;
177 struct jffs2_tmp_dnode_info *tn = NULL;
179 dbg_readinode("root %p, offset %d\n", tn_root, offset);
181 next = tn_root->rb_node;
183 while (next) {
184 tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);
186 if (tn->fn->ofs < offset)
187 next = tn->rb.rb_right;
188 else if (tn->fn->ofs >= offset)
189 next = tn->rb.rb_left;
190 else
191 break;
194 return tn;
198 static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
200 jffs2_mark_node_obsolete(c, tn->fn->raw);
201 jffs2_free_full_dnode(tn->fn);
202 jffs2_free_tmp_dnode_info(tn);
205 * This function is used when we read an inode. Data nodes arrive in
206 * arbitrary order -- they may be older or newer than the nodes which
207 * are already in the tree. Where overlaps occur, the older node can
208 * be discarded as long as the newer passes the CRC check. We don't
209 * bother to keep track of holes in this rbtree, and neither do we deal
210 * with frags -- we can have multiple entries starting at the same
211 * offset, and the one with the smallest length will come first in the
212 * ordering.
214 * Returns 0 if the node was handled (including marking it obsolete)
215 * < 0 an if error occurred
217 static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
218 struct jffs2_readinode_info *rii,
219 struct jffs2_tmp_dnode_info *tn)
221 uint32_t fn_end = tn->fn->ofs + tn->fn->size;
222 struct jffs2_tmp_dnode_info *this;
224 dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));
226 /* If a node has zero dsize, we only have to keep if it if it might be the
227 node with highest version -- i.e. the one which will end up as f->metadata.
228 Note that such nodes won't be REF_UNCHECKED since there are no data to
229 check anyway. */
230 if (!tn->fn->size) {
231 if (rii->mdata_tn) {
232 if (rii->mdata_tn->version < tn->version) {
233 /* We had a candidate mdata node already */
234 dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
235 jffs2_kill_tn(c, rii->mdata_tn);
236 } else {
237 dbg_readinode("kill new mdata with ver %d (older than existing %d\n",
238 tn->version, rii->mdata_tn->version);
239 jffs2_kill_tn(c, tn);
240 return 0;
243 rii->mdata_tn = tn;
244 dbg_readinode("keep new mdata with ver %d\n", tn->version);
245 return 0;
248 /* Find the earliest node which _may_ be relevant to this one */
249 this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
250 if (this) {
251 /* If the node is coincident with another at a lower address,
252 back up until the other node is found. It may be relevant */
253 while (this->overlapped)
254 this = tn_prev(this);
256 /* First node should never be marked overlapped */
257 BUG_ON(!this);
258 dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
261 while (this) {
262 if (this->fn->ofs > fn_end)
263 break;
264 dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
265 this->version, this->fn->ofs, this->fn->size);
267 if (this->version == tn->version) {
268 /* Version number collision means REF_PRISTINE GC. Accept either of them
269 as long as the CRC is correct. Check the one we have already... */
270 if (!check_tn_node(c, this)) {
271 /* The one we already had was OK. Keep it and throw away the new one */
272 dbg_readinode("Like old node. Throw away new\n");
273 jffs2_kill_tn(c, tn);
274 return 0;
275 } else {
276 /* Who cares if the new one is good; keep it for now anyway. */
277 dbg_readinode("Like new node. Throw away old\n");
278 rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
279 jffs2_kill_tn(c, this);
280 /* Same overlapping from in front and behind */
281 return 0;
284 if (this->version < tn->version &&
285 this->fn->ofs >= tn->fn->ofs &&
286 this->fn->ofs + this->fn->size <= fn_end) {
287 /* New node entirely overlaps 'this' */
288 if (check_tn_node(c, tn)) {
289 dbg_readinode("new node bad CRC\n");
290 jffs2_kill_tn(c, tn);
291 return 0;
293 /* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
294 while (this && this->fn->ofs + this->fn->size <= fn_end) {
295 struct jffs2_tmp_dnode_info *next = tn_next(this);
296 if (this->version < tn->version) {
297 tn_erase(this, &rii->tn_root);
298 dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
299 this->version, this->fn->ofs,
300 this->fn->ofs+this->fn->size);
301 jffs2_kill_tn(c, this);
303 this = next;
305 dbg_readinode("Done killing overlapped nodes\n");
306 continue;
308 if (this->version > tn->version &&
309 this->fn->ofs <= tn->fn->ofs &&
310 this->fn->ofs+this->fn->size >= fn_end) {
311 /* New node entirely overlapped by 'this' */
312 if (!check_tn_node(c, this)) {
313 dbg_readinode("Good CRC on old node. Kill new\n");
314 jffs2_kill_tn(c, tn);
315 return 0;
317 /* ... but 'this' was bad. Replace it... */
318 dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
319 tn_erase(this, &rii->tn_root);
320 jffs2_kill_tn(c, this);
321 break;
324 this = tn_next(this);
327 /* We neither completely obsoleted nor were completely
328 obsoleted by an earlier node. Insert into the tree */
330 struct rb_node *parent;
331 struct rb_node **link = &rii->tn_root.rb_node;
332 struct jffs2_tmp_dnode_info *insert_point = NULL;
334 while (*link) {
335 parent = *link;
336 insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
337 if (tn->fn->ofs > insert_point->fn->ofs)
338 link = &insert_point->rb.rb_right;
339 else if (tn->fn->ofs < insert_point->fn->ofs ||
340 tn->fn->size < insert_point->fn->size)
341 link = &insert_point->rb.rb_left;
342 else
343 link = &insert_point->rb.rb_right;
345 rb_link_node(&tn->rb, &insert_point->rb, link);
346 rb_insert_color(&tn->rb, &rii->tn_root);
349 /* If there's anything behind that overlaps us, note it */
350 this = tn_prev(tn);
351 if (this) {
352 while (1) {
353 if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
354 dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
355 this, this->version, this->fn->ofs,
356 this->fn->ofs+this->fn->size);
357 tn->overlapped = 1;
358 break;
360 if (!this->overlapped)
361 break;
362 this = tn_prev(this);
366 /* If the new node overlaps anything ahead, note it */
367 this = tn_next(tn);
368 while (this && this->fn->ofs < fn_end) {
369 this->overlapped = 1;
370 dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
371 this->version, this->fn->ofs,
372 this->fn->ofs+this->fn->size);
373 this = tn_next(this);
375 return 0;
378 /* Trivial function to remove the last node in the tree. Which by definition
379 has no right-hand -- so can be removed just by making its only child (if
380 any) take its place under its parent. */
381 static void eat_last(struct rb_root *root, struct rb_node *node)
383 struct rb_node *parent = rb_parent(node);
384 struct rb_node **link;
386 /* LAST! */
387 BUG_ON(node->rb_right);
389 if (!parent)
390 link = &root->rb_node;
391 else if (node == parent->rb_left)
392 link = &parent->rb_left;
393 else
394 link = &parent->rb_right;
396 *link = node->rb_left;
397 /* Colour doesn't matter now. Only the parent pointer. */
398 if (node->rb_left)
399 node->rb_left->rb_parent_color = node->rb_parent_color;
402 /* We put this in reverse order, so we can just use eat_last */
403 static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
405 struct rb_node **link = &ver_root->rb_node;
406 struct rb_node *parent = NULL;
407 struct jffs2_tmp_dnode_info *this_tn;
409 while (*link) {
410 parent = *link;
411 this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
413 if (tn->version > this_tn->version)
414 link = &parent->rb_left;
415 else
416 link = &parent->rb_right;
418 dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
419 rb_link_node(&tn->rb, parent, link);
420 rb_insert_color(&tn->rb, ver_root);
423 /* Build final, normal fragtree from tn tree. It doesn't matter which order
424 we add nodes to the real fragtree, as long as they don't overlap. And
425 having thrown away the majority of overlapped nodes as we went, there
426 really shouldn't be many sets of nodes which do overlap. If we start at
427 the end, we can use the overlap markers -- we can just eat nodes which
428 aren't overlapped, and when we encounter nodes which _do_ overlap we
429 sort them all into a temporary tree in version order before replaying them. */
430 static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
431 struct jffs2_inode_info *f,
432 struct jffs2_readinode_info *rii)
434 struct jffs2_tmp_dnode_info *pen, *last, *this;
435 struct rb_root ver_root = RB_ROOT;
436 uint32_t high_ver = 0;
438 if (rii->mdata_tn) {
439 dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
440 high_ver = rii->mdata_tn->version;
441 rii->latest_ref = rii->mdata_tn->fn->raw;
443 #ifdef JFFS2_DBG_READINODE_MESSAGES
444 this = tn_last(&rii->tn_root);
445 while (this) {
446 dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
447 this->fn->ofs+this->fn->size, this->overlapped);
448 this = tn_prev(this);
450 #endif
451 pen = tn_last(&rii->tn_root);
452 while ((last = pen)) {
453 pen = tn_prev(last);
455 eat_last(&rii->tn_root, &last->rb);
456 ver_insert(&ver_root, last);
458 if (unlikely(last->overlapped))
459 continue;
461 /* Now we have a bunch of nodes in reverse version
462 order, in the tree at ver_root. Most of the time,
463 there'll actually be only one node in the 'tree',
464 in fact. */
465 this = tn_last(&ver_root);
467 while (this) {
468 struct jffs2_tmp_dnode_info *vers_next;
469 int ret;
470 vers_next = tn_prev(this);
471 eat_last(&ver_root, &this->rb);
472 if (check_tn_node(c, this)) {
473 dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
474 this->version, this->fn->ofs,
475 this->fn->ofs+this->fn->size);
476 jffs2_kill_tn(c, this);
477 } else {
478 if (this->version > high_ver) {
479 /* Note that this is different from the other
480 highest_version, because this one is only
481 counting _valid_ nodes which could give the
482 latest inode metadata */
483 high_ver = this->version;
484 rii->latest_ref = this->fn->raw;
486 dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
487 this, this->version, this->fn->ofs,
488 this->fn->ofs+this->fn->size, this->overlapped);
490 ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
491 if (ret) {
492 /* Free the nodes in vers_root; let the caller
493 deal with the rest */
494 JFFS2_ERROR("Add node to tree failed %d\n", ret);
495 while (1) {
496 vers_next = tn_prev(this);
497 if (check_tn_node(c, this))
498 jffs2_mark_node_obsolete(c, this->fn->raw);
499 jffs2_free_full_dnode(this->fn);
500 jffs2_free_tmp_dnode_info(this);
501 this = vers_next;
502 if (!this)
503 break;
504 eat_last(&ver_root, &vers_next->rb);
506 return ret;
508 jffs2_free_tmp_dnode_info(this);
510 this = vers_next;
513 return 0;
516 static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
518 struct rb_node *this;
519 struct jffs2_tmp_dnode_info *tn;
521 this = list->rb_node;
523 /* Now at bottom of tree */
524 while (this) {
525 if (this->rb_left)
526 this = this->rb_left;
527 else if (this->rb_right)
528 this = this->rb_right;
529 else {
530 tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb);
531 jffs2_free_full_dnode(tn->fn);
532 jffs2_free_tmp_dnode_info(tn);
534 this = rb_parent(this);
535 if (!this)
536 break;
538 if (this->rb_left == &tn->rb)
539 this->rb_left = NULL;
540 else if (this->rb_right == &tn->rb)
541 this->rb_right = NULL;
542 else BUG();
545 list->rb_node = NULL;
548 static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
550 struct jffs2_full_dirent *next;
552 while (fd) {
553 next = fd->next;
554 jffs2_free_full_dirent(fd);
555 fd = next;
559 /* Returns first valid node after 'ref'. May return 'ref' */
560 static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
562 while (ref && ref->next_in_ino) {
563 if (!ref_obsolete(ref))
564 return ref;
565 dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
566 ref = ref->next_in_ino;
568 return NULL;
572 * Helper function for jffs2_get_inode_nodes().
573 * It is called every time an directory entry node is found.
575 * Returns: 0 on success;
576 * negative error code on failure.
578 static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
579 struct jffs2_raw_dirent *rd, size_t read,
580 struct jffs2_readinode_info *rii)
582 struct jffs2_full_dirent *fd;
583 uint32_t crc;
585 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
586 BUG_ON(ref_obsolete(ref));
588 crc = crc32(0, rd, sizeof(*rd) - 8);
589 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
590 JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
591 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
592 jffs2_mark_node_obsolete(c, ref);
593 return 0;
596 /* If we've never checked the CRCs on this node, check them now */
597 if (ref_flags(ref) == REF_UNCHECKED) {
598 struct jffs2_eraseblock *jeb;
599 int len;
601 /* Sanity check */
602 if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
603 JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
604 ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
605 jffs2_mark_node_obsolete(c, ref);
606 return 0;
609 jeb = &c->blocks[ref->flash_offset / c->sector_size];
610 len = ref_totlen(c, jeb, ref);
612 spin_lock(&c->erase_completion_lock);
613 jeb->used_size += len;
614 jeb->unchecked_size -= len;
615 c->used_size += len;
616 c->unchecked_size -= len;
617 ref->flash_offset = ref_offset(ref) | dirent_node_state(rd);
618 spin_unlock(&c->erase_completion_lock);
621 fd = jffs2_alloc_full_dirent(rd->nsize + 1);
622 if (unlikely(!fd))
623 return -ENOMEM;
625 fd->raw = ref;
626 fd->version = je32_to_cpu(rd->version);
627 fd->ino = je32_to_cpu(rd->ino);
628 fd->type = rd->type;
630 if (fd->version > rii->highest_version)
631 rii->highest_version = fd->version;
633 /* Pick out the mctime of the latest dirent */
634 if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
635 rii->mctime_ver = fd->version;
636 rii->latest_mctime = je32_to_cpu(rd->mctime);
640 * Copy as much of the name as possible from the raw
641 * dirent we've already read from the flash.
643 if (read > sizeof(*rd))
644 memcpy(&fd->name[0], &rd->name[0],
645 min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
647 /* Do we need to copy any more of the name directly from the flash? */
648 if (rd->nsize + sizeof(*rd) > read) {
649 /* FIXME: point() */
650 int err;
651 int already = read - sizeof(*rd);
653 err = jffs2_flash_read(c, (ref_offset(ref)) + read,
654 rd->nsize - already, &read, &fd->name[already]);
655 if (unlikely(read != rd->nsize - already) && likely(!err))
656 return -EIO;
658 if (unlikely(err)) {
659 JFFS2_ERROR("read remainder of name: error %d\n", err);
660 jffs2_free_full_dirent(fd);
661 return -EIO;
665 fd->nhash = full_name_hash(fd->name, rd->nsize);
666 fd->next = NULL;
667 fd->name[rd->nsize] = '\0';
670 * Wheee. We now have a complete jffs2_full_dirent structure, with
671 * the name in it and everything. Link it into the list
673 jffs2_add_fd_to_list(c, fd, &rii->fds);
675 return 0;
679 * Helper function for jffs2_get_inode_nodes().
680 * It is called every time an inode node is found.
682 * Returns: 0 on success (possibly after marking a bad node obsolete);
683 * negative error code on failure.
685 static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
686 struct jffs2_raw_inode *rd, int rdlen,
687 struct jffs2_readinode_info *rii)
689 struct jffs2_tmp_dnode_info *tn;
690 uint32_t len, csize;
691 int ret = 0;
692 uint32_t crc;
694 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
695 BUG_ON(ref_obsolete(ref));
697 crc = crc32(0, rd, sizeof(*rd) - 8);
698 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
699 JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
700 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
701 jffs2_mark_node_obsolete(c, ref);
702 return 0;
705 tn = jffs2_alloc_tmp_dnode_info();
706 if (!tn) {
707 JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
708 return -ENOMEM;
711 tn->partial_crc = 0;
712 csize = je32_to_cpu(rd->csize);
714 /* If we've never checked the CRCs on this node, check them now */
715 if (ref_flags(ref) == REF_UNCHECKED) {
717 /* Sanity checks */
718 if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
719 unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
720 JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
721 jffs2_dbg_dump_node(c, ref_offset(ref));
722 jffs2_mark_node_obsolete(c, ref);
723 goto free_out;
726 if (jffs2_is_writebuffered(c) && csize != 0) {
727 /* At this point we are supposed to check the data CRC
728 * of our unchecked node. But thus far, we do not
729 * know whether the node is valid or obsolete. To
730 * figure this out, we need to walk all the nodes of
731 * the inode and build the inode fragtree. We don't
732 * want to spend time checking data of nodes which may
733 * later be found to be obsolete. So we put off the full
734 * data CRC checking until we have read all the inode
735 * nodes and have started building the fragtree.
737 * The fragtree is being built starting with nodes
738 * having the highest version number, so we'll be able
739 * to detect whether a node is valid (i.e., it is not
740 * overlapped by a node with higher version) or not.
741 * And we'll be able to check only those nodes, which
742 * are not obsolete.
744 * Of course, this optimization only makes sense in case
745 * of NAND flashes (or other flashes with
746 * !jffs2_can_mark_obsolete()), since on NOR flashes
747 * nodes are marked obsolete physically.
749 * Since NAND flashes (or other flashes with
750 * jffs2_is_writebuffered(c)) are anyway read by
751 * fractions of c->wbuf_pagesize, and we have just read
752 * the node header, it is likely that the starting part
753 * of the node data is also read when we read the
754 * header. So we don't mind to check the CRC of the
755 * starting part of the data of the node now, and check
756 * the second part later (in jffs2_check_node_data()).
757 * Of course, we will not need to re-read and re-check
758 * the NAND page which we have just read. This is why we
759 * read the whole NAND page at jffs2_get_inode_nodes(),
760 * while we needed only the node header.
762 unsigned char *buf;
764 /* 'buf' will point to the start of data */
765 buf = (unsigned char *)rd + sizeof(*rd);
766 /* len will be the read data length */
767 len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
768 tn->partial_crc = crc32(0, buf, len);
770 dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);
772 /* If we actually calculated the whole data CRC
773 * and it is wrong, drop the node. */
774 if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
775 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
776 ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
777 jffs2_mark_node_obsolete(c, ref);
778 goto free_out;
781 } else if (csize == 0) {
783 * We checked the header CRC. If the node has no data, adjust
784 * the space accounting now. For other nodes this will be done
785 * later either when the node is marked obsolete or when its
786 * data is checked.
788 struct jffs2_eraseblock *jeb;
790 dbg_readinode("the node has no data.\n");
791 jeb = &c->blocks[ref->flash_offset / c->sector_size];
792 len = ref_totlen(c, jeb, ref);
794 spin_lock(&c->erase_completion_lock);
795 jeb->used_size += len;
796 jeb->unchecked_size -= len;
797 c->used_size += len;
798 c->unchecked_size -= len;
799 ref->flash_offset = ref_offset(ref) | REF_NORMAL;
800 spin_unlock(&c->erase_completion_lock);
804 tn->fn = jffs2_alloc_full_dnode();
805 if (!tn->fn) {
806 JFFS2_ERROR("alloc fn failed\n");
807 ret = -ENOMEM;
808 goto free_out;
811 tn->version = je32_to_cpu(rd->version);
812 tn->fn->ofs = je32_to_cpu(rd->offset);
813 tn->data_crc = je32_to_cpu(rd->data_crc);
814 tn->csize = csize;
815 tn->fn->raw = ref;
816 tn->overlapped = 0;
818 if (tn->version > rii->highest_version)
819 rii->highest_version = tn->version;
821 /* There was a bug where we wrote hole nodes out with
822 csize/dsize swapped. Deal with it */
823 if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
824 tn->fn->size = csize;
825 else // normal case...
826 tn->fn->size = je32_to_cpu(rd->dsize);
828 dbg_readinode("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
829 ref_offset(ref), je32_to_cpu(rd->version), je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);
831 ret = jffs2_add_tn_to_tree(c, rii, tn);
833 if (ret) {
834 jffs2_free_full_dnode(tn->fn);
835 free_out:
836 jffs2_free_tmp_dnode_info(tn);
837 return ret;
839 #ifdef JFFS2_DBG_READINODE_MESSAGES
840 dbg_readinode("After adding ver %d:\n", je32_to_cpu(rd->version));
841 tn = tn_first(&rii->tn_root);
842 while (tn) {
843 dbg_readinode("%p: v %d r 0x%x-0x%x ov %d\n",
844 tn, tn->version, tn->fn->ofs,
845 tn->fn->ofs+tn->fn->size, tn->overlapped);
846 tn = tn_next(tn);
848 #endif
849 return 0;
853 * Helper function for jffs2_get_inode_nodes().
854 * It is called every time an unknown node is found.
856 * Returns: 0 on success;
857 * negative error code on failure.
859 static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
861 /* We don't mark unknown nodes as REF_UNCHECKED */
862 if (ref_flags(ref) == REF_UNCHECKED) {
863 JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
864 ref_offset(ref));
865 JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
866 je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
867 je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
868 jffs2_mark_node_obsolete(c, ref);
869 return 0;
872 un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
874 switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
876 case JFFS2_FEATURE_INCOMPAT:
877 JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
878 je16_to_cpu(un->nodetype), ref_offset(ref));
879 /* EEP */
880 BUG();
881 break;
883 case JFFS2_FEATURE_ROCOMPAT:
884 JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
885 je16_to_cpu(un->nodetype), ref_offset(ref));
886 BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
887 break;
889 case JFFS2_FEATURE_RWCOMPAT_COPY:
890 JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
891 je16_to_cpu(un->nodetype), ref_offset(ref));
892 break;
894 case JFFS2_FEATURE_RWCOMPAT_DELETE:
895 JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
896 je16_to_cpu(un->nodetype), ref_offset(ref));
897 jffs2_mark_node_obsolete(c, ref);
898 return 0;
901 return 0;
905 * Helper function for jffs2_get_inode_nodes().
906 * The function detects whether more data should be read and reads it if yes.
908 * Returns: 0 on succes;
909 * negative error code on failure.
911 static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
912 int needed_len, int *rdlen, unsigned char *buf)
914 int err, to_read = needed_len - *rdlen;
915 size_t retlen;
916 uint32_t offs;
918 if (jffs2_is_writebuffered(c)) {
919 int rem = to_read % c->wbuf_pagesize;
921 if (rem)
922 to_read += c->wbuf_pagesize - rem;
925 /* We need to read more data */
926 offs = ref_offset(ref) + *rdlen;
928 dbg_readinode("read more %d bytes\n", to_read);
930 err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
931 if (err) {
932 JFFS2_ERROR("can not read %d bytes from 0x%08x, "
933 "error code: %d.\n", to_read, offs, err);
934 return err;
937 if (retlen < to_read) {
938 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
939 offs, retlen, to_read);
940 return -EIO;
943 *rdlen += to_read;
944 return 0;
947 /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
948 with this ino. Perform a preliminary ordering on data nodes, throwing away
949 those which are completely obsoleted by newer ones. The naïve approach we
950 use to take of just returning them _all_ in version order will cause us to
951 run out of memory in certain degenerate cases. */
952 static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
953 struct jffs2_readinode_info *rii)
955 struct jffs2_raw_node_ref *ref, *valid_ref;
956 unsigned char *buf = NULL;
957 union jffs2_node_union *node;
958 size_t retlen;
959 int len, err;
961 rii->mctime_ver = 0;
963 dbg_readinode("ino #%u\n", f->inocache->ino);
965 /* FIXME: in case of NOR and available ->point() this
966 * needs to be fixed. */
967 len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
968 buf = kmalloc(len, GFP_KERNEL);
969 if (!buf)
970 return -ENOMEM;
972 spin_lock(&c->erase_completion_lock);
973 valid_ref = jffs2_first_valid_node(f->inocache->nodes);
974 if (!valid_ref && f->inocache->ino != 1)
975 JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
976 while (valid_ref) {
977 /* We can hold a pointer to a non-obsolete node without the spinlock,
978 but _obsolete_ nodes may disappear at any time, if the block
979 they're in gets erased. So if we mark 'ref' obsolete while we're
980 not holding the lock, it can go away immediately. For that reason,
981 we find the next valid node first, before processing 'ref'.
983 ref = valid_ref;
984 valid_ref = jffs2_first_valid_node(ref->next_in_ino);
985 spin_unlock(&c->erase_completion_lock);
987 cond_resched();
990 * At this point we don't know the type of the node we're going
991 * to read, so we do not know the size of its header. In order
992 * to minimize the amount of flash IO we assume the header is
993 * of size = JFFS2_MIN_NODE_HEADER.
995 len = JFFS2_MIN_NODE_HEADER;
996 if (jffs2_is_writebuffered(c)) {
997 int end, rem;
1000 * We are about to read JFFS2_MIN_NODE_HEADER bytes,
1001 * but this flash has some minimal I/O unit. It is
1002 * possible that we'll need to read more soon, so read
1003 * up to the next min. I/O unit, in order not to
1004 * re-read the same min. I/O unit twice.
1006 end = ref_offset(ref) + len;
1007 rem = end % c->wbuf_pagesize;
1008 if (rem)
1009 end += c->wbuf_pagesize - rem;
1010 len = end - ref_offset(ref);
1013 dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));
1015 /* FIXME: point() */
1016 err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
1017 if (err) {
1018 JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err);
1019 goto free_out;
1022 if (retlen < len) {
1023 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
1024 err = -EIO;
1025 goto free_out;
1028 node = (union jffs2_node_union *)buf;
1030 /* No need to mask in the valid bit; it shouldn't be invalid */
1031 if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
1032 JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
1033 ref_offset(ref), je16_to_cpu(node->u.magic),
1034 je16_to_cpu(node->u.nodetype),
1035 je32_to_cpu(node->u.totlen),
1036 je32_to_cpu(node->u.hdr_crc));
1037 jffs2_dbg_dump_node(c, ref_offset(ref));
1038 jffs2_mark_node_obsolete(c, ref);
1039 goto cont;
1041 if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
1042 /* Not a JFFS2 node, whinge and move on */
1043 JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
1044 je16_to_cpu(node->u.magic), ref_offset(ref));
1045 jffs2_mark_node_obsolete(c, ref);
1046 goto cont;
1049 switch (je16_to_cpu(node->u.nodetype)) {
1051 case JFFS2_NODETYPE_DIRENT:
1053 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) &&
1054 len < sizeof(struct jffs2_raw_dirent)) {
1055 err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
1056 if (unlikely(err))
1057 goto free_out;
1060 err = read_direntry(c, ref, &node->d, retlen, rii);
1061 if (unlikely(err))
1062 goto free_out;
1064 break;
1066 case JFFS2_NODETYPE_INODE:
1068 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) &&
1069 len < sizeof(struct jffs2_raw_inode)) {
1070 err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
1071 if (unlikely(err))
1072 goto free_out;
1075 err = read_dnode(c, ref, &node->i, len, rii);
1076 if (unlikely(err))
1077 goto free_out;
1079 break;
1081 default:
1082 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) &&
1083 len < sizeof(struct jffs2_unknown_node)) {
1084 err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
1085 if (unlikely(err))
1086 goto free_out;
1089 err = read_unknown(c, ref, &node->u);
1090 if (unlikely(err))
1091 goto free_out;
1094 cont:
1095 spin_lock(&c->erase_completion_lock);
1098 spin_unlock(&c->erase_completion_lock);
1099 kfree(buf);
1101 f->highest_version = rii->highest_version;
1103 dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
1104 f->inocache->ino, rii->highest_version, rii->latest_mctime,
1105 rii->mctime_ver);
1106 return 0;
1108 free_out:
1109 jffs2_free_tmp_dnode_info_list(&rii->tn_root);
1110 jffs2_free_full_dirent_list(rii->fds);
1111 rii->fds = NULL;
1112 kfree(buf);
1113 return err;
1116 static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
1117 struct jffs2_inode_info *f,
1118 struct jffs2_raw_inode *latest_node)
1120 struct jffs2_readinode_info rii;
1121 uint32_t crc, new_size;
1122 size_t retlen;
1123 int ret;
1125 dbg_readinode("ino #%u nlink is %d\n", f->inocache->ino, f->inocache->nlink);
1127 memset(&rii, 0, sizeof(rii));
1129 /* Grab all nodes relevant to this ino */
1130 ret = jffs2_get_inode_nodes(c, f, &rii);
1132 if (ret) {
1133 JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
1134 if (f->inocache->state == INO_STATE_READING)
1135 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1136 return ret;
1139 ret = jffs2_build_inode_fragtree(c, f, &rii);
1140 if (ret) {
1141 JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
1142 f->inocache->ino, ret);
1143 if (f->inocache->state == INO_STATE_READING)
1144 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1145 jffs2_free_tmp_dnode_info_list(&rii.tn_root);
1146 /* FIXME: We could at least crc-check them all */
1147 if (rii.mdata_tn) {
1148 jffs2_free_full_dnode(rii.mdata_tn->fn);
1149 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1150 rii.mdata_tn = NULL;
1152 return ret;
1155 if (rii.mdata_tn) {
1156 if (rii.mdata_tn->fn->raw == rii.latest_ref) {
1157 f->metadata = rii.mdata_tn->fn;
1158 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1159 } else {
1160 jffs2_kill_tn(c, rii.mdata_tn);
1162 rii.mdata_tn = NULL;
1165 f->dents = rii.fds;
1167 jffs2_dbg_fragtree_paranoia_check_nolock(f);
1169 if (unlikely(!rii.latest_ref)) {
1170 /* No data nodes for this inode. */
1171 if (f->inocache->ino != 1) {
1172 JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
1173 if (!rii.fds) {
1174 if (f->inocache->state == INO_STATE_READING)
1175 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1176 return -EIO;
1178 JFFS2_NOTICE("but it has children so we fake some modes for it\n");
1180 latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
1181 latest_node->version = cpu_to_je32(0);
1182 latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
1183 latest_node->isize = cpu_to_je32(0);
1184 latest_node->gid = cpu_to_je16(0);
1185 latest_node->uid = cpu_to_je16(0);
1186 if (f->inocache->state == INO_STATE_READING)
1187 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1188 return 0;
1191 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
1192 if (ret || retlen != sizeof(*latest_node)) {
1193 JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
1194 ret, retlen, sizeof(*latest_node));
1195 /* FIXME: If this fails, there seems to be a memory leak. Find it. */
1196 up(&f->sem);
1197 jffs2_do_clear_inode(c, f);
1198 return ret?ret:-EIO;
1201 crc = crc32(0, latest_node, sizeof(*latest_node)-8);
1202 if (crc != je32_to_cpu(latest_node->node_crc)) {
1203 JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
1204 f->inocache->ino, ref_offset(rii.latest_ref));
1205 up(&f->sem);
1206 jffs2_do_clear_inode(c, f);
1207 return -EIO;
1210 switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
1211 case S_IFDIR:
1212 if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
1213 /* The times in the latest_node are actually older than
1214 mctime in the latest dirent. Cheat. */
1215 latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
1217 break;
1220 case S_IFREG:
1221 /* If it was a regular file, truncate it to the latest node's isize */
1222 new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
1223 if (new_size != je32_to_cpu(latest_node->isize)) {
1224 JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n",
1225 f->inocache->ino, je32_to_cpu(latest_node->isize), new_size);
1226 latest_node->isize = cpu_to_je32(new_size);
1228 break;
1230 case S_IFLNK:
1231 /* Hack to work around broken isize in old symlink code.
1232 Remove this when dwmw2 comes to his senses and stops
1233 symlinks from being an entirely gratuitous special
1234 case. */
1235 if (!je32_to_cpu(latest_node->isize))
1236 latest_node->isize = latest_node->dsize;
1238 if (f->inocache->state != INO_STATE_CHECKING) {
1239 /* Symlink's inode data is the target path. Read it and
1240 * keep in RAM to facilitate quick follow symlink
1241 * operation. */
1242 f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL);
1243 if (!f->target) {
1244 JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize));
1245 up(&f->sem);
1246 jffs2_do_clear_inode(c, f);
1247 return -ENOMEM;
1250 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
1251 je32_to_cpu(latest_node->csize), &retlen, (char *)f->target);
1253 if (ret || retlen != je32_to_cpu(latest_node->csize)) {
1254 if (retlen != je32_to_cpu(latest_node->csize))
1255 ret = -EIO;
1256 kfree(f->target);
1257 f->target = NULL;
1258 up(&f->sem);
1259 jffs2_do_clear_inode(c, f);
1260 return -ret;
1263 f->target[je32_to_cpu(latest_node->csize)] = '\0';
1264 dbg_readinode("symlink's target '%s' cached\n", f->target);
1267 /* fall through... */
1269 case S_IFBLK:
1270 case S_IFCHR:
1271 /* Certain inode types should have only one data node, and it's
1272 kept as the metadata node */
1273 if (f->metadata) {
1274 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
1275 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1276 up(&f->sem);
1277 jffs2_do_clear_inode(c, f);
1278 return -EIO;
1280 if (!frag_first(&f->fragtree)) {
1281 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
1282 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1283 up(&f->sem);
1284 jffs2_do_clear_inode(c, f);
1285 return -EIO;
1287 /* ASSERT: f->fraglist != NULL */
1288 if (frag_next(frag_first(&f->fragtree))) {
1289 JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
1290 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1291 /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
1292 up(&f->sem);
1293 jffs2_do_clear_inode(c, f);
1294 return -EIO;
1296 /* OK. We're happy */
1297 f->metadata = frag_first(&f->fragtree)->node;
1298 jffs2_free_node_frag(frag_first(&f->fragtree));
1299 f->fragtree = RB_ROOT;
1300 break;
1302 if (f->inocache->state == INO_STATE_READING)
1303 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1305 return 0;
1308 /* Scan the list of all nodes present for this ino, build map of versions, etc. */
1309 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
1310 uint32_t ino, struct jffs2_raw_inode *latest_node)
1312 dbg_readinode("read inode #%u\n", ino);
1314 retry_inocache:
1315 spin_lock(&c->inocache_lock);
1316 f->inocache = jffs2_get_ino_cache(c, ino);
1318 if (f->inocache) {
1319 /* Check its state. We may need to wait before we can use it */
1320 switch(f->inocache->state) {
1321 case INO_STATE_UNCHECKED:
1322 case INO_STATE_CHECKEDABSENT:
1323 f->inocache->state = INO_STATE_READING;
1324 break;
1326 case INO_STATE_CHECKING:
1327 case INO_STATE_GC:
1328 /* If it's in either of these states, we need
1329 to wait for whoever's got it to finish and
1330 put it back. */
1331 dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
1332 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
1333 goto retry_inocache;
1335 case INO_STATE_READING:
1336 case INO_STATE_PRESENT:
1337 /* Eep. This should never happen. It can
1338 happen if Linux calls read_inode() again
1339 before clear_inode() has finished though. */
1340 JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
1341 /* Fail. That's probably better than allowing it to succeed */
1342 f->inocache = NULL;
1343 break;
1345 default:
1346 BUG();
1349 spin_unlock(&c->inocache_lock);
1351 if (!f->inocache && ino == 1) {
1352 /* Special case - no root inode on medium */
1353 f->inocache = jffs2_alloc_inode_cache();
1354 if (!f->inocache) {
1355 JFFS2_ERROR("cannot allocate inocache for root inode\n");
1356 return -ENOMEM;
1358 dbg_readinode("creating inocache for root inode\n");
1359 memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
1360 f->inocache->ino = f->inocache->nlink = 1;
1361 f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
1362 f->inocache->state = INO_STATE_READING;
1363 jffs2_add_ino_cache(c, f->inocache);
1365 if (!f->inocache) {
1366 JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino);
1367 return -ENOENT;
1370 return jffs2_do_read_inode_internal(c, f, latest_node);
1373 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
1375 struct jffs2_raw_inode n;
1376 struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
1377 int ret;
1379 if (!f)
1380 return -ENOMEM;
1382 init_MUTEX_LOCKED(&f->sem);
1383 f->inocache = ic;
1385 ret = jffs2_do_read_inode_internal(c, f, &n);
1386 if (!ret) {
1387 up(&f->sem);
1388 jffs2_do_clear_inode(c, f);
1390 kfree (f);
1391 return ret;
1394 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
1396 struct jffs2_full_dirent *fd, *fds;
1397 int deleted;
1399 jffs2_clear_acl(f);
1400 jffs2_xattr_delete_inode(c, f->inocache);
1401 down(&f->sem);
1402 deleted = f->inocache && !f->inocache->nlink;
1404 if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
1405 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
1407 if (f->metadata) {
1408 if (deleted)
1409 jffs2_mark_node_obsolete(c, f->metadata->raw);
1410 jffs2_free_full_dnode(f->metadata);
1413 jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
1415 if (f->target) {
1416 kfree(f->target);
1417 f->target = NULL;
1420 fds = f->dents;
1421 while(fds) {
1422 fd = fds;
1423 fds = fd->next;
1424 jffs2_free_full_dirent(fd);
1427 if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
1428 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1429 if (f->inocache->nodes == (void *)f->inocache)
1430 jffs2_del_ino_cache(c, f->inocache);
1433 up(&f->sem);