1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <linux/threads.h>
18 #include <asm/paravirt.h>
20 #include <linux/bitops.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
26 struct vm_area_struct
;
28 extern pgd_t swapper_pg_dir
[1024];
29 <<<<<<< HEAD
:include
/asm-x86
/pgtable_32
.h
30 extern struct kmem_cache
*pmd_cache
;
31 void check_pgt_cache(void);
33 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:include
/asm-x86
/pgtable_32
.h
35 <<<<<<< HEAD
:include
/asm-x86
/pgtable_32
.h
36 static inline void pgtable_cache_init(void) {}
38 static inline void pgtable_cache_init(void) { }
39 static inline void check_pgt_cache(void) { }
40 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:include
/asm-x86
/pgtable_32
.h
41 void paging_init(void);
45 * The Linux x86 paging architecture is 'compile-time dual-mode', it
46 * implements both the traditional 2-level x86 page tables and the
47 * newer 3-level PAE-mode page tables.
50 # include <asm/pgtable-3level-defs.h>
51 # define PMD_SIZE (1UL << PMD_SHIFT)
52 # define PMD_MASK (~(PMD_SIZE-1))
54 # include <asm/pgtable-2level-defs.h>
57 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
58 #define PGDIR_MASK (~(PGDIR_SIZE-1))
60 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
61 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
63 /* Just any arbitrary offset to the start of the vmalloc VM area: the
64 * current 8MB value just means that there will be a 8MB "hole" after the
65 * physical memory until the kernel virtual memory starts. That means that
66 * any out-of-bounds memory accesses will hopefully be caught.
67 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
68 * area for the same reason. ;)
70 #define VMALLOC_OFFSET (8*1024*1024)
71 #define VMALLOC_START (((unsigned long) high_memory + \
72 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
74 #define LAST_PKMAP 512
76 #define LAST_PKMAP 1024
79 #define PKMAP_BASE ((FIXADDR_BOOT_START - PAGE_SIZE*(LAST_PKMAP + 1)) & PMD_MASK)
82 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
84 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
88 * Define this if things work differently on an i386 and an i486:
89 * it will (on an i486) warn about kernel memory accesses that are
90 * done without a 'access_ok(VERIFY_WRITE,..)'
94 /* The boot page tables (all created as a single array) */
95 extern unsigned long pg0
[];
97 #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
99 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
100 #define pmd_none(x) (!(unsigned long)pmd_val(x))
101 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
102 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
105 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
107 #ifdef CONFIG_X86_PAE
108 # include <asm/pgtable-3level.h>
110 # include <asm/pgtable-2level.h>
114 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
116 * dst - pointer to pgd range anwhere on a pgd page
118 * count - the number of pgds to copy.
120 * dst and src can be on the same page, but the range must not overlap,
121 * and must not cross a page boundary.
123 static inline void clone_pgd_range(pgd_t
*dst
, pgd_t
*src
, int count
)
125 memcpy(dst
, src
, count
* sizeof(pgd_t
));
129 * Macro to mark a page protection value as "uncacheable". On processors which do not support
130 * it, this is a no-op.
132 #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
133 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
136 * Conversion functions: convert a page and protection to a page entry,
137 * and a page entry and page directory to the page they refer to.
140 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
143 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
145 * this macro returns the index of the entry in the pgd page which would
146 * control the given virtual address
148 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
149 #define pgd_index_k(addr) pgd_index(addr)
152 * pgd_offset() returns a (pgd_t *)
153 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
155 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
158 * a shortcut which implies the use of the kernel's pgd, instead
161 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
163 static inline int pud_large(pud_t pud
) { return 0; }
166 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
168 * this macro returns the index of the entry in the pmd page which would
169 * control the given virtual address
171 #define pmd_index(address) \
172 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
175 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
177 * this macro returns the index of the entry in the pte page which would
178 * control the given virtual address
180 #define pte_index(address) \
181 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
182 #define pte_offset_kernel(dir, address) \
183 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
185 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
187 #define pmd_page_vaddr(pmd) \
188 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
190 #if defined(CONFIG_HIGHPTE)
191 #define pte_offset_map(dir, address) \
192 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
193 #define pte_offset_map_nested(dir, address) \
194 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
195 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
196 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
198 #define pte_offset_map(dir, address) \
199 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
200 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
201 #define pte_unmap(pte) do { } while (0)
202 #define pte_unmap_nested(pte) do { } while (0)
205 /* Clear a kernel PTE and flush it from the TLB */
206 #define kpte_clear_flush(ptep, vaddr) \
208 pte_clear(&init_mm, vaddr, ptep); \
209 __flush_tlb_one(vaddr); \
213 * The i386 doesn't have any external MMU info: the kernel page
214 * tables contain all the necessary information.
216 #define update_mmu_cache(vma,address,pte) do { } while (0)
218 void native_pagetable_setup_start(pgd_t
*base
);
219 void native_pagetable_setup_done(pgd_t
*base
);
221 #ifndef CONFIG_PARAVIRT
222 static inline void paravirt_pagetable_setup_start(pgd_t
*base
)
224 native_pagetable_setup_start(base
);
227 static inline void paravirt_pagetable_setup_done(pgd_t
*base
)
229 native_pagetable_setup_done(base
);
231 #endif /* !CONFIG_PARAVIRT */
233 #endif /* !__ASSEMBLY__ */
236 * kern_addr_valid() is (1) for FLATMEM and (0) for
237 * SPARSEMEM and DISCONTIGMEM
239 #ifdef CONFIG_FLATMEM
240 #define kern_addr_valid(addr) (1)
242 #define kern_addr_valid(kaddr) (0)
245 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
246 remap_pfn_range(vma, vaddr, pfn, size, prot)
248 #endif /* _I386_PGTABLE_H */