Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / kernel / sched_fair.c
blob80609b53f8dd232acad7bcc7ebf4b2ac8271d94c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
75 * SCHED_OTHER wake-up granularity.
76 <<<<<<< HEAD:kernel/sched_fair.c
77 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 =======
79 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
80 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
82 * This option delays the preemption effects of decoupled workloads
83 * and reduces their over-scheduling. Synchronous workloads will still
84 * have immediate wakeup/sleep latencies.
86 <<<<<<< HEAD:kernel/sched_fair.c
87 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
88 =======
89 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
90 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
92 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 #else /* CONFIG_FAIR_GROUP_SCHED */
111 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
113 return container_of(cfs_rq, struct rq, cfs);
116 #define entity_is_task(se) 1
118 #endif /* CONFIG_FAIR_GROUP_SCHED */
120 static inline struct task_struct *task_of(struct sched_entity *se)
122 return container_of(se, struct task_struct, se);
126 /**************************************************************
127 * Scheduling class tree data structure manipulation methods:
130 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
132 s64 delta = (s64)(vruntime - min_vruntime);
133 if (delta > 0)
134 min_vruntime = vruntime;
136 return min_vruntime;
139 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
141 s64 delta = (s64)(vruntime - min_vruntime);
142 if (delta < 0)
143 min_vruntime = vruntime;
145 return min_vruntime;
148 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
150 return se->vruntime - cfs_rq->min_vruntime;
154 * Enqueue an entity into the rb-tree:
156 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
158 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
159 struct rb_node *parent = NULL;
160 struct sched_entity *entry;
161 s64 key = entity_key(cfs_rq, se);
162 int leftmost = 1;
165 * Find the right place in the rbtree:
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct sched_entity, run_node);
171 * We dont care about collisions. Nodes with
172 * the same key stay together.
174 if (key < entity_key(cfs_rq, entry)) {
175 link = &parent->rb_left;
176 } else {
177 link = &parent->rb_right;
178 leftmost = 0;
183 * Maintain a cache of leftmost tree entries (it is frequently
184 * used):
186 <<<<<<< HEAD:kernel/sched_fair.c
187 if (leftmost)
188 =======
189 if (leftmost) {
190 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
191 cfs_rq->rb_leftmost = &se->run_node;
192 <<<<<<< HEAD:kernel/sched_fair.c
193 =======
195 * maintain cfs_rq->min_vruntime to be a monotonic increasing
196 * value tracking the leftmost vruntime in the tree.
198 cfs_rq->min_vruntime =
199 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
201 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
203 rb_link_node(&se->run_node, parent, link);
204 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
207 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
209 <<<<<<< HEAD:kernel/sched_fair.c
210 if (cfs_rq->rb_leftmost == &se->run_node)
211 cfs_rq->rb_leftmost = rb_next(&se->run_node);
212 =======
213 if (cfs_rq->rb_leftmost == &se->run_node) {
214 struct rb_node *next_node;
215 struct sched_entity *next;
217 next_node = rb_next(&se->run_node);
218 cfs_rq->rb_leftmost = next_node;
220 if (next_node) {
221 next = rb_entry(next_node,
222 struct sched_entity, run_node);
223 cfs_rq->min_vruntime =
224 max_vruntime(cfs_rq->min_vruntime,
225 next->vruntime);
229 if (cfs_rq->next == se)
230 cfs_rq->next = NULL;
231 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
233 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
236 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
238 return cfs_rq->rb_leftmost;
241 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
243 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
246 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
248 <<<<<<< HEAD:kernel/sched_fair.c
249 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
250 struct sched_entity *se = NULL;
251 struct rb_node *parent;
252 =======
253 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
254 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
256 <<<<<<< HEAD:kernel/sched_fair.c
257 while (*link) {
258 parent = *link;
259 se = rb_entry(parent, struct sched_entity, run_node);
260 link = &parent->rb_right;
262 =======
263 if (!last)
264 return NULL;
265 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
267 <<<<<<< HEAD:kernel/sched_fair.c
268 return se;
269 =======
270 return rb_entry(last, struct sched_entity, run_node);
271 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
274 /**************************************************************
275 * Scheduling class statistics methods:
278 #ifdef CONFIG_SCHED_DEBUG
279 int sched_nr_latency_handler(struct ctl_table *table, int write,
280 struct file *filp, void __user *buffer, size_t *lenp,
281 loff_t *ppos)
283 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
285 if (ret || !write)
286 return ret;
288 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
289 sysctl_sched_min_granularity);
291 return 0;
293 #endif
296 * The idea is to set a period in which each task runs once.
298 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
299 * this period because otherwise the slices get too small.
301 * p = (nr <= nl) ? l : l*nr/nl
303 static u64 __sched_period(unsigned long nr_running)
305 u64 period = sysctl_sched_latency;
306 unsigned long nr_latency = sched_nr_latency;
308 if (unlikely(nr_running > nr_latency)) {
309 period = sysctl_sched_min_granularity;
310 period *= nr_running;
313 return period;
317 * We calculate the wall-time slice from the period by taking a part
318 * proportional to the weight.
320 * s = p*w/rw
322 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
324 <<<<<<< HEAD:kernel/sched_fair.c
325 u64 slice = __sched_period(cfs_rq->nr_running);
327 slice *= se->load.weight;
328 do_div(slice, cfs_rq->load.weight);
330 return slice;
331 =======
332 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
333 se->load.weight, &cfs_rq->load);
334 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
338 * We calculate the vruntime slice.
340 * vs = s/w = p/rw
342 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
344 u64 vslice = __sched_period(nr_running);
346 vslice *= NICE_0_LOAD;
347 do_div(vslice, rq_weight);
349 return vslice;
352 static u64 sched_vslice(struct cfs_rq *cfs_rq)
354 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
357 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
359 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
360 cfs_rq->nr_running + 1);
364 * Update the current task's runtime statistics. Skip current tasks that
365 * are not in our scheduling class.
367 static inline void
368 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
369 unsigned long delta_exec)
371 unsigned long delta_exec_weighted;
372 <<<<<<< HEAD:kernel/sched_fair.c
373 u64 vruntime;
374 =======
375 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
377 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
379 curr->sum_exec_runtime += delta_exec;
380 schedstat_add(cfs_rq, exec_clock, delta_exec);
381 delta_exec_weighted = delta_exec;
382 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
383 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
384 &curr->load);
386 curr->vruntime += delta_exec_weighted;
387 <<<<<<< HEAD:kernel/sched_fair.c
390 * maintain cfs_rq->min_vruntime to be a monotonic increasing
391 * value tracking the leftmost vruntime in the tree.
393 if (first_fair(cfs_rq)) {
394 vruntime = min_vruntime(curr->vruntime,
395 __pick_next_entity(cfs_rq)->vruntime);
396 } else
397 vruntime = curr->vruntime;
399 cfs_rq->min_vruntime =
400 max_vruntime(cfs_rq->min_vruntime, vruntime);
401 =======
402 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
405 static void update_curr(struct cfs_rq *cfs_rq)
407 struct sched_entity *curr = cfs_rq->curr;
408 u64 now = rq_of(cfs_rq)->clock;
409 unsigned long delta_exec;
411 if (unlikely(!curr))
412 return;
415 * Get the amount of time the current task was running
416 * since the last time we changed load (this cannot
417 * overflow on 32 bits):
419 delta_exec = (unsigned long)(now - curr->exec_start);
421 __update_curr(cfs_rq, curr, delta_exec);
422 curr->exec_start = now;
424 if (entity_is_task(curr)) {
425 struct task_struct *curtask = task_of(curr);
427 cpuacct_charge(curtask, delta_exec);
431 static inline void
432 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
434 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
438 * Task is being enqueued - update stats:
440 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
443 * Are we enqueueing a waiting task? (for current tasks
444 * a dequeue/enqueue event is a NOP)
446 if (se != cfs_rq->curr)
447 update_stats_wait_start(cfs_rq, se);
450 static void
451 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
453 schedstat_set(se->wait_max, max(se->wait_max,
454 rq_of(cfs_rq)->clock - se->wait_start));
455 schedstat_set(se->wait_count, se->wait_count + 1);
456 schedstat_set(se->wait_sum, se->wait_sum +
457 rq_of(cfs_rq)->clock - se->wait_start);
458 schedstat_set(se->wait_start, 0);
461 static inline void
462 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
465 * Mark the end of the wait period if dequeueing a
466 * waiting task:
468 if (se != cfs_rq->curr)
469 update_stats_wait_end(cfs_rq, se);
473 * We are picking a new current task - update its stats:
475 static inline void
476 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 * We are starting a new run period:
481 se->exec_start = rq_of(cfs_rq)->clock;
484 /**************************************************
485 * Scheduling class queueing methods:
488 static void
489 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 update_load_add(&cfs_rq->load, se->load.weight);
492 cfs_rq->nr_running++;
493 se->on_rq = 1;
496 static void
497 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
499 update_load_sub(&cfs_rq->load, se->load.weight);
500 cfs_rq->nr_running--;
501 se->on_rq = 0;
504 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 #ifdef CONFIG_SCHEDSTATS
507 if (se->sleep_start) {
508 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
509 struct task_struct *tsk = task_of(se);
511 if ((s64)delta < 0)
512 delta = 0;
514 if (unlikely(delta > se->sleep_max))
515 se->sleep_max = delta;
517 se->sleep_start = 0;
518 se->sum_sleep_runtime += delta;
520 account_scheduler_latency(tsk, delta >> 10, 1);
522 if (se->block_start) {
523 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
524 struct task_struct *tsk = task_of(se);
526 if ((s64)delta < 0)
527 delta = 0;
529 if (unlikely(delta > se->block_max))
530 se->block_max = delta;
532 se->block_start = 0;
533 se->sum_sleep_runtime += delta;
536 * Blocking time is in units of nanosecs, so shift by 20 to
537 * get a milliseconds-range estimation of the amount of
538 * time that the task spent sleeping:
540 if (unlikely(prof_on == SLEEP_PROFILING)) {
542 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
543 delta >> 20);
545 account_scheduler_latency(tsk, delta >> 10, 0);
547 #endif
550 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 #ifdef CONFIG_SCHED_DEBUG
553 s64 d = se->vruntime - cfs_rq->min_vruntime;
555 if (d < 0)
556 d = -d;
558 if (d > 3*sysctl_sched_latency)
559 schedstat_inc(cfs_rq, nr_spread_over);
560 #endif
563 static void
564 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
566 u64 vruntime;
568 <<<<<<< HEAD:kernel/sched_fair.c
569 vruntime = cfs_rq->min_vruntime;
570 =======
571 if (first_fair(cfs_rq)) {
572 vruntime = min_vruntime(cfs_rq->min_vruntime,
573 __pick_next_entity(cfs_rq)->vruntime);
574 } else
575 vruntime = cfs_rq->min_vruntime;
576 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
578 if (sched_feat(TREE_AVG)) {
579 struct sched_entity *last = __pick_last_entity(cfs_rq);
580 if (last) {
581 vruntime += last->vruntime;
582 vruntime >>= 1;
584 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
585 vruntime += sched_vslice(cfs_rq)/2;
588 * The 'current' period is already promised to the current tasks,
589 * however the extra weight of the new task will slow them down a
590 * little, place the new task so that it fits in the slot that
591 * stays open at the end.
593 if (initial && sched_feat(START_DEBIT))
594 vruntime += sched_vslice_add(cfs_rq, se);
596 if (!initial) {
597 /* sleeps upto a single latency don't count. */
598 <<<<<<< HEAD:kernel/sched_fair.c
599 if (sched_feat(NEW_FAIR_SLEEPERS))
600 vruntime -= sysctl_sched_latency;
601 =======
602 if (sched_feat(NEW_FAIR_SLEEPERS)) {
603 vruntime -= calc_delta_fair(sysctl_sched_latency,
604 &cfs_rq->load);
606 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
608 /* ensure we never gain time by being placed backwards. */
609 vruntime = max_vruntime(se->vruntime, vruntime);
612 se->vruntime = vruntime;
615 static void
616 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
619 * Update run-time statistics of the 'current'.
621 update_curr(cfs_rq);
623 if (wakeup) {
624 place_entity(cfs_rq, se, 0);
625 enqueue_sleeper(cfs_rq, se);
628 update_stats_enqueue(cfs_rq, se);
629 check_spread(cfs_rq, se);
630 if (se != cfs_rq->curr)
631 __enqueue_entity(cfs_rq, se);
632 account_entity_enqueue(cfs_rq, se);
635 <<<<<<< HEAD:kernel/sched_fair.c
636 =======
637 static void update_avg(u64 *avg, u64 sample)
639 s64 diff = sample - *avg;
640 *avg += diff >> 3;
643 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
645 if (!se->last_wakeup)
646 return;
648 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
649 se->last_wakeup = 0;
652 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
653 static void
654 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
657 * Update run-time statistics of the 'current'.
659 update_curr(cfs_rq);
661 update_stats_dequeue(cfs_rq, se);
662 if (sleep) {
663 <<<<<<< HEAD:kernel/sched_fair.c
664 =======
665 update_avg_stats(cfs_rq, se);
666 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
667 #ifdef CONFIG_SCHEDSTATS
668 if (entity_is_task(se)) {
669 struct task_struct *tsk = task_of(se);
671 if (tsk->state & TASK_INTERRUPTIBLE)
672 se->sleep_start = rq_of(cfs_rq)->clock;
673 if (tsk->state & TASK_UNINTERRUPTIBLE)
674 se->block_start = rq_of(cfs_rq)->clock;
676 #endif
679 if (se != cfs_rq->curr)
680 __dequeue_entity(cfs_rq, se);
681 account_entity_dequeue(cfs_rq, se);
685 * Preempt the current task with a newly woken task if needed:
687 static void
688 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
690 unsigned long ideal_runtime, delta_exec;
692 ideal_runtime = sched_slice(cfs_rq, curr);
693 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
694 if (delta_exec > ideal_runtime)
695 resched_task(rq_of(cfs_rq)->curr);
698 static void
699 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
701 /* 'current' is not kept within the tree. */
702 if (se->on_rq) {
704 * Any task has to be enqueued before it get to execute on
705 * a CPU. So account for the time it spent waiting on the
706 * runqueue.
708 update_stats_wait_end(cfs_rq, se);
709 __dequeue_entity(cfs_rq, se);
712 update_stats_curr_start(cfs_rq, se);
713 cfs_rq->curr = se;
714 #ifdef CONFIG_SCHEDSTATS
716 * Track our maximum slice length, if the CPU's load is at
717 * least twice that of our own weight (i.e. dont track it
718 * when there are only lesser-weight tasks around):
720 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
721 se->slice_max = max(se->slice_max,
722 se->sum_exec_runtime - se->prev_sum_exec_runtime);
724 #endif
725 se->prev_sum_exec_runtime = se->sum_exec_runtime;
728 <<<<<<< HEAD:kernel/sched_fair.c
729 =======
730 static struct sched_entity *
731 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
733 s64 diff, gran;
735 if (!cfs_rq->next)
736 return se;
738 diff = cfs_rq->next->vruntime - se->vruntime;
739 if (diff < 0)
740 return se;
742 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
743 if (diff > gran)
744 return se;
746 return cfs_rq->next;
749 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
750 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
752 struct sched_entity *se = NULL;
754 if (first_fair(cfs_rq)) {
755 se = __pick_next_entity(cfs_rq);
756 <<<<<<< HEAD:kernel/sched_fair.c
757 =======
758 se = pick_next(cfs_rq, se);
759 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
760 set_next_entity(cfs_rq, se);
763 return se;
766 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
769 * If still on the runqueue then deactivate_task()
770 * was not called and update_curr() has to be done:
772 if (prev->on_rq)
773 update_curr(cfs_rq);
775 check_spread(cfs_rq, prev);
776 if (prev->on_rq) {
777 update_stats_wait_start(cfs_rq, prev);
778 /* Put 'current' back into the tree. */
779 __enqueue_entity(cfs_rq, prev);
781 cfs_rq->curr = NULL;
784 static void
785 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
788 * Update run-time statistics of the 'current'.
790 update_curr(cfs_rq);
792 #ifdef CONFIG_SCHED_HRTICK
794 * queued ticks are scheduled to match the slice, so don't bother
795 * validating it and just reschedule.
797 if (queued)
798 return resched_task(rq_of(cfs_rq)->curr);
800 * don't let the period tick interfere with the hrtick preemption
802 if (!sched_feat(DOUBLE_TICK) &&
803 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
804 return;
805 #endif
807 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
808 check_preempt_tick(cfs_rq, curr);
811 /**************************************************
812 * CFS operations on tasks:
815 #ifdef CONFIG_FAIR_GROUP_SCHED
817 /* Walk up scheduling entities hierarchy */
818 #define for_each_sched_entity(se) \
819 for (; se; se = se->parent)
821 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
823 return p->se.cfs_rq;
826 /* runqueue on which this entity is (to be) queued */
827 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
829 return se->cfs_rq;
832 /* runqueue "owned" by this group */
833 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
835 return grp->my_q;
838 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
839 * another cpu ('this_cpu')
841 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
843 return cfs_rq->tg->cfs_rq[this_cpu];
846 /* Iterate thr' all leaf cfs_rq's on a runqueue */
847 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
848 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
850 /* Do the two (enqueued) entities belong to the same group ? */
851 static inline int
852 is_same_group(struct sched_entity *se, struct sched_entity *pse)
854 if (se->cfs_rq == pse->cfs_rq)
855 return 1;
857 return 0;
860 static inline struct sched_entity *parent_entity(struct sched_entity *se)
862 return se->parent;
865 <<<<<<< HEAD:kernel/sched_fair.c
866 #define GROUP_IMBALANCE_PCT 20
868 =======
869 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
870 #else /* CONFIG_FAIR_GROUP_SCHED */
872 #define for_each_sched_entity(se) \
873 for (; se; se = NULL)
875 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
877 return &task_rq(p)->cfs;
880 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
882 struct task_struct *p = task_of(se);
883 struct rq *rq = task_rq(p);
885 return &rq->cfs;
888 /* runqueue "owned" by this group */
889 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
891 return NULL;
894 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
896 return &cpu_rq(this_cpu)->cfs;
899 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
900 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
902 static inline int
903 is_same_group(struct sched_entity *se, struct sched_entity *pse)
905 return 1;
908 static inline struct sched_entity *parent_entity(struct sched_entity *se)
910 return NULL;
913 #endif /* CONFIG_FAIR_GROUP_SCHED */
915 #ifdef CONFIG_SCHED_HRTICK
916 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
918 int requeue = rq->curr == p;
919 struct sched_entity *se = &p->se;
920 struct cfs_rq *cfs_rq = cfs_rq_of(se);
922 WARN_ON(task_rq(p) != rq);
924 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
925 u64 slice = sched_slice(cfs_rq, se);
926 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
927 s64 delta = slice - ran;
929 if (delta < 0) {
930 if (rq->curr == p)
931 resched_task(p);
932 return;
936 * Don't schedule slices shorter than 10000ns, that just
937 * doesn't make sense. Rely on vruntime for fairness.
939 if (!requeue)
940 delta = max(10000LL, delta);
942 hrtick_start(rq, delta, requeue);
945 #else
946 static inline void
947 hrtick_start_fair(struct rq *rq, struct task_struct *p)
950 #endif
953 * The enqueue_task method is called before nr_running is
954 * increased. Here we update the fair scheduling stats and
955 * then put the task into the rbtree:
957 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
959 struct cfs_rq *cfs_rq;
960 <<<<<<< HEAD:kernel/sched_fair.c
961 struct sched_entity *se = &p->se,
962 *topse = NULL; /* Highest schedulable entity */
963 int incload = 1;
964 =======
965 struct sched_entity *se = &p->se;
966 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
968 for_each_sched_entity(se) {
969 <<<<<<< HEAD:kernel/sched_fair.c
970 topse = se;
971 if (se->on_rq) {
972 incload = 0;
973 =======
974 if (se->on_rq)
975 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
976 break;
977 <<<<<<< HEAD:kernel/sched_fair.c
979 =======
980 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
981 cfs_rq = cfs_rq_of(se);
982 enqueue_entity(cfs_rq, se, wakeup);
983 wakeup = 1;
985 <<<<<<< HEAD:kernel/sched_fair.c
986 /* Increment cpu load if we just enqueued the first task of a group on
987 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
988 * at the highest grouping level.
990 if (incload)
991 inc_cpu_load(rq, topse->load.weight);
992 =======
993 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
995 hrtick_start_fair(rq, rq->curr);
999 * The dequeue_task method is called before nr_running is
1000 * decreased. We remove the task from the rbtree and
1001 * update the fair scheduling stats:
1003 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1005 struct cfs_rq *cfs_rq;
1006 <<<<<<< HEAD:kernel/sched_fair.c
1007 struct sched_entity *se = &p->se,
1008 *topse = NULL; /* Highest schedulable entity */
1009 int decload = 1;
1010 =======
1011 struct sched_entity *se = &p->se;
1012 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1014 for_each_sched_entity(se) {
1015 <<<<<<< HEAD:kernel/sched_fair.c
1016 topse = se;
1017 =======
1018 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1019 cfs_rq = cfs_rq_of(se);
1020 dequeue_entity(cfs_rq, se, sleep);
1021 /* Don't dequeue parent if it has other entities besides us */
1022 <<<<<<< HEAD:kernel/sched_fair.c
1023 if (cfs_rq->load.weight) {
1024 if (parent_entity(se))
1025 decload = 0;
1026 =======
1027 if (cfs_rq->load.weight)
1028 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1029 break;
1030 <<<<<<< HEAD:kernel/sched_fair.c
1032 =======
1033 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1034 sleep = 1;
1036 <<<<<<< HEAD:kernel/sched_fair.c
1037 /* Decrement cpu load if we just dequeued the last task of a group on
1038 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
1039 * at the highest grouping level.
1041 if (decload)
1042 dec_cpu_load(rq, topse->load.weight);
1043 =======
1044 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1046 hrtick_start_fair(rq, rq->curr);
1050 * sched_yield() support is very simple - we dequeue and enqueue.
1052 * If compat_yield is turned on then we requeue to the end of the tree.
1054 static void yield_task_fair(struct rq *rq)
1056 struct task_struct *curr = rq->curr;
1057 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1058 struct sched_entity *rightmost, *se = &curr->se;
1061 * Are we the only task in the tree?
1063 if (unlikely(cfs_rq->nr_running == 1))
1064 return;
1066 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1067 __update_rq_clock(rq);
1069 * Update run-time statistics of the 'current'.
1071 update_curr(cfs_rq);
1073 return;
1076 * Find the rightmost entry in the rbtree:
1078 rightmost = __pick_last_entity(cfs_rq);
1080 * Already in the rightmost position?
1082 if (unlikely(rightmost->vruntime < se->vruntime))
1083 return;
1086 * Minimally necessary key value to be last in the tree:
1087 * Upon rescheduling, sched_class::put_prev_task() will place
1088 * 'current' within the tree based on its new key value.
1090 se->vruntime = rightmost->vruntime + 1;
1094 * wake_idle() will wake a task on an idle cpu if task->cpu is
1095 * not idle and an idle cpu is available. The span of cpus to
1096 * search starts with cpus closest then further out as needed,
1097 * so we always favor a closer, idle cpu.
1099 * Returns the CPU we should wake onto.
1101 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1102 static int wake_idle(int cpu, struct task_struct *p)
1104 cpumask_t tmp;
1105 struct sched_domain *sd;
1106 int i;
1109 * If it is idle, then it is the best cpu to run this task.
1111 * This cpu is also the best, if it has more than one task already.
1112 * Siblings must be also busy(in most cases) as they didn't already
1113 * pickup the extra load from this cpu and hence we need not check
1114 * sibling runqueue info. This will avoid the checks and cache miss
1115 * penalities associated with that.
1117 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1118 return cpu;
1120 for_each_domain(cpu, sd) {
1121 if (sd->flags & SD_WAKE_IDLE) {
1122 cpus_and(tmp, sd->span, p->cpus_allowed);
1123 for_each_cpu_mask(i, tmp) {
1124 if (idle_cpu(i)) {
1125 if (i != task_cpu(p)) {
1126 schedstat_inc(p,
1127 se.nr_wakeups_idle);
1129 return i;
1132 } else {
1133 break;
1136 return cpu;
1138 #else
1139 static inline int wake_idle(int cpu, struct task_struct *p)
1141 return cpu;
1143 #endif
1145 #ifdef CONFIG_SMP
1146 <<<<<<< HEAD:kernel/sched_fair.c
1147 static int select_task_rq_fair(struct task_struct *p, int sync)
1148 =======
1150 static const struct sched_class fair_sched_class;
1152 static int
1153 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1154 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1155 int idx, unsigned long load, unsigned long this_load,
1156 unsigned int imbalance)
1157 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1159 <<<<<<< HEAD:kernel/sched_fair.c
1160 int cpu, this_cpu;
1161 struct rq *rq;
1162 struct sched_domain *sd, *this_sd = NULL;
1163 int new_cpu;
1164 =======
1165 struct task_struct *curr = this_rq->curr;
1166 unsigned long tl = this_load;
1167 unsigned long tl_per_task;
1169 if (!(this_sd->flags & SD_WAKE_AFFINE))
1170 return 0;
1173 * If the currently running task will sleep within
1174 * a reasonable amount of time then attract this newly
1175 * woken task:
1177 if (sync && curr->sched_class == &fair_sched_class) {
1178 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1179 p->se.avg_overlap < sysctl_sched_migration_cost)
1180 return 1;
1183 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1184 tl_per_task = cpu_avg_load_per_task(this_cpu);
1187 * If sync wakeup then subtract the (maximum possible)
1188 * effect of the currently running task from the load
1189 * of the current CPU:
1191 if (sync)
1192 tl -= current->se.load.weight;
1194 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1195 100*(tl + p->se.load.weight) <= imbalance*load) {
1197 * This domain has SD_WAKE_AFFINE and
1198 * p is cache cold in this domain, and
1199 * there is no bad imbalance.
1201 schedstat_inc(this_sd, ttwu_move_affine);
1202 schedstat_inc(p, se.nr_wakeups_affine);
1203 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1205 <<<<<<< HEAD:kernel/sched_fair.c
1206 cpu = task_cpu(p);
1207 rq = task_rq(p);
1208 this_cpu = smp_processor_id();
1209 new_cpu = cpu;
1210 =======
1211 return 1;
1213 return 0;
1215 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1217 <<<<<<< HEAD:kernel/sched_fair.c
1218 if (cpu == this_cpu)
1219 goto out_set_cpu;
1220 =======
1221 static int select_task_rq_fair(struct task_struct *p, int sync)
1223 struct sched_domain *sd, *this_sd = NULL;
1224 int prev_cpu, this_cpu, new_cpu;
1225 unsigned long load, this_load;
1226 struct rq *rq, *this_rq;
1227 unsigned int imbalance;
1228 int idx;
1230 prev_cpu = task_cpu(p);
1231 rq = task_rq(p);
1232 this_cpu = smp_processor_id();
1233 this_rq = cpu_rq(this_cpu);
1234 new_cpu = prev_cpu;
1235 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1237 <<<<<<< HEAD:kernel/sched_fair.c
1238 =======
1240 * 'this_sd' is the first domain that both
1241 * this_cpu and prev_cpu are present in:
1243 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1244 for_each_domain(this_cpu, sd) {
1245 <<<<<<< HEAD:kernel/sched_fair.c
1246 if (cpu_isset(cpu, sd->span)) {
1247 =======
1248 if (cpu_isset(prev_cpu, sd->span)) {
1249 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1250 this_sd = sd;
1251 break;
1255 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1256 <<<<<<< HEAD:kernel/sched_fair.c
1257 goto out_set_cpu;
1258 =======
1259 goto out;
1260 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1263 * Check for affine wakeup and passive balancing possibilities.
1265 <<<<<<< HEAD:kernel/sched_fair.c
1266 if (this_sd) {
1267 int idx = this_sd->wake_idx;
1268 unsigned int imbalance;
1269 unsigned long load, this_load;
1271 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1273 load = source_load(cpu, idx);
1274 this_load = target_load(this_cpu, idx);
1276 new_cpu = this_cpu; /* Wake to this CPU if we can */
1278 if (this_sd->flags & SD_WAKE_AFFINE) {
1279 unsigned long tl = this_load;
1280 unsigned long tl_per_task;
1283 * Attract cache-cold tasks on sync wakeups:
1285 if (sync && !task_hot(p, rq->clock, this_sd))
1286 goto out_set_cpu;
1288 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1289 tl_per_task = cpu_avg_load_per_task(this_cpu);
1292 * If sync wakeup then subtract the (maximum possible)
1293 * effect of the currently running task from the load
1294 * of the current CPU:
1296 if (sync)
1297 tl -= current->se.load.weight;
1299 if ((tl <= load &&
1300 tl + target_load(cpu, idx) <= tl_per_task) ||
1301 100*(tl + p->se.load.weight) <= imbalance*load) {
1303 * This domain has SD_WAKE_AFFINE and
1304 * p is cache cold in this domain, and
1305 * there is no bad imbalance.
1307 schedstat_inc(this_sd, ttwu_move_affine);
1308 schedstat_inc(p, se.nr_wakeups_affine);
1309 goto out_set_cpu;
1312 =======
1313 if (!this_sd)
1314 goto out;
1315 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1317 <<<<<<< HEAD:kernel/sched_fair.c
1319 * Start passive balancing when half the imbalance_pct
1320 * limit is reached.
1322 if (this_sd->flags & SD_WAKE_BALANCE) {
1323 if (imbalance*this_load <= 100*load) {
1324 schedstat_inc(this_sd, ttwu_move_balance);
1325 schedstat_inc(p, se.nr_wakeups_passive);
1326 goto out_set_cpu;
1328 =======
1329 idx = this_sd->wake_idx;
1331 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1333 load = source_load(prev_cpu, idx);
1334 this_load = target_load(this_cpu, idx);
1336 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1337 load, this_load, imbalance))
1338 return this_cpu;
1340 if (prev_cpu == this_cpu)
1341 goto out;
1344 * Start passive balancing when half the imbalance_pct
1345 * limit is reached.
1347 if (this_sd->flags & SD_WAKE_BALANCE) {
1348 if (imbalance*this_load <= 100*load) {
1349 schedstat_inc(this_sd, ttwu_move_balance);
1350 schedstat_inc(p, se.nr_wakeups_passive);
1351 return this_cpu;
1352 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1356 <<<<<<< HEAD:kernel/sched_fair.c
1357 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1358 out_set_cpu:
1359 =======
1360 out:
1361 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1362 return wake_idle(new_cpu, p);
1364 #endif /* CONFIG_SMP */
1368 * Preempt the current task with a newly woken task if needed:
1370 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1372 struct task_struct *curr = rq->curr;
1373 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1374 struct sched_entity *se = &curr->se, *pse = &p->se;
1375 unsigned long gran;
1377 if (unlikely(rt_prio(p->prio))) {
1378 update_rq_clock(rq);
1379 update_curr(cfs_rq);
1380 resched_task(curr);
1381 return;
1383 <<<<<<< HEAD:kernel/sched_fair.c
1384 =======
1386 se->last_wakeup = se->sum_exec_runtime;
1387 if (unlikely(se == pse))
1388 return;
1390 cfs_rq_of(pse)->next = pse;
1392 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1394 * Batch tasks do not preempt (their preemption is driven by
1395 * the tick):
1397 if (unlikely(p->policy == SCHED_BATCH))
1398 return;
1400 if (!sched_feat(WAKEUP_PREEMPT))
1401 return;
1403 while (!is_same_group(se, pse)) {
1404 se = parent_entity(se);
1405 pse = parent_entity(pse);
1408 gran = sysctl_sched_wakeup_granularity;
1410 * More easily preempt - nice tasks, while not making
1411 * it harder for + nice tasks.
1413 if (unlikely(se->load.weight > NICE_0_LOAD))
1414 gran = calc_delta_fair(gran, &se->load);
1416 if (pse->vruntime + gran < se->vruntime)
1417 resched_task(curr);
1420 static struct task_struct *pick_next_task_fair(struct rq *rq)
1422 struct task_struct *p;
1423 struct cfs_rq *cfs_rq = &rq->cfs;
1424 struct sched_entity *se;
1426 if (unlikely(!cfs_rq->nr_running))
1427 return NULL;
1429 do {
1430 se = pick_next_entity(cfs_rq);
1431 cfs_rq = group_cfs_rq(se);
1432 } while (cfs_rq);
1434 p = task_of(se);
1435 hrtick_start_fair(rq, p);
1437 return p;
1441 * Account for a descheduled task:
1443 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1445 struct sched_entity *se = &prev->se;
1446 struct cfs_rq *cfs_rq;
1448 for_each_sched_entity(se) {
1449 cfs_rq = cfs_rq_of(se);
1450 put_prev_entity(cfs_rq, se);
1454 #ifdef CONFIG_SMP
1455 /**************************************************
1456 * Fair scheduling class load-balancing methods:
1460 * Load-balancing iterator. Note: while the runqueue stays locked
1461 * during the whole iteration, the current task might be
1462 * dequeued so the iterator has to be dequeue-safe. Here we
1463 * achieve that by always pre-iterating before returning
1464 * the current task:
1466 static struct task_struct *
1467 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1469 struct task_struct *p;
1471 if (!curr)
1472 return NULL;
1474 p = rb_entry(curr, struct task_struct, se.run_node);
1475 cfs_rq->rb_load_balance_curr = rb_next(curr);
1477 return p;
1480 static struct task_struct *load_balance_start_fair(void *arg)
1482 struct cfs_rq *cfs_rq = arg;
1484 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1487 static struct task_struct *load_balance_next_fair(void *arg)
1489 struct cfs_rq *cfs_rq = arg;
1491 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1494 <<<<<<< HEAD:kernel/sched_fair.c
1495 =======
1496 #ifdef CONFIG_FAIR_GROUP_SCHED
1497 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1499 struct sched_entity *curr;
1500 struct task_struct *p;
1502 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1503 return MAX_PRIO;
1505 curr = cfs_rq->curr;
1506 if (!curr)
1507 curr = __pick_next_entity(cfs_rq);
1509 p = task_of(curr);
1511 return p->prio;
1513 #endif
1515 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1516 static unsigned long
1517 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1518 unsigned long max_load_move,
1519 struct sched_domain *sd, enum cpu_idle_type idle,
1520 int *all_pinned, int *this_best_prio)
1522 struct cfs_rq *busy_cfs_rq;
1523 long rem_load_move = max_load_move;
1524 struct rq_iterator cfs_rq_iterator;
1525 <<<<<<< HEAD:kernel/sched_fair.c
1526 unsigned long load_moved;
1527 =======
1528 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1530 cfs_rq_iterator.start = load_balance_start_fair;
1531 cfs_rq_iterator.next = load_balance_next_fair;
1533 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1534 #ifdef CONFIG_FAIR_GROUP_SCHED
1535 <<<<<<< HEAD:kernel/sched_fair.c
1536 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1537 unsigned long maxload, task_load, group_weight;
1538 unsigned long thisload, per_task_load;
1539 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1541 task_load = busy_cfs_rq->load.weight;
1542 group_weight = se->load.weight;
1543 =======
1544 struct cfs_rq *this_cfs_rq;
1545 long imbalance;
1546 unsigned long maxload;
1547 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1549 <<<<<<< HEAD:kernel/sched_fair.c
1551 * 'group_weight' is contributed by tasks of total weight
1552 * 'task_load'. To move 'rem_load_move' worth of weight only,
1553 * we need to move a maximum task load of:
1555 * maxload = (remload / group_weight) * task_load;
1557 maxload = (rem_load_move * task_load) / group_weight;
1558 =======
1559 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1560 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1562 <<<<<<< HEAD:kernel/sched_fair.c
1563 if (!maxload || !task_load)
1564 =======
1565 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1566 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1567 if (imbalance <= 0)
1568 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1569 continue;
1571 <<<<<<< HEAD:kernel/sched_fair.c
1572 per_task_load = task_load / busy_cfs_rq->nr_running;
1574 * balance_tasks will try to forcibly move atleast one task if
1575 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1576 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1578 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1579 continue;
1580 =======
1581 /* Don't pull more than imbalance/2 */
1582 imbalance /= 2;
1583 maxload = min(rem_load_move, imbalance);
1584 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1586 <<<<<<< HEAD:kernel/sched_fair.c
1587 /* Disable priority-based load balance */
1588 *this_best_prio = 0;
1589 thisload = this_cfs_rq->load.weight;
1590 =======
1591 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1592 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1593 #else
1594 # define maxload rem_load_move
1595 #endif
1597 * pass busy_cfs_rq argument into
1598 * load_balance_[start|next]_fair iterators
1600 cfs_rq_iterator.arg = busy_cfs_rq;
1601 <<<<<<< HEAD:kernel/sched_fair.c
1602 load_moved = balance_tasks(this_rq, this_cpu, busiest,
1603 =======
1604 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1605 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1606 maxload, sd, idle, all_pinned,
1607 this_best_prio,
1608 &cfs_rq_iterator);
1610 <<<<<<< HEAD:kernel/sched_fair.c
1611 #ifdef CONFIG_FAIR_GROUP_SCHED
1613 * load_moved holds the task load that was moved. The
1614 * effective (group) weight moved would be:
1615 * load_moved_eff = load_moved/task_load * group_weight;
1617 load_moved = (group_weight * load_moved) / task_load;
1619 /* Adjust shares on both cpus to reflect load_moved */
1620 group_weight -= load_moved;
1621 set_se_shares(se, group_weight);
1623 se = busy_cfs_rq->tg->se[this_cpu];
1624 if (!thisload)
1625 group_weight = load_moved;
1626 else
1627 group_weight = se->load.weight + load_moved;
1628 set_se_shares(se, group_weight);
1629 #endif
1631 rem_load_move -= load_moved;
1633 =======
1634 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1635 if (rem_load_move <= 0)
1636 break;
1639 return max_load_move - rem_load_move;
1642 static int
1643 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1644 struct sched_domain *sd, enum cpu_idle_type idle)
1646 struct cfs_rq *busy_cfs_rq;
1647 struct rq_iterator cfs_rq_iterator;
1649 cfs_rq_iterator.start = load_balance_start_fair;
1650 cfs_rq_iterator.next = load_balance_next_fair;
1652 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1654 * pass busy_cfs_rq argument into
1655 * load_balance_[start|next]_fair iterators
1657 cfs_rq_iterator.arg = busy_cfs_rq;
1658 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1659 &cfs_rq_iterator))
1660 return 1;
1663 return 0;
1665 #endif
1668 * scheduler tick hitting a task of our scheduling class:
1670 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1672 struct cfs_rq *cfs_rq;
1673 struct sched_entity *se = &curr->se;
1675 for_each_sched_entity(se) {
1676 cfs_rq = cfs_rq_of(se);
1677 entity_tick(cfs_rq, se, queued);
1681 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1684 * Share the fairness runtime between parent and child, thus the
1685 * total amount of pressure for CPU stays equal - new tasks
1686 * get a chance to run but frequent forkers are not allowed to
1687 * monopolize the CPU. Note: the parent runqueue is locked,
1688 * the child is not running yet.
1690 static void task_new_fair(struct rq *rq, struct task_struct *p)
1692 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1693 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1694 int this_cpu = smp_processor_id();
1696 sched_info_queued(p);
1698 update_curr(cfs_rq);
1699 place_entity(cfs_rq, se, 1);
1701 /* 'curr' will be NULL if the child belongs to a different group */
1702 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1703 curr && curr->vruntime < se->vruntime) {
1705 * Upon rescheduling, sched_class::put_prev_task() will place
1706 * 'current' within the tree based on its new key value.
1708 swap(curr->vruntime, se->vruntime);
1711 enqueue_task_fair(rq, p, 0);
1712 resched_task(rq->curr);
1716 * Priority of the task has changed. Check to see if we preempt
1717 * the current task.
1719 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1720 int oldprio, int running)
1723 * Reschedule if we are currently running on this runqueue and
1724 * our priority decreased, or if we are not currently running on
1725 * this runqueue and our priority is higher than the current's
1727 if (running) {
1728 if (p->prio > oldprio)
1729 resched_task(rq->curr);
1730 } else
1731 check_preempt_curr(rq, p);
1735 * We switched to the sched_fair class.
1737 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1738 int running)
1741 * We were most likely switched from sched_rt, so
1742 * kick off the schedule if running, otherwise just see
1743 * if we can still preempt the current task.
1745 if (running)
1746 resched_task(rq->curr);
1747 else
1748 check_preempt_curr(rq, p);
1751 /* Account for a task changing its policy or group.
1753 * This routine is mostly called to set cfs_rq->curr field when a task
1754 * migrates between groups/classes.
1756 static void set_curr_task_fair(struct rq *rq)
1758 struct sched_entity *se = &rq->curr->se;
1760 for_each_sched_entity(se)
1761 set_next_entity(cfs_rq_of(se), se);
1764 <<<<<<< HEAD:kernel/sched_fair.c
1765 =======
1766 #ifdef CONFIG_FAIR_GROUP_SCHED
1767 static void moved_group_fair(struct task_struct *p)
1769 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1771 update_curr(cfs_rq);
1772 place_entity(cfs_rq, &p->se, 1);
1774 #endif
1776 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1778 * All the scheduling class methods:
1780 static const struct sched_class fair_sched_class = {
1781 .next = &idle_sched_class,
1782 .enqueue_task = enqueue_task_fair,
1783 .dequeue_task = dequeue_task_fair,
1784 .yield_task = yield_task_fair,
1785 #ifdef CONFIG_SMP
1786 .select_task_rq = select_task_rq_fair,
1787 #endif /* CONFIG_SMP */
1789 .check_preempt_curr = check_preempt_wakeup,
1791 .pick_next_task = pick_next_task_fair,
1792 .put_prev_task = put_prev_task_fair,
1794 #ifdef CONFIG_SMP
1795 .load_balance = load_balance_fair,
1796 .move_one_task = move_one_task_fair,
1797 #endif
1799 .set_curr_task = set_curr_task_fair,
1800 .task_tick = task_tick_fair,
1801 .task_new = task_new_fair,
1803 .prio_changed = prio_changed_fair,
1804 .switched_to = switched_to_fair,
1805 <<<<<<< HEAD:kernel/sched_fair.c
1806 =======
1808 #ifdef CONFIG_FAIR_GROUP_SCHED
1809 .moved_group = moved_group_fair,
1810 #endif
1811 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_fair.c
1814 #ifdef CONFIG_SCHED_DEBUG
1815 static void print_cfs_stats(struct seq_file *m, int cpu)
1817 struct cfs_rq *cfs_rq;
1819 #ifdef CONFIG_FAIR_GROUP_SCHED
1820 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1821 #endif
1822 rcu_read_lock();
1823 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1824 print_cfs_rq(m, cpu, cfs_rq);
1825 rcu_read_unlock();
1827 #endif