4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak
)) sched_clock(void)
80 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
124 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
133 sg
->__cpu_power
+= val
;
134 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
138 static inline int rt_policy(int policy
)
140 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
145 static inline int task_has_rt_policy(struct task_struct
*p
)
147 return rt_policy(p
->policy
);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array
{
154 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
155 struct list_head queue
[MAX_RT_PRIO
];
158 #ifdef CONFIG_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups
);
166 /* task group related information */
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css
;
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity
**se
;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq
**cfs_rq
;
177 <<<<<<< HEAD
:kernel
/sched
.c
180 * shares assigned to a task group governs how much of cpu bandwidth
181 * is allocated to the group. The more shares a group has, the more is
182 * the cpu bandwidth allocated to it.
184 * For ex, lets say that there are three task groups, A, B and C which
185 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
186 * cpu bandwidth allocated by the scheduler to task groups A, B and C
189 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
190 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
191 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
193 * The weight assigned to a task group's schedulable entities on every
194 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
195 * group's shares. For ex: lets say that task group A has been
196 * assigned shares of 1000 and there are two CPUs in a system. Then,
198 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
200 * Note: It's not necessary that each of a task's group schedulable
201 * entity have the same weight on all CPUs. If the group
202 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
203 * better distribution of weight could be:
205 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
206 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
208 * rebalance_shares() is responsible for distributing the shares of a
209 * task groups like this among the group's schedulable entities across
214 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
215 unsigned long shares
;
218 #ifdef CONFIG_RT_GROUP_SCHED
219 struct sched_rt_entity
**rt_se
;
220 struct rt_rq
**rt_rq
;
226 struct list_head list
;
229 #ifdef CONFIG_FAIR_GROUP_SCHED
230 /* Default task group's sched entity on each cpu */
231 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
232 /* Default task group's cfs_rq on each cpu */
233 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
235 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
236 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
239 #ifdef CONFIG_RT_GROUP_SCHED
240 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
241 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
243 static struct sched_rt_entity
*init_sched_rt_entity_p
[NR_CPUS
];
244 static struct rt_rq
*init_rt_rq_p
[NR_CPUS
];
247 /* task_group_lock serializes add/remove of task groups and also changes to
248 * a task group's cpu shares.
250 static DEFINE_SPINLOCK(task_group_lock
);
252 /* doms_cur_mutex serializes access to doms_cur[] array */
253 static DEFINE_MUTEX(doms_cur_mutex
);
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256 <<<<<<< HEAD
:kernel
/sched
.c
258 /* kernel thread that runs rebalance_shares() periodically */
259 static struct task_struct
*lb_monitor_task
;
260 static int load_balance_monitor(void *unused
);
263 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
);
266 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
267 #ifdef CONFIG_USER_SCHED
268 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
270 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
273 <<<<<<< HEAD
:kernel
/sched
.c
274 #define MIN_GROUP_SHARES 2
277 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
278 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
281 /* Default task group.
282 * Every task in system belong to this group at bootup.
284 struct task_group init_task_group
= {
285 #ifdef CONFIG_FAIR_GROUP_SCHED
286 .se
= init_sched_entity_p
,
287 .cfs_rq
= init_cfs_rq_p
,
290 #ifdef CONFIG_RT_GROUP_SCHED
291 .rt_se
= init_sched_rt_entity_p
,
292 .rt_rq
= init_rt_rq_p
,
296 /* return group to which a task belongs */
297 static inline struct task_group
*task_group(struct task_struct
*p
)
299 struct task_group
*tg
;
301 #ifdef CONFIG_USER_SCHED
303 #elif defined(CONFIG_CGROUP_SCHED)
304 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
305 struct task_group
, css
);
307 tg
= &init_task_group
;
312 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
313 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
315 #ifdef CONFIG_FAIR_GROUP_SCHED
316 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
317 p
->se
.parent
= task_group(p
)->se
[cpu
];
320 #ifdef CONFIG_RT_GROUP_SCHED
321 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
322 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
326 static inline void lock_doms_cur(void)
328 mutex_lock(&doms_cur_mutex
);
331 static inline void unlock_doms_cur(void)
333 mutex_unlock(&doms_cur_mutex
);
338 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
339 static inline void lock_doms_cur(void) { }
340 static inline void unlock_doms_cur(void) { }
342 #endif /* CONFIG_GROUP_SCHED */
344 /* CFS-related fields in a runqueue */
346 struct load_weight load
;
347 unsigned long nr_running
;
352 struct rb_root tasks_timeline
;
353 struct rb_node
*rb_leftmost
;
354 struct rb_node
*rb_load_balance_curr
;
355 /* 'curr' points to currently running entity on this cfs_rq.
356 * It is set to NULL otherwise (i.e when none are currently running).
358 <<<<<<< HEAD
:kernel
/sched
.c
359 struct sched_entity
*curr
;
361 struct sched_entity
*curr
, *next
;
362 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
364 unsigned long nr_spread_over
;
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
370 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
371 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
372 * (like users, containers etc.)
374 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
375 * list is used during load balance.
377 struct list_head leaf_cfs_rq_list
;
378 struct task_group
*tg
; /* group that "owns" this runqueue */
382 /* Real-Time classes' related field in a runqueue: */
384 struct rt_prio_array active
;
385 unsigned long rt_nr_running
;
386 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
387 int highest_prio
; /* highest queued rt task prio */
390 unsigned long rt_nr_migratory
;
396 #ifdef CONFIG_RT_GROUP_SCHED
397 unsigned long rt_nr_boosted
;
400 struct list_head leaf_rt_rq_list
;
401 struct task_group
*tg
;
402 struct sched_rt_entity
*rt_se
;
409 * We add the notion of a root-domain which will be used to define per-domain
410 * variables. Each exclusive cpuset essentially defines an island domain by
411 * fully partitioning the member cpus from any other cpuset. Whenever a new
412 * exclusive cpuset is created, we also create and attach a new root-domain
422 * The "RT overload" flag: it gets set if a CPU has more than
423 * one runnable RT task.
430 * By default the system creates a single root-domain with all cpus as
431 * members (mimicking the global state we have today).
433 static struct root_domain def_root_domain
;
438 * This is the main, per-CPU runqueue data structure.
440 * Locking rule: those places that want to lock multiple runqueues
441 * (such as the load balancing or the thread migration code), lock
442 * acquire operations must be ordered by ascending &runqueue.
449 * nr_running and cpu_load should be in the same cacheline because
450 * remote CPUs use both these fields when doing load calculation.
452 unsigned long nr_running
;
453 #define CPU_LOAD_IDX_MAX 5
454 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
455 unsigned char idle_at_tick
;
457 unsigned char in_nohz_recently
;
459 /* capture load from *all* tasks on this cpu: */
460 struct load_weight load
;
461 unsigned long nr_load_updates
;
466 u64 rt_period_expire
;
469 #ifdef CONFIG_FAIR_GROUP_SCHED
470 /* list of leaf cfs_rq on this cpu: */
471 struct list_head leaf_cfs_rq_list
;
473 #ifdef CONFIG_RT_GROUP_SCHED
474 struct list_head leaf_rt_rq_list
;
478 * This is part of a global counter where only the total sum
479 * over all CPUs matters. A task can increase this counter on
480 * one CPU and if it got migrated afterwards it may decrease
481 * it on another CPU. Always updated under the runqueue lock:
483 unsigned long nr_uninterruptible
;
485 struct task_struct
*curr
, *idle
;
486 unsigned long next_balance
;
487 struct mm_struct
*prev_mm
;
489 u64 clock
, prev_clock_raw
;
492 unsigned int clock_warps
, clock_overflows
, clock_underflows
;
494 unsigned int clock_deep_idle_events
;
500 struct root_domain
*rd
;
501 struct sched_domain
*sd
;
503 /* For active balancing */
506 /* cpu of this runqueue: */
509 struct task_struct
*migration_thread
;
510 struct list_head migration_queue
;
513 #ifdef CONFIG_SCHED_HRTICK
514 unsigned long hrtick_flags
;
515 ktime_t hrtick_expire
;
516 struct hrtimer hrtick_timer
;
519 #ifdef CONFIG_SCHEDSTATS
521 struct sched_info rq_sched_info
;
523 /* sys_sched_yield() stats */
524 unsigned int yld_exp_empty
;
525 unsigned int yld_act_empty
;
526 unsigned int yld_both_empty
;
527 unsigned int yld_count
;
529 /* schedule() stats */
530 unsigned int sched_switch
;
531 unsigned int sched_count
;
532 unsigned int sched_goidle
;
534 /* try_to_wake_up() stats */
535 unsigned int ttwu_count
;
536 unsigned int ttwu_local
;
539 unsigned int bkl_count
;
541 struct lock_class_key rq_lock_key
;
544 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
546 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
548 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
551 static inline int cpu_of(struct rq
*rq
)
561 * Update the per-runqueue clock, as finegrained as the platform can give
562 * us, but without assuming monotonicity, etc.:
564 static void __update_rq_clock(struct rq
*rq
)
566 u64 prev_raw
= rq
->prev_clock_raw
;
567 u64 now
= sched_clock();
568 s64 delta
= now
- prev_raw
;
569 u64 clock
= rq
->clock
;
571 #ifdef CONFIG_SCHED_DEBUG
572 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
575 * Protect against sched_clock() occasionally going backwards:
577 if (unlikely(delta
< 0)) {
582 * Catch too large forward jumps too:
584 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
585 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
586 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
589 rq
->clock_overflows
++;
591 if (unlikely(delta
> rq
->clock_max_delta
))
592 rq
->clock_max_delta
= delta
;
597 rq
->prev_clock_raw
= now
;
601 static void update_rq_clock(struct rq
*rq
)
603 if (likely(smp_processor_id() == cpu_of(rq
)))
604 __update_rq_clock(rq
);
608 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
609 * See detach_destroy_domains: synchronize_sched for details.
611 * The domain tree of any CPU may only be accessed from within
612 * preempt-disabled sections.
614 #define for_each_domain(cpu, __sd) \
615 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
617 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
618 #define this_rq() (&__get_cpu_var(runqueues))
619 #define task_rq(p) cpu_rq(task_cpu(p))
620 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
622 unsigned long rt_needs_cpu(int cpu
)
624 struct rq
*rq
= cpu_rq(cpu
);
627 if (!rq
->rt_throttled
)
630 if (rq
->clock
> rq
->rt_period_expire
)
633 delta
= rq
->rt_period_expire
- rq
->clock
;
634 do_div(delta
, NSEC_PER_SEC
/ HZ
);
636 return (unsigned long)delta
;
640 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
642 #ifdef CONFIG_SCHED_DEBUG
643 # define const_debug __read_mostly
645 # define const_debug static const
649 * Debugging: various feature bits
652 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
653 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
654 SCHED_FEAT_START_DEBIT
= 4,
655 SCHED_FEAT_TREE_AVG
= 8,
656 SCHED_FEAT_APPROX_AVG
= 16,
657 SCHED_FEAT_HRTICK
= 32,
658 SCHED_FEAT_DOUBLE_TICK
= 64,
661 const_debug
unsigned int sysctl_sched_features
=
662 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
663 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
664 SCHED_FEAT_START_DEBIT
* 1 |
665 SCHED_FEAT_TREE_AVG
* 0 |
666 SCHED_FEAT_APPROX_AVG
* 0 |
667 SCHED_FEAT_HRTICK
* 1 |
668 SCHED_FEAT_DOUBLE_TICK
* 0;
670 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
673 * Number of tasks to iterate in a single balance run.
674 * Limited because this is done with IRQs disabled.
676 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
679 * period over which we measure -rt task cpu usage in us.
682 unsigned int sysctl_sched_rt_period
= 1000000;
684 <<<<<<< HEAD
:kernel
/sched
.c
686 static __read_mostly
int scheduler_running
;
688 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
690 * part of the period that we allow rt tasks to run in us.
693 int sysctl_sched_rt_runtime
= 950000;
696 * single value that denotes runtime == period, ie unlimited time.
698 #define RUNTIME_INF ((u64)~0ULL)
701 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
702 * clock constructed from sched_clock():
704 unsigned long long cpu_clock(int cpu
)
706 unsigned long long now
;
710 <<<<<<< HEAD
:kernel
/sched
.c
711 local_irq_save(flags
);
714 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
716 * Only call sched_clock() if the scheduler has already been
717 * initialized (some code might call cpu_clock() very early):
719 <<<<<<< HEAD
:kernel
/sched
.c
723 if (unlikely(!scheduler_running
))
726 local_irq_save(flags
);
729 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
731 local_irq_restore(flags
);
735 EXPORT_SYMBOL_GPL(cpu_clock
);
737 #ifndef prepare_arch_switch
738 # define prepare_arch_switch(next) do { } while (0)
740 #ifndef finish_arch_switch
741 # define finish_arch_switch(prev) do { } while (0)
744 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
746 return rq
->curr
== p
;
749 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
750 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
752 return task_current(rq
, p
);
755 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
759 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
761 #ifdef CONFIG_DEBUG_SPINLOCK
762 /* this is a valid case when another task releases the spinlock */
763 rq
->lock
.owner
= current
;
766 * If we are tracking spinlock dependencies then we have to
767 * fix up the runqueue lock - which gets 'carried over' from
770 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
772 spin_unlock_irq(&rq
->lock
);
775 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
776 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
781 return task_current(rq
, p
);
785 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
789 * We can optimise this out completely for !SMP, because the
790 * SMP rebalancing from interrupt is the only thing that cares
795 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
796 spin_unlock_irq(&rq
->lock
);
798 spin_unlock(&rq
->lock
);
802 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
806 * After ->oncpu is cleared, the task can be moved to a different CPU.
807 * We must ensure this doesn't happen until the switch is completely
813 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
817 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
820 * __task_rq_lock - lock the runqueue a given task resides on.
821 * Must be called interrupts disabled.
823 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
827 struct rq
*rq
= task_rq(p
);
828 spin_lock(&rq
->lock
);
829 if (likely(rq
== task_rq(p
)))
831 spin_unlock(&rq
->lock
);
836 * task_rq_lock - lock the runqueue a given task resides on and disable
837 * interrupts. Note the ordering: we can safely lookup the task_rq without
838 * explicitly disabling preemption.
840 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
846 local_irq_save(*flags
);
848 spin_lock(&rq
->lock
);
849 if (likely(rq
== task_rq(p
)))
851 spin_unlock_irqrestore(&rq
->lock
, *flags
);
855 static void __task_rq_unlock(struct rq
*rq
)
858 spin_unlock(&rq
->lock
);
861 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
864 spin_unlock_irqrestore(&rq
->lock
, *flags
);
868 * this_rq_lock - lock this runqueue and disable interrupts.
870 static struct rq
*this_rq_lock(void)
877 spin_lock(&rq
->lock
);
883 * We are going deep-idle (irqs are disabled):
885 void sched_clock_idle_sleep_event(void)
887 struct rq
*rq
= cpu_rq(smp_processor_id());
889 spin_lock(&rq
->lock
);
890 __update_rq_clock(rq
);
891 spin_unlock(&rq
->lock
);
892 rq
->clock_deep_idle_events
++;
894 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
897 * We just idled delta nanoseconds (called with irqs disabled):
899 void sched_clock_idle_wakeup_event(u64 delta_ns
)
901 struct rq
*rq
= cpu_rq(smp_processor_id());
902 u64 now
= sched_clock();
904 rq
->idle_clock
+= delta_ns
;
906 * Override the previous timestamp and ignore all
907 * sched_clock() deltas that occured while we idled,
908 * and use the PM-provided delta_ns to advance the
911 spin_lock(&rq
->lock
);
912 rq
->prev_clock_raw
= now
;
913 rq
->clock
+= delta_ns
;
914 spin_unlock(&rq
->lock
);
915 touch_softlockup_watchdog();
917 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
919 static void __resched_task(struct task_struct
*p
, int tif_bit
);
921 static inline void resched_task(struct task_struct
*p
)
923 __resched_task(p
, TIF_NEED_RESCHED
);
926 #ifdef CONFIG_SCHED_HRTICK
928 * Use HR-timers to deliver accurate preemption points.
930 * Its all a bit involved since we cannot program an hrt while holding the
931 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
934 * When we get rescheduled we reprogram the hrtick_timer outside of the
937 static inline void resched_hrt(struct task_struct
*p
)
939 __resched_task(p
, TIF_HRTICK_RESCHED
);
942 static inline void resched_rq(struct rq
*rq
)
946 spin_lock_irqsave(&rq
->lock
, flags
);
947 resched_task(rq
->curr
);
948 spin_unlock_irqrestore(&rq
->lock
, flags
);
952 HRTICK_SET
, /* re-programm hrtick_timer */
953 HRTICK_RESET
, /* not a new slice */
958 * - enabled by features
959 * - hrtimer is actually high res
961 static inline int hrtick_enabled(struct rq
*rq
)
963 if (!sched_feat(HRTICK
))
965 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
969 * Called to set the hrtick timer state.
971 * called with rq->lock held and irqs disabled
973 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
975 assert_spin_locked(&rq
->lock
);
978 * preempt at: now + delay
981 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
983 * indicate we need to program the timer
985 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
987 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
990 * New slices are called from the schedule path and don't need a
994 resched_hrt(rq
->curr
);
997 static void hrtick_clear(struct rq
*rq
)
999 if (hrtimer_active(&rq
->hrtick_timer
))
1000 hrtimer_cancel(&rq
->hrtick_timer
);
1004 * Update the timer from the possible pending state.
1006 static void hrtick_set(struct rq
*rq
)
1010 unsigned long flags
;
1012 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1014 spin_lock_irqsave(&rq
->lock
, flags
);
1015 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1016 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1017 time
= rq
->hrtick_expire
;
1018 clear_thread_flag(TIF_HRTICK_RESCHED
);
1019 spin_unlock_irqrestore(&rq
->lock
, flags
);
1022 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
1023 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1033 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1035 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1037 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1039 spin_lock(&rq
->lock
);
1040 __update_rq_clock(rq
);
1041 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1042 spin_unlock(&rq
->lock
);
1044 return HRTIMER_NORESTART
;
1047 static inline void init_rq_hrtick(struct rq
*rq
)
1049 rq
->hrtick_flags
= 0;
1050 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1051 rq
->hrtick_timer
.function
= hrtick
;
1052 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1055 void hrtick_resched(void)
1058 unsigned long flags
;
1060 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1063 local_irq_save(flags
);
1064 rq
= cpu_rq(smp_processor_id());
1066 local_irq_restore(flags
);
1069 static inline void hrtick_clear(struct rq
*rq
)
1073 static inline void hrtick_set(struct rq
*rq
)
1077 static inline void init_rq_hrtick(struct rq
*rq
)
1081 void hrtick_resched(void)
1087 * resched_task - mark a task 'to be rescheduled now'.
1089 * On UP this means the setting of the need_resched flag, on SMP it
1090 * might also involve a cross-CPU call to trigger the scheduler on
1095 #ifndef tsk_is_polling
1096 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1099 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1103 assert_spin_locked(&task_rq(p
)->lock
);
1105 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1108 set_tsk_thread_flag(p
, tif_bit
);
1111 if (cpu
== smp_processor_id())
1114 /* NEED_RESCHED must be visible before we test polling */
1116 if (!tsk_is_polling(p
))
1117 smp_send_reschedule(cpu
);
1120 static void resched_cpu(int cpu
)
1122 struct rq
*rq
= cpu_rq(cpu
);
1123 unsigned long flags
;
1125 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1127 resched_task(cpu_curr(cpu
));
1128 spin_unlock_irqrestore(&rq
->lock
, flags
);
1131 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1133 assert_spin_locked(&task_rq(p
)->lock
);
1134 set_tsk_thread_flag(p
, tif_bit
);
1138 #if BITS_PER_LONG == 32
1139 # define WMULT_CONST (~0UL)
1141 # define WMULT_CONST (1UL << 32)
1144 #define WMULT_SHIFT 32
1147 * Shift right and round:
1149 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1151 static unsigned long
1152 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1153 struct load_weight
*lw
)
1157 if (unlikely(!lw
->inv_weight
))
1158 <<<<<<< HEAD
:kernel
/sched
.c
1159 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
1161 lw
->inv_weight
= (WMULT_CONST
-lw
->weight
/2) / (lw
->weight
+1);
1162 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1164 tmp
= (u64
)delta_exec
* weight
;
1166 * Check whether we'd overflow the 64-bit multiplication:
1168 if (unlikely(tmp
> WMULT_CONST
))
1169 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1172 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1174 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1177 static inline unsigned long
1178 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
1180 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
1183 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1186 <<<<<<< HEAD
:kernel
/sched
.c
1189 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1192 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1195 <<<<<<< HEAD
:kernel
/sched
.c
1198 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1202 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1203 * of tasks with abnormal "nice" values across CPUs the contribution that
1204 * each task makes to its run queue's load is weighted according to its
1205 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1206 * scaled version of the new time slice allocation that they receive on time
1210 #define WEIGHT_IDLEPRIO 2
1211 #define WMULT_IDLEPRIO (1 << 31)
1214 * Nice levels are multiplicative, with a gentle 10% change for every
1215 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1216 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1217 * that remained on nice 0.
1219 * The "10% effect" is relative and cumulative: from _any_ nice level,
1220 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1221 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1222 * If a task goes up by ~10% and another task goes down by ~10% then
1223 * the relative distance between them is ~25%.)
1225 static const int prio_to_weight
[40] = {
1226 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1227 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1228 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1229 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1230 /* 0 */ 1024, 820, 655, 526, 423,
1231 /* 5 */ 335, 272, 215, 172, 137,
1232 /* 10 */ 110, 87, 70, 56, 45,
1233 /* 15 */ 36, 29, 23, 18, 15,
1237 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1239 * In cases where the weight does not change often, we can use the
1240 * precalculated inverse to speed up arithmetics by turning divisions
1241 * into multiplications:
1243 static const u32 prio_to_wmult
[40] = {
1244 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1245 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1246 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1247 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1248 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1249 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1250 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1251 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1254 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1257 * runqueue iterator, to support SMP load-balancing between different
1258 * scheduling classes, without having to expose their internal data
1259 * structures to the load-balancing proper:
1261 struct rq_iterator
{
1263 struct task_struct
*(*start
)(void *);
1264 struct task_struct
*(*next
)(void *);
1268 static unsigned long
1269 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1270 unsigned long max_load_move
, struct sched_domain
*sd
,
1271 enum cpu_idle_type idle
, int *all_pinned
,
1272 int *this_best_prio
, struct rq_iterator
*iterator
);
1275 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1276 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1277 struct rq_iterator
*iterator
);
1280 #ifdef CONFIG_CGROUP_CPUACCT
1281 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1283 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1286 <<<<<<< HEAD
:kernel
/sched
.c
1287 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1289 update_load_add(&rq
->load
, load
);
1292 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1294 update_load_sub(&rq
->load
, load
);
1298 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1300 static unsigned long source_load(int cpu
, int type
);
1301 static unsigned long target_load(int cpu
, int type
);
1302 static unsigned long cpu_avg_load_per_task(int cpu
);
1303 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1304 #endif /* CONFIG_SMP */
1306 #include "sched_stats.h"
1307 #include "sched_idletask.c"
1308 #include "sched_fair.c"
1309 #include "sched_rt.c"
1310 #ifdef CONFIG_SCHED_DEBUG
1311 # include "sched_debug.c"
1314 #define sched_class_highest (&rt_sched_class)
1316 <<<<<<< HEAD
:kernel
/sched
.c
1317 static void inc_nr_running(struct rq
*rq
)
1319 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
1321 update_load_add(&rq
->load
, p
->se
.load
.weight
);
1324 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
1326 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
1329 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
1330 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1333 <<<<<<< HEAD
:kernel
/sched
.c
1336 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1339 <<<<<<< HEAD
:kernel
/sched
.c
1340 static void dec_nr_running(struct rq
*rq
)
1342 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
1343 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1346 <<<<<<< HEAD
:kernel
/sched
.c
1349 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1352 static void set_load_weight(struct task_struct
*p
)
1354 if (task_has_rt_policy(p
)) {
1355 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1356 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1361 * SCHED_IDLE tasks get minimal weight:
1363 if (p
->policy
== SCHED_IDLE
) {
1364 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1365 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1369 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1370 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1373 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1375 sched_info_queued(p
);
1376 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1380 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1382 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1387 * __normal_prio - return the priority that is based on the static prio
1389 static inline int __normal_prio(struct task_struct
*p
)
1391 return p
->static_prio
;
1395 * Calculate the expected normal priority: i.e. priority
1396 * without taking RT-inheritance into account. Might be
1397 * boosted by interactivity modifiers. Changes upon fork,
1398 * setprio syscalls, and whenever the interactivity
1399 * estimator recalculates.
1401 static inline int normal_prio(struct task_struct
*p
)
1405 if (task_has_rt_policy(p
))
1406 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1408 prio
= __normal_prio(p
);
1413 * Calculate the current priority, i.e. the priority
1414 * taken into account by the scheduler. This value might
1415 * be boosted by RT tasks, or might be boosted by
1416 * interactivity modifiers. Will be RT if the task got
1417 * RT-boosted. If not then it returns p->normal_prio.
1419 static int effective_prio(struct task_struct
*p
)
1421 p
->normal_prio
= normal_prio(p
);
1423 * If we are RT tasks or we were boosted to RT priority,
1424 * keep the priority unchanged. Otherwise, update priority
1425 * to the normal priority:
1427 if (!rt_prio(p
->prio
))
1428 return p
->normal_prio
;
1433 * activate_task - move a task to the runqueue.
1435 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1437 if (task_contributes_to_load(p
))
1438 rq
->nr_uninterruptible
--;
1440 enqueue_task(rq
, p
, wakeup
);
1441 <<<<<<< HEAD
:kernel
/sched
.c
1444 inc_nr_running(p
, rq
);
1445 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1449 * deactivate_task - remove a task from the runqueue.
1451 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1453 if (task_contributes_to_load(p
))
1454 rq
->nr_uninterruptible
++;
1456 dequeue_task(rq
, p
, sleep
);
1457 <<<<<<< HEAD
:kernel
/sched
.c
1460 dec_nr_running(p
, rq
);
1461 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1465 * task_curr - is this task currently executing on a CPU?
1466 * @p: the task in question.
1468 inline int task_curr(const struct task_struct
*p
)
1470 return cpu_curr(task_cpu(p
)) == p
;
1473 /* Used instead of source_load when we know the type == 0 */
1474 unsigned long weighted_cpuload(const int cpu
)
1476 return cpu_rq(cpu
)->load
.weight
;
1479 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1481 set_task_rq(p
, cpu
);
1484 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1485 * successfuly executed on another CPU. We must ensure that updates of
1486 * per-task data have been completed by this moment.
1489 task_thread_info(p
)->cpu
= cpu
;
1493 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1494 const struct sched_class
*prev_class
,
1495 int oldprio
, int running
)
1497 if (prev_class
!= p
->sched_class
) {
1498 if (prev_class
->switched_from
)
1499 prev_class
->switched_from(rq
, p
, running
);
1500 p
->sched_class
->switched_to(rq
, p
, running
);
1502 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1508 * Is this task likely cache-hot:
1511 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1515 <<<<<<< HEAD
:kernel
/sched
.c
1518 * Buddy candidates are cache hot:
1520 if (&p
->se
== cfs_rq_of(&p
->se
)->next
)
1523 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1524 if (p
->sched_class
!= &fair_sched_class
)
1527 if (sysctl_sched_migration_cost
== -1)
1529 if (sysctl_sched_migration_cost
== 0)
1532 delta
= now
- p
->se
.exec_start
;
1534 return delta
< (s64
)sysctl_sched_migration_cost
;
1538 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1540 int old_cpu
= task_cpu(p
);
1541 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1542 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1543 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1546 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1548 #ifdef CONFIG_SCHEDSTATS
1549 if (p
->se
.wait_start
)
1550 p
->se
.wait_start
-= clock_offset
;
1551 if (p
->se
.sleep_start
)
1552 p
->se
.sleep_start
-= clock_offset
;
1553 if (p
->se
.block_start
)
1554 p
->se
.block_start
-= clock_offset
;
1555 if (old_cpu
!= new_cpu
) {
1556 schedstat_inc(p
, se
.nr_migrations
);
1557 if (task_hot(p
, old_rq
->clock
, NULL
))
1558 schedstat_inc(p
, se
.nr_forced2_migrations
);
1561 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1562 new_cfsrq
->min_vruntime
;
1564 __set_task_cpu(p
, new_cpu
);
1567 struct migration_req
{
1568 struct list_head list
;
1570 struct task_struct
*task
;
1573 struct completion done
;
1577 * The task's runqueue lock must be held.
1578 * Returns true if you have to wait for migration thread.
1581 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1583 struct rq
*rq
= task_rq(p
);
1586 * If the task is not on a runqueue (and not running), then
1587 * it is sufficient to simply update the task's cpu field.
1589 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1590 set_task_cpu(p
, dest_cpu
);
1594 init_completion(&req
->done
);
1596 req
->dest_cpu
= dest_cpu
;
1597 list_add(&req
->list
, &rq
->migration_queue
);
1603 * wait_task_inactive - wait for a thread to unschedule.
1605 * The caller must ensure that the task *will* unschedule sometime soon,
1606 * else this function might spin for a *long* time. This function can't
1607 * be called with interrupts off, or it may introduce deadlock with
1608 * smp_call_function() if an IPI is sent by the same process we are
1609 * waiting to become inactive.
1611 void wait_task_inactive(struct task_struct
*p
)
1613 unsigned long flags
;
1619 * We do the initial early heuristics without holding
1620 * any task-queue locks at all. We'll only try to get
1621 * the runqueue lock when things look like they will
1627 * If the task is actively running on another CPU
1628 * still, just relax and busy-wait without holding
1631 * NOTE! Since we don't hold any locks, it's not
1632 * even sure that "rq" stays as the right runqueue!
1633 * But we don't care, since "task_running()" will
1634 * return false if the runqueue has changed and p
1635 * is actually now running somewhere else!
1637 while (task_running(rq
, p
))
1641 * Ok, time to look more closely! We need the rq
1642 * lock now, to be *sure*. If we're wrong, we'll
1643 * just go back and repeat.
1645 rq
= task_rq_lock(p
, &flags
);
1646 running
= task_running(rq
, p
);
1647 on_rq
= p
->se
.on_rq
;
1648 task_rq_unlock(rq
, &flags
);
1651 * Was it really running after all now that we
1652 * checked with the proper locks actually held?
1654 * Oops. Go back and try again..
1656 if (unlikely(running
)) {
1662 * It's not enough that it's not actively running,
1663 * it must be off the runqueue _entirely_, and not
1666 * So if it wa still runnable (but just not actively
1667 * running right now), it's preempted, and we should
1668 * yield - it could be a while.
1670 if (unlikely(on_rq
)) {
1671 schedule_timeout_uninterruptible(1);
1676 * Ahh, all good. It wasn't running, and it wasn't
1677 * runnable, which means that it will never become
1678 * running in the future either. We're all done!
1685 * kick_process - kick a running thread to enter/exit the kernel
1686 * @p: the to-be-kicked thread
1688 * Cause a process which is running on another CPU to enter
1689 * kernel-mode, without any delay. (to get signals handled.)
1691 * NOTE: this function doesnt have to take the runqueue lock,
1692 * because all it wants to ensure is that the remote task enters
1693 * the kernel. If the IPI races and the task has been migrated
1694 * to another CPU then no harm is done and the purpose has been
1697 void kick_process(struct task_struct
*p
)
1703 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1704 smp_send_reschedule(cpu
);
1709 * Return a low guess at the load of a migration-source cpu weighted
1710 * according to the scheduling class and "nice" value.
1712 * We want to under-estimate the load of migration sources, to
1713 * balance conservatively.
1715 static unsigned long source_load(int cpu
, int type
)
1717 struct rq
*rq
= cpu_rq(cpu
);
1718 unsigned long total
= weighted_cpuload(cpu
);
1723 return min(rq
->cpu_load
[type
-1], total
);
1727 * Return a high guess at the load of a migration-target cpu weighted
1728 * according to the scheduling class and "nice" value.
1730 static unsigned long target_load(int cpu
, int type
)
1732 struct rq
*rq
= cpu_rq(cpu
);
1733 unsigned long total
= weighted_cpuload(cpu
);
1738 return max(rq
->cpu_load
[type
-1], total
);
1742 * Return the average load per task on the cpu's run queue
1744 static unsigned long cpu_avg_load_per_task(int cpu
)
1746 struct rq
*rq
= cpu_rq(cpu
);
1747 unsigned long total
= weighted_cpuload(cpu
);
1748 unsigned long n
= rq
->nr_running
;
1750 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1754 * find_idlest_group finds and returns the least busy CPU group within the
1757 static struct sched_group
*
1758 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1760 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1761 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1762 int load_idx
= sd
->forkexec_idx
;
1763 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1766 unsigned long load
, avg_load
;
1770 /* Skip over this group if it has no CPUs allowed */
1771 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1774 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1776 /* Tally up the load of all CPUs in the group */
1779 for_each_cpu_mask(i
, group
->cpumask
) {
1780 /* Bias balancing toward cpus of our domain */
1782 load
= source_load(i
, load_idx
);
1784 load
= target_load(i
, load_idx
);
1789 /* Adjust by relative CPU power of the group */
1790 avg_load
= sg_div_cpu_power(group
,
1791 avg_load
* SCHED_LOAD_SCALE
);
1794 this_load
= avg_load
;
1796 } else if (avg_load
< min_load
) {
1797 min_load
= avg_load
;
1800 } while (group
= group
->next
, group
!= sd
->groups
);
1802 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1808 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1811 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1814 unsigned long load
, min_load
= ULONG_MAX
;
1818 /* Traverse only the allowed CPUs */
1819 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1821 for_each_cpu_mask(i
, tmp
) {
1822 load
= weighted_cpuload(i
);
1824 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1834 * sched_balance_self: balance the current task (running on cpu) in domains
1835 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1838 * Balance, ie. select the least loaded group.
1840 * Returns the target CPU number, or the same CPU if no balancing is needed.
1842 * preempt must be disabled.
1844 static int sched_balance_self(int cpu
, int flag
)
1846 struct task_struct
*t
= current
;
1847 struct sched_domain
*tmp
, *sd
= NULL
;
1849 for_each_domain(cpu
, tmp
) {
1851 * If power savings logic is enabled for a domain, stop there.
1853 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1855 if (tmp
->flags
& flag
)
1861 struct sched_group
*group
;
1862 int new_cpu
, weight
;
1864 if (!(sd
->flags
& flag
)) {
1870 group
= find_idlest_group(sd
, t
, cpu
);
1876 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1877 if (new_cpu
== -1 || new_cpu
== cpu
) {
1878 /* Now try balancing at a lower domain level of cpu */
1883 /* Now try balancing at a lower domain level of new_cpu */
1886 weight
= cpus_weight(span
);
1887 for_each_domain(cpu
, tmp
) {
1888 if (weight
<= cpus_weight(tmp
->span
))
1890 if (tmp
->flags
& flag
)
1893 /* while loop will break here if sd == NULL */
1899 #endif /* CONFIG_SMP */
1902 * try_to_wake_up - wake up a thread
1903 * @p: the to-be-woken-up thread
1904 * @state: the mask of task states that can be woken
1905 * @sync: do a synchronous wakeup?
1907 * Put it on the run-queue if it's not already there. The "current"
1908 * thread is always on the run-queue (except when the actual
1909 * re-schedule is in progress), and as such you're allowed to do
1910 * the simpler "current->state = TASK_RUNNING" to mark yourself
1911 * runnable without the overhead of this.
1913 * returns failure only if the task is already active.
1915 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1917 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1918 unsigned long flags
;
1922 <<<<<<< HEAD
:kernel
/sched
.c
1925 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1926 rq
= task_rq_lock(p
, &flags
);
1927 old_state
= p
->state
;
1928 if (!(old_state
& state
))
1936 this_cpu
= smp_processor_id();
1939 if (unlikely(task_running(rq
, p
)))
1942 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
1943 if (cpu
!= orig_cpu
) {
1944 set_task_cpu(p
, cpu
);
1945 task_rq_unlock(rq
, &flags
);
1946 /* might preempt at this point */
1947 rq
= task_rq_lock(p
, &flags
);
1948 old_state
= p
->state
;
1949 if (!(old_state
& state
))
1954 this_cpu
= smp_processor_id();
1958 #ifdef CONFIG_SCHEDSTATS
1959 schedstat_inc(rq
, ttwu_count
);
1960 if (cpu
== this_cpu
)
1961 schedstat_inc(rq
, ttwu_local
);
1963 struct sched_domain
*sd
;
1964 for_each_domain(this_cpu
, sd
) {
1965 if (cpu_isset(cpu
, sd
->span
)) {
1966 schedstat_inc(sd
, ttwu_wake_remote
);
1974 #endif /* CONFIG_SMP */
1975 schedstat_inc(p
, se
.nr_wakeups
);
1977 schedstat_inc(p
, se
.nr_wakeups_sync
);
1978 if (orig_cpu
!= cpu
)
1979 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1980 if (cpu
== this_cpu
)
1981 schedstat_inc(p
, se
.nr_wakeups_local
);
1983 schedstat_inc(p
, se
.nr_wakeups_remote
);
1984 update_rq_clock(rq
);
1985 activate_task(rq
, p
, 1);
1986 <<<<<<< HEAD
:kernel
/sched
.c
1987 check_preempt_curr(rq
, p
);
1989 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1993 <<<<<<< HEAD
:kernel
/sched
.c
1995 check_preempt_curr(rq
, p
);
1997 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
1998 p
->state
= TASK_RUNNING
;
2000 if (p
->sched_class
->task_wake_up
)
2001 p
->sched_class
->task_wake_up(rq
, p
);
2004 task_rq_unlock(rq
, &flags
);
2009 int wake_up_process(struct task_struct
*p
)
2011 return try_to_wake_up(p
, TASK_ALL
, 0);
2013 EXPORT_SYMBOL(wake_up_process
);
2015 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2017 return try_to_wake_up(p
, state
, 0);
2021 * Perform scheduler related setup for a newly forked process p.
2022 * p is forked by current.
2024 * __sched_fork() is basic setup used by init_idle() too:
2026 static void __sched_fork(struct task_struct
*p
)
2028 p
->se
.exec_start
= 0;
2029 p
->se
.sum_exec_runtime
= 0;
2030 p
->se
.prev_sum_exec_runtime
= 0;
2031 <<<<<<< HEAD
:kernel
/sched
.c
2033 p
->se
.last_wakeup
= 0;
2034 p
->se
.avg_overlap
= 0;
2035 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
2037 #ifdef CONFIG_SCHEDSTATS
2038 p
->se
.wait_start
= 0;
2039 p
->se
.sum_sleep_runtime
= 0;
2040 p
->se
.sleep_start
= 0;
2041 p
->se
.block_start
= 0;
2042 p
->se
.sleep_max
= 0;
2043 p
->se
.block_max
= 0;
2045 p
->se
.slice_max
= 0;
2049 INIT_LIST_HEAD(&p
->rt
.run_list
);
2052 #ifdef CONFIG_PREEMPT_NOTIFIERS
2053 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2057 * We mark the process as running here, but have not actually
2058 * inserted it onto the runqueue yet. This guarantees that
2059 * nobody will actually run it, and a signal or other external
2060 * event cannot wake it up and insert it on the runqueue either.
2062 p
->state
= TASK_RUNNING
;
2066 * fork()/clone()-time setup:
2068 void sched_fork(struct task_struct
*p
, int clone_flags
)
2070 int cpu
= get_cpu();
2075 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2077 set_task_cpu(p
, cpu
);
2080 * Make sure we do not leak PI boosting priority to the child:
2082 p
->prio
= current
->normal_prio
;
2083 if (!rt_prio(p
->prio
))
2084 p
->sched_class
= &fair_sched_class
;
2086 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2087 if (likely(sched_info_on()))
2088 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2090 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2093 #ifdef CONFIG_PREEMPT
2094 /* Want to start with kernel preemption disabled. */
2095 task_thread_info(p
)->preempt_count
= 1;
2101 * wake_up_new_task - wake up a newly created task for the first time.
2103 * This function will do some initial scheduler statistics housekeeping
2104 * that must be done for every newly created context, then puts the task
2105 * on the runqueue and wakes it.
2107 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2109 unsigned long flags
;
2112 rq
= task_rq_lock(p
, &flags
);
2113 BUG_ON(p
->state
!= TASK_RUNNING
);
2114 update_rq_clock(rq
);
2116 p
->prio
= effective_prio(p
);
2118 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2119 activate_task(rq
, p
, 0);
2122 * Let the scheduling class do new task startup
2123 * management (if any):
2125 p
->sched_class
->task_new(rq
, p
);
2126 <<<<<<< HEAD
:kernel
/sched
.c
2129 inc_nr_running(p
, rq
);
2130 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
2132 check_preempt_curr(rq
, p
);
2134 if (p
->sched_class
->task_wake_up
)
2135 p
->sched_class
->task_wake_up(rq
, p
);
2137 task_rq_unlock(rq
, &flags
);
2140 #ifdef CONFIG_PREEMPT_NOTIFIERS
2143 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2144 * @notifier: notifier struct to register
2146 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2148 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2150 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
2154 * @notifier: notifier struct to unregister
2156 * This is safe to call from within a preemption notifier.
2158 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2160 hlist_del(¬ifier
->link
);
2162 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2164 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2166 struct preempt_notifier
*notifier
;
2167 struct hlist_node
*node
;
2169 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2170 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2174 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2175 struct task_struct
*next
)
2177 struct preempt_notifier
*notifier
;
2178 struct hlist_node
*node
;
2180 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2181 notifier
->ops
->sched_out(notifier
, next
);
2186 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2191 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2192 struct task_struct
*next
)
2199 * prepare_task_switch - prepare to switch tasks
2200 * @rq: the runqueue preparing to switch
2201 * @prev: the current task that is being switched out
2202 * @next: the task we are going to switch to.
2204 * This is called with the rq lock held and interrupts off. It must
2205 * be paired with a subsequent finish_task_switch after the context
2208 * prepare_task_switch sets up locking and calls architecture specific
2212 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2213 struct task_struct
*next
)
2215 fire_sched_out_preempt_notifiers(prev
, next
);
2216 prepare_lock_switch(rq
, next
);
2217 prepare_arch_switch(next
);
2221 * finish_task_switch - clean up after a task-switch
2222 * @rq: runqueue associated with task-switch
2223 * @prev: the thread we just switched away from.
2225 * finish_task_switch must be called after the context switch, paired
2226 * with a prepare_task_switch call before the context switch.
2227 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2228 * and do any other architecture-specific cleanup actions.
2230 * Note that we may have delayed dropping an mm in context_switch(). If
2231 * so, we finish that here outside of the runqueue lock. (Doing it
2232 * with the lock held can cause deadlocks; see schedule() for
2235 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2236 __releases(rq
->lock
)
2238 struct mm_struct
*mm
= rq
->prev_mm
;
2244 * A task struct has one reference for the use as "current".
2245 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2246 * schedule one last time. The schedule call will never return, and
2247 * the scheduled task must drop that reference.
2248 * The test for TASK_DEAD must occur while the runqueue locks are
2249 * still held, otherwise prev could be scheduled on another cpu, die
2250 * there before we look at prev->state, and then the reference would
2252 * Manfred Spraul <manfred@colorfullife.com>
2254 prev_state
= prev
->state
;
2255 finish_arch_switch(prev
);
2256 finish_lock_switch(rq
, prev
);
2258 if (current
->sched_class
->post_schedule
)
2259 current
->sched_class
->post_schedule(rq
);
2262 fire_sched_in_preempt_notifiers(current
);
2265 if (unlikely(prev_state
== TASK_DEAD
)) {
2267 * Remove function-return probe instances associated with this
2268 * task and put them back on the free list.
2270 kprobe_flush_task(prev
);
2271 put_task_struct(prev
);
2276 * schedule_tail - first thing a freshly forked thread must call.
2277 * @prev: the thread we just switched away from.
2279 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2280 __releases(rq
->lock
)
2282 struct rq
*rq
= this_rq();
2284 finish_task_switch(rq
, prev
);
2285 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2286 /* In this case, finish_task_switch does not reenable preemption */
2289 if (current
->set_child_tid
)
2290 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2294 * context_switch - switch to the new MM and the new
2295 * thread's register state.
2298 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2299 struct task_struct
*next
)
2301 struct mm_struct
*mm
, *oldmm
;
2303 prepare_task_switch(rq
, prev
, next
);
2305 oldmm
= prev
->active_mm
;
2307 * For paravirt, this is coupled with an exit in switch_to to
2308 * combine the page table reload and the switch backend into
2311 arch_enter_lazy_cpu_mode();
2313 if (unlikely(!mm
)) {
2314 next
->active_mm
= oldmm
;
2315 atomic_inc(&oldmm
->mm_count
);
2316 enter_lazy_tlb(oldmm
, next
);
2318 switch_mm(oldmm
, mm
, next
);
2320 if (unlikely(!prev
->mm
)) {
2321 prev
->active_mm
= NULL
;
2322 rq
->prev_mm
= oldmm
;
2325 * Since the runqueue lock will be released by the next
2326 * task (which is an invalid locking op but in the case
2327 * of the scheduler it's an obvious special-case), so we
2328 * do an early lockdep release here:
2330 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2331 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2334 /* Here we just switch the register state and the stack. */
2335 switch_to(prev
, next
, prev
);
2339 * this_rq must be evaluated again because prev may have moved
2340 * CPUs since it called schedule(), thus the 'rq' on its stack
2341 * frame will be invalid.
2343 finish_task_switch(this_rq(), prev
);
2347 * nr_running, nr_uninterruptible and nr_context_switches:
2349 * externally visible scheduler statistics: current number of runnable
2350 * threads, current number of uninterruptible-sleeping threads, total
2351 * number of context switches performed since bootup.
2353 unsigned long nr_running(void)
2355 unsigned long i
, sum
= 0;
2357 for_each_online_cpu(i
)
2358 sum
+= cpu_rq(i
)->nr_running
;
2363 unsigned long nr_uninterruptible(void)
2365 unsigned long i
, sum
= 0;
2367 for_each_possible_cpu(i
)
2368 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2371 * Since we read the counters lockless, it might be slightly
2372 * inaccurate. Do not allow it to go below zero though:
2374 if (unlikely((long)sum
< 0))
2380 unsigned long long nr_context_switches(void)
2383 unsigned long long sum
= 0;
2385 for_each_possible_cpu(i
)
2386 sum
+= cpu_rq(i
)->nr_switches
;
2391 unsigned long nr_iowait(void)
2393 unsigned long i
, sum
= 0;
2395 for_each_possible_cpu(i
)
2396 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2401 unsigned long nr_active(void)
2403 unsigned long i
, running
= 0, uninterruptible
= 0;
2405 for_each_online_cpu(i
) {
2406 running
+= cpu_rq(i
)->nr_running
;
2407 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2410 if (unlikely((long)uninterruptible
< 0))
2411 uninterruptible
= 0;
2413 return running
+ uninterruptible
;
2417 * Update rq->cpu_load[] statistics. This function is usually called every
2418 * scheduler tick (TICK_NSEC).
2420 static void update_cpu_load(struct rq
*this_rq
)
2422 unsigned long this_load
= this_rq
->load
.weight
;
2425 this_rq
->nr_load_updates
++;
2427 /* Update our load: */
2428 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2429 unsigned long old_load
, new_load
;
2431 /* scale is effectively 1 << i now, and >> i divides by scale */
2433 old_load
= this_rq
->cpu_load
[i
];
2434 new_load
= this_load
;
2436 * Round up the averaging division if load is increasing. This
2437 * prevents us from getting stuck on 9 if the load is 10, for
2440 if (new_load
> old_load
)
2441 new_load
+= scale
-1;
2442 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2449 * double_rq_lock - safely lock two runqueues
2451 * Note this does not disable interrupts like task_rq_lock,
2452 * you need to do so manually before calling.
2454 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2455 __acquires(rq1
->lock
)
2456 __acquires(rq2
->lock
)
2458 BUG_ON(!irqs_disabled());
2460 spin_lock(&rq1
->lock
);
2461 __acquire(rq2
->lock
); /* Fake it out ;) */
2464 spin_lock(&rq1
->lock
);
2465 spin_lock(&rq2
->lock
);
2467 spin_lock(&rq2
->lock
);
2468 spin_lock(&rq1
->lock
);
2471 update_rq_clock(rq1
);
2472 update_rq_clock(rq2
);
2476 * double_rq_unlock - safely unlock two runqueues
2478 * Note this does not restore interrupts like task_rq_unlock,
2479 * you need to do so manually after calling.
2481 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2482 __releases(rq1
->lock
)
2483 __releases(rq2
->lock
)
2485 spin_unlock(&rq1
->lock
);
2487 spin_unlock(&rq2
->lock
);
2489 __release(rq2
->lock
);
2493 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2495 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2496 __releases(this_rq
->lock
)
2497 __acquires(busiest
->lock
)
2498 __acquires(this_rq
->lock
)
2502 if (unlikely(!irqs_disabled())) {
2503 /* printk() doesn't work good under rq->lock */
2504 spin_unlock(&this_rq
->lock
);
2507 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2508 if (busiest
< this_rq
) {
2509 spin_unlock(&this_rq
->lock
);
2510 spin_lock(&busiest
->lock
);
2511 spin_lock(&this_rq
->lock
);
2514 spin_lock(&busiest
->lock
);
2520 * If dest_cpu is allowed for this process, migrate the task to it.
2521 * This is accomplished by forcing the cpu_allowed mask to only
2522 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2523 * the cpu_allowed mask is restored.
2525 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2527 struct migration_req req
;
2528 unsigned long flags
;
2531 rq
= task_rq_lock(p
, &flags
);
2532 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2533 || unlikely(cpu_is_offline(dest_cpu
)))
2536 /* force the process onto the specified CPU */
2537 if (migrate_task(p
, dest_cpu
, &req
)) {
2538 /* Need to wait for migration thread (might exit: take ref). */
2539 struct task_struct
*mt
= rq
->migration_thread
;
2541 get_task_struct(mt
);
2542 task_rq_unlock(rq
, &flags
);
2543 wake_up_process(mt
);
2544 put_task_struct(mt
);
2545 wait_for_completion(&req
.done
);
2550 task_rq_unlock(rq
, &flags
);
2554 * sched_exec - execve() is a valuable balancing opportunity, because at
2555 * this point the task has the smallest effective memory and cache footprint.
2557 void sched_exec(void)
2559 int new_cpu
, this_cpu
= get_cpu();
2560 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2562 if (new_cpu
!= this_cpu
)
2563 sched_migrate_task(current
, new_cpu
);
2567 * pull_task - move a task from a remote runqueue to the local runqueue.
2568 * Both runqueues must be locked.
2570 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2571 struct rq
*this_rq
, int this_cpu
)
2573 deactivate_task(src_rq
, p
, 0);
2574 set_task_cpu(p
, this_cpu
);
2575 activate_task(this_rq
, p
, 0);
2577 * Note that idle threads have a prio of MAX_PRIO, for this test
2578 * to be always true for them.
2580 check_preempt_curr(this_rq
, p
);
2584 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2587 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2588 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2592 * We do not migrate tasks that are:
2593 * 1) running (obviously), or
2594 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2595 * 3) are cache-hot on their current CPU.
2597 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2598 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2603 if (task_running(rq
, p
)) {
2604 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2609 * Aggressive migration if:
2610 * 1) task is cache cold, or
2611 * 2) too many balance attempts have failed.
2614 if (!task_hot(p
, rq
->clock
, sd
) ||
2615 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2616 #ifdef CONFIG_SCHEDSTATS
2617 if (task_hot(p
, rq
->clock
, sd
)) {
2618 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2619 schedstat_inc(p
, se
.nr_forced_migrations
);
2625 if (task_hot(p
, rq
->clock
, sd
)) {
2626 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2632 static unsigned long
2633 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2634 unsigned long max_load_move
, struct sched_domain
*sd
,
2635 enum cpu_idle_type idle
, int *all_pinned
,
2636 int *this_best_prio
, struct rq_iterator
*iterator
)
2638 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2639 struct task_struct
*p
;
2640 long rem_load_move
= max_load_move
;
2642 if (max_load_move
== 0)
2648 * Start the load-balancing iterator:
2650 p
= iterator
->start(iterator
->arg
);
2652 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2655 * To help distribute high priority tasks across CPUs we don't
2656 * skip a task if it will be the highest priority task (i.e. smallest
2657 * prio value) on its new queue regardless of its load weight
2659 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2660 SCHED_LOAD_SCALE_FUZZ
;
2661 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2662 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2663 p
= iterator
->next(iterator
->arg
);
2667 pull_task(busiest
, p
, this_rq
, this_cpu
);
2669 rem_load_move
-= p
->se
.load
.weight
;
2672 * We only want to steal up to the prescribed amount of weighted load.
2674 if (rem_load_move
> 0) {
2675 if (p
->prio
< *this_best_prio
)
2676 *this_best_prio
= p
->prio
;
2677 p
= iterator
->next(iterator
->arg
);
2682 * Right now, this is one of only two places pull_task() is called,
2683 * so we can safely collect pull_task() stats here rather than
2684 * inside pull_task().
2686 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2689 *all_pinned
= pinned
;
2691 return max_load_move
- rem_load_move
;
2695 * move_tasks tries to move up to max_load_move weighted load from busiest to
2696 * this_rq, as part of a balancing operation within domain "sd".
2697 * Returns 1 if successful and 0 otherwise.
2699 * Called with both runqueues locked.
2701 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2702 unsigned long max_load_move
,
2703 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2706 const struct sched_class
*class = sched_class_highest
;
2707 unsigned long total_load_moved
= 0;
2708 int this_best_prio
= this_rq
->curr
->prio
;
2712 class->load_balance(this_rq
, this_cpu
, busiest
,
2713 max_load_move
- total_load_moved
,
2714 sd
, idle
, all_pinned
, &this_best_prio
);
2715 class = class->next
;
2716 } while (class && max_load_move
> total_load_moved
);
2718 return total_load_moved
> 0;
2722 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2723 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2724 struct rq_iterator
*iterator
)
2726 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2730 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2731 pull_task(busiest
, p
, this_rq
, this_cpu
);
2733 * Right now, this is only the second place pull_task()
2734 * is called, so we can safely collect pull_task()
2735 * stats here rather than inside pull_task().
2737 schedstat_inc(sd
, lb_gained
[idle
]);
2741 p
= iterator
->next(iterator
->arg
);
2748 * move_one_task tries to move exactly one task from busiest to this_rq, as
2749 * part of active balancing operations within "domain".
2750 * Returns 1 if successful and 0 otherwise.
2752 * Called with both runqueues locked.
2754 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2755 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2757 const struct sched_class
*class;
2759 for (class = sched_class_highest
; class; class = class->next
)
2760 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2767 * find_busiest_group finds and returns the busiest CPU group within the
2768 * domain. It calculates and returns the amount of weighted load which
2769 * should be moved to restore balance via the imbalance parameter.
2771 static struct sched_group
*
2772 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2773 unsigned long *imbalance
, enum cpu_idle_type idle
,
2774 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2776 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2777 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2778 unsigned long max_pull
;
2779 unsigned long busiest_load_per_task
, busiest_nr_running
;
2780 unsigned long this_load_per_task
, this_nr_running
;
2781 int load_idx
, group_imb
= 0;
2782 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2783 int power_savings_balance
= 1;
2784 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2785 unsigned long min_nr_running
= ULONG_MAX
;
2786 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2789 max_load
= this_load
= total_load
= total_pwr
= 0;
2790 busiest_load_per_task
= busiest_nr_running
= 0;
2791 this_load_per_task
= this_nr_running
= 0;
2792 if (idle
== CPU_NOT_IDLE
)
2793 load_idx
= sd
->busy_idx
;
2794 else if (idle
== CPU_NEWLY_IDLE
)
2795 load_idx
= sd
->newidle_idx
;
2797 load_idx
= sd
->idle_idx
;
2800 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2803 int __group_imb
= 0;
2804 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2805 unsigned long sum_nr_running
, sum_weighted_load
;
2807 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2810 balance_cpu
= first_cpu(group
->cpumask
);
2812 /* Tally up the load of all CPUs in the group */
2813 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2815 min_cpu_load
= ~0UL;
2817 for_each_cpu_mask(i
, group
->cpumask
) {
2820 if (!cpu_isset(i
, *cpus
))
2825 if (*sd_idle
&& rq
->nr_running
)
2828 /* Bias balancing toward cpus of our domain */
2830 if (idle_cpu(i
) && !first_idle_cpu
) {
2835 load
= target_load(i
, load_idx
);
2837 load
= source_load(i
, load_idx
);
2838 if (load
> max_cpu_load
)
2839 max_cpu_load
= load
;
2840 if (min_cpu_load
> load
)
2841 min_cpu_load
= load
;
2845 sum_nr_running
+= rq
->nr_running
;
2846 sum_weighted_load
+= weighted_cpuload(i
);
2850 * First idle cpu or the first cpu(busiest) in this sched group
2851 * is eligible for doing load balancing at this and above
2852 * domains. In the newly idle case, we will allow all the cpu's
2853 * to do the newly idle load balance.
2855 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2856 balance_cpu
!= this_cpu
&& balance
) {
2861 total_load
+= avg_load
;
2862 total_pwr
+= group
->__cpu_power
;
2864 /* Adjust by relative CPU power of the group */
2865 avg_load
= sg_div_cpu_power(group
,
2866 avg_load
* SCHED_LOAD_SCALE
);
2868 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2871 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2874 this_load
= avg_load
;
2876 this_nr_running
= sum_nr_running
;
2877 this_load_per_task
= sum_weighted_load
;
2878 } else if (avg_load
> max_load
&&
2879 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2880 max_load
= avg_load
;
2882 busiest_nr_running
= sum_nr_running
;
2883 busiest_load_per_task
= sum_weighted_load
;
2884 group_imb
= __group_imb
;
2887 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2889 * Busy processors will not participate in power savings
2892 if (idle
== CPU_NOT_IDLE
||
2893 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2897 * If the local group is idle or completely loaded
2898 * no need to do power savings balance at this domain
2900 if (local_group
&& (this_nr_running
>= group_capacity
||
2902 power_savings_balance
= 0;
2905 * If a group is already running at full capacity or idle,
2906 * don't include that group in power savings calculations
2908 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2913 * Calculate the group which has the least non-idle load.
2914 * This is the group from where we need to pick up the load
2917 if ((sum_nr_running
< min_nr_running
) ||
2918 (sum_nr_running
== min_nr_running
&&
2919 first_cpu(group
->cpumask
) <
2920 first_cpu(group_min
->cpumask
))) {
2922 min_nr_running
= sum_nr_running
;
2923 min_load_per_task
= sum_weighted_load
/
2928 * Calculate the group which is almost near its
2929 * capacity but still has some space to pick up some load
2930 * from other group and save more power
2932 if (sum_nr_running
<= group_capacity
- 1) {
2933 if (sum_nr_running
> leader_nr_running
||
2934 (sum_nr_running
== leader_nr_running
&&
2935 first_cpu(group
->cpumask
) >
2936 first_cpu(group_leader
->cpumask
))) {
2937 group_leader
= group
;
2938 leader_nr_running
= sum_nr_running
;
2943 group
= group
->next
;
2944 } while (group
!= sd
->groups
);
2946 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2949 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2951 if (this_load
>= avg_load
||
2952 100*max_load
<= sd
->imbalance_pct
*this_load
)
2955 busiest_load_per_task
/= busiest_nr_running
;
2957 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2960 * We're trying to get all the cpus to the average_load, so we don't
2961 * want to push ourselves above the average load, nor do we wish to
2962 * reduce the max loaded cpu below the average load, as either of these
2963 * actions would just result in more rebalancing later, and ping-pong
2964 * tasks around. Thus we look for the minimum possible imbalance.
2965 * Negative imbalances (*we* are more loaded than anyone else) will
2966 * be counted as no imbalance for these purposes -- we can't fix that
2967 * by pulling tasks to us. Be careful of negative numbers as they'll
2968 * appear as very large values with unsigned longs.
2970 if (max_load
<= busiest_load_per_task
)
2974 * In the presence of smp nice balancing, certain scenarios can have
2975 * max load less than avg load(as we skip the groups at or below
2976 * its cpu_power, while calculating max_load..)
2978 if (max_load
< avg_load
) {
2980 goto small_imbalance
;
2983 /* Don't want to pull so many tasks that a group would go idle */
2984 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2986 /* How much load to actually move to equalise the imbalance */
2987 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2988 (avg_load
- this_load
) * this->__cpu_power
)
2992 * if *imbalance is less than the average load per runnable task
2993 * there is no gaurantee that any tasks will be moved so we'll have
2994 * a think about bumping its value to force at least one task to be
2997 if (*imbalance
< busiest_load_per_task
) {
2998 unsigned long tmp
, pwr_now
, pwr_move
;
3002 pwr_move
= pwr_now
= 0;
3004 if (this_nr_running
) {
3005 this_load_per_task
/= this_nr_running
;
3006 if (busiest_load_per_task
> this_load_per_task
)
3009 this_load_per_task
= SCHED_LOAD_SCALE
;
3011 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
3012 busiest_load_per_task
* imbn
) {
3013 *imbalance
= busiest_load_per_task
;
3018 * OK, we don't have enough imbalance to justify moving tasks,
3019 * however we may be able to increase total CPU power used by
3023 pwr_now
+= busiest
->__cpu_power
*
3024 min(busiest_load_per_task
, max_load
);
3025 pwr_now
+= this->__cpu_power
*
3026 min(this_load_per_task
, this_load
);
3027 pwr_now
/= SCHED_LOAD_SCALE
;
3029 /* Amount of load we'd subtract */
3030 tmp
= sg_div_cpu_power(busiest
,
3031 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3033 pwr_move
+= busiest
->__cpu_power
*
3034 min(busiest_load_per_task
, max_load
- tmp
);
3036 /* Amount of load we'd add */
3037 if (max_load
* busiest
->__cpu_power
<
3038 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3039 tmp
= sg_div_cpu_power(this,
3040 max_load
* busiest
->__cpu_power
);
3042 tmp
= sg_div_cpu_power(this,
3043 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3044 pwr_move
+= this->__cpu_power
*
3045 min(this_load_per_task
, this_load
+ tmp
);
3046 pwr_move
/= SCHED_LOAD_SCALE
;
3048 /* Move if we gain throughput */
3049 if (pwr_move
> pwr_now
)
3050 *imbalance
= busiest_load_per_task
;
3056 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3057 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3060 if (this == group_leader
&& group_leader
!= group_min
) {
3061 *imbalance
= min_load_per_task
;
3071 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3074 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3075 unsigned long imbalance
, cpumask_t
*cpus
)
3077 struct rq
*busiest
= NULL
, *rq
;
3078 unsigned long max_load
= 0;
3081 for_each_cpu_mask(i
, group
->cpumask
) {
3084 if (!cpu_isset(i
, *cpus
))
3088 wl
= weighted_cpuload(i
);
3090 if (rq
->nr_running
== 1 && wl
> imbalance
)
3093 if (wl
> max_load
) {
3103 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3104 * so long as it is large enough.
3106 #define MAX_PINNED_INTERVAL 512
3109 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3110 * tasks if there is an imbalance.
3112 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3113 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3116 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3117 struct sched_group
*group
;
3118 unsigned long imbalance
;
3120 cpumask_t cpus
= CPU_MASK_ALL
;
3121 unsigned long flags
;
3124 * When power savings policy is enabled for the parent domain, idle
3125 * sibling can pick up load irrespective of busy siblings. In this case,
3126 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3127 * portraying it as CPU_NOT_IDLE.
3129 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3130 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3133 schedstat_inc(sd
, lb_count
[idle
]);
3136 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3143 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3147 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
3149 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3153 BUG_ON(busiest
== this_rq
);
3155 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3158 if (busiest
->nr_running
> 1) {
3160 * Attempt to move tasks. If find_busiest_group has found
3161 * an imbalance but busiest->nr_running <= 1, the group is
3162 * still unbalanced. ld_moved simply stays zero, so it is
3163 * correctly treated as an imbalance.
3165 local_irq_save(flags
);
3166 double_rq_lock(this_rq
, busiest
);
3167 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3168 imbalance
, sd
, idle
, &all_pinned
);
3169 double_rq_unlock(this_rq
, busiest
);
3170 local_irq_restore(flags
);
3173 * some other cpu did the load balance for us.
3175 if (ld_moved
&& this_cpu
!= smp_processor_id())
3176 resched_cpu(this_cpu
);
3178 /* All tasks on this runqueue were pinned by CPU affinity */
3179 if (unlikely(all_pinned
)) {
3180 cpu_clear(cpu_of(busiest
), cpus
);
3181 if (!cpus_empty(cpus
))
3188 schedstat_inc(sd
, lb_failed
[idle
]);
3189 sd
->nr_balance_failed
++;
3191 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3193 spin_lock_irqsave(&busiest
->lock
, flags
);
3195 /* don't kick the migration_thread, if the curr
3196 * task on busiest cpu can't be moved to this_cpu
3198 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3199 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3201 goto out_one_pinned
;
3204 if (!busiest
->active_balance
) {
3205 busiest
->active_balance
= 1;
3206 busiest
->push_cpu
= this_cpu
;
3209 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3211 wake_up_process(busiest
->migration_thread
);
3214 * We've kicked active balancing, reset the failure
3217 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3220 sd
->nr_balance_failed
= 0;
3222 if (likely(!active_balance
)) {
3223 /* We were unbalanced, so reset the balancing interval */
3224 sd
->balance_interval
= sd
->min_interval
;
3227 * If we've begun active balancing, start to back off. This
3228 * case may not be covered by the all_pinned logic if there
3229 * is only 1 task on the busy runqueue (because we don't call
3232 if (sd
->balance_interval
< sd
->max_interval
)
3233 sd
->balance_interval
*= 2;
3236 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3237 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3242 schedstat_inc(sd
, lb_balanced
[idle
]);
3244 sd
->nr_balance_failed
= 0;
3247 /* tune up the balancing interval */
3248 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3249 (sd
->balance_interval
< sd
->max_interval
))
3250 sd
->balance_interval
*= 2;
3252 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3253 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3259 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3260 * tasks if there is an imbalance.
3262 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3263 * this_rq is locked.
3266 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
3268 struct sched_group
*group
;
3269 struct rq
*busiest
= NULL
;
3270 unsigned long imbalance
;
3274 cpumask_t cpus
= CPU_MASK_ALL
;
3277 * When power savings policy is enabled for the parent domain, idle
3278 * sibling can pick up load irrespective of busy siblings. In this case,
3279 * let the state of idle sibling percolate up as IDLE, instead of
3280 * portraying it as CPU_NOT_IDLE.
3282 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3283 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3286 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3288 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3289 &sd_idle
, &cpus
, NULL
);
3291 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3295 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
3298 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3302 BUG_ON(busiest
== this_rq
);
3304 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3307 if (busiest
->nr_running
> 1) {
3308 /* Attempt to move tasks */
3309 double_lock_balance(this_rq
, busiest
);
3310 /* this_rq->clock is already updated */
3311 update_rq_clock(busiest
);
3312 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3313 imbalance
, sd
, CPU_NEWLY_IDLE
,
3315 spin_unlock(&busiest
->lock
);
3317 if (unlikely(all_pinned
)) {
3318 cpu_clear(cpu_of(busiest
), cpus
);
3319 if (!cpus_empty(cpus
))
3325 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3326 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3327 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3330 sd
->nr_balance_failed
= 0;
3335 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3336 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3337 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3339 sd
->nr_balance_failed
= 0;
3345 * idle_balance is called by schedule() if this_cpu is about to become
3346 * idle. Attempts to pull tasks from other CPUs.
3348 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3350 struct sched_domain
*sd
;
3351 int pulled_task
= -1;
3352 unsigned long next_balance
= jiffies
+ HZ
;
3354 for_each_domain(this_cpu
, sd
) {
3355 unsigned long interval
;
3357 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3360 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3361 /* If we've pulled tasks over stop searching: */
3362 pulled_task
= load_balance_newidle(this_cpu
,
3365 interval
= msecs_to_jiffies(sd
->balance_interval
);
3366 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3367 next_balance
= sd
->last_balance
+ interval
;
3371 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3373 * We are going idle. next_balance may be set based on
3374 * a busy processor. So reset next_balance.
3376 this_rq
->next_balance
= next_balance
;
3381 * active_load_balance is run by migration threads. It pushes running tasks
3382 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3383 * running on each physical CPU where possible, and avoids physical /
3384 * logical imbalances.
3386 * Called with busiest_rq locked.
3388 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3390 int target_cpu
= busiest_rq
->push_cpu
;
3391 struct sched_domain
*sd
;
3392 struct rq
*target_rq
;
3394 /* Is there any task to move? */
3395 if (busiest_rq
->nr_running
<= 1)
3398 target_rq
= cpu_rq(target_cpu
);
3401 * This condition is "impossible", if it occurs
3402 * we need to fix it. Originally reported by
3403 * Bjorn Helgaas on a 128-cpu setup.
3405 BUG_ON(busiest_rq
== target_rq
);
3407 /* move a task from busiest_rq to target_rq */
3408 double_lock_balance(busiest_rq
, target_rq
);
3409 update_rq_clock(busiest_rq
);
3410 update_rq_clock(target_rq
);
3412 /* Search for an sd spanning us and the target CPU. */
3413 for_each_domain(target_cpu
, sd
) {
3414 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3415 cpu_isset(busiest_cpu
, sd
->span
))
3420 schedstat_inc(sd
, alb_count
);
3422 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3424 schedstat_inc(sd
, alb_pushed
);
3426 schedstat_inc(sd
, alb_failed
);
3428 spin_unlock(&target_rq
->lock
);
3433 atomic_t load_balancer
;
3435 } nohz ____cacheline_aligned
= {
3436 .load_balancer
= ATOMIC_INIT(-1),
3437 .cpu_mask
= CPU_MASK_NONE
,
3441 * This routine will try to nominate the ilb (idle load balancing)
3442 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3443 * load balancing on behalf of all those cpus. If all the cpus in the system
3444 * go into this tickless mode, then there will be no ilb owner (as there is
3445 * no need for one) and all the cpus will sleep till the next wakeup event
3448 * For the ilb owner, tick is not stopped. And this tick will be used
3449 * for idle load balancing. ilb owner will still be part of
3452 * While stopping the tick, this cpu will become the ilb owner if there
3453 * is no other owner. And will be the owner till that cpu becomes busy
3454 * or if all cpus in the system stop their ticks at which point
3455 * there is no need for ilb owner.
3457 * When the ilb owner becomes busy, it nominates another owner, during the
3458 * next busy scheduler_tick()
3460 int select_nohz_load_balancer(int stop_tick
)
3462 int cpu
= smp_processor_id();
3465 cpu_set(cpu
, nohz
.cpu_mask
);
3466 cpu_rq(cpu
)->in_nohz_recently
= 1;
3469 * If we are going offline and still the leader, give up!
3471 if (cpu_is_offline(cpu
) &&
3472 atomic_read(&nohz
.load_balancer
) == cpu
) {
3473 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3478 /* time for ilb owner also to sleep */
3479 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3480 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3481 atomic_set(&nohz
.load_balancer
, -1);
3485 if (atomic_read(&nohz
.load_balancer
) == -1) {
3486 /* make me the ilb owner */
3487 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3489 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3492 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3495 cpu_clear(cpu
, nohz
.cpu_mask
);
3497 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3498 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3505 static DEFINE_SPINLOCK(balancing
);
3508 * It checks each scheduling domain to see if it is due to be balanced,
3509 * and initiates a balancing operation if so.
3511 * Balancing parameters are set up in arch_init_sched_domains.
3513 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3516 struct rq
*rq
= cpu_rq(cpu
);
3517 unsigned long interval
;
3518 struct sched_domain
*sd
;
3519 /* Earliest time when we have to do rebalance again */
3520 unsigned long next_balance
= jiffies
+ 60*HZ
;
3521 int update_next_balance
= 0;
3523 for_each_domain(cpu
, sd
) {
3524 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3527 interval
= sd
->balance_interval
;
3528 if (idle
!= CPU_IDLE
)
3529 interval
*= sd
->busy_factor
;
3531 /* scale ms to jiffies */
3532 interval
= msecs_to_jiffies(interval
);
3533 if (unlikely(!interval
))
3535 if (interval
> HZ
*NR_CPUS
/10)
3536 interval
= HZ
*NR_CPUS
/10;
3539 if (sd
->flags
& SD_SERIALIZE
) {
3540 if (!spin_trylock(&balancing
))
3544 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3545 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3547 * We've pulled tasks over so either we're no
3548 * longer idle, or one of our SMT siblings is
3551 idle
= CPU_NOT_IDLE
;
3553 sd
->last_balance
= jiffies
;
3555 if (sd
->flags
& SD_SERIALIZE
)
3556 spin_unlock(&balancing
);
3558 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3559 next_balance
= sd
->last_balance
+ interval
;
3560 update_next_balance
= 1;
3564 * Stop the load balance at this level. There is another
3565 * CPU in our sched group which is doing load balancing more
3573 * next_balance will be updated only when there is a need.
3574 * When the cpu is attached to null domain for ex, it will not be
3577 if (likely(update_next_balance
))
3578 rq
->next_balance
= next_balance
;
3582 * run_rebalance_domains is triggered when needed from the scheduler tick.
3583 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3584 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3586 static void run_rebalance_domains(struct softirq_action
*h
)
3588 int this_cpu
= smp_processor_id();
3589 struct rq
*this_rq
= cpu_rq(this_cpu
);
3590 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3591 CPU_IDLE
: CPU_NOT_IDLE
;
3593 rebalance_domains(this_cpu
, idle
);
3597 * If this cpu is the owner for idle load balancing, then do the
3598 * balancing on behalf of the other idle cpus whose ticks are
3601 if (this_rq
->idle_at_tick
&&
3602 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3603 cpumask_t cpus
= nohz
.cpu_mask
;
3607 cpu_clear(this_cpu
, cpus
);
3608 for_each_cpu_mask(balance_cpu
, cpus
) {
3610 * If this cpu gets work to do, stop the load balancing
3611 * work being done for other cpus. Next load
3612 * balancing owner will pick it up.
3617 rebalance_domains(balance_cpu
, CPU_IDLE
);
3619 rq
= cpu_rq(balance_cpu
);
3620 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3621 this_rq
->next_balance
= rq
->next_balance
;
3628 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3630 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3631 * idle load balancing owner or decide to stop the periodic load balancing,
3632 * if the whole system is idle.
3634 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3638 * If we were in the nohz mode recently and busy at the current
3639 * scheduler tick, then check if we need to nominate new idle
3642 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3643 rq
->in_nohz_recently
= 0;
3645 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3646 cpu_clear(cpu
, nohz
.cpu_mask
);
3647 atomic_set(&nohz
.load_balancer
, -1);
3650 if (atomic_read(&nohz
.load_balancer
) == -1) {
3652 * simple selection for now: Nominate the
3653 * first cpu in the nohz list to be the next
3656 * TBD: Traverse the sched domains and nominate
3657 * the nearest cpu in the nohz.cpu_mask.
3659 int ilb
= first_cpu(nohz
.cpu_mask
);
3667 * If this cpu is idle and doing idle load balancing for all the
3668 * cpus with ticks stopped, is it time for that to stop?
3670 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3671 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3677 * If this cpu is idle and the idle load balancing is done by
3678 * someone else, then no need raise the SCHED_SOFTIRQ
3680 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3681 cpu_isset(cpu
, nohz
.cpu_mask
))
3684 if (time_after_eq(jiffies
, rq
->next_balance
))
3685 raise_softirq(SCHED_SOFTIRQ
);
3688 #else /* CONFIG_SMP */
3691 * on UP we do not need to balance between CPUs:
3693 static inline void idle_balance(int cpu
, struct rq
*rq
)
3699 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3701 EXPORT_PER_CPU_SYMBOL(kstat
);
3704 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3705 * that have not yet been banked in case the task is currently running.
3707 unsigned long long task_sched_runtime(struct task_struct
*p
)
3709 unsigned long flags
;
3713 rq
= task_rq_lock(p
, &flags
);
3714 ns
= p
->se
.sum_exec_runtime
;
3715 if (task_current(rq
, p
)) {
3716 update_rq_clock(rq
);
3717 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3718 if ((s64
)delta_exec
> 0)
3721 task_rq_unlock(rq
, &flags
);
3727 * Account user cpu time to a process.
3728 * @p: the process that the cpu time gets accounted to
3729 * @cputime: the cpu time spent in user space since the last update
3731 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3733 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3736 p
->utime
= cputime_add(p
->utime
, cputime
);
3738 /* Add user time to cpustat. */
3739 tmp
= cputime_to_cputime64(cputime
);
3740 if (TASK_NICE(p
) > 0)
3741 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3743 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3747 * Account guest cpu time to a process.
3748 * @p: the process that the cpu time gets accounted to
3749 * @cputime: the cpu time spent in virtual machine since the last update
3751 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3754 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3756 tmp
= cputime_to_cputime64(cputime
);
3758 p
->utime
= cputime_add(p
->utime
, cputime
);
3759 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3761 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3762 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3766 * Account scaled user cpu time to a process.
3767 * @p: the process that the cpu time gets accounted to
3768 * @cputime: the cpu time spent in user space since the last update
3770 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3772 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3776 * Account system cpu time to a process.
3777 * @p: the process that the cpu time gets accounted to
3778 * @hardirq_offset: the offset to subtract from hardirq_count()
3779 * @cputime: the cpu time spent in kernel space since the last update
3781 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3784 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3785 struct rq
*rq
= this_rq();
3788 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3789 return account_guest_time(p
, cputime
);
3791 p
->stime
= cputime_add(p
->stime
, cputime
);
3793 /* Add system time to cpustat. */
3794 tmp
= cputime_to_cputime64(cputime
);
3795 if (hardirq_count() - hardirq_offset
)
3796 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3797 else if (softirq_count())
3798 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3799 else if (p
!= rq
->idle
)
3800 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3801 else if (atomic_read(&rq
->nr_iowait
) > 0)
3802 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3804 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3805 /* Account for system time used */
3806 acct_update_integrals(p
);
3810 * Account scaled system cpu time to a process.
3811 * @p: the process that the cpu time gets accounted to
3812 * @hardirq_offset: the offset to subtract from hardirq_count()
3813 * @cputime: the cpu time spent in kernel space since the last update
3815 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3817 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3821 * Account for involuntary wait time.
3822 * @p: the process from which the cpu time has been stolen
3823 * @steal: the cpu time spent in involuntary wait
3825 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3827 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3828 cputime64_t tmp
= cputime_to_cputime64(steal
);
3829 struct rq
*rq
= this_rq();
3831 if (p
== rq
->idle
) {
3832 p
->stime
= cputime_add(p
->stime
, steal
);
3833 if (atomic_read(&rq
->nr_iowait
) > 0)
3834 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3836 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3838 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3842 * This function gets called by the timer code, with HZ frequency.
3843 * We call it with interrupts disabled.
3845 * It also gets called by the fork code, when changing the parent's
3848 void scheduler_tick(void)
3850 int cpu
= smp_processor_id();
3851 struct rq
*rq
= cpu_rq(cpu
);
3852 struct task_struct
*curr
= rq
->curr
;
3853 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3855 spin_lock(&rq
->lock
);
3856 __update_rq_clock(rq
);
3858 * Let rq->clock advance by at least TICK_NSEC:
3860 if (unlikely(rq
->clock
< next_tick
)) {
3861 rq
->clock
= next_tick
;
3862 rq
->clock_underflows
++;
3864 rq
->tick_timestamp
= rq
->clock
;
3865 update_cpu_load(rq
);
3866 curr
->sched_class
->task_tick(rq
, curr
, 0);
3867 update_sched_rt_period(rq
);
3868 spin_unlock(&rq
->lock
);
3871 rq
->idle_at_tick
= idle_cpu(cpu
);
3872 trigger_load_balance(rq
, cpu
);
3876 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3878 <<<<<<< HEAD
:kernel
/sched
.c
3879 void add_preempt_count(int val
)
3881 void __kprobes
add_preempt_count(int val
)
3882 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
3887 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3889 preempt_count() += val
;
3891 * Spinlock count overflowing soon?
3893 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3896 EXPORT_SYMBOL(add_preempt_count
);
3898 <<<<<<< HEAD
:kernel
/sched
.c
3899 void sub_preempt_count(int val
)
3901 void __kprobes
sub_preempt_count(int val
)
3902 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
3907 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3910 * Is the spinlock portion underflowing?
3912 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3913 !(preempt_count() & PREEMPT_MASK
)))
3916 preempt_count() -= val
;
3918 EXPORT_SYMBOL(sub_preempt_count
);
3923 * Print scheduling while atomic bug:
3925 static noinline
void __schedule_bug(struct task_struct
*prev
)
3927 struct pt_regs
*regs
= get_irq_regs();
3929 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3930 prev
->comm
, prev
->pid
, preempt_count());
3932 debug_show_held_locks(prev
);
3933 if (irqs_disabled())
3934 print_irqtrace_events(prev
);
3943 * Various schedule()-time debugging checks and statistics:
3945 static inline void schedule_debug(struct task_struct
*prev
)
3948 * Test if we are atomic. Since do_exit() needs to call into
3949 * schedule() atomically, we ignore that path for now.
3950 * Otherwise, whine if we are scheduling when we should not be.
3952 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3953 __schedule_bug(prev
);
3955 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3957 schedstat_inc(this_rq(), sched_count
);
3958 #ifdef CONFIG_SCHEDSTATS
3959 if (unlikely(prev
->lock_depth
>= 0)) {
3960 schedstat_inc(this_rq(), bkl_count
);
3961 schedstat_inc(prev
, sched_info
.bkl_count
);
3967 * Pick up the highest-prio task:
3969 static inline struct task_struct
*
3970 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3972 const struct sched_class
*class;
3973 struct task_struct
*p
;
3976 * Optimization: we know that if all tasks are in
3977 * the fair class we can call that function directly:
3979 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3980 p
= fair_sched_class
.pick_next_task(rq
);
3985 class = sched_class_highest
;
3987 p
= class->pick_next_task(rq
);
3991 * Will never be NULL as the idle class always
3992 * returns a non-NULL p:
3994 class = class->next
;
3999 * schedule() is the main scheduler function.
4001 asmlinkage
void __sched
schedule(void)
4003 struct task_struct
*prev
, *next
;
4004 <<<<<<< HEAD
:kernel
/sched
.c
4007 unsigned long *switch_count
;
4008 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4014 cpu
= smp_processor_id();
4018 switch_count
= &prev
->nivcsw
;
4020 release_kernel_lock(prev
);
4021 need_resched_nonpreemptible
:
4023 schedule_debug(prev
);
4028 * Do the rq-clock update outside the rq lock:
4030 local_irq_disable();
4031 __update_rq_clock(rq
);
4032 spin_lock(&rq
->lock
);
4033 clear_tsk_need_resched(prev
);
4035 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4036 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
4037 unlikely(signal_pending(prev
)))) {
4038 prev
->state
= TASK_RUNNING
;
4040 deactivate_task(rq
, prev
, 1);
4042 switch_count
= &prev
->nvcsw
;
4046 if (prev
->sched_class
->pre_schedule
)
4047 prev
->sched_class
->pre_schedule(rq
, prev
);
4050 if (unlikely(!rq
->nr_running
))
4051 idle_balance(cpu
, rq
);
4053 prev
->sched_class
->put_prev_task(rq
, prev
);
4054 next
= pick_next_task(rq
, prev
);
4056 sched_info_switch(prev
, next
);
4058 if (likely(prev
!= next
)) {
4063 context_switch(rq
, prev
, next
); /* unlocks the rq */
4065 * the context switch might have flipped the stack from under
4066 * us, hence refresh the local variables.
4068 cpu
= smp_processor_id();
4071 spin_unlock_irq(&rq
->lock
);
4075 if (unlikely(reacquire_kernel_lock(current
) < 0))
4076 goto need_resched_nonpreemptible
;
4078 preempt_enable_no_resched();
4079 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4082 EXPORT_SYMBOL(schedule
);
4084 #ifdef CONFIG_PREEMPT
4086 * this is the entry point to schedule() from in-kernel preemption
4087 * off of preempt_enable. Kernel preemptions off return from interrupt
4088 * occur there and call schedule directly.
4090 asmlinkage
void __sched
preempt_schedule(void)
4092 struct thread_info
*ti
= current_thread_info();
4093 struct task_struct
*task
= current
;
4094 int saved_lock_depth
;
4097 * If there is a non-zero preempt_count or interrupts are disabled,
4098 * we do not want to preempt the current task. Just return..
4100 if (likely(ti
->preempt_count
|| irqs_disabled()))
4104 add_preempt_count(PREEMPT_ACTIVE
);
4107 * We keep the big kernel semaphore locked, but we
4108 * clear ->lock_depth so that schedule() doesnt
4109 * auto-release the semaphore:
4111 saved_lock_depth
= task
->lock_depth
;
4112 task
->lock_depth
= -1;
4114 task
->lock_depth
= saved_lock_depth
;
4115 sub_preempt_count(PREEMPT_ACTIVE
);
4118 * Check again in case we missed a preemption opportunity
4119 * between schedule and now.
4122 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4124 EXPORT_SYMBOL(preempt_schedule
);
4127 * this is the entry point to schedule() from kernel preemption
4128 * off of irq context.
4129 * Note, that this is called and return with irqs disabled. This will
4130 * protect us against recursive calling from irq.
4132 asmlinkage
void __sched
preempt_schedule_irq(void)
4134 struct thread_info
*ti
= current_thread_info();
4135 struct task_struct
*task
= current
;
4136 int saved_lock_depth
;
4138 /* Catch callers which need to be fixed */
4139 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4142 add_preempt_count(PREEMPT_ACTIVE
);
4145 * We keep the big kernel semaphore locked, but we
4146 * clear ->lock_depth so that schedule() doesnt
4147 * auto-release the semaphore:
4149 saved_lock_depth
= task
->lock_depth
;
4150 task
->lock_depth
= -1;
4153 local_irq_disable();
4154 task
->lock_depth
= saved_lock_depth
;
4155 sub_preempt_count(PREEMPT_ACTIVE
);
4158 * Check again in case we missed a preemption opportunity
4159 * between schedule and now.
4162 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4165 #endif /* CONFIG_PREEMPT */
4167 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4170 return try_to_wake_up(curr
->private, mode
, sync
);
4172 EXPORT_SYMBOL(default_wake_function
);
4175 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4176 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4177 * number) then we wake all the non-exclusive tasks and one exclusive task.
4179 * There are circumstances in which we can try to wake a task which has already
4180 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4181 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4183 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4184 int nr_exclusive
, int sync
, void *key
)
4186 wait_queue_t
*curr
, *next
;
4188 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4189 unsigned flags
= curr
->flags
;
4191 if (curr
->func(curr
, mode
, sync
, key
) &&
4192 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4198 * __wake_up - wake up threads blocked on a waitqueue.
4200 * @mode: which threads
4201 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4202 * @key: is directly passed to the wakeup function
4204 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4205 int nr_exclusive
, void *key
)
4207 unsigned long flags
;
4209 spin_lock_irqsave(&q
->lock
, flags
);
4210 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4211 spin_unlock_irqrestore(&q
->lock
, flags
);
4213 EXPORT_SYMBOL(__wake_up
);
4216 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4218 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4220 __wake_up_common(q
, mode
, 1, 0, NULL
);
4224 * __wake_up_sync - wake up threads blocked on a waitqueue.
4226 * @mode: which threads
4227 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4229 * The sync wakeup differs that the waker knows that it will schedule
4230 * away soon, so while the target thread will be woken up, it will not
4231 * be migrated to another CPU - ie. the two threads are 'synchronized'
4232 * with each other. This can prevent needless bouncing between CPUs.
4234 * On UP it can prevent extra preemption.
4237 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4239 unsigned long flags
;
4245 if (unlikely(!nr_exclusive
))
4248 spin_lock_irqsave(&q
->lock
, flags
);
4249 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4250 spin_unlock_irqrestore(&q
->lock
, flags
);
4252 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4254 void complete(struct completion
*x
)
4256 unsigned long flags
;
4258 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4260 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4261 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4263 EXPORT_SYMBOL(complete
);
4265 void complete_all(struct completion
*x
)
4267 unsigned long flags
;
4269 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4270 x
->done
+= UINT_MAX
/2;
4271 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4272 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4274 EXPORT_SYMBOL(complete_all
);
4276 static inline long __sched
4277 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4280 DECLARE_WAITQUEUE(wait
, current
);
4282 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4283 __add_wait_queue_tail(&x
->wait
, &wait
);
4285 if ((state
== TASK_INTERRUPTIBLE
&&
4286 signal_pending(current
)) ||
4287 (state
== TASK_KILLABLE
&&
4288 fatal_signal_pending(current
))) {
4289 __remove_wait_queue(&x
->wait
, &wait
);
4290 return -ERESTARTSYS
;
4292 __set_current_state(state
);
4293 spin_unlock_irq(&x
->wait
.lock
);
4294 timeout
= schedule_timeout(timeout
);
4295 spin_lock_irq(&x
->wait
.lock
);
4297 __remove_wait_queue(&x
->wait
, &wait
);
4301 __remove_wait_queue(&x
->wait
, &wait
);
4308 wait_for_common(struct completion
*x
, long timeout
, int state
)
4312 spin_lock_irq(&x
->wait
.lock
);
4313 timeout
= do_wait_for_common(x
, timeout
, state
);
4314 spin_unlock_irq(&x
->wait
.lock
);
4318 void __sched
wait_for_completion(struct completion
*x
)
4320 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4322 EXPORT_SYMBOL(wait_for_completion
);
4324 unsigned long __sched
4325 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4327 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4329 EXPORT_SYMBOL(wait_for_completion_timeout
);
4331 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4333 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4334 if (t
== -ERESTARTSYS
)
4338 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4340 unsigned long __sched
4341 wait_for_completion_interruptible_timeout(struct completion
*x
,
4342 unsigned long timeout
)
4344 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4346 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4348 int __sched
wait_for_completion_killable(struct completion
*x
)
4350 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4351 if (t
== -ERESTARTSYS
)
4355 EXPORT_SYMBOL(wait_for_completion_killable
);
4358 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4360 unsigned long flags
;
4363 init_waitqueue_entry(&wait
, current
);
4365 __set_current_state(state
);
4367 spin_lock_irqsave(&q
->lock
, flags
);
4368 __add_wait_queue(q
, &wait
);
4369 spin_unlock(&q
->lock
);
4370 timeout
= schedule_timeout(timeout
);
4371 spin_lock_irq(&q
->lock
);
4372 __remove_wait_queue(q
, &wait
);
4373 spin_unlock_irqrestore(&q
->lock
, flags
);
4378 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4380 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4382 EXPORT_SYMBOL(interruptible_sleep_on
);
4385 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4387 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4389 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4391 void __sched
sleep_on(wait_queue_head_t
*q
)
4393 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4395 EXPORT_SYMBOL(sleep_on
);
4397 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4399 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4401 EXPORT_SYMBOL(sleep_on_timeout
);
4403 #ifdef CONFIG_RT_MUTEXES
4406 * rt_mutex_setprio - set the current priority of a task
4408 * @prio: prio value (kernel-internal form)
4410 * This function changes the 'effective' priority of a task. It does
4411 * not touch ->normal_prio like __setscheduler().
4413 * Used by the rt_mutex code to implement priority inheritance logic.
4415 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4417 unsigned long flags
;
4418 int oldprio
, on_rq
, running
;
4420 const struct sched_class
*prev_class
= p
->sched_class
;
4422 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4424 rq
= task_rq_lock(p
, &flags
);
4425 update_rq_clock(rq
);
4428 on_rq
= p
->se
.on_rq
;
4429 running
= task_current(rq
, p
);
4430 <<<<<<< HEAD
:kernel
/sched
.c
4434 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4435 dequeue_task(rq
, p
, 0);
4436 <<<<<<< HEAD
:kernel
/sched
.c
4438 p
->sched_class
->put_prev_task(rq
, p
);
4442 p
->sched_class
->put_prev_task(rq
, p
);
4443 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4446 p
->sched_class
= &rt_sched_class
;
4448 p
->sched_class
= &fair_sched_class
;
4452 <<<<<<< HEAD
:kernel
/sched
.c
4455 p
->sched_class
->set_curr_task(rq
);
4456 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4458 <<<<<<< HEAD
:kernel
/sched
.c
4460 p
->sched_class
->set_curr_task(rq
);
4463 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4464 enqueue_task(rq
, p
, 0);
4466 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4468 task_rq_unlock(rq
, &flags
);
4473 void set_user_nice(struct task_struct
*p
, long nice
)
4475 int old_prio
, delta
, on_rq
;
4476 unsigned long flags
;
4479 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4482 * We have to be careful, if called from sys_setpriority(),
4483 * the task might be in the middle of scheduling on another CPU.
4485 rq
= task_rq_lock(p
, &flags
);
4486 update_rq_clock(rq
);
4488 * The RT priorities are set via sched_setscheduler(), but we still
4489 * allow the 'normal' nice value to be set - but as expected
4490 * it wont have any effect on scheduling until the task is
4491 * SCHED_FIFO/SCHED_RR:
4493 if (task_has_rt_policy(p
)) {
4494 p
->static_prio
= NICE_TO_PRIO(nice
);
4497 on_rq
= p
->se
.on_rq
;
4498 <<<<<<< HEAD
:kernel
/sched
.c
4502 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4503 dequeue_task(rq
, p
, 0);
4504 <<<<<<< HEAD
:kernel
/sched
.c
4508 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4510 p
->static_prio
= NICE_TO_PRIO(nice
);
4513 p
->prio
= effective_prio(p
);
4514 delta
= p
->prio
- old_prio
;
4517 enqueue_task(rq
, p
, 0);
4518 <<<<<<< HEAD
:kernel
/sched
.c
4521 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4523 * If the task increased its priority or is running and
4524 * lowered its priority, then reschedule its CPU:
4526 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4527 resched_task(rq
->curr
);
4530 task_rq_unlock(rq
, &flags
);
4532 EXPORT_SYMBOL(set_user_nice
);
4535 * can_nice - check if a task can reduce its nice value
4539 int can_nice(const struct task_struct
*p
, const int nice
)
4541 /* convert nice value [19,-20] to rlimit style value [1,40] */
4542 int nice_rlim
= 20 - nice
;
4544 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4545 capable(CAP_SYS_NICE
));
4548 #ifdef __ARCH_WANT_SYS_NICE
4551 * sys_nice - change the priority of the current process.
4552 * @increment: priority increment
4554 * sys_setpriority is a more generic, but much slower function that
4555 * does similar things.
4557 asmlinkage
long sys_nice(int increment
)
4562 * Setpriority might change our priority at the same moment.
4563 * We don't have to worry. Conceptually one call occurs first
4564 * and we have a single winner.
4566 if (increment
< -40)
4571 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4577 if (increment
< 0 && !can_nice(current
, nice
))
4580 retval
= security_task_setnice(current
, nice
);
4584 set_user_nice(current
, nice
);
4591 * task_prio - return the priority value of a given task.
4592 * @p: the task in question.
4594 * This is the priority value as seen by users in /proc.
4595 * RT tasks are offset by -200. Normal tasks are centered
4596 * around 0, value goes from -16 to +15.
4598 int task_prio(const struct task_struct
*p
)
4600 return p
->prio
- MAX_RT_PRIO
;
4604 * task_nice - return the nice value of a given task.
4605 * @p: the task in question.
4607 int task_nice(const struct task_struct
*p
)
4609 return TASK_NICE(p
);
4611 <<<<<<< HEAD
:kernel
/sched
.c
4612 EXPORT_SYMBOL_GPL(task_nice
);
4614 EXPORT_SYMBOL(task_nice
);
4615 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4618 * idle_cpu - is a given cpu idle currently?
4619 * @cpu: the processor in question.
4621 int idle_cpu(int cpu
)
4623 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4627 * idle_task - return the idle task for a given cpu.
4628 * @cpu: the processor in question.
4630 struct task_struct
*idle_task(int cpu
)
4632 return cpu_rq(cpu
)->idle
;
4636 * find_process_by_pid - find a process with a matching PID value.
4637 * @pid: the pid in question.
4639 static struct task_struct
*find_process_by_pid(pid_t pid
)
4641 return pid
? find_task_by_vpid(pid
) : current
;
4644 /* Actually do priority change: must hold rq lock. */
4646 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4648 BUG_ON(p
->se
.on_rq
);
4651 switch (p
->policy
) {
4655 p
->sched_class
= &fair_sched_class
;
4659 p
->sched_class
= &rt_sched_class
;
4663 p
->rt_priority
= prio
;
4664 p
->normal_prio
= normal_prio(p
);
4665 /* we are holding p->pi_lock already */
4666 p
->prio
= rt_mutex_getprio(p
);
4671 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4672 * @p: the task in question.
4673 * @policy: new policy.
4674 * @param: structure containing the new RT priority.
4676 * NOTE that the task may be already dead.
4678 int sched_setscheduler(struct task_struct
*p
, int policy
,
4679 struct sched_param
*param
)
4681 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4682 unsigned long flags
;
4683 const struct sched_class
*prev_class
= p
->sched_class
;
4686 /* may grab non-irq protected spin_locks */
4687 BUG_ON(in_interrupt());
4689 /* double check policy once rq lock held */
4691 policy
= oldpolicy
= p
->policy
;
4692 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4693 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4694 policy
!= SCHED_IDLE
)
4697 * Valid priorities for SCHED_FIFO and SCHED_RR are
4698 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4699 * SCHED_BATCH and SCHED_IDLE is 0.
4701 if (param
->sched_priority
< 0 ||
4702 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4703 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4705 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4709 * Allow unprivileged RT tasks to decrease priority:
4711 if (!capable(CAP_SYS_NICE
)) {
4712 if (rt_policy(policy
)) {
4713 unsigned long rlim_rtprio
;
4715 if (!lock_task_sighand(p
, &flags
))
4717 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4718 unlock_task_sighand(p
, &flags
);
4720 /* can't set/change the rt policy */
4721 if (policy
!= p
->policy
&& !rlim_rtprio
)
4724 /* can't increase priority */
4725 if (param
->sched_priority
> p
->rt_priority
&&
4726 param
->sched_priority
> rlim_rtprio
)
4730 * Like positive nice levels, dont allow tasks to
4731 * move out of SCHED_IDLE either:
4733 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4736 /* can't change other user's priorities */
4737 if ((current
->euid
!= p
->euid
) &&
4738 (current
->euid
!= p
->uid
))
4742 #ifdef CONFIG_RT_GROUP_SCHED
4744 * Do not allow realtime tasks into groups that have no runtime
4747 if (rt_policy(policy
) && task_group(p
)->rt_runtime
== 0)
4751 retval
= security_task_setscheduler(p
, policy
, param
);
4755 * make sure no PI-waiters arrive (or leave) while we are
4756 * changing the priority of the task:
4758 spin_lock_irqsave(&p
->pi_lock
, flags
);
4760 * To be able to change p->policy safely, the apropriate
4761 * runqueue lock must be held.
4763 rq
= __task_rq_lock(p
);
4764 /* recheck policy now with rq lock held */
4765 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4766 policy
= oldpolicy
= -1;
4767 __task_rq_unlock(rq
);
4768 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4771 update_rq_clock(rq
);
4772 on_rq
= p
->se
.on_rq
;
4773 running
= task_current(rq
, p
);
4774 <<<<<<< HEAD
:kernel
/sched
.c
4778 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4779 deactivate_task(rq
, p
, 0);
4780 <<<<<<< HEAD
:kernel
/sched
.c
4782 p
->sched_class
->put_prev_task(rq
, p
);
4786 p
->sched_class
->put_prev_task(rq
, p
);
4787 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4790 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4792 <<<<<<< HEAD
:kernel
/sched
.c
4795 p
->sched_class
->set_curr_task(rq
);
4796 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4798 <<<<<<< HEAD
:kernel
/sched
.c
4800 p
->sched_class
->set_curr_task(rq
);
4803 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
4804 activate_task(rq
, p
, 0);
4806 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4808 __task_rq_unlock(rq
);
4809 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4811 rt_mutex_adjust_pi(p
);
4815 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4818 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4820 struct sched_param lparam
;
4821 struct task_struct
*p
;
4824 if (!param
|| pid
< 0)
4826 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4831 p
= find_process_by_pid(pid
);
4833 retval
= sched_setscheduler(p
, policy
, &lparam
);
4840 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4841 * @pid: the pid in question.
4842 * @policy: new policy.
4843 * @param: structure containing the new RT priority.
4846 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4848 /* negative values for policy are not valid */
4852 return do_sched_setscheduler(pid
, policy
, param
);
4856 * sys_sched_setparam - set/change the RT priority of a thread
4857 * @pid: the pid in question.
4858 * @param: structure containing the new RT priority.
4860 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4862 return do_sched_setscheduler(pid
, -1, param
);
4866 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4867 * @pid: the pid in question.
4869 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4871 struct task_struct
*p
;
4878 read_lock(&tasklist_lock
);
4879 p
= find_process_by_pid(pid
);
4881 retval
= security_task_getscheduler(p
);
4885 read_unlock(&tasklist_lock
);
4890 * sys_sched_getscheduler - get the RT priority of a thread
4891 * @pid: the pid in question.
4892 * @param: structure containing the RT priority.
4894 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4896 struct sched_param lp
;
4897 struct task_struct
*p
;
4900 if (!param
|| pid
< 0)
4903 read_lock(&tasklist_lock
);
4904 p
= find_process_by_pid(pid
);
4909 retval
= security_task_getscheduler(p
);
4913 lp
.sched_priority
= p
->rt_priority
;
4914 read_unlock(&tasklist_lock
);
4917 * This one might sleep, we cannot do it with a spinlock held ...
4919 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4924 read_unlock(&tasklist_lock
);
4928 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4930 cpumask_t cpus_allowed
;
4931 struct task_struct
*p
;
4935 read_lock(&tasklist_lock
);
4937 p
= find_process_by_pid(pid
);
4939 read_unlock(&tasklist_lock
);
4945 * It is not safe to call set_cpus_allowed with the
4946 * tasklist_lock held. We will bump the task_struct's
4947 * usage count and then drop tasklist_lock.
4950 read_unlock(&tasklist_lock
);
4953 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4954 !capable(CAP_SYS_NICE
))
4957 retval
= security_task_setscheduler(p
, 0, NULL
);
4961 cpus_allowed
= cpuset_cpus_allowed(p
);
4962 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4964 retval
= set_cpus_allowed(p
, new_mask
);
4967 cpus_allowed
= cpuset_cpus_allowed(p
);
4968 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4970 * We must have raced with a concurrent cpuset
4971 * update. Just reset the cpus_allowed to the
4972 * cpuset's cpus_allowed
4974 new_mask
= cpus_allowed
;
4984 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4985 cpumask_t
*new_mask
)
4987 if (len
< sizeof(cpumask_t
)) {
4988 memset(new_mask
, 0, sizeof(cpumask_t
));
4989 } else if (len
> sizeof(cpumask_t
)) {
4990 len
= sizeof(cpumask_t
);
4992 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4996 * sys_sched_setaffinity - set the cpu affinity of a process
4997 * @pid: pid of the process
4998 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4999 * @user_mask_ptr: user-space pointer to the new cpu mask
5001 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5002 unsigned long __user
*user_mask_ptr
)
5007 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5011 return sched_setaffinity(pid
, new_mask
);
5015 * Represents all cpu's present in the system
5016 * In systems capable of hotplug, this map could dynamically grow
5017 * as new cpu's are detected in the system via any platform specific
5018 * method, such as ACPI for e.g.
5021 cpumask_t cpu_present_map __read_mostly
;
5022 EXPORT_SYMBOL(cpu_present_map
);
5025 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
5026 EXPORT_SYMBOL(cpu_online_map
);
5028 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
5029 EXPORT_SYMBOL(cpu_possible_map
);
5032 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5034 struct task_struct
*p
;
5038 read_lock(&tasklist_lock
);
5041 p
= find_process_by_pid(pid
);
5045 retval
= security_task_getscheduler(p
);
5049 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5052 read_unlock(&tasklist_lock
);
5059 * sys_sched_getaffinity - get the cpu affinity of a process
5060 * @pid: pid of the process
5061 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5062 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5064 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5065 unsigned long __user
*user_mask_ptr
)
5070 if (len
< sizeof(cpumask_t
))
5073 ret
= sched_getaffinity(pid
, &mask
);
5077 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5080 return sizeof(cpumask_t
);
5084 * sys_sched_yield - yield the current processor to other threads.
5086 * This function yields the current CPU to other tasks. If there are no
5087 * other threads running on this CPU then this function will return.
5089 asmlinkage
long sys_sched_yield(void)
5091 struct rq
*rq
= this_rq_lock();
5093 schedstat_inc(rq
, yld_count
);
5094 current
->sched_class
->yield_task(rq
);
5097 * Since we are going to call schedule() anyway, there's
5098 * no need to preempt or enable interrupts:
5100 __release(rq
->lock
);
5101 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5102 _raw_spin_unlock(&rq
->lock
);
5103 preempt_enable_no_resched();
5110 static void __cond_resched(void)
5112 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5113 __might_sleep(__FILE__
, __LINE__
);
5116 * The BKS might be reacquired before we have dropped
5117 * PREEMPT_ACTIVE, which could trigger a second
5118 * cond_resched() call.
5121 add_preempt_count(PREEMPT_ACTIVE
);
5123 sub_preempt_count(PREEMPT_ACTIVE
);
5124 } while (need_resched());
5127 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5128 int __sched
_cond_resched(void)
5130 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5131 system_state
== SYSTEM_RUNNING
) {
5137 EXPORT_SYMBOL(_cond_resched
);
5141 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5142 * call schedule, and on return reacquire the lock.
5144 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5145 * operations here to prevent schedule() from being called twice (once via
5146 * spin_unlock(), once by hand).
5148 int cond_resched_lock(spinlock_t
*lock
)
5150 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5153 if (spin_needbreak(lock
) || resched
) {
5155 if (resched
&& need_resched())
5164 EXPORT_SYMBOL(cond_resched_lock
);
5166 int __sched
cond_resched_softirq(void)
5168 BUG_ON(!in_softirq());
5170 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5178 EXPORT_SYMBOL(cond_resched_softirq
);
5181 * yield - yield the current processor to other threads.
5183 * This is a shortcut for kernel-space yielding - it marks the
5184 * thread runnable and calls sys_sched_yield().
5186 void __sched
yield(void)
5188 set_current_state(TASK_RUNNING
);
5191 EXPORT_SYMBOL(yield
);
5194 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5195 * that process accounting knows that this is a task in IO wait state.
5197 * But don't do that if it is a deliberate, throttling IO wait (this task
5198 * has set its backing_dev_info: the queue against which it should throttle)
5200 void __sched
io_schedule(void)
5202 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5204 delayacct_blkio_start();
5205 atomic_inc(&rq
->nr_iowait
);
5207 atomic_dec(&rq
->nr_iowait
);
5208 delayacct_blkio_end();
5210 EXPORT_SYMBOL(io_schedule
);
5212 long __sched
io_schedule_timeout(long timeout
)
5214 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5217 delayacct_blkio_start();
5218 atomic_inc(&rq
->nr_iowait
);
5219 ret
= schedule_timeout(timeout
);
5220 atomic_dec(&rq
->nr_iowait
);
5221 delayacct_blkio_end();
5226 * sys_sched_get_priority_max - return maximum RT priority.
5227 * @policy: scheduling class.
5229 * this syscall returns the maximum rt_priority that can be used
5230 * by a given scheduling class.
5232 asmlinkage
long sys_sched_get_priority_max(int policy
)
5239 ret
= MAX_USER_RT_PRIO
-1;
5251 * sys_sched_get_priority_min - return minimum RT priority.
5252 * @policy: scheduling class.
5254 * this syscall returns the minimum rt_priority that can be used
5255 * by a given scheduling class.
5257 asmlinkage
long sys_sched_get_priority_min(int policy
)
5275 * sys_sched_rr_get_interval - return the default timeslice of a process.
5276 * @pid: pid of the process.
5277 * @interval: userspace pointer to the timeslice value.
5279 * this syscall writes the default timeslice value of a given process
5280 * into the user-space timespec buffer. A value of '0' means infinity.
5283 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5285 struct task_struct
*p
;
5286 unsigned int time_slice
;
5294 read_lock(&tasklist_lock
);
5295 p
= find_process_by_pid(pid
);
5299 retval
= security_task_getscheduler(p
);
5304 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5305 * tasks that are on an otherwise idle runqueue:
5308 if (p
->policy
== SCHED_RR
) {
5309 time_slice
= DEF_TIMESLICE
;
5310 <<<<<<< HEAD
:kernel
/sched
.c
5313 } else if (p
->policy
!= SCHED_FIFO
) {
5314 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
5315 struct sched_entity
*se
= &p
->se
;
5316 unsigned long flags
;
5319 rq
= task_rq_lock(p
, &flags
);
5320 if (rq
->cfs
.load
.weight
)
5321 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5322 task_rq_unlock(rq
, &flags
);
5324 read_unlock(&tasklist_lock
);
5325 jiffies_to_timespec(time_slice
, &t
);
5326 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5330 read_unlock(&tasklist_lock
);
5334 static const char stat_nam
[] = "RSDTtZX";
5336 void sched_show_task(struct task_struct
*p
)
5338 unsigned long free
= 0;
5341 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5342 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5343 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5344 #if BITS_PER_LONG == 32
5345 if (state
== TASK_RUNNING
)
5346 printk(KERN_CONT
" running ");
5348 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5350 if (state
== TASK_RUNNING
)
5351 printk(KERN_CONT
" running task ");
5353 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5355 #ifdef CONFIG_DEBUG_STACK_USAGE
5357 unsigned long *n
= end_of_stack(p
);
5360 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5363 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5364 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5366 show_stack(p
, NULL
);
5369 void show_state_filter(unsigned long state_filter
)
5371 struct task_struct
*g
, *p
;
5373 #if BITS_PER_LONG == 32
5375 " task PC stack pid father\n");
5378 " task PC stack pid father\n");
5380 read_lock(&tasklist_lock
);
5381 do_each_thread(g
, p
) {
5383 * reset the NMI-timeout, listing all files on a slow
5384 * console might take alot of time:
5386 touch_nmi_watchdog();
5387 if (!state_filter
|| (p
->state
& state_filter
))
5389 } while_each_thread(g
, p
);
5391 touch_all_softlockup_watchdogs();
5393 #ifdef CONFIG_SCHED_DEBUG
5394 sysrq_sched_debug_show();
5396 read_unlock(&tasklist_lock
);
5398 * Only show locks if all tasks are dumped:
5400 if (state_filter
== -1)
5401 debug_show_all_locks();
5404 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5406 idle
->sched_class
= &idle_sched_class
;
5410 * init_idle - set up an idle thread for a given CPU
5411 * @idle: task in question
5412 * @cpu: cpu the idle task belongs to
5414 * NOTE: this function does not set the idle thread's NEED_RESCHED
5415 * flag, to make booting more robust.
5417 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5419 struct rq
*rq
= cpu_rq(cpu
);
5420 unsigned long flags
;
5423 idle
->se
.exec_start
= sched_clock();
5425 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5426 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5427 __set_task_cpu(idle
, cpu
);
5429 spin_lock_irqsave(&rq
->lock
, flags
);
5430 rq
->curr
= rq
->idle
= idle
;
5431 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5434 spin_unlock_irqrestore(&rq
->lock
, flags
);
5436 /* Set the preempt count _outside_ the spinlocks! */
5437 task_thread_info(idle
)->preempt_count
= 0;
5440 * The idle tasks have their own, simple scheduling class:
5442 idle
->sched_class
= &idle_sched_class
;
5446 * In a system that switches off the HZ timer nohz_cpu_mask
5447 * indicates which cpus entered this state. This is used
5448 * in the rcu update to wait only for active cpus. For system
5449 * which do not switch off the HZ timer nohz_cpu_mask should
5450 * always be CPU_MASK_NONE.
5452 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5455 * Increase the granularity value when there are more CPUs,
5456 * because with more CPUs the 'effective latency' as visible
5457 * to users decreases. But the relationship is not linear,
5458 * so pick a second-best guess by going with the log2 of the
5461 * This idea comes from the SD scheduler of Con Kolivas:
5463 static inline void sched_init_granularity(void)
5465 unsigned int factor
= 1 + ilog2(num_online_cpus());
5466 const unsigned long limit
= 200000000;
5468 sysctl_sched_min_granularity
*= factor
;
5469 if (sysctl_sched_min_granularity
> limit
)
5470 sysctl_sched_min_granularity
= limit
;
5472 sysctl_sched_latency
*= factor
;
5473 if (sysctl_sched_latency
> limit
)
5474 sysctl_sched_latency
= limit
;
5476 sysctl_sched_wakeup_granularity
*= factor
;
5477 sysctl_sched_batch_wakeup_granularity
*= factor
;
5482 * This is how migration works:
5484 * 1) we queue a struct migration_req structure in the source CPU's
5485 * runqueue and wake up that CPU's migration thread.
5486 * 2) we down() the locked semaphore => thread blocks.
5487 * 3) migration thread wakes up (implicitly it forces the migrated
5488 * thread off the CPU)
5489 * 4) it gets the migration request and checks whether the migrated
5490 * task is still in the wrong runqueue.
5491 * 5) if it's in the wrong runqueue then the migration thread removes
5492 * it and puts it into the right queue.
5493 * 6) migration thread up()s the semaphore.
5494 * 7) we wake up and the migration is done.
5498 * Change a given task's CPU affinity. Migrate the thread to a
5499 * proper CPU and schedule it away if the CPU it's executing on
5500 * is removed from the allowed bitmask.
5502 * NOTE: the caller must have a valid reference to the task, the
5503 * task must not exit() & deallocate itself prematurely. The
5504 * call is not atomic; no spinlocks may be held.
5506 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5508 struct migration_req req
;
5509 unsigned long flags
;
5513 rq
= task_rq_lock(p
, &flags
);
5514 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5519 if (p
->sched_class
->set_cpus_allowed
)
5520 p
->sched_class
->set_cpus_allowed(p
, &new_mask
);
5522 p
->cpus_allowed
= new_mask
;
5523 p
->rt
.nr_cpus_allowed
= cpus_weight(new_mask
);
5526 /* Can the task run on the task's current CPU? If so, we're done */
5527 if (cpu_isset(task_cpu(p
), new_mask
))
5530 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5531 /* Need help from migration thread: drop lock and wait. */
5532 task_rq_unlock(rq
, &flags
);
5533 wake_up_process(rq
->migration_thread
);
5534 wait_for_completion(&req
.done
);
5535 tlb_migrate_finish(p
->mm
);
5539 task_rq_unlock(rq
, &flags
);
5543 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5546 * Move (not current) task off this cpu, onto dest cpu. We're doing
5547 * this because either it can't run here any more (set_cpus_allowed()
5548 * away from this CPU, or CPU going down), or because we're
5549 * attempting to rebalance this task on exec (sched_exec).
5551 * So we race with normal scheduler movements, but that's OK, as long
5552 * as the task is no longer on this CPU.
5554 * Returns non-zero if task was successfully migrated.
5556 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5558 struct rq
*rq_dest
, *rq_src
;
5561 if (unlikely(cpu_is_offline(dest_cpu
)))
5564 rq_src
= cpu_rq(src_cpu
);
5565 rq_dest
= cpu_rq(dest_cpu
);
5567 double_rq_lock(rq_src
, rq_dest
);
5568 /* Already moved. */
5569 if (task_cpu(p
) != src_cpu
)
5571 /* Affinity changed (again). */
5572 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5575 on_rq
= p
->se
.on_rq
;
5577 deactivate_task(rq_src
, p
, 0);
5579 set_task_cpu(p
, dest_cpu
);
5581 activate_task(rq_dest
, p
, 0);
5582 check_preempt_curr(rq_dest
, p
);
5586 double_rq_unlock(rq_src
, rq_dest
);
5591 * migration_thread - this is a highprio system thread that performs
5592 * thread migration by bumping thread off CPU then 'pushing' onto
5595 static int migration_thread(void *data
)
5597 int cpu
= (long)data
;
5601 BUG_ON(rq
->migration_thread
!= current
);
5603 set_current_state(TASK_INTERRUPTIBLE
);
5604 while (!kthread_should_stop()) {
5605 struct migration_req
*req
;
5606 struct list_head
*head
;
5608 spin_lock_irq(&rq
->lock
);
5610 if (cpu_is_offline(cpu
)) {
5611 spin_unlock_irq(&rq
->lock
);
5615 if (rq
->active_balance
) {
5616 active_load_balance(rq
, cpu
);
5617 rq
->active_balance
= 0;
5620 head
= &rq
->migration_queue
;
5622 if (list_empty(head
)) {
5623 spin_unlock_irq(&rq
->lock
);
5625 set_current_state(TASK_INTERRUPTIBLE
);
5628 req
= list_entry(head
->next
, struct migration_req
, list
);
5629 list_del_init(head
->next
);
5631 spin_unlock(&rq
->lock
);
5632 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5635 complete(&req
->done
);
5637 __set_current_state(TASK_RUNNING
);
5641 /* Wait for kthread_stop */
5642 set_current_state(TASK_INTERRUPTIBLE
);
5643 while (!kthread_should_stop()) {
5645 set_current_state(TASK_INTERRUPTIBLE
);
5647 __set_current_state(TASK_RUNNING
);
5651 #ifdef CONFIG_HOTPLUG_CPU
5653 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5657 local_irq_disable();
5658 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5664 * Figure out where task on dead CPU should go, use force if necessary.
5665 * NOTE: interrupts should be disabled by the caller
5667 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5669 unsigned long flags
;
5676 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5677 cpus_and(mask
, mask
, p
->cpus_allowed
);
5678 dest_cpu
= any_online_cpu(mask
);
5680 /* On any allowed CPU? */
5681 if (dest_cpu
== NR_CPUS
)
5682 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5684 /* No more Mr. Nice Guy. */
5685 if (dest_cpu
== NR_CPUS
) {
5686 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5688 * Try to stay on the same cpuset, where the
5689 * current cpuset may be a subset of all cpus.
5690 * The cpuset_cpus_allowed_locked() variant of
5691 * cpuset_cpus_allowed() will not block. It must be
5692 * called within calls to cpuset_lock/cpuset_unlock.
5694 rq
= task_rq_lock(p
, &flags
);
5695 p
->cpus_allowed
= cpus_allowed
;
5696 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5697 task_rq_unlock(rq
, &flags
);
5700 * Don't tell them about moving exiting tasks or
5701 * kernel threads (both mm NULL), since they never
5704 if (p
->mm
&& printk_ratelimit()) {
5705 printk(KERN_INFO
"process %d (%s) no "
5706 "longer affine to cpu%d\n",
5707 task_pid_nr(p
), p
->comm
, dead_cpu
);
5710 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5714 * While a dead CPU has no uninterruptible tasks queued at this point,
5715 * it might still have a nonzero ->nr_uninterruptible counter, because
5716 * for performance reasons the counter is not stricly tracking tasks to
5717 * their home CPUs. So we just add the counter to another CPU's counter,
5718 * to keep the global sum constant after CPU-down:
5720 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5722 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5723 unsigned long flags
;
5725 local_irq_save(flags
);
5726 double_rq_lock(rq_src
, rq_dest
);
5727 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5728 rq_src
->nr_uninterruptible
= 0;
5729 double_rq_unlock(rq_src
, rq_dest
);
5730 local_irq_restore(flags
);
5733 /* Run through task list and migrate tasks from the dead cpu. */
5734 static void migrate_live_tasks(int src_cpu
)
5736 struct task_struct
*p
, *t
;
5738 read_lock(&tasklist_lock
);
5740 do_each_thread(t
, p
) {
5744 if (task_cpu(p
) == src_cpu
)
5745 move_task_off_dead_cpu(src_cpu
, p
);
5746 } while_each_thread(t
, p
);
5748 read_unlock(&tasklist_lock
);
5752 * Schedules idle task to be the next runnable task on current CPU.
5753 * It does so by boosting its priority to highest possible.
5754 * Used by CPU offline code.
5756 void sched_idle_next(void)
5758 int this_cpu
= smp_processor_id();
5759 struct rq
*rq
= cpu_rq(this_cpu
);
5760 struct task_struct
*p
= rq
->idle
;
5761 unsigned long flags
;
5763 /* cpu has to be offline */
5764 BUG_ON(cpu_online(this_cpu
));
5767 * Strictly not necessary since rest of the CPUs are stopped by now
5768 * and interrupts disabled on the current cpu.
5770 spin_lock_irqsave(&rq
->lock
, flags
);
5772 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5774 update_rq_clock(rq
);
5775 activate_task(rq
, p
, 0);
5777 spin_unlock_irqrestore(&rq
->lock
, flags
);
5781 * Ensures that the idle task is using init_mm right before its cpu goes
5784 void idle_task_exit(void)
5786 struct mm_struct
*mm
= current
->active_mm
;
5788 BUG_ON(cpu_online(smp_processor_id()));
5791 switch_mm(mm
, &init_mm
, current
);
5795 /* called under rq->lock with disabled interrupts */
5796 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5798 struct rq
*rq
= cpu_rq(dead_cpu
);
5800 /* Must be exiting, otherwise would be on tasklist. */
5801 BUG_ON(!p
->exit_state
);
5803 /* Cannot have done final schedule yet: would have vanished. */
5804 BUG_ON(p
->state
== TASK_DEAD
);
5809 * Drop lock around migration; if someone else moves it,
5810 * that's OK. No task can be added to this CPU, so iteration is
5813 spin_unlock_irq(&rq
->lock
);
5814 move_task_off_dead_cpu(dead_cpu
, p
);
5815 spin_lock_irq(&rq
->lock
);
5820 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5821 static void migrate_dead_tasks(unsigned int dead_cpu
)
5823 struct rq
*rq
= cpu_rq(dead_cpu
);
5824 struct task_struct
*next
;
5827 if (!rq
->nr_running
)
5829 update_rq_clock(rq
);
5830 next
= pick_next_task(rq
, rq
->curr
);
5833 migrate_dead(dead_cpu
, next
);
5837 #endif /* CONFIG_HOTPLUG_CPU */
5839 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5841 static struct ctl_table sd_ctl_dir
[] = {
5843 .procname
= "sched_domain",
5849 static struct ctl_table sd_ctl_root
[] = {
5851 .ctl_name
= CTL_KERN
,
5852 .procname
= "kernel",
5854 .child
= sd_ctl_dir
,
5859 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5861 struct ctl_table
*entry
=
5862 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5867 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5869 struct ctl_table
*entry
;
5872 * In the intermediate directories, both the child directory and
5873 * procname are dynamically allocated and could fail but the mode
5874 * will always be set. In the lowest directory the names are
5875 * static strings and all have proc handlers.
5877 for (entry
= *tablep
; entry
->mode
; entry
++) {
5879 sd_free_ctl_entry(&entry
->child
);
5880 if (entry
->proc_handler
== NULL
)
5881 kfree(entry
->procname
);
5889 set_table_entry(struct ctl_table
*entry
,
5890 const char *procname
, void *data
, int maxlen
,
5891 mode_t mode
, proc_handler
*proc_handler
)
5893 entry
->procname
= procname
;
5895 entry
->maxlen
= maxlen
;
5897 entry
->proc_handler
= proc_handler
;
5900 static struct ctl_table
*
5901 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5903 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5908 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5909 sizeof(long), 0644, proc_doulongvec_minmax
);
5910 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5911 sizeof(long), 0644, proc_doulongvec_minmax
);
5912 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5913 sizeof(int), 0644, proc_dointvec_minmax
);
5914 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5915 sizeof(int), 0644, proc_dointvec_minmax
);
5916 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5917 sizeof(int), 0644, proc_dointvec_minmax
);
5918 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5919 sizeof(int), 0644, proc_dointvec_minmax
);
5920 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5921 sizeof(int), 0644, proc_dointvec_minmax
);
5922 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5923 sizeof(int), 0644, proc_dointvec_minmax
);
5924 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5925 sizeof(int), 0644, proc_dointvec_minmax
);
5926 set_table_entry(&table
[9], "cache_nice_tries",
5927 &sd
->cache_nice_tries
,
5928 sizeof(int), 0644, proc_dointvec_minmax
);
5929 set_table_entry(&table
[10], "flags", &sd
->flags
,
5930 sizeof(int), 0644, proc_dointvec_minmax
);
5931 /* &table[11] is terminator */
5936 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5938 struct ctl_table
*entry
, *table
;
5939 struct sched_domain
*sd
;
5940 int domain_num
= 0, i
;
5943 for_each_domain(cpu
, sd
)
5945 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5950 for_each_domain(cpu
, sd
) {
5951 snprintf(buf
, 32, "domain%d", i
);
5952 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5954 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5961 static struct ctl_table_header
*sd_sysctl_header
;
5962 static void register_sched_domain_sysctl(void)
5964 int i
, cpu_num
= num_online_cpus();
5965 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5968 WARN_ON(sd_ctl_dir
[0].child
);
5969 sd_ctl_dir
[0].child
= entry
;
5974 for_each_online_cpu(i
) {
5975 snprintf(buf
, 32, "cpu%d", i
);
5976 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5978 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5982 WARN_ON(sd_sysctl_header
);
5983 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5986 /* may be called multiple times per register */
5987 static void unregister_sched_domain_sysctl(void)
5989 if (sd_sysctl_header
)
5990 unregister_sysctl_table(sd_sysctl_header
);
5991 sd_sysctl_header
= NULL
;
5992 if (sd_ctl_dir
[0].child
)
5993 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5996 static void register_sched_domain_sysctl(void)
5999 static void unregister_sched_domain_sysctl(void)
6005 * migration_call - callback that gets triggered when a CPU is added.
6006 * Here we can start up the necessary migration thread for the new CPU.
6008 static int __cpuinit
6009 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6011 struct task_struct
*p
;
6012 int cpu
= (long)hcpu
;
6013 unsigned long flags
;
6018 case CPU_UP_PREPARE
:
6019 case CPU_UP_PREPARE_FROZEN
:
6020 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6023 kthread_bind(p
, cpu
);
6024 /* Must be high prio: stop_machine expects to yield to it. */
6025 rq
= task_rq_lock(p
, &flags
);
6026 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6027 task_rq_unlock(rq
, &flags
);
6028 cpu_rq(cpu
)->migration_thread
= p
;
6032 case CPU_ONLINE_FROZEN
:
6033 /* Strictly unnecessary, as first user will wake it. */
6034 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6036 /* Update our root-domain */
6038 spin_lock_irqsave(&rq
->lock
, flags
);
6040 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6041 cpu_set(cpu
, rq
->rd
->online
);
6043 spin_unlock_irqrestore(&rq
->lock
, flags
);
6046 #ifdef CONFIG_HOTPLUG_CPU
6047 case CPU_UP_CANCELED
:
6048 case CPU_UP_CANCELED_FROZEN
:
6049 if (!cpu_rq(cpu
)->migration_thread
)
6051 /* Unbind it from offline cpu so it can run. Fall thru. */
6052 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6053 any_online_cpu(cpu_online_map
));
6054 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6055 cpu_rq(cpu
)->migration_thread
= NULL
;
6059 case CPU_DEAD_FROZEN
:
6060 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6061 migrate_live_tasks(cpu
);
6063 kthread_stop(rq
->migration_thread
);
6064 rq
->migration_thread
= NULL
;
6065 /* Idle task back to normal (off runqueue, low prio) */
6066 spin_lock_irq(&rq
->lock
);
6067 update_rq_clock(rq
);
6068 deactivate_task(rq
, rq
->idle
, 0);
6069 rq
->idle
->static_prio
= MAX_PRIO
;
6070 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6071 rq
->idle
->sched_class
= &idle_sched_class
;
6072 migrate_dead_tasks(cpu
);
6073 spin_unlock_irq(&rq
->lock
);
6075 migrate_nr_uninterruptible(rq
);
6076 BUG_ON(rq
->nr_running
!= 0);
6079 * No need to migrate the tasks: it was best-effort if
6080 * they didn't take sched_hotcpu_mutex. Just wake up
6083 spin_lock_irq(&rq
->lock
);
6084 while (!list_empty(&rq
->migration_queue
)) {
6085 struct migration_req
*req
;
6087 req
= list_entry(rq
->migration_queue
.next
,
6088 struct migration_req
, list
);
6089 list_del_init(&req
->list
);
6090 complete(&req
->done
);
6092 spin_unlock_irq(&rq
->lock
);
6095 <<<<<<< HEAD
:kernel
/sched
.c
6096 case CPU_DOWN_PREPARE
:
6099 case CPU_DYING_FROZEN
:
6100 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
6101 /* Update our root-domain */
6103 spin_lock_irqsave(&rq
->lock
, flags
);
6105 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6106 cpu_clear(cpu
, rq
->rd
->online
);
6108 spin_unlock_irqrestore(&rq
->lock
, flags
);
6115 /* Register at highest priority so that task migration (migrate_all_tasks)
6116 * happens before everything else.
6118 static struct notifier_block __cpuinitdata migration_notifier
= {
6119 .notifier_call
= migration_call
,
6123 void __init
migration_init(void)
6125 void *cpu
= (void *)(long)smp_processor_id();
6128 /* Start one for the boot CPU: */
6129 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6130 BUG_ON(err
== NOTIFY_BAD
);
6131 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6132 register_cpu_notifier(&migration_notifier
);
6138 /* Number of possible processor ids */
6139 int nr_cpu_ids __read_mostly
= NR_CPUS
;
6140 EXPORT_SYMBOL(nr_cpu_ids
);
6142 #ifdef CONFIG_SCHED_DEBUG
6144 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
6146 struct sched_group
*group
= sd
->groups
;
6147 cpumask_t groupmask
;
6150 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
6151 cpus_clear(groupmask
);
6153 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6155 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6156 printk("does not load-balance\n");
6158 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6163 printk(KERN_CONT
"span %s\n", str
);
6165 if (!cpu_isset(cpu
, sd
->span
)) {
6166 printk(KERN_ERR
"ERROR: domain->span does not contain "
6169 if (!cpu_isset(cpu
, group
->cpumask
)) {
6170 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6174 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6178 printk(KERN_ERR
"ERROR: group is NULL\n");
6182 if (!group
->__cpu_power
) {
6183 printk(KERN_CONT
"\n");
6184 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6189 if (!cpus_weight(group
->cpumask
)) {
6190 printk(KERN_CONT
"\n");
6191 printk(KERN_ERR
"ERROR: empty group\n");
6195 if (cpus_intersects(groupmask
, group
->cpumask
)) {
6196 printk(KERN_CONT
"\n");
6197 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6201 cpus_or(groupmask
, groupmask
, group
->cpumask
);
6203 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
6204 printk(KERN_CONT
" %s", str
);
6206 group
= group
->next
;
6207 } while (group
!= sd
->groups
);
6208 printk(KERN_CONT
"\n");
6210 if (!cpus_equal(sd
->span
, groupmask
))
6211 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6213 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
6214 printk(KERN_ERR
"ERROR: parent span is not a superset "
6215 "of domain->span\n");
6219 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6224 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6228 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6231 if (sched_domain_debug_one(sd
, cpu
, level
))
6240 # define sched_domain_debug(sd, cpu) do { } while (0)
6243 static int sd_degenerate(struct sched_domain
*sd
)
6245 if (cpus_weight(sd
->span
) == 1)
6248 /* Following flags need at least 2 groups */
6249 if (sd
->flags
& (SD_LOAD_BALANCE
|
6250 SD_BALANCE_NEWIDLE
|
6254 SD_SHARE_PKG_RESOURCES
)) {
6255 if (sd
->groups
!= sd
->groups
->next
)
6259 /* Following flags don't use groups */
6260 if (sd
->flags
& (SD_WAKE_IDLE
|
6269 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6271 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6273 if (sd_degenerate(parent
))
6276 if (!cpus_equal(sd
->span
, parent
->span
))
6279 /* Does parent contain flags not in child? */
6280 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6281 if (cflags
& SD_WAKE_AFFINE
)
6282 pflags
&= ~SD_WAKE_BALANCE
;
6283 /* Flags needing groups don't count if only 1 group in parent */
6284 if (parent
->groups
== parent
->groups
->next
) {
6285 pflags
&= ~(SD_LOAD_BALANCE
|
6286 SD_BALANCE_NEWIDLE
|
6290 SD_SHARE_PKG_RESOURCES
);
6292 if (~cflags
& pflags
)
6298 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6300 unsigned long flags
;
6301 const struct sched_class
*class;
6303 spin_lock_irqsave(&rq
->lock
, flags
);
6306 struct root_domain
*old_rd
= rq
->rd
;
6308 for (class = sched_class_highest
; class; class = class->next
) {
6309 if (class->leave_domain
)
6310 class->leave_domain(rq
);
6313 cpu_clear(rq
->cpu
, old_rd
->span
);
6314 cpu_clear(rq
->cpu
, old_rd
->online
);
6316 if (atomic_dec_and_test(&old_rd
->refcount
))
6320 atomic_inc(&rd
->refcount
);
6323 cpu_set(rq
->cpu
, rd
->span
);
6324 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6325 cpu_set(rq
->cpu
, rd
->online
);
6327 for (class = sched_class_highest
; class; class = class->next
) {
6328 if (class->join_domain
)
6329 class->join_domain(rq
);
6332 spin_unlock_irqrestore(&rq
->lock
, flags
);
6335 static void init_rootdomain(struct root_domain
*rd
)
6337 memset(rd
, 0, sizeof(*rd
));
6339 cpus_clear(rd
->span
);
6340 cpus_clear(rd
->online
);
6343 static void init_defrootdomain(void)
6345 init_rootdomain(&def_root_domain
);
6346 atomic_set(&def_root_domain
.refcount
, 1);
6349 static struct root_domain
*alloc_rootdomain(void)
6351 struct root_domain
*rd
;
6353 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6357 init_rootdomain(rd
);
6363 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6364 * hold the hotplug lock.
6367 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6369 struct rq
*rq
= cpu_rq(cpu
);
6370 struct sched_domain
*tmp
;
6372 /* Remove the sched domains which do not contribute to scheduling. */
6373 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6374 struct sched_domain
*parent
= tmp
->parent
;
6377 if (sd_parent_degenerate(tmp
, parent
)) {
6378 tmp
->parent
= parent
->parent
;
6380 parent
->parent
->child
= tmp
;
6384 if (sd
&& sd_degenerate(sd
)) {
6390 sched_domain_debug(sd
, cpu
);
6392 rq_attach_root(rq
, rd
);
6393 rcu_assign_pointer(rq
->sd
, sd
);
6396 /* cpus with isolated domains */
6397 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6399 /* Setup the mask of cpus configured for isolated domains */
6400 static int __init
isolated_cpu_setup(char *str
)
6402 int ints
[NR_CPUS
], i
;
6404 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6405 cpus_clear(cpu_isolated_map
);
6406 for (i
= 1; i
<= ints
[0]; i
++)
6407 if (ints
[i
] < NR_CPUS
)
6408 cpu_set(ints
[i
], cpu_isolated_map
);
6412 __setup("isolcpus=", isolated_cpu_setup
);
6415 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6416 * to a function which identifies what group(along with sched group) a CPU
6417 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6418 * (due to the fact that we keep track of groups covered with a cpumask_t).
6420 * init_sched_build_groups will build a circular linked list of the groups
6421 * covered by the given span, and will set each group's ->cpumask correctly,
6422 * and ->cpu_power to 0.
6425 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
6426 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6427 struct sched_group
**sg
))
6429 struct sched_group
*first
= NULL
, *last
= NULL
;
6430 cpumask_t covered
= CPU_MASK_NONE
;
6433 for_each_cpu_mask(i
, span
) {
6434 struct sched_group
*sg
;
6435 int group
= group_fn(i
, cpu_map
, &sg
);
6438 if (cpu_isset(i
, covered
))
6441 sg
->cpumask
= CPU_MASK_NONE
;
6442 sg
->__cpu_power
= 0;
6444 for_each_cpu_mask(j
, span
) {
6445 if (group_fn(j
, cpu_map
, NULL
) != group
)
6448 cpu_set(j
, covered
);
6449 cpu_set(j
, sg
->cpumask
);
6460 #define SD_NODES_PER_DOMAIN 16
6465 * find_next_best_node - find the next node to include in a sched_domain
6466 * @node: node whose sched_domain we're building
6467 * @used_nodes: nodes already in the sched_domain
6469 * Find the next node to include in a given scheduling domain. Simply
6470 * finds the closest node not already in the @used_nodes map.
6472 * Should use nodemask_t.
6474 static int find_next_best_node(int node
, unsigned long *used_nodes
)
6476 int i
, n
, val
, min_val
, best_node
= 0;
6480 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6481 /* Start at @node */
6482 n
= (node
+ i
) % MAX_NUMNODES
;
6484 if (!nr_cpus_node(n
))
6487 /* Skip already used nodes */
6488 if (test_bit(n
, used_nodes
))
6491 /* Simple min distance search */
6492 val
= node_distance(node
, n
);
6494 if (val
< min_val
) {
6500 set_bit(best_node
, used_nodes
);
6505 * sched_domain_node_span - get a cpumask for a node's sched_domain
6506 * @node: node whose cpumask we're constructing
6507 * @size: number of nodes to include in this span
6509 * Given a node, construct a good cpumask for its sched_domain to span. It
6510 * should be one that prevents unnecessary balancing, but also spreads tasks
6513 static cpumask_t
sched_domain_node_span(int node
)
6515 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
6516 cpumask_t span
, nodemask
;
6520 bitmap_zero(used_nodes
, MAX_NUMNODES
);
6522 nodemask
= node_to_cpumask(node
);
6523 cpus_or(span
, span
, nodemask
);
6524 set_bit(node
, used_nodes
);
6526 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6527 int next_node
= find_next_best_node(node
, used_nodes
);
6529 nodemask
= node_to_cpumask(next_node
);
6530 cpus_or(span
, span
, nodemask
);
6537 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6540 * SMT sched-domains:
6542 #ifdef CONFIG_SCHED_SMT
6543 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6544 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6547 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6550 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6556 * multi-core sched-domains:
6558 #ifdef CONFIG_SCHED_MC
6559 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6560 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6563 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6565 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6568 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6569 cpus_and(mask
, mask
, *cpu_map
);
6570 group
= first_cpu(mask
);
6572 *sg
= &per_cpu(sched_group_core
, group
);
6575 #elif defined(CONFIG_SCHED_MC)
6577 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6580 *sg
= &per_cpu(sched_group_core
, cpu
);
6585 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6586 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6589 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6592 #ifdef CONFIG_SCHED_MC
6593 cpumask_t mask
= cpu_coregroup_map(cpu
);
6594 cpus_and(mask
, mask
, *cpu_map
);
6595 group
= first_cpu(mask
);
6596 #elif defined(CONFIG_SCHED_SMT)
6597 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6598 cpus_and(mask
, mask
, *cpu_map
);
6599 group
= first_cpu(mask
);
6604 *sg
= &per_cpu(sched_group_phys
, group
);
6610 * The init_sched_build_groups can't handle what we want to do with node
6611 * groups, so roll our own. Now each node has its own list of groups which
6612 * gets dynamically allocated.
6614 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6615 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6617 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6618 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6620 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6621 struct sched_group
**sg
)
6623 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6626 cpus_and(nodemask
, nodemask
, *cpu_map
);
6627 group
= first_cpu(nodemask
);
6630 *sg
= &per_cpu(sched_group_allnodes
, group
);
6634 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6636 struct sched_group
*sg
= group_head
;
6642 for_each_cpu_mask(j
, sg
->cpumask
) {
6643 struct sched_domain
*sd
;
6645 sd
= &per_cpu(phys_domains
, j
);
6646 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6648 * Only add "power" once for each
6654 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6657 } while (sg
!= group_head
);
6662 /* Free memory allocated for various sched_group structures */
6663 static void free_sched_groups(const cpumask_t
*cpu_map
)
6667 for_each_cpu_mask(cpu
, *cpu_map
) {
6668 struct sched_group
**sched_group_nodes
6669 = sched_group_nodes_bycpu
[cpu
];
6671 if (!sched_group_nodes
)
6674 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6675 cpumask_t nodemask
= node_to_cpumask(i
);
6676 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6678 cpus_and(nodemask
, nodemask
, *cpu_map
);
6679 if (cpus_empty(nodemask
))
6689 if (oldsg
!= sched_group_nodes
[i
])
6692 kfree(sched_group_nodes
);
6693 sched_group_nodes_bycpu
[cpu
] = NULL
;
6697 static void free_sched_groups(const cpumask_t
*cpu_map
)
6703 * Initialize sched groups cpu_power.
6705 * cpu_power indicates the capacity of sched group, which is used while
6706 * distributing the load between different sched groups in a sched domain.
6707 * Typically cpu_power for all the groups in a sched domain will be same unless
6708 * there are asymmetries in the topology. If there are asymmetries, group
6709 * having more cpu_power will pickup more load compared to the group having
6712 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6713 * the maximum number of tasks a group can handle in the presence of other idle
6714 * or lightly loaded groups in the same sched domain.
6716 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6718 struct sched_domain
*child
;
6719 struct sched_group
*group
;
6721 WARN_ON(!sd
|| !sd
->groups
);
6723 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6728 sd
->groups
->__cpu_power
= 0;
6731 * For perf policy, if the groups in child domain share resources
6732 * (for example cores sharing some portions of the cache hierarchy
6733 * or SMT), then set this domain groups cpu_power such that each group
6734 * can handle only one task, when there are other idle groups in the
6735 * same sched domain.
6737 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6739 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6740 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6745 * add cpu_power of each child group to this groups cpu_power
6747 group
= child
->groups
;
6749 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6750 group
= group
->next
;
6751 } while (group
!= child
->groups
);
6755 * Build sched domains for a given set of cpus and attach the sched domains
6756 * to the individual cpus
6758 static int build_sched_domains(const cpumask_t
*cpu_map
)
6761 struct root_domain
*rd
;
6763 struct sched_group
**sched_group_nodes
= NULL
;
6764 int sd_allnodes
= 0;
6767 * Allocate the per-node list of sched groups
6769 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6771 if (!sched_group_nodes
) {
6772 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6775 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6778 rd
= alloc_rootdomain();
6780 printk(KERN_WARNING
"Cannot alloc root domain\n");
6785 * Set up domains for cpus specified by the cpu_map.
6787 for_each_cpu_mask(i
, *cpu_map
) {
6788 struct sched_domain
*sd
= NULL
, *p
;
6789 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6791 cpus_and(nodemask
, nodemask
, *cpu_map
);
6794 if (cpus_weight(*cpu_map
) >
6795 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6796 sd
= &per_cpu(allnodes_domains
, i
);
6797 *sd
= SD_ALLNODES_INIT
;
6798 sd
->span
= *cpu_map
;
6799 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6805 sd
= &per_cpu(node_domains
, i
);
6807 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6811 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6815 sd
= &per_cpu(phys_domains
, i
);
6817 sd
->span
= nodemask
;
6821 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6823 #ifdef CONFIG_SCHED_MC
6825 sd
= &per_cpu(core_domains
, i
);
6827 sd
->span
= cpu_coregroup_map(i
);
6828 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6831 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6834 #ifdef CONFIG_SCHED_SMT
6836 sd
= &per_cpu(cpu_domains
, i
);
6837 *sd
= SD_SIBLING_INIT
;
6838 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6839 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6842 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6846 #ifdef CONFIG_SCHED_SMT
6847 /* Set up CPU (sibling) groups */
6848 for_each_cpu_mask(i
, *cpu_map
) {
6849 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6850 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6851 if (i
!= first_cpu(this_sibling_map
))
6854 init_sched_build_groups(this_sibling_map
, cpu_map
,
6859 #ifdef CONFIG_SCHED_MC
6860 /* Set up multi-core groups */
6861 for_each_cpu_mask(i
, *cpu_map
) {
6862 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6863 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6864 if (i
!= first_cpu(this_core_map
))
6866 init_sched_build_groups(this_core_map
, cpu_map
,
6867 &cpu_to_core_group
);
6871 /* Set up physical groups */
6872 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6873 cpumask_t nodemask
= node_to_cpumask(i
);
6875 cpus_and(nodemask
, nodemask
, *cpu_map
);
6876 if (cpus_empty(nodemask
))
6879 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6883 /* Set up node groups */
6885 init_sched_build_groups(*cpu_map
, cpu_map
,
6886 &cpu_to_allnodes_group
);
6888 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6889 /* Set up node groups */
6890 struct sched_group
*sg
, *prev
;
6891 cpumask_t nodemask
= node_to_cpumask(i
);
6892 cpumask_t domainspan
;
6893 cpumask_t covered
= CPU_MASK_NONE
;
6896 cpus_and(nodemask
, nodemask
, *cpu_map
);
6897 if (cpus_empty(nodemask
)) {
6898 sched_group_nodes
[i
] = NULL
;
6902 domainspan
= sched_domain_node_span(i
);
6903 cpus_and(domainspan
, domainspan
, *cpu_map
);
6905 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6907 printk(KERN_WARNING
"Can not alloc domain group for "
6911 sched_group_nodes
[i
] = sg
;
6912 for_each_cpu_mask(j
, nodemask
) {
6913 struct sched_domain
*sd
;
6915 sd
= &per_cpu(node_domains
, j
);
6918 sg
->__cpu_power
= 0;
6919 sg
->cpumask
= nodemask
;
6921 cpus_or(covered
, covered
, nodemask
);
6924 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6925 cpumask_t tmp
, notcovered
;
6926 int n
= (i
+ j
) % MAX_NUMNODES
;
6928 cpus_complement(notcovered
, covered
);
6929 cpus_and(tmp
, notcovered
, *cpu_map
);
6930 cpus_and(tmp
, tmp
, domainspan
);
6931 if (cpus_empty(tmp
))
6934 nodemask
= node_to_cpumask(n
);
6935 cpus_and(tmp
, tmp
, nodemask
);
6936 if (cpus_empty(tmp
))
6939 sg
= kmalloc_node(sizeof(struct sched_group
),
6943 "Can not alloc domain group for node %d\n", j
);
6946 sg
->__cpu_power
= 0;
6948 sg
->next
= prev
->next
;
6949 cpus_or(covered
, covered
, tmp
);
6956 /* Calculate CPU power for physical packages and nodes */
6957 #ifdef CONFIG_SCHED_SMT
6958 for_each_cpu_mask(i
, *cpu_map
) {
6959 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6961 init_sched_groups_power(i
, sd
);
6964 #ifdef CONFIG_SCHED_MC
6965 for_each_cpu_mask(i
, *cpu_map
) {
6966 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6968 init_sched_groups_power(i
, sd
);
6972 for_each_cpu_mask(i
, *cpu_map
) {
6973 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6975 init_sched_groups_power(i
, sd
);
6979 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6980 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6983 struct sched_group
*sg
;
6985 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6986 init_numa_sched_groups_power(sg
);
6990 /* Attach the domains */
6991 for_each_cpu_mask(i
, *cpu_map
) {
6992 struct sched_domain
*sd
;
6993 #ifdef CONFIG_SCHED_SMT
6994 sd
= &per_cpu(cpu_domains
, i
);
6995 #elif defined(CONFIG_SCHED_MC)
6996 sd
= &per_cpu(core_domains
, i
);
6998 sd
= &per_cpu(phys_domains
, i
);
7000 cpu_attach_domain(sd
, rd
, i
);
7007 free_sched_groups(cpu_map
);
7012 static cpumask_t
*doms_cur
; /* current sched domains */
7013 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7016 * Special case: If a kmalloc of a doms_cur partition (array of
7017 * cpumask_t) fails, then fallback to a single sched domain,
7018 * as determined by the single cpumask_t fallback_doms.
7020 static cpumask_t fallback_doms
;
7023 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7024 * For now this just excludes isolated cpus, but could be used to
7025 * exclude other special cases in the future.
7027 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7032 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7034 doms_cur
= &fallback_doms
;
7035 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7036 err
= build_sched_domains(doms_cur
);
7037 register_sched_domain_sysctl();
7042 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
7044 free_sched_groups(cpu_map
);
7048 * Detach sched domains from a group of cpus specified in cpu_map
7049 * These cpus will now be attached to the NULL domain
7051 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7055 unregister_sched_domain_sysctl();
7057 for_each_cpu_mask(i
, *cpu_map
)
7058 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7059 synchronize_sched();
7060 arch_destroy_sched_domains(cpu_map
);
7064 * Partition sched domains as specified by the 'ndoms_new'
7065 * cpumasks in the array doms_new[] of cpumasks. This compares
7066 * doms_new[] to the current sched domain partitioning, doms_cur[].
7067 * It destroys each deleted domain and builds each new domain.
7069 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7070 * The masks don't intersect (don't overlap.) We should setup one
7071 * sched domain for each mask. CPUs not in any of the cpumasks will
7072 * not be load balanced. If the same cpumask appears both in the
7073 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7076 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7077 * ownership of it and will kfree it when done with it. If the caller
7078 * failed the kmalloc call, then it can pass in doms_new == NULL,
7079 * and partition_sched_domains() will fallback to the single partition
7082 * Call with hotplug lock held
7084 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
7090 /* always unregister in case we don't destroy any domains */
7091 unregister_sched_domain_sysctl();
7093 if (doms_new
== NULL
) {
7095 doms_new
= &fallback_doms
;
7096 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7099 /* Destroy deleted domains */
7100 for (i
= 0; i
< ndoms_cur
; i
++) {
7101 for (j
= 0; j
< ndoms_new
; j
++) {
7102 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
7105 /* no match - a current sched domain not in new doms_new[] */
7106 detach_destroy_domains(doms_cur
+ i
);
7111 /* Build new domains */
7112 for (i
= 0; i
< ndoms_new
; i
++) {
7113 for (j
= 0; j
< ndoms_cur
; j
++) {
7114 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
7117 /* no match - add a new doms_new */
7118 build_sched_domains(doms_new
+ i
);
7123 /* Remember the new sched domains */
7124 if (doms_cur
!= &fallback_doms
)
7126 doms_cur
= doms_new
;
7127 ndoms_cur
= ndoms_new
;
7129 register_sched_domain_sysctl();
7134 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7135 static int arch_reinit_sched_domains(void)
7140 detach_destroy_domains(&cpu_online_map
);
7141 err
= arch_init_sched_domains(&cpu_online_map
);
7147 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7151 if (buf
[0] != '0' && buf
[0] != '1')
7155 sched_smt_power_savings
= (buf
[0] == '1');
7157 sched_mc_power_savings
= (buf
[0] == '1');
7159 ret
= arch_reinit_sched_domains();
7161 return ret
? ret
: count
;
7164 #ifdef CONFIG_SCHED_MC
7165 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
7167 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7169 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7170 const char *buf
, size_t count
)
7172 return sched_power_savings_store(buf
, count
, 0);
7174 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7175 sched_mc_power_savings_store
);
7178 #ifdef CONFIG_SCHED_SMT
7179 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7181 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7183 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7184 const char *buf
, size_t count
)
7186 return sched_power_savings_store(buf
, count
, 1);
7188 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7189 sched_smt_power_savings_store
);
7192 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7196 #ifdef CONFIG_SCHED_SMT
7198 err
= sysfs_create_file(&cls
->kset
.kobj
,
7199 &attr_sched_smt_power_savings
.attr
);
7201 #ifdef CONFIG_SCHED_MC
7202 if (!err
&& mc_capable())
7203 err
= sysfs_create_file(&cls
->kset
.kobj
,
7204 &attr_sched_mc_power_savings
.attr
);
7211 * Force a reinitialization of the sched domains hierarchy. The domains
7212 * and groups cannot be updated in place without racing with the balancing
7213 * code, so we temporarily attach all running cpus to the NULL domain
7214 * which will prevent rebalancing while the sched domains are recalculated.
7216 static int update_sched_domains(struct notifier_block
*nfb
,
7217 unsigned long action
, void *hcpu
)
7220 case CPU_UP_PREPARE
:
7221 case CPU_UP_PREPARE_FROZEN
:
7222 case CPU_DOWN_PREPARE
:
7223 case CPU_DOWN_PREPARE_FROZEN
:
7224 detach_destroy_domains(&cpu_online_map
);
7227 case CPU_UP_CANCELED
:
7228 case CPU_UP_CANCELED_FROZEN
:
7229 case CPU_DOWN_FAILED
:
7230 case CPU_DOWN_FAILED_FROZEN
:
7232 case CPU_ONLINE_FROZEN
:
7234 case CPU_DEAD_FROZEN
:
7236 * Fall through and re-initialise the domains.
7243 /* The hotplug lock is already held by cpu_up/cpu_down */
7244 arch_init_sched_domains(&cpu_online_map
);
7249 void __init
sched_init_smp(void)
7251 cpumask_t non_isolated_cpus
;
7254 arch_init_sched_domains(&cpu_online_map
);
7255 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7256 if (cpus_empty(non_isolated_cpus
))
7257 cpu_set(smp_processor_id(), non_isolated_cpus
);
7259 /* XXX: Theoretical race here - CPU may be hotplugged now */
7260 hotcpu_notifier(update_sched_domains
, 0);
7262 /* Move init over to a non-isolated CPU */
7263 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
7265 sched_init_granularity();
7266 <<<<<<< HEAD
:kernel
/sched
.c
7268 #ifdef CONFIG_FAIR_GROUP_SCHED
7269 if (nr_cpu_ids
== 1)
7272 lb_monitor_task
= kthread_create(load_balance_monitor
, NULL
,
7274 if (!IS_ERR(lb_monitor_task
)) {
7275 lb_monitor_task
->flags
|= PF_NOFREEZE
;
7276 wake_up_process(lb_monitor_task
);
7278 printk(KERN_ERR
"Could not create load balance monitor thread"
7279 "(error = %ld) \n", PTR_ERR(lb_monitor_task
));
7283 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
7286 void __init
sched_init_smp(void)
7288 sched_init_granularity();
7290 #endif /* CONFIG_SMP */
7292 int in_sched_functions(unsigned long addr
)
7294 return in_lock_functions(addr
) ||
7295 (addr
>= (unsigned long)__sched_text_start
7296 && addr
< (unsigned long)__sched_text_end
);
7299 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7301 cfs_rq
->tasks_timeline
= RB_ROOT
;
7302 #ifdef CONFIG_FAIR_GROUP_SCHED
7305 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7308 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7310 struct rt_prio_array
*array
;
7313 array
= &rt_rq
->active
;
7314 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7315 INIT_LIST_HEAD(array
->queue
+ i
);
7316 __clear_bit(i
, array
->bitmap
);
7318 /* delimiter for bitsearch: */
7319 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7321 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7322 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7325 rt_rq
->rt_nr_migratory
= 0;
7326 rt_rq
->overloaded
= 0;
7330 rt_rq
->rt_throttled
= 0;
7332 #ifdef CONFIG_RT_GROUP_SCHED
7333 rt_rq
->rt_nr_boosted
= 0;
7338 #ifdef CONFIG_FAIR_GROUP_SCHED
7339 static void init_tg_cfs_entry(struct rq
*rq
, struct task_group
*tg
,
7340 struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
7343 tg
->cfs_rq
[cpu
] = cfs_rq
;
7344 init_cfs_rq(cfs_rq
, rq
);
7347 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7350 se
->cfs_rq
= &rq
->cfs
;
7352 se
->load
.weight
= tg
->shares
;
7353 se
->load
.inv_weight
= div64_64(1ULL<<32, se
->load
.weight
);
7358 #ifdef CONFIG_RT_GROUP_SCHED
7359 static void init_tg_rt_entry(struct rq
*rq
, struct task_group
*tg
,
7360 struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
,
7363 tg
->rt_rq
[cpu
] = rt_rq
;
7364 init_rt_rq(rt_rq
, rq
);
7366 rt_rq
->rt_se
= rt_se
;
7368 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7370 tg
->rt_se
[cpu
] = rt_se
;
7371 rt_se
->rt_rq
= &rq
->rt
;
7372 rt_se
->my_q
= rt_rq
;
7373 rt_se
->parent
= NULL
;
7374 INIT_LIST_HEAD(&rt_se
->run_list
);
7378 void __init
sched_init(void)
7380 int highest_cpu
= 0;
7384 init_defrootdomain();
7387 #ifdef CONFIG_GROUP_SCHED
7388 list_add(&init_task_group
.list
, &task_groups
);
7391 for_each_possible_cpu(i
) {
7395 spin_lock_init(&rq
->lock
);
7396 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
7399 init_cfs_rq(&rq
->cfs
, rq
);
7400 init_rt_rq(&rq
->rt
, rq
);
7401 #ifdef CONFIG_FAIR_GROUP_SCHED
7402 init_task_group
.shares
= init_task_group_load
;
7403 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7404 init_tg_cfs_entry(rq
, &init_task_group
,
7405 &per_cpu(init_cfs_rq
, i
),
7406 &per_cpu(init_sched_entity
, i
), i
, 1);
7409 #ifdef CONFIG_RT_GROUP_SCHED
7410 init_task_group
.rt_runtime
=
7411 sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
7412 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7413 init_tg_rt_entry(rq
, &init_task_group
,
7414 &per_cpu(init_rt_rq
, i
),
7415 &per_cpu(init_sched_rt_entity
, i
), i
, 1);
7417 rq
->rt_period_expire
= 0;
7418 rq
->rt_throttled
= 0;
7420 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7421 rq
->cpu_load
[j
] = 0;
7425 rq
->active_balance
= 0;
7426 rq
->next_balance
= jiffies
;
7429 rq
->migration_thread
= NULL
;
7430 INIT_LIST_HEAD(&rq
->migration_queue
);
7431 rq_attach_root(rq
, &def_root_domain
);
7434 atomic_set(&rq
->nr_iowait
, 0);
7438 set_load_weight(&init_task
);
7440 #ifdef CONFIG_PREEMPT_NOTIFIERS
7441 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7445 nr_cpu_ids
= highest_cpu
+ 1;
7446 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
7449 #ifdef CONFIG_RT_MUTEXES
7450 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7454 * The boot idle thread does lazy MMU switching as well:
7456 atomic_inc(&init_mm
.mm_count
);
7457 enter_lazy_tlb(&init_mm
, current
);
7460 * Make us the idle thread. Technically, schedule() should not be
7461 * called from this thread, however somewhere below it might be,
7462 * but because we are the idle thread, we just pick up running again
7463 * when this runqueue becomes "idle".
7465 init_idle(current
, smp_processor_id());
7467 * During early bootup we pretend to be a normal task:
7469 current
->sched_class
= &fair_sched_class
;
7470 <<<<<<< HEAD
:kernel
/sched
.c
7473 scheduler_running
= 1;
7474 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
7477 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7478 void __might_sleep(char *file
, int line
)
7481 static unsigned long prev_jiffy
; /* ratelimiting */
7483 if ((in_atomic() || irqs_disabled()) &&
7484 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
7485 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7487 prev_jiffy
= jiffies
;
7488 printk(KERN_ERR
"BUG: sleeping function called from invalid"
7489 " context at %s:%d\n", file
, line
);
7490 printk("in_atomic():%d, irqs_disabled():%d\n",
7491 in_atomic(), irqs_disabled());
7492 debug_show_held_locks(current
);
7493 if (irqs_disabled())
7494 print_irqtrace_events(current
);
7499 EXPORT_SYMBOL(__might_sleep
);
7502 #ifdef CONFIG_MAGIC_SYSRQ
7503 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7506 update_rq_clock(rq
);
7507 on_rq
= p
->se
.on_rq
;
7509 deactivate_task(rq
, p
, 0);
7510 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7512 activate_task(rq
, p
, 0);
7513 resched_task(rq
->curr
);
7517 void normalize_rt_tasks(void)
7519 struct task_struct
*g
, *p
;
7520 unsigned long flags
;
7523 read_lock_irqsave(&tasklist_lock
, flags
);
7524 do_each_thread(g
, p
) {
7526 * Only normalize user tasks:
7531 p
->se
.exec_start
= 0;
7532 #ifdef CONFIG_SCHEDSTATS
7533 p
->se
.wait_start
= 0;
7534 p
->se
.sleep_start
= 0;
7535 p
->se
.block_start
= 0;
7537 task_rq(p
)->clock
= 0;
7541 * Renice negative nice level userspace
7544 if (TASK_NICE(p
) < 0 && p
->mm
)
7545 set_user_nice(p
, 0);
7549 spin_lock(&p
->pi_lock
);
7550 rq
= __task_rq_lock(p
);
7552 normalize_task(rq
, p
);
7554 __task_rq_unlock(rq
);
7555 spin_unlock(&p
->pi_lock
);
7556 } while_each_thread(g
, p
);
7558 read_unlock_irqrestore(&tasklist_lock
, flags
);
7561 #endif /* CONFIG_MAGIC_SYSRQ */
7565 * These functions are only useful for the IA64 MCA handling.
7567 * They can only be called when the whole system has been
7568 * stopped - every CPU needs to be quiescent, and no scheduling
7569 * activity can take place. Using them for anything else would
7570 * be a serious bug, and as a result, they aren't even visible
7571 * under any other configuration.
7575 * curr_task - return the current task for a given cpu.
7576 * @cpu: the processor in question.
7578 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7580 struct task_struct
*curr_task(int cpu
)
7582 return cpu_curr(cpu
);
7586 * set_curr_task - set the current task for a given cpu.
7587 * @cpu: the processor in question.
7588 * @p: the task pointer to set.
7590 * Description: This function must only be used when non-maskable interrupts
7591 * are serviced on a separate stack. It allows the architecture to switch the
7592 * notion of the current task on a cpu in a non-blocking manner. This function
7593 * must be called with all CPU's synchronized, and interrupts disabled, the
7594 * and caller must save the original value of the current task (see
7595 * curr_task() above) and restore that value before reenabling interrupts and
7596 * re-starting the system.
7598 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7600 void set_curr_task(int cpu
, struct task_struct
*p
)
7607 #ifdef CONFIG_GROUP_SCHED
7609 <<<<<<< HEAD
:kernel
/sched
.c
7610 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7612 * distribute shares of all task groups among their schedulable entities,
7613 * to reflect load distribution across cpus.
7615 static int rebalance_shares(struct sched_domain
*sd
, int this_cpu
)
7617 struct cfs_rq
*cfs_rq
;
7618 struct rq
*rq
= cpu_rq(this_cpu
);
7619 cpumask_t sdspan
= sd
->span
;
7622 /* Walk thr' all the task groups that we have */
7623 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
7625 unsigned long total_load
= 0, total_shares
;
7626 struct task_group
*tg
= cfs_rq
->tg
;
7628 /* Gather total task load of this group across cpus */
7629 for_each_cpu_mask(i
, sdspan
)
7630 total_load
+= tg
->cfs_rq
[i
]->load
.weight
;
7632 /* Nothing to do if this group has no load */
7637 * tg->shares represents the number of cpu shares the task group
7638 * is eligible to hold on a single cpu. On N cpus, it is
7639 * eligible to hold (N * tg->shares) number of cpu shares.
7641 total_shares
= tg
->shares
* cpus_weight(sdspan
);
7644 * redistribute total_shares across cpus as per the task load
7647 for_each_cpu_mask(i
, sdspan
) {
7648 unsigned long local_load
, local_shares
;
7650 local_load
= tg
->cfs_rq
[i
]->load
.weight
;
7651 local_shares
= (local_load
* total_shares
) / total_load
;
7653 local_shares
= MIN_GROUP_SHARES
;
7654 if (local_shares
== tg
->se
[i
]->load
.weight
)
7657 spin_lock_irq(&cpu_rq(i
)->lock
);
7658 set_se_shares(tg
->se
[i
], local_shares
);
7659 spin_unlock_irq(&cpu_rq(i
)->lock
);
7668 * How frequently should we rebalance_shares() across cpus?
7670 * The more frequently we rebalance shares, the more accurate is the fairness
7671 * of cpu bandwidth distribution between task groups. However higher frequency
7672 * also implies increased scheduling overhead.
7674 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7675 * consecutive calls to rebalance_shares() in the same sched domain.
7677 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7678 * consecutive calls to rebalance_shares() in the same sched domain.
7680 * These settings allows for the appropriate trade-off between accuracy of
7681 * fairness and the associated overhead.
7685 /* default: 8ms, units: milliseconds */
7686 const_debug
unsigned int sysctl_sched_min_bal_int_shares
= 8;
7688 /* default: 128ms, units: milliseconds */
7689 const_debug
unsigned int sysctl_sched_max_bal_int_shares
= 128;
7691 /* kernel thread that runs rebalance_shares() periodically */
7692 static int load_balance_monitor(void *unused
)
7694 unsigned int timeout
= sysctl_sched_min_bal_int_shares
;
7695 struct sched_param schedparm
;
7699 * We don't want this thread's execution to be limited by the shares
7700 * assigned to default group (init_task_group). Hence make it run
7701 * as a SCHED_RR RT task at the lowest priority.
7703 schedparm
.sched_priority
= 1;
7704 ret
= sched_setscheduler(current
, SCHED_RR
, &schedparm
);
7706 printk(KERN_ERR
"Couldn't set SCHED_RR policy for load balance"
7707 " monitor thread (error = %d) \n", ret
);
7709 while (!kthread_should_stop()) {
7710 int i
, cpu
, balanced
= 1;
7712 /* Prevent cpus going down or coming up */
7714 /* lockout changes to doms_cur[] array */
7717 * Enter a rcu read-side critical section to safely walk rq->sd
7718 * chain on various cpus and to walk task group list
7719 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7723 for (i
= 0; i
< ndoms_cur
; i
++) {
7724 cpumask_t cpumap
= doms_cur
[i
];
7725 struct sched_domain
*sd
= NULL
, *sd_prev
= NULL
;
7727 cpu
= first_cpu(cpumap
);
7729 /* Find the highest domain at which to balance shares */
7730 for_each_domain(cpu
, sd
) {
7731 if (!(sd
->flags
& SD_LOAD_BALANCE
))
7737 /* sd == NULL? No load balance reqd in this domain */
7741 balanced
&= rebalance_shares(sd
, cpu
);
7750 timeout
= sysctl_sched_min_bal_int_shares
;
7751 else if (timeout
< sysctl_sched_max_bal_int_shares
)
7754 msleep_interruptible(timeout
);
7759 #endif /* CONFIG_SMP */
7762 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
7763 #ifdef CONFIG_FAIR_GROUP_SCHED
7764 static void free_fair_sched_group(struct task_group
*tg
)
7768 for_each_possible_cpu(i
) {
7770 kfree(tg
->cfs_rq
[i
]);
7779 static int alloc_fair_sched_group(struct task_group
*tg
)
7781 struct cfs_rq
*cfs_rq
;
7782 struct sched_entity
*se
;
7786 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
7789 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
7793 tg
->shares
= NICE_0_LOAD
;
7795 for_each_possible_cpu(i
) {
7798 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
7799 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7803 se
= kmalloc_node(sizeof(struct sched_entity
),
7804 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7808 init_tg_cfs_entry(rq
, tg
, cfs_rq
, se
, i
, 0);
7817 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7819 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7820 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7823 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7825 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7828 static inline void free_fair_sched_group(struct task_group
*tg
)
7832 static inline int alloc_fair_sched_group(struct task_group
*tg
)
7837 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7841 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7846 #ifdef CONFIG_RT_GROUP_SCHED
7847 static void free_rt_sched_group(struct task_group
*tg
)
7851 for_each_possible_cpu(i
) {
7853 kfree(tg
->rt_rq
[i
]);
7855 kfree(tg
->rt_se
[i
]);
7862 static int alloc_rt_sched_group(struct task_group
*tg
)
7864 struct rt_rq
*rt_rq
;
7865 struct sched_rt_entity
*rt_se
;
7869 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * NR_CPUS
, GFP_KERNEL
);
7872 tg
->rt_se
= kzalloc(sizeof(rt_se
) * NR_CPUS
, GFP_KERNEL
);
7878 for_each_possible_cpu(i
) {
7881 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
7882 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7886 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
7887 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7891 init_tg_rt_entry(rq
, tg
, rt_rq
, rt_se
, i
, 0);
7900 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7902 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
7903 &cpu_rq(cpu
)->leaf_rt_rq_list
);
7906 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7908 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
7911 static inline void free_rt_sched_group(struct task_group
*tg
)
7915 static inline int alloc_rt_sched_group(struct task_group
*tg
)
7920 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7924 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7929 static void free_sched_group(struct task_group
*tg
)
7931 free_fair_sched_group(tg
);
7932 free_rt_sched_group(tg
);
7936 /* allocate runqueue etc for a new task group */
7937 struct task_group
*sched_create_group(void)
7939 struct task_group
*tg
;
7940 unsigned long flags
;
7943 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7945 return ERR_PTR(-ENOMEM
);
7947 if (!alloc_fair_sched_group(tg
))
7950 if (!alloc_rt_sched_group(tg
))
7953 spin_lock_irqsave(&task_group_lock
, flags
);
7954 for_each_possible_cpu(i
) {
7955 register_fair_sched_group(tg
, i
);
7956 register_rt_sched_group(tg
, i
);
7958 list_add_rcu(&tg
->list
, &task_groups
);
7959 spin_unlock_irqrestore(&task_group_lock
, flags
);
7964 free_sched_group(tg
);
7965 return ERR_PTR(-ENOMEM
);
7968 /* rcu callback to free various structures associated with a task group */
7969 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7971 /* now it should be safe to free those cfs_rqs */
7972 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7975 /* Destroy runqueue etc associated with a task group */
7976 void sched_destroy_group(struct task_group
*tg
)
7978 unsigned long flags
;
7981 spin_lock_irqsave(&task_group_lock
, flags
);
7982 for_each_possible_cpu(i
) {
7983 unregister_fair_sched_group(tg
, i
);
7984 unregister_rt_sched_group(tg
, i
);
7986 list_del_rcu(&tg
->list
);
7987 spin_unlock_irqrestore(&task_group_lock
, flags
);
7989 /* wait for possible concurrent references to cfs_rqs complete */
7990 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7993 /* change task's runqueue when it moves between groups.
7994 * The caller of this function should have put the task in its new group
7995 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7996 * reflect its new group.
7998 void sched_move_task(struct task_struct
*tsk
)
8001 unsigned long flags
;
8004 rq
= task_rq_lock(tsk
, &flags
);
8006 update_rq_clock(rq
);
8008 running
= task_current(rq
, tsk
);
8009 on_rq
= tsk
->se
.on_rq
;
8011 <<<<<<< HEAD
:kernel
/sched
.c
8015 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8016 dequeue_task(rq
, tsk
, 0);
8017 <<<<<<< HEAD
:kernel
/sched
.c
8018 if (unlikely(running
))
8019 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8022 if (unlikely(running
))
8023 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8024 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8026 set_task_rq(tsk
, task_cpu(tsk
));
8028 <<<<<<< HEAD
:kernel
/sched
.c
8030 if (unlikely(running
))
8031 tsk
->sched_class
->set_curr_task(rq
);
8033 #ifdef CONFIG_FAIR_GROUP_SCHED
8034 if (tsk
->sched_class
->moved_group
)
8035 tsk
->sched_class
->moved_group(tsk
);
8038 if (unlikely(running
))
8039 tsk
->sched_class
->set_curr_task(rq
);
8041 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8042 enqueue_task(rq
, tsk
, 0);
8043 <<<<<<< HEAD
:kernel
/sched
.c
8046 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8048 task_rq_unlock(rq
, &flags
);
8051 #ifdef CONFIG_FAIR_GROUP_SCHED
8052 <<<<<<< HEAD
:kernel
/sched
.c
8053 /* rq->lock to be locked by caller */
8055 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8056 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8058 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8059 struct rq
*rq
= cfs_rq
->rq
;
8062 <<<<<<< HEAD
:kernel
/sched
.c
8064 shares
= MIN_GROUP_SHARES
;
8066 spin_lock_irq(&rq
->lock
);
8067 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8070 <<<<<<< HEAD
:kernel
/sched
.c
8074 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8075 dequeue_entity(cfs_rq
, se
, 0);
8076 <<<<<<< HEAD
:kernel
/sched
.c
8077 dec_cpu_load(rq
, se
->load
.weight
);
8080 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8082 se
->load
.weight
= shares
;
8083 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
8085 <<<<<<< HEAD
:kernel
/sched
.c
8089 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8090 enqueue_entity(cfs_rq
, se
, 0);
8091 <<<<<<< HEAD
:kernel
/sched
.c
8092 inc_cpu_load(rq
, se
->load
.weight
);
8096 spin_unlock_irq(&rq
->lock
);
8097 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8100 static DEFINE_MUTEX(shares_mutex
);
8102 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8105 unsigned long flags
;
8107 <<<<<<< HEAD
:kernel
/sched
.c
8110 * A weight of 0 or 1 can cause arithmetics problems.
8111 * (The default weight is 1024 - so there's no practical
8112 * limitation from this.)
8117 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8118 mutex_lock(&shares_mutex
);
8119 if (tg
->shares
== shares
)
8122 <<<<<<< HEAD
:kernel
/sched
.c
8123 if (shares
< MIN_GROUP_SHARES
)
8124 shares
= MIN_GROUP_SHARES
;
8127 * Prevent any load balance activity (rebalance_shares,
8128 * load_balance_fair) from referring to this group first,
8129 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
8132 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8133 spin_lock_irqsave(&task_group_lock
, flags
);
8134 for_each_possible_cpu(i
)
8135 unregister_fair_sched_group(tg
, i
);
8136 spin_unlock_irqrestore(&task_group_lock
, flags
);
8138 /* wait for any ongoing reference to this group to finish */
8139 synchronize_sched();
8142 * Now we are free to modify the group's share on each cpu
8143 * w/o tripping rebalance_share or load_balance_fair.
8145 tg
->shares
= shares
;
8146 <<<<<<< HEAD
:kernel
/sched
.c
8147 for_each_possible_cpu(i
) {
8148 spin_lock_irq(&cpu_rq(i
)->lock
);
8150 for_each_possible_cpu(i
)
8151 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8152 set_se_shares(tg
->se
[i
], shares
);
8153 <<<<<<< HEAD
:kernel
/sched
.c
8154 spin_unlock_irq(&cpu_rq(i
)->lock
);
8157 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8160 * Enable load balance activity on this group, by inserting it back on
8161 * each cpu's rq->leaf_cfs_rq_list.
8163 spin_lock_irqsave(&task_group_lock
, flags
);
8164 for_each_possible_cpu(i
)
8165 register_fair_sched_group(tg
, i
);
8166 spin_unlock_irqrestore(&task_group_lock
, flags
);
8168 mutex_unlock(&shares_mutex
);
8172 unsigned long sched_group_shares(struct task_group
*tg
)
8178 #ifdef CONFIG_RT_GROUP_SCHED
8180 * Ensure that the real time constraints are schedulable.
8182 static DEFINE_MUTEX(rt_constraints_mutex
);
8184 static unsigned long to_ratio(u64 period
, u64 runtime
)
8186 if (runtime
== RUNTIME_INF
)
8189 <<<<<<< HEAD
:kernel
/sched
.c
8190 runtime
*= (1ULL << 16);
8191 div64_64(runtime
, period
);
8194 return div64_64(runtime
<< 16, period
);
8195 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8198 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8200 struct task_group
*tgi
;
8201 unsigned long total
= 0;
8202 unsigned long global_ratio
=
8203 to_ratio(sysctl_sched_rt_period
,
8204 sysctl_sched_rt_runtime
< 0 ?
8205 RUNTIME_INF
: sysctl_sched_rt_runtime
);
8208 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8212 total
+= to_ratio(period
, tgi
->rt_runtime
);
8216 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8219 <<<<<<< HEAD
:kernel
/sched
.c
8221 /* Must be called with tasklist_lock held */
8222 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8224 struct task_struct
*g
, *p
;
8225 do_each_thread(g
, p
) {
8226 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8228 } while_each_thread(g
, p
);
8232 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8233 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8235 u64 rt_runtime
, rt_period
;
8238 <<<<<<< HEAD
:kernel
/sched
.c
8239 rt_period
= sysctl_sched_rt_period
* NSEC_PER_USEC
;
8241 rt_period
= (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
8242 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8243 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8244 if (rt_runtime_us
== -1)
8245 <<<<<<< HEAD
:kernel
/sched
.c
8246 rt_runtime
= rt_period
;
8248 rt_runtime
= RUNTIME_INF
;
8249 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8251 mutex_lock(&rt_constraints_mutex
);
8252 <<<<<<< HEAD
:kernel
/sched
.c
8254 read_lock(&tasklist_lock
);
8255 if (rt_runtime_us
== 0 && tg_has_rt_tasks(tg
)) {
8259 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8260 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8264 <<<<<<< HEAD
:kernel
/sched
.c
8265 if (rt_runtime_us
== -1)
8266 rt_runtime
= RUNTIME_INF
;
8268 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8269 tg
->rt_runtime
= rt_runtime
;
8271 <<<<<<< HEAD
:kernel
/sched
.c
8273 read_unlock(&tasklist_lock
);
8274 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched
.c
8275 mutex_unlock(&rt_constraints_mutex
);
8280 long sched_group_rt_runtime(struct task_group
*tg
)
8284 if (tg
->rt_runtime
== RUNTIME_INF
)
8287 rt_runtime_us
= tg
->rt_runtime
;
8288 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8289 return rt_runtime_us
;
8292 #endif /* CONFIG_GROUP_SCHED */
8294 #ifdef CONFIG_CGROUP_SCHED
8296 /* return corresponding task_group object of a cgroup */
8297 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8299 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8300 struct task_group
, css
);
8303 static struct cgroup_subsys_state
*
8304 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8306 struct task_group
*tg
;
8308 if (!cgrp
->parent
) {
8309 /* This is early initialization for the top cgroup */
8310 init_task_group
.css
.cgroup
= cgrp
;
8311 return &init_task_group
.css
;
8314 /* we support only 1-level deep hierarchical scheduler atm */
8315 if (cgrp
->parent
->parent
)
8316 return ERR_PTR(-EINVAL
);
8318 tg
= sched_create_group();
8320 return ERR_PTR(-ENOMEM
);
8322 /* Bind the cgroup to task_group object we just created */
8323 tg
->css
.cgroup
= cgrp
;
8329 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8331 struct task_group
*tg
= cgroup_tg(cgrp
);
8333 sched_destroy_group(tg
);
8337 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8338 struct task_struct
*tsk
)
8340 #ifdef CONFIG_RT_GROUP_SCHED
8341 /* Don't accept realtime tasks when there is no way for them to run */
8342 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_runtime
== 0)
8345 /* We don't support RT-tasks being in separate groups */
8346 if (tsk
->sched_class
!= &fair_sched_class
)
8354 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8355 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8357 sched_move_task(tsk
);
8360 #ifdef CONFIG_FAIR_GROUP_SCHED
8361 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8364 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8367 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8369 struct task_group
*tg
= cgroup_tg(cgrp
);
8371 return (u64
) tg
->shares
;
8375 #ifdef CONFIG_RT_GROUP_SCHED
8376 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8378 const char __user
*userbuf
,
8379 size_t nbytes
, loff_t
*unused_ppos
)
8388 if (nbytes
>= sizeof(buffer
))
8390 if (copy_from_user(buffer
, userbuf
, nbytes
))
8393 buffer
[nbytes
] = 0; /* nul-terminate */
8395 /* strip newline if necessary */
8396 if (nbytes
&& (buffer
[nbytes
-1] == '\n'))
8397 buffer
[nbytes
-1] = 0;
8398 val
= simple_strtoll(buffer
, &end
, 0);
8402 /* Pass to subsystem */
8403 retval
= sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8409 static ssize_t
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
,
8411 char __user
*buf
, size_t nbytes
,
8415 long val
= sched_group_rt_runtime(cgroup_tg(cgrp
));
8416 int len
= sprintf(tmp
, "%ld\n", val
);
8418 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
8422 static struct cftype cpu_files
[] = {
8423 #ifdef CONFIG_FAIR_GROUP_SCHED
8426 .read_uint
= cpu_shares_read_uint
,
8427 .write_uint
= cpu_shares_write_uint
,
8430 #ifdef CONFIG_RT_GROUP_SCHED
8432 .name
= "rt_runtime_us",
8433 .read
= cpu_rt_runtime_read
,
8434 .write
= cpu_rt_runtime_write
,
8439 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8441 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8444 struct cgroup_subsys cpu_cgroup_subsys
= {
8446 .create
= cpu_cgroup_create
,
8447 .destroy
= cpu_cgroup_destroy
,
8448 .can_attach
= cpu_cgroup_can_attach
,
8449 .attach
= cpu_cgroup_attach
,
8450 .populate
= cpu_cgroup_populate
,
8451 .subsys_id
= cpu_cgroup_subsys_id
,
8455 #endif /* CONFIG_CGROUP_SCHED */
8457 #ifdef CONFIG_CGROUP_CPUACCT
8460 * CPU accounting code for task groups.
8462 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8463 * (balbir@in.ibm.com).
8466 /* track cpu usage of a group of tasks */
8468 struct cgroup_subsys_state css
;
8469 /* cpuusage holds pointer to a u64-type object on every cpu */
8473 struct cgroup_subsys cpuacct_subsys
;
8475 /* return cpu accounting group corresponding to this container */
8476 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
8478 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
8479 struct cpuacct
, css
);
8482 /* return cpu accounting group to which this task belongs */
8483 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8485 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8486 struct cpuacct
, css
);
8489 /* create a new cpu accounting group */
8490 static struct cgroup_subsys_state
*cpuacct_create(
8491 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8493 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8496 return ERR_PTR(-ENOMEM
);
8498 ca
->cpuusage
= alloc_percpu(u64
);
8499 if (!ca
->cpuusage
) {
8501 return ERR_PTR(-ENOMEM
);
8507 /* destroy an existing cpu accounting group */
8509 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8511 struct cpuacct
*ca
= cgroup_ca(cont
);
8513 free_percpu(ca
->cpuusage
);
8517 /* return total cpu usage (in nanoseconds) of a group */
8518 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
8520 struct cpuacct
*ca
= cgroup_ca(cont
);
8521 u64 totalcpuusage
= 0;
8524 for_each_possible_cpu(i
) {
8525 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8528 * Take rq->lock to make 64-bit addition safe on 32-bit
8531 spin_lock_irq(&cpu_rq(i
)->lock
);
8532 totalcpuusage
+= *cpuusage
;
8533 spin_unlock_irq(&cpu_rq(i
)->lock
);
8536 return totalcpuusage
;
8539 static struct cftype files
[] = {
8542 .read_uint
= cpuusage_read
,
8546 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8548 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
8552 * charge this task's execution time to its accounting group.
8554 * called with rq->lock held.
8556 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8560 if (!cpuacct_subsys
.active
)
8565 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
8567 *cpuusage
+= cputime
;
8571 struct cgroup_subsys cpuacct_subsys
= {
8573 .create
= cpuacct_create
,
8574 .destroy
= cpuacct_destroy
,
8575 .populate
= cpuacct_populate
,
8576 .subsys_id
= cpuacct_subsys_id
,
8578 #endif /* CONFIG_CGROUP_CPUACCT */