Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / kernel / sched_rt.c
blobf10b55e77d3988f4fe4dfb85a299ad021cb4f84a
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_SMP
8 static inline int rt_overloaded(struct rq *rq)
10 return atomic_read(&rq->rd->rto_count);
13 static inline void rt_set_overload(struct rq *rq)
15 cpu_set(rq->cpu, rq->rd->rto_mask);
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
23 wmb();
24 atomic_inc(&rq->rd->rto_count);
27 static inline void rt_clear_overload(struct rq *rq)
29 /* the order here really doesn't matter */
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
34 static void update_rt_migration(struct rq *rq)
36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
41 } else if (rq->rt.overloaded) {
42 rt_clear_overload(rq);
43 rq->rt.overloaded = 0;
46 #endif /* CONFIG_SMP */
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
50 return container_of(rt_se, struct task_struct, rt);
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
55 return !list_empty(&rt_se->run_list);
58 #ifdef CONFIG_RT_GROUP_SCHED
60 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
62 if (!rt_rq->tg)
63 return RUNTIME_INF;
65 return rt_rq->tg->rt_runtime;
68 #define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
71 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
73 return rt_rq->rq;
76 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
78 return rt_se->rt_rq;
81 #define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
84 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
86 return rt_se->my_q;
89 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
90 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
92 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
94 struct sched_rt_entity *rt_se = rt_rq->rt_se;
96 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
97 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
99 enqueue_rt_entity(rt_se);
100 if (rt_rq->highest_prio < curr->prio)
101 resched_task(curr);
105 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
107 struct sched_rt_entity *rt_se = rt_rq->rt_se;
109 if (rt_se && on_rt_rq(rt_se))
110 dequeue_rt_entity(rt_se);
113 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
115 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
118 static int rt_se_boosted(struct sched_rt_entity *rt_se)
120 struct rt_rq *rt_rq = group_rt_rq(rt_se);
121 struct task_struct *p;
123 if (rt_rq)
124 return !!rt_rq->rt_nr_boosted;
126 p = rt_task_of(rt_se);
127 return p->prio != p->normal_prio;
130 #else
132 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
134 if (sysctl_sched_rt_runtime == -1)
135 return RUNTIME_INF;
137 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
140 #define for_each_leaf_rt_rq(rt_rq, rq) \
141 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
143 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
145 return container_of(rt_rq, struct rq, rt);
148 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
150 struct task_struct *p = rt_task_of(rt_se);
151 struct rq *rq = task_rq(p);
153 return &rq->rt;
156 #define for_each_sched_rt_entity(rt_se) \
157 for (; rt_se; rt_se = NULL)
159 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
161 return NULL;
164 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
168 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
172 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
174 return rt_rq->rt_throttled;
176 #endif
178 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct rt_rq *rt_rq = group_rt_rq(rt_se);
183 if (rt_rq)
184 return rt_rq->highest_prio;
185 #endif
187 return rt_task_of(rt_se)->prio;
190 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
192 u64 runtime = sched_rt_runtime(rt_rq);
194 if (runtime == RUNTIME_INF)
195 return 0;
197 if (rt_rq->rt_throttled)
198 return rt_rq_throttled(rt_rq);
200 if (rt_rq->rt_time > runtime) {
201 struct rq *rq = rq_of_rt_rq(rt_rq);
203 rq->rt_throttled = 1;
204 rt_rq->rt_throttled = 1;
206 if (rt_rq_throttled(rt_rq)) {
207 sched_rt_rq_dequeue(rt_rq);
208 return 1;
212 return 0;
215 static void update_sched_rt_period(struct rq *rq)
217 struct rt_rq *rt_rq;
218 u64 period;
220 while (rq->clock > rq->rt_period_expire) {
221 period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
222 rq->rt_period_expire += period;
224 for_each_leaf_rt_rq(rt_rq, rq) {
225 u64 runtime = sched_rt_runtime(rt_rq);
227 rt_rq->rt_time -= min(rt_rq->rt_time, runtime);
228 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
229 rt_rq->rt_throttled = 0;
230 sched_rt_rq_enqueue(rt_rq);
234 rq->rt_throttled = 0;
239 * Update the current task's runtime statistics. Skip current tasks that
240 * are not in our scheduling class.
242 static void update_curr_rt(struct rq *rq)
244 struct task_struct *curr = rq->curr;
245 struct sched_rt_entity *rt_se = &curr->rt;
246 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
247 u64 delta_exec;
249 if (!task_has_rt_policy(curr))
250 return;
252 delta_exec = rq->clock - curr->se.exec_start;
253 if (unlikely((s64)delta_exec < 0))
254 delta_exec = 0;
256 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
258 curr->se.sum_exec_runtime += delta_exec;
259 curr->se.exec_start = rq->clock;
260 cpuacct_charge(curr, delta_exec);
262 rt_rq->rt_time += delta_exec;
263 if (sched_rt_runtime_exceeded(rt_rq))
264 resched_task(curr);
267 static inline
268 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
270 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
271 rt_rq->rt_nr_running++;
272 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
273 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
274 rt_rq->highest_prio = rt_se_prio(rt_se);
275 #endif
276 #ifdef CONFIG_SMP
277 if (rt_se->nr_cpus_allowed > 1) {
278 struct rq *rq = rq_of_rt_rq(rt_rq);
279 rq->rt.rt_nr_migratory++;
282 update_rt_migration(rq_of_rt_rq(rt_rq));
283 #endif
284 #ifdef CONFIG_RT_GROUP_SCHED
285 if (rt_se_boosted(rt_se))
286 rt_rq->rt_nr_boosted++;
287 #endif
290 static inline
291 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
293 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
294 WARN_ON(!rt_rq->rt_nr_running);
295 rt_rq->rt_nr_running--;
296 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
297 if (rt_rq->rt_nr_running) {
298 struct rt_prio_array *array;
300 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
301 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
302 /* recalculate */
303 array = &rt_rq->active;
304 rt_rq->highest_prio =
305 sched_find_first_bit(array->bitmap);
306 } /* otherwise leave rq->highest prio alone */
307 } else
308 rt_rq->highest_prio = MAX_RT_PRIO;
309 #endif
310 #ifdef CONFIG_SMP
311 if (rt_se->nr_cpus_allowed > 1) {
312 struct rq *rq = rq_of_rt_rq(rt_rq);
313 rq->rt.rt_nr_migratory--;
316 update_rt_migration(rq_of_rt_rq(rt_rq));
317 #endif /* CONFIG_SMP */
318 #ifdef CONFIG_RT_GROUP_SCHED
319 if (rt_se_boosted(rt_se))
320 rt_rq->rt_nr_boosted--;
322 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
323 #endif
326 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
328 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
329 struct rt_prio_array *array = &rt_rq->active;
330 struct rt_rq *group_rq = group_rt_rq(rt_se);
332 if (group_rq && rt_rq_throttled(group_rq))
333 return;
335 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
336 __set_bit(rt_se_prio(rt_se), array->bitmap);
338 inc_rt_tasks(rt_se, rt_rq);
341 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
343 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
344 struct rt_prio_array *array = &rt_rq->active;
346 list_del_init(&rt_se->run_list);
347 if (list_empty(array->queue + rt_se_prio(rt_se)))
348 __clear_bit(rt_se_prio(rt_se), array->bitmap);
350 dec_rt_tasks(rt_se, rt_rq);
354 * Because the prio of an upper entry depends on the lower
355 * entries, we must remove entries top - down.
357 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
358 * doesn't matter much for now, as h=2 for GROUP_SCHED.
360 static void dequeue_rt_stack(struct task_struct *p)
362 struct sched_rt_entity *rt_se, *top_se;
365 * dequeue all, top - down.
367 do {
368 rt_se = &p->rt;
369 top_se = NULL;
370 for_each_sched_rt_entity(rt_se) {
371 if (on_rt_rq(rt_se))
372 top_se = rt_se;
374 if (top_se)
375 dequeue_rt_entity(top_se);
376 } while (top_se);
380 * Adding/removing a task to/from a priority array:
382 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
384 struct sched_rt_entity *rt_se = &p->rt;
386 if (wakeup)
387 rt_se->timeout = 0;
389 dequeue_rt_stack(p);
392 * enqueue everybody, bottom - up.
394 for_each_sched_rt_entity(rt_se)
395 enqueue_rt_entity(rt_se);
396 <<<<<<< HEAD:kernel/sched_rt.c
398 inc_cpu_load(rq, p->se.load.weight);
399 =======
400 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_rt.c
403 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
405 struct sched_rt_entity *rt_se = &p->rt;
406 struct rt_rq *rt_rq;
408 update_curr_rt(rq);
410 dequeue_rt_stack(p);
413 * re-enqueue all non-empty rt_rq entities.
415 for_each_sched_rt_entity(rt_se) {
416 rt_rq = group_rt_rq(rt_se);
417 if (rt_rq && rt_rq->rt_nr_running)
418 enqueue_rt_entity(rt_se);
420 <<<<<<< HEAD:kernel/sched_rt.c
422 dec_cpu_load(rq, p->se.load.weight);
423 =======
424 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_rt.c
428 * Put task to the end of the run list without the overhead of dequeue
429 * followed by enqueue.
431 static
432 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
434 struct rt_prio_array *array = &rt_rq->active;
436 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
439 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
441 struct sched_rt_entity *rt_se = &p->rt;
442 struct rt_rq *rt_rq;
444 for_each_sched_rt_entity(rt_se) {
445 rt_rq = rt_rq_of_se(rt_se);
446 requeue_rt_entity(rt_rq, rt_se);
450 static void yield_task_rt(struct rq *rq)
452 requeue_task_rt(rq, rq->curr);
455 #ifdef CONFIG_SMP
456 static int find_lowest_rq(struct task_struct *task);
458 static int select_task_rq_rt(struct task_struct *p, int sync)
460 struct rq *rq = task_rq(p);
463 * If the current task is an RT task, then
464 * try to see if we can wake this RT task up on another
465 * runqueue. Otherwise simply start this RT task
466 * on its current runqueue.
468 * We want to avoid overloading runqueues. Even if
469 * the RT task is of higher priority than the current RT task.
470 * RT tasks behave differently than other tasks. If
471 * one gets preempted, we try to push it off to another queue.
472 * So trying to keep a preempting RT task on the same
473 * cache hot CPU will force the running RT task to
474 * a cold CPU. So we waste all the cache for the lower
475 * RT task in hopes of saving some of a RT task
476 * that is just being woken and probably will have
477 * cold cache anyway.
479 if (unlikely(rt_task(rq->curr)) &&
480 (p->rt.nr_cpus_allowed > 1)) {
481 int cpu = find_lowest_rq(p);
483 return (cpu == -1) ? task_cpu(p) : cpu;
487 * Otherwise, just let it ride on the affined RQ and the
488 * post-schedule router will push the preempted task away
490 return task_cpu(p);
492 #endif /* CONFIG_SMP */
495 * Preempt the current task with a newly woken task if needed:
497 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
499 if (p->prio < rq->curr->prio)
500 resched_task(rq->curr);
503 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
504 struct rt_rq *rt_rq)
506 struct rt_prio_array *array = &rt_rq->active;
507 struct sched_rt_entity *next = NULL;
508 struct list_head *queue;
509 int idx;
511 idx = sched_find_first_bit(array->bitmap);
512 BUG_ON(idx >= MAX_RT_PRIO);
514 queue = array->queue + idx;
515 next = list_entry(queue->next, struct sched_rt_entity, run_list);
517 return next;
520 static struct task_struct *pick_next_task_rt(struct rq *rq)
522 struct sched_rt_entity *rt_se;
523 struct task_struct *p;
524 struct rt_rq *rt_rq;
526 rt_rq = &rq->rt;
528 if (unlikely(!rt_rq->rt_nr_running))
529 return NULL;
531 if (rt_rq_throttled(rt_rq))
532 return NULL;
534 do {
535 rt_se = pick_next_rt_entity(rq, rt_rq);
536 BUG_ON(!rt_se);
537 rt_rq = group_rt_rq(rt_se);
538 } while (rt_rq);
540 p = rt_task_of(rt_se);
541 p->se.exec_start = rq->clock;
542 return p;
545 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
547 update_curr_rt(rq);
548 p->se.exec_start = 0;
551 #ifdef CONFIG_SMP
553 /* Only try algorithms three times */
554 #define RT_MAX_TRIES 3
556 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
557 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
559 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
561 if (!task_running(rq, p) &&
562 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
563 (p->rt.nr_cpus_allowed > 1))
564 return 1;
565 return 0;
568 /* Return the second highest RT task, NULL otherwise */
569 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
571 struct task_struct *next = NULL;
572 struct sched_rt_entity *rt_se;
573 struct rt_prio_array *array;
574 struct rt_rq *rt_rq;
575 int idx;
577 for_each_leaf_rt_rq(rt_rq, rq) {
578 array = &rt_rq->active;
579 idx = sched_find_first_bit(array->bitmap);
580 next_idx:
581 if (idx >= MAX_RT_PRIO)
582 continue;
583 if (next && next->prio < idx)
584 continue;
585 list_for_each_entry(rt_se, array->queue + idx, run_list) {
586 struct task_struct *p = rt_task_of(rt_se);
587 if (pick_rt_task(rq, p, cpu)) {
588 next = p;
589 break;
592 if (!next) {
593 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
594 goto next_idx;
598 return next;
601 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
603 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
605 int lowest_prio = -1;
606 int lowest_cpu = -1;
607 int count = 0;
608 int cpu;
610 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
613 * Scan each rq for the lowest prio.
615 for_each_cpu_mask(cpu, *lowest_mask) {
616 struct rq *rq = cpu_rq(cpu);
618 /* We look for lowest RT prio or non-rt CPU */
619 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
621 * if we already found a low RT queue
622 * and now we found this non-rt queue
623 * clear the mask and set our bit.
624 * Otherwise just return the queue as is
625 * and the count==1 will cause the algorithm
626 * to use the first bit found.
628 if (lowest_cpu != -1) {
629 cpus_clear(*lowest_mask);
630 cpu_set(rq->cpu, *lowest_mask);
632 return 1;
635 /* no locking for now */
636 if ((rq->rt.highest_prio > task->prio)
637 && (rq->rt.highest_prio >= lowest_prio)) {
638 if (rq->rt.highest_prio > lowest_prio) {
639 /* new low - clear old data */
640 lowest_prio = rq->rt.highest_prio;
641 lowest_cpu = cpu;
642 count = 0;
644 count++;
645 } else
646 cpu_clear(cpu, *lowest_mask);
650 * Clear out all the set bits that represent
651 * runqueues that were of higher prio than
652 * the lowest_prio.
654 if (lowest_cpu > 0) {
656 * Perhaps we could add another cpumask op to
657 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
658 * Then that could be optimized to use memset and such.
660 for_each_cpu_mask(cpu, *lowest_mask) {
661 if (cpu >= lowest_cpu)
662 break;
663 cpu_clear(cpu, *lowest_mask);
667 return count;
670 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
672 int first;
674 /* "this_cpu" is cheaper to preempt than a remote processor */
675 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
676 return this_cpu;
678 first = first_cpu(*mask);
679 if (first != NR_CPUS)
680 return first;
682 return -1;
685 static int find_lowest_rq(struct task_struct *task)
687 struct sched_domain *sd;
688 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
689 int this_cpu = smp_processor_id();
690 int cpu = task_cpu(task);
691 int count = find_lowest_cpus(task, lowest_mask);
693 if (!count)
694 return -1; /* No targets found */
697 * There is no sense in performing an optimal search if only one
698 * target is found.
700 if (count == 1)
701 return first_cpu(*lowest_mask);
704 * At this point we have built a mask of cpus representing the
705 * lowest priority tasks in the system. Now we want to elect
706 * the best one based on our affinity and topology.
708 * We prioritize the last cpu that the task executed on since
709 * it is most likely cache-hot in that location.
711 if (cpu_isset(cpu, *lowest_mask))
712 return cpu;
715 * Otherwise, we consult the sched_domains span maps to figure
716 * out which cpu is logically closest to our hot cache data.
718 if (this_cpu == cpu)
719 this_cpu = -1; /* Skip this_cpu opt if the same */
721 for_each_domain(cpu, sd) {
722 if (sd->flags & SD_WAKE_AFFINE) {
723 cpumask_t domain_mask;
724 int best_cpu;
726 cpus_and(domain_mask, sd->span, *lowest_mask);
728 best_cpu = pick_optimal_cpu(this_cpu,
729 &domain_mask);
730 if (best_cpu != -1)
731 return best_cpu;
736 * And finally, if there were no matches within the domains
737 * just give the caller *something* to work with from the compatible
738 * locations.
740 return pick_optimal_cpu(this_cpu, lowest_mask);
743 /* Will lock the rq it finds */
744 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
746 struct rq *lowest_rq = NULL;
747 int tries;
748 int cpu;
750 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
751 cpu = find_lowest_rq(task);
753 if ((cpu == -1) || (cpu == rq->cpu))
754 break;
756 lowest_rq = cpu_rq(cpu);
758 /* if the prio of this runqueue changed, try again */
759 if (double_lock_balance(rq, lowest_rq)) {
761 * We had to unlock the run queue. In
762 * the mean time, task could have
763 * migrated already or had its affinity changed.
764 * Also make sure that it wasn't scheduled on its rq.
766 if (unlikely(task_rq(task) != rq ||
767 !cpu_isset(lowest_rq->cpu,
768 task->cpus_allowed) ||
769 task_running(rq, task) ||
770 !task->se.on_rq)) {
772 spin_unlock(&lowest_rq->lock);
773 lowest_rq = NULL;
774 break;
778 /* If this rq is still suitable use it. */
779 if (lowest_rq->rt.highest_prio > task->prio)
780 break;
782 /* try again */
783 spin_unlock(&lowest_rq->lock);
784 lowest_rq = NULL;
787 return lowest_rq;
791 * If the current CPU has more than one RT task, see if the non
792 * running task can migrate over to a CPU that is running a task
793 * of lesser priority.
795 static int push_rt_task(struct rq *rq)
797 struct task_struct *next_task;
798 struct rq *lowest_rq;
799 int ret = 0;
800 int paranoid = RT_MAX_TRIES;
802 if (!rq->rt.overloaded)
803 return 0;
805 next_task = pick_next_highest_task_rt(rq, -1);
806 if (!next_task)
807 return 0;
809 retry:
810 if (unlikely(next_task == rq->curr)) {
811 WARN_ON(1);
812 return 0;
816 * It's possible that the next_task slipped in of
817 * higher priority than current. If that's the case
818 * just reschedule current.
820 if (unlikely(next_task->prio < rq->curr->prio)) {
821 resched_task(rq->curr);
822 return 0;
825 /* We might release rq lock */
826 get_task_struct(next_task);
828 /* find_lock_lowest_rq locks the rq if found */
829 lowest_rq = find_lock_lowest_rq(next_task, rq);
830 if (!lowest_rq) {
831 struct task_struct *task;
833 * find lock_lowest_rq releases rq->lock
834 * so it is possible that next_task has changed.
835 * If it has, then try again.
837 task = pick_next_highest_task_rt(rq, -1);
838 if (unlikely(task != next_task) && task && paranoid--) {
839 put_task_struct(next_task);
840 next_task = task;
841 goto retry;
843 goto out;
846 deactivate_task(rq, next_task, 0);
847 set_task_cpu(next_task, lowest_rq->cpu);
848 activate_task(lowest_rq, next_task, 0);
850 resched_task(lowest_rq->curr);
852 spin_unlock(&lowest_rq->lock);
854 ret = 1;
855 out:
856 put_task_struct(next_task);
858 return ret;
862 * TODO: Currently we just use the second highest prio task on
863 * the queue, and stop when it can't migrate (or there's
864 * no more RT tasks). There may be a case where a lower
865 * priority RT task has a different affinity than the
866 * higher RT task. In this case the lower RT task could
867 * possibly be able to migrate where as the higher priority
868 * RT task could not. We currently ignore this issue.
869 * Enhancements are welcome!
871 static void push_rt_tasks(struct rq *rq)
873 /* push_rt_task will return true if it moved an RT */
874 while (push_rt_task(rq))
878 static int pull_rt_task(struct rq *this_rq)
880 int this_cpu = this_rq->cpu, ret = 0, cpu;
881 struct task_struct *p, *next;
882 struct rq *src_rq;
884 if (likely(!rt_overloaded(this_rq)))
885 return 0;
887 next = pick_next_task_rt(this_rq);
889 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
890 if (this_cpu == cpu)
891 continue;
893 src_rq = cpu_rq(cpu);
895 * We can potentially drop this_rq's lock in
896 * double_lock_balance, and another CPU could
897 * steal our next task - hence we must cause
898 * the caller to recalculate the next task
899 * in that case:
901 if (double_lock_balance(this_rq, src_rq)) {
902 struct task_struct *old_next = next;
904 next = pick_next_task_rt(this_rq);
905 if (next != old_next)
906 ret = 1;
910 * Are there still pullable RT tasks?
912 if (src_rq->rt.rt_nr_running <= 1)
913 goto skip;
915 p = pick_next_highest_task_rt(src_rq, this_cpu);
918 * Do we have an RT task that preempts
919 * the to-be-scheduled task?
921 if (p && (!next || (p->prio < next->prio))) {
922 WARN_ON(p == src_rq->curr);
923 WARN_ON(!p->se.on_rq);
926 * There's a chance that p is higher in priority
927 * than what's currently running on its cpu.
928 * This is just that p is wakeing up and hasn't
929 * had a chance to schedule. We only pull
930 * p if it is lower in priority than the
931 * current task on the run queue or
932 * this_rq next task is lower in prio than
933 * the current task on that rq.
935 if (p->prio < src_rq->curr->prio ||
936 (next && next->prio < src_rq->curr->prio))
937 goto skip;
939 ret = 1;
941 deactivate_task(src_rq, p, 0);
942 set_task_cpu(p, this_cpu);
943 activate_task(this_rq, p, 0);
945 * We continue with the search, just in
946 * case there's an even higher prio task
947 * in another runqueue. (low likelyhood
948 * but possible)
950 * Update next so that we won't pick a task
951 * on another cpu with a priority lower (or equal)
952 * than the one we just picked.
954 next = p;
957 skip:
958 spin_unlock(&src_rq->lock);
961 return ret;
964 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
966 /* Try to pull RT tasks here if we lower this rq's prio */
967 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
968 pull_rt_task(rq);
971 static void post_schedule_rt(struct rq *rq)
974 * If we have more than one rt_task queued, then
975 * see if we can push the other rt_tasks off to other CPUS.
976 * Note we may release the rq lock, and since
977 * the lock was owned by prev, we need to release it
978 * first via finish_lock_switch and then reaquire it here.
980 if (unlikely(rq->rt.overloaded)) {
981 spin_lock_irq(&rq->lock);
982 push_rt_tasks(rq);
983 spin_unlock_irq(&rq->lock);
988 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
990 if (!task_running(rq, p) &&
991 (p->prio >= rq->rt.highest_prio) &&
992 rq->rt.overloaded)
993 push_rt_tasks(rq);
996 static unsigned long
997 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
998 unsigned long max_load_move,
999 struct sched_domain *sd, enum cpu_idle_type idle,
1000 int *all_pinned, int *this_best_prio)
1002 /* don't touch RT tasks */
1003 return 0;
1006 static int
1007 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1008 struct sched_domain *sd, enum cpu_idle_type idle)
1010 /* don't touch RT tasks */
1011 return 0;
1014 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
1016 int weight = cpus_weight(*new_mask);
1018 BUG_ON(!rt_task(p));
1021 * Update the migration status of the RQ if we have an RT task
1022 * which is running AND changing its weight value.
1024 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1025 struct rq *rq = task_rq(p);
1027 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1028 rq->rt.rt_nr_migratory++;
1029 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1030 BUG_ON(!rq->rt.rt_nr_migratory);
1031 rq->rt.rt_nr_migratory--;
1034 update_rt_migration(rq);
1037 p->cpus_allowed = *new_mask;
1038 p->rt.nr_cpus_allowed = weight;
1041 /* Assumes rq->lock is held */
1042 static void join_domain_rt(struct rq *rq)
1044 if (rq->rt.overloaded)
1045 rt_set_overload(rq);
1048 /* Assumes rq->lock is held */
1049 static void leave_domain_rt(struct rq *rq)
1051 if (rq->rt.overloaded)
1052 rt_clear_overload(rq);
1056 * When switch from the rt queue, we bring ourselves to a position
1057 * that we might want to pull RT tasks from other runqueues.
1059 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1060 int running)
1063 * If there are other RT tasks then we will reschedule
1064 * and the scheduling of the other RT tasks will handle
1065 * the balancing. But if we are the last RT task
1066 * we may need to handle the pulling of RT tasks
1067 * now.
1069 if (!rq->rt.rt_nr_running)
1070 pull_rt_task(rq);
1072 #endif /* CONFIG_SMP */
1075 * When switching a task to RT, we may overload the runqueue
1076 * with RT tasks. In this case we try to push them off to
1077 * other runqueues.
1079 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1080 int running)
1082 int check_resched = 1;
1085 * If we are already running, then there's nothing
1086 * that needs to be done. But if we are not running
1087 * we may need to preempt the current running task.
1088 * If that current running task is also an RT task
1089 * then see if we can move to another run queue.
1091 if (!running) {
1092 #ifdef CONFIG_SMP
1093 if (rq->rt.overloaded && push_rt_task(rq) &&
1094 /* Don't resched if we changed runqueues */
1095 rq != task_rq(p))
1096 check_resched = 0;
1097 #endif /* CONFIG_SMP */
1098 if (check_resched && p->prio < rq->curr->prio)
1099 resched_task(rq->curr);
1104 * Priority of the task has changed. This may cause
1105 * us to initiate a push or pull.
1107 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1108 int oldprio, int running)
1110 if (running) {
1111 #ifdef CONFIG_SMP
1113 * If our priority decreases while running, we
1114 * may need to pull tasks to this runqueue.
1116 if (oldprio < p->prio)
1117 pull_rt_task(rq);
1119 * If there's a higher priority task waiting to run
1120 <<<<<<< HEAD:kernel/sched_rt.c
1121 * then reschedule.
1122 =======
1123 * then reschedule. Note, the above pull_rt_task
1124 * can release the rq lock and p could migrate.
1125 * Only reschedule if p is still on the same runqueue.
1126 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_rt.c
1128 <<<<<<< HEAD:kernel/sched_rt.c
1129 if (p->prio > rq->rt.highest_prio)
1130 =======
1131 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1132 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_rt.c
1133 resched_task(p);
1134 #else
1135 /* For UP simply resched on drop of prio */
1136 if (oldprio < p->prio)
1137 resched_task(p);
1138 #endif /* CONFIG_SMP */
1139 } else {
1141 * This task is not running, but if it is
1142 * greater than the current running task
1143 * then reschedule.
1145 if (p->prio < rq->curr->prio)
1146 resched_task(rq->curr);
1150 static void watchdog(struct rq *rq, struct task_struct *p)
1152 unsigned long soft, hard;
1154 if (!p->signal)
1155 return;
1157 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1158 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1160 if (soft != RLIM_INFINITY) {
1161 unsigned long next;
1163 p->rt.timeout++;
1164 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1165 if (p->rt.timeout > next)
1166 p->it_sched_expires = p->se.sum_exec_runtime;
1170 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1172 update_curr_rt(rq);
1174 watchdog(rq, p);
1177 * RR tasks need a special form of timeslice management.
1178 * FIFO tasks have no timeslices.
1180 if (p->policy != SCHED_RR)
1181 return;
1183 if (--p->rt.time_slice)
1184 return;
1186 p->rt.time_slice = DEF_TIMESLICE;
1189 * Requeue to the end of queue if we are not the only element
1190 * on the queue:
1192 if (p->rt.run_list.prev != p->rt.run_list.next) {
1193 requeue_task_rt(rq, p);
1194 set_tsk_need_resched(p);
1198 static void set_curr_task_rt(struct rq *rq)
1200 struct task_struct *p = rq->curr;
1202 p->se.exec_start = rq->clock;
1205 const struct sched_class rt_sched_class = {
1206 .next = &fair_sched_class,
1207 .enqueue_task = enqueue_task_rt,
1208 .dequeue_task = dequeue_task_rt,
1209 .yield_task = yield_task_rt,
1210 #ifdef CONFIG_SMP
1211 .select_task_rq = select_task_rq_rt,
1212 #endif /* CONFIG_SMP */
1214 .check_preempt_curr = check_preempt_curr_rt,
1216 .pick_next_task = pick_next_task_rt,
1217 .put_prev_task = put_prev_task_rt,
1219 #ifdef CONFIG_SMP
1220 .load_balance = load_balance_rt,
1221 .move_one_task = move_one_task_rt,
1222 .set_cpus_allowed = set_cpus_allowed_rt,
1223 .join_domain = join_domain_rt,
1224 .leave_domain = leave_domain_rt,
1225 .pre_schedule = pre_schedule_rt,
1226 .post_schedule = post_schedule_rt,
1227 .task_wake_up = task_wake_up_rt,
1228 .switched_from = switched_from_rt,
1229 #endif
1231 .set_curr_task = set_curr_task_rt,
1232 .task_tick = task_tick_rt,
1234 .prio_changed = prio_changed_rt,
1235 .switched_to = switched_to_rt,