2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 static inline int rt_overloaded(struct rq
*rq
)
10 return atomic_read(&rq
->rd
->rto_count
);
13 static inline void rt_set_overload(struct rq
*rq
)
15 cpu_set(rq
->cpu
, rq
->rd
->rto_mask
);
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
24 atomic_inc(&rq
->rd
->rto_count
);
27 static inline void rt_clear_overload(struct rq
*rq
)
29 /* the order here really doesn't matter */
30 atomic_dec(&rq
->rd
->rto_count
);
31 cpu_clear(rq
->cpu
, rq
->rd
->rto_mask
);
34 static void update_rt_migration(struct rq
*rq
)
36 if (rq
->rt
.rt_nr_migratory
&& (rq
->rt
.rt_nr_running
> 1)) {
37 if (!rq
->rt
.overloaded
) {
39 rq
->rt
.overloaded
= 1;
41 } else if (rq
->rt
.overloaded
) {
42 rt_clear_overload(rq
);
43 rq
->rt
.overloaded
= 0;
46 #endif /* CONFIG_SMP */
48 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
50 return container_of(rt_se
, struct task_struct
, rt
);
53 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
55 return !list_empty(&rt_se
->run_list
);
58 #ifdef CONFIG_RT_GROUP_SCHED
60 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
65 return rt_rq
->tg
->rt_runtime
;
68 #define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
71 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
76 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
81 #define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
84 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
89 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
);
90 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
92 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
94 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
96 if (rt_se
&& !on_rt_rq(rt_se
) && rt_rq
->rt_nr_running
) {
97 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
99 enqueue_rt_entity(rt_se
);
100 if (rt_rq
->highest_prio
< curr
->prio
)
105 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
107 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
109 if (rt_se
&& on_rt_rq(rt_se
))
110 dequeue_rt_entity(rt_se
);
113 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
115 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
118 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
120 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
121 struct task_struct
*p
;
124 return !!rt_rq
->rt_nr_boosted
;
126 p
= rt_task_of(rt_se
);
127 return p
->prio
!= p
->normal_prio
;
132 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
134 if (sysctl_sched_rt_runtime
== -1)
137 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
140 #define for_each_leaf_rt_rq(rt_rq, rq) \
141 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
143 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
145 return container_of(rt_rq
, struct rq
, rt
);
148 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
150 struct task_struct
*p
= rt_task_of(rt_se
);
151 struct rq
*rq
= task_rq(p
);
156 #define for_each_sched_rt_entity(rt_se) \
157 for (; rt_se; rt_se = NULL)
159 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
164 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
168 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
172 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
174 return rt_rq
->rt_throttled
;
178 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
184 return rt_rq
->highest_prio
;
187 return rt_task_of(rt_se
)->prio
;
190 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
192 u64 runtime
= sched_rt_runtime(rt_rq
);
194 if (runtime
== RUNTIME_INF
)
197 if (rt_rq
->rt_throttled
)
198 return rt_rq_throttled(rt_rq
);
200 if (rt_rq
->rt_time
> runtime
) {
201 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
203 rq
->rt_throttled
= 1;
204 rt_rq
->rt_throttled
= 1;
206 if (rt_rq_throttled(rt_rq
)) {
207 sched_rt_rq_dequeue(rt_rq
);
215 static void update_sched_rt_period(struct rq
*rq
)
220 while (rq
->clock
> rq
->rt_period_expire
) {
221 period
= (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
222 rq
->rt_period_expire
+= period
;
224 for_each_leaf_rt_rq(rt_rq
, rq
) {
225 u64 runtime
= sched_rt_runtime(rt_rq
);
227 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, runtime
);
228 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
229 rt_rq
->rt_throttled
= 0;
230 sched_rt_rq_enqueue(rt_rq
);
234 rq
->rt_throttled
= 0;
239 * Update the current task's runtime statistics. Skip current tasks that
240 * are not in our scheduling class.
242 static void update_curr_rt(struct rq
*rq
)
244 struct task_struct
*curr
= rq
->curr
;
245 struct sched_rt_entity
*rt_se
= &curr
->rt
;
246 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
249 if (!task_has_rt_policy(curr
))
252 delta_exec
= rq
->clock
- curr
->se
.exec_start
;
253 if (unlikely((s64
)delta_exec
< 0))
256 schedstat_set(curr
->se
.exec_max
, max(curr
->se
.exec_max
, delta_exec
));
258 curr
->se
.sum_exec_runtime
+= delta_exec
;
259 curr
->se
.exec_start
= rq
->clock
;
260 cpuacct_charge(curr
, delta_exec
);
262 rt_rq
->rt_time
+= delta_exec
;
263 if (sched_rt_runtime_exceeded(rt_rq
))
268 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
270 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
271 rt_rq
->rt_nr_running
++;
272 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
273 if (rt_se_prio(rt_se
) < rt_rq
->highest_prio
)
274 rt_rq
->highest_prio
= rt_se_prio(rt_se
);
277 if (rt_se
->nr_cpus_allowed
> 1) {
278 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
279 rq
->rt
.rt_nr_migratory
++;
282 update_rt_migration(rq_of_rt_rq(rt_rq
));
284 #ifdef CONFIG_RT_GROUP_SCHED
285 if (rt_se_boosted(rt_se
))
286 rt_rq
->rt_nr_boosted
++;
291 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
293 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
294 WARN_ON(!rt_rq
->rt_nr_running
);
295 rt_rq
->rt_nr_running
--;
296 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
297 if (rt_rq
->rt_nr_running
) {
298 struct rt_prio_array
*array
;
300 WARN_ON(rt_se_prio(rt_se
) < rt_rq
->highest_prio
);
301 if (rt_se_prio(rt_se
) == rt_rq
->highest_prio
) {
303 array
= &rt_rq
->active
;
304 rt_rq
->highest_prio
=
305 sched_find_first_bit(array
->bitmap
);
306 } /* otherwise leave rq->highest prio alone */
308 rt_rq
->highest_prio
= MAX_RT_PRIO
;
311 if (rt_se
->nr_cpus_allowed
> 1) {
312 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
313 rq
->rt
.rt_nr_migratory
--;
316 update_rt_migration(rq_of_rt_rq(rt_rq
));
317 #endif /* CONFIG_SMP */
318 #ifdef CONFIG_RT_GROUP_SCHED
319 if (rt_se_boosted(rt_se
))
320 rt_rq
->rt_nr_boosted
--;
322 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
326 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
328 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
329 struct rt_prio_array
*array
= &rt_rq
->active
;
330 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
332 if (group_rq
&& rt_rq_throttled(group_rq
))
335 list_add_tail(&rt_se
->run_list
, array
->queue
+ rt_se_prio(rt_se
));
336 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
338 inc_rt_tasks(rt_se
, rt_rq
);
341 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
343 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
344 struct rt_prio_array
*array
= &rt_rq
->active
;
346 list_del_init(&rt_se
->run_list
);
347 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
348 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
350 dec_rt_tasks(rt_se
, rt_rq
);
354 * Because the prio of an upper entry depends on the lower
355 * entries, we must remove entries top - down.
357 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
358 * doesn't matter much for now, as h=2 for GROUP_SCHED.
360 static void dequeue_rt_stack(struct task_struct
*p
)
362 struct sched_rt_entity
*rt_se
, *top_se
;
365 * dequeue all, top - down.
370 for_each_sched_rt_entity(rt_se
) {
375 dequeue_rt_entity(top_se
);
380 * Adding/removing a task to/from a priority array:
382 static void enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
384 struct sched_rt_entity
*rt_se
= &p
->rt
;
392 * enqueue everybody, bottom - up.
394 for_each_sched_rt_entity(rt_se
)
395 enqueue_rt_entity(rt_se
);
396 <<<<<<< HEAD
:kernel
/sched_rt
.c
398 inc_cpu_load(rq
, p
->se
.load
.weight
);
400 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched_rt
.c
403 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int sleep
)
405 struct sched_rt_entity
*rt_se
= &p
->rt
;
413 * re-enqueue all non-empty rt_rq entities.
415 for_each_sched_rt_entity(rt_se
) {
416 rt_rq
= group_rt_rq(rt_se
);
417 if (rt_rq
&& rt_rq
->rt_nr_running
)
418 enqueue_rt_entity(rt_se
);
420 <<<<<<< HEAD
:kernel
/sched_rt
.c
422 dec_cpu_load(rq
, p
->se
.load
.weight
);
424 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched_rt
.c
428 * Put task to the end of the run list without the overhead of dequeue
429 * followed by enqueue.
432 void requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
)
434 struct rt_prio_array
*array
= &rt_rq
->active
;
436 list_move_tail(&rt_se
->run_list
, array
->queue
+ rt_se_prio(rt_se
));
439 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
)
441 struct sched_rt_entity
*rt_se
= &p
->rt
;
444 for_each_sched_rt_entity(rt_se
) {
445 rt_rq
= rt_rq_of_se(rt_se
);
446 requeue_rt_entity(rt_rq
, rt_se
);
450 static void yield_task_rt(struct rq
*rq
)
452 requeue_task_rt(rq
, rq
->curr
);
456 static int find_lowest_rq(struct task_struct
*task
);
458 static int select_task_rq_rt(struct task_struct
*p
, int sync
)
460 struct rq
*rq
= task_rq(p
);
463 * If the current task is an RT task, then
464 * try to see if we can wake this RT task up on another
465 * runqueue. Otherwise simply start this RT task
466 * on its current runqueue.
468 * We want to avoid overloading runqueues. Even if
469 * the RT task is of higher priority than the current RT task.
470 * RT tasks behave differently than other tasks. If
471 * one gets preempted, we try to push it off to another queue.
472 * So trying to keep a preempting RT task on the same
473 * cache hot CPU will force the running RT task to
474 * a cold CPU. So we waste all the cache for the lower
475 * RT task in hopes of saving some of a RT task
476 * that is just being woken and probably will have
479 if (unlikely(rt_task(rq
->curr
)) &&
480 (p
->rt
.nr_cpus_allowed
> 1)) {
481 int cpu
= find_lowest_rq(p
);
483 return (cpu
== -1) ? task_cpu(p
) : cpu
;
487 * Otherwise, just let it ride on the affined RQ and the
488 * post-schedule router will push the preempted task away
492 #endif /* CONFIG_SMP */
495 * Preempt the current task with a newly woken task if needed:
497 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
)
499 if (p
->prio
< rq
->curr
->prio
)
500 resched_task(rq
->curr
);
503 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
506 struct rt_prio_array
*array
= &rt_rq
->active
;
507 struct sched_rt_entity
*next
= NULL
;
508 struct list_head
*queue
;
511 idx
= sched_find_first_bit(array
->bitmap
);
512 BUG_ON(idx
>= MAX_RT_PRIO
);
514 queue
= array
->queue
+ idx
;
515 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
520 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
522 struct sched_rt_entity
*rt_se
;
523 struct task_struct
*p
;
528 if (unlikely(!rt_rq
->rt_nr_running
))
531 if (rt_rq_throttled(rt_rq
))
535 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
537 rt_rq
= group_rt_rq(rt_se
);
540 p
= rt_task_of(rt_se
);
541 p
->se
.exec_start
= rq
->clock
;
545 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
548 p
->se
.exec_start
= 0;
553 /* Only try algorithms three times */
554 #define RT_MAX_TRIES 3
556 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
);
557 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
559 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
561 if (!task_running(rq
, p
) &&
562 (cpu
< 0 || cpu_isset(cpu
, p
->cpus_allowed
)) &&
563 (p
->rt
.nr_cpus_allowed
> 1))
568 /* Return the second highest RT task, NULL otherwise */
569 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
571 struct task_struct
*next
= NULL
;
572 struct sched_rt_entity
*rt_se
;
573 struct rt_prio_array
*array
;
577 for_each_leaf_rt_rq(rt_rq
, rq
) {
578 array
= &rt_rq
->active
;
579 idx
= sched_find_first_bit(array
->bitmap
);
581 if (idx
>= MAX_RT_PRIO
)
583 if (next
&& next
->prio
< idx
)
585 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
586 struct task_struct
*p
= rt_task_of(rt_se
);
587 if (pick_rt_task(rq
, p
, cpu
)) {
593 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
601 static DEFINE_PER_CPU(cpumask_t
, local_cpu_mask
);
603 static int find_lowest_cpus(struct task_struct
*task
, cpumask_t
*lowest_mask
)
605 int lowest_prio
= -1;
610 cpus_and(*lowest_mask
, task_rq(task
)->rd
->online
, task
->cpus_allowed
);
613 * Scan each rq for the lowest prio.
615 for_each_cpu_mask(cpu
, *lowest_mask
) {
616 struct rq
*rq
= cpu_rq(cpu
);
618 /* We look for lowest RT prio or non-rt CPU */
619 if (rq
->rt
.highest_prio
>= MAX_RT_PRIO
) {
621 * if we already found a low RT queue
622 * and now we found this non-rt queue
623 * clear the mask and set our bit.
624 * Otherwise just return the queue as is
625 * and the count==1 will cause the algorithm
626 * to use the first bit found.
628 if (lowest_cpu
!= -1) {
629 cpus_clear(*lowest_mask
);
630 cpu_set(rq
->cpu
, *lowest_mask
);
635 /* no locking for now */
636 if ((rq
->rt
.highest_prio
> task
->prio
)
637 && (rq
->rt
.highest_prio
>= lowest_prio
)) {
638 if (rq
->rt
.highest_prio
> lowest_prio
) {
639 /* new low - clear old data */
640 lowest_prio
= rq
->rt
.highest_prio
;
646 cpu_clear(cpu
, *lowest_mask
);
650 * Clear out all the set bits that represent
651 * runqueues that were of higher prio than
654 if (lowest_cpu
> 0) {
656 * Perhaps we could add another cpumask op to
657 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
658 * Then that could be optimized to use memset and such.
660 for_each_cpu_mask(cpu
, *lowest_mask
) {
661 if (cpu
>= lowest_cpu
)
663 cpu_clear(cpu
, *lowest_mask
);
670 static inline int pick_optimal_cpu(int this_cpu
, cpumask_t
*mask
)
674 /* "this_cpu" is cheaper to preempt than a remote processor */
675 if ((this_cpu
!= -1) && cpu_isset(this_cpu
, *mask
))
678 first
= first_cpu(*mask
);
679 if (first
!= NR_CPUS
)
685 static int find_lowest_rq(struct task_struct
*task
)
687 struct sched_domain
*sd
;
688 cpumask_t
*lowest_mask
= &__get_cpu_var(local_cpu_mask
);
689 int this_cpu
= smp_processor_id();
690 int cpu
= task_cpu(task
);
691 int count
= find_lowest_cpus(task
, lowest_mask
);
694 return -1; /* No targets found */
697 * There is no sense in performing an optimal search if only one
701 return first_cpu(*lowest_mask
);
704 * At this point we have built a mask of cpus representing the
705 * lowest priority tasks in the system. Now we want to elect
706 * the best one based on our affinity and topology.
708 * We prioritize the last cpu that the task executed on since
709 * it is most likely cache-hot in that location.
711 if (cpu_isset(cpu
, *lowest_mask
))
715 * Otherwise, we consult the sched_domains span maps to figure
716 * out which cpu is logically closest to our hot cache data.
719 this_cpu
= -1; /* Skip this_cpu opt if the same */
721 for_each_domain(cpu
, sd
) {
722 if (sd
->flags
& SD_WAKE_AFFINE
) {
723 cpumask_t domain_mask
;
726 cpus_and(domain_mask
, sd
->span
, *lowest_mask
);
728 best_cpu
= pick_optimal_cpu(this_cpu
,
736 * And finally, if there were no matches within the domains
737 * just give the caller *something* to work with from the compatible
740 return pick_optimal_cpu(this_cpu
, lowest_mask
);
743 /* Will lock the rq it finds */
744 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
746 struct rq
*lowest_rq
= NULL
;
750 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
751 cpu
= find_lowest_rq(task
);
753 if ((cpu
== -1) || (cpu
== rq
->cpu
))
756 lowest_rq
= cpu_rq(cpu
);
758 /* if the prio of this runqueue changed, try again */
759 if (double_lock_balance(rq
, lowest_rq
)) {
761 * We had to unlock the run queue. In
762 * the mean time, task could have
763 * migrated already or had its affinity changed.
764 * Also make sure that it wasn't scheduled on its rq.
766 if (unlikely(task_rq(task
) != rq
||
767 !cpu_isset(lowest_rq
->cpu
,
768 task
->cpus_allowed
) ||
769 task_running(rq
, task
) ||
772 spin_unlock(&lowest_rq
->lock
);
778 /* If this rq is still suitable use it. */
779 if (lowest_rq
->rt
.highest_prio
> task
->prio
)
783 spin_unlock(&lowest_rq
->lock
);
791 * If the current CPU has more than one RT task, see if the non
792 * running task can migrate over to a CPU that is running a task
793 * of lesser priority.
795 static int push_rt_task(struct rq
*rq
)
797 struct task_struct
*next_task
;
798 struct rq
*lowest_rq
;
800 int paranoid
= RT_MAX_TRIES
;
802 if (!rq
->rt
.overloaded
)
805 next_task
= pick_next_highest_task_rt(rq
, -1);
810 if (unlikely(next_task
== rq
->curr
)) {
816 * It's possible that the next_task slipped in of
817 * higher priority than current. If that's the case
818 * just reschedule current.
820 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
821 resched_task(rq
->curr
);
825 /* We might release rq lock */
826 get_task_struct(next_task
);
828 /* find_lock_lowest_rq locks the rq if found */
829 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
831 struct task_struct
*task
;
833 * find lock_lowest_rq releases rq->lock
834 * so it is possible that next_task has changed.
835 * If it has, then try again.
837 task
= pick_next_highest_task_rt(rq
, -1);
838 if (unlikely(task
!= next_task
) && task
&& paranoid
--) {
839 put_task_struct(next_task
);
846 deactivate_task(rq
, next_task
, 0);
847 set_task_cpu(next_task
, lowest_rq
->cpu
);
848 activate_task(lowest_rq
, next_task
, 0);
850 resched_task(lowest_rq
->curr
);
852 spin_unlock(&lowest_rq
->lock
);
856 put_task_struct(next_task
);
862 * TODO: Currently we just use the second highest prio task on
863 * the queue, and stop when it can't migrate (or there's
864 * no more RT tasks). There may be a case where a lower
865 * priority RT task has a different affinity than the
866 * higher RT task. In this case the lower RT task could
867 * possibly be able to migrate where as the higher priority
868 * RT task could not. We currently ignore this issue.
869 * Enhancements are welcome!
871 static void push_rt_tasks(struct rq
*rq
)
873 /* push_rt_task will return true if it moved an RT */
874 while (push_rt_task(rq
))
878 static int pull_rt_task(struct rq
*this_rq
)
880 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
881 struct task_struct
*p
, *next
;
884 if (likely(!rt_overloaded(this_rq
)))
887 next
= pick_next_task_rt(this_rq
);
889 for_each_cpu_mask(cpu
, this_rq
->rd
->rto_mask
) {
893 src_rq
= cpu_rq(cpu
);
895 * We can potentially drop this_rq's lock in
896 * double_lock_balance, and another CPU could
897 * steal our next task - hence we must cause
898 * the caller to recalculate the next task
901 if (double_lock_balance(this_rq
, src_rq
)) {
902 struct task_struct
*old_next
= next
;
904 next
= pick_next_task_rt(this_rq
);
905 if (next
!= old_next
)
910 * Are there still pullable RT tasks?
912 if (src_rq
->rt
.rt_nr_running
<= 1)
915 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
918 * Do we have an RT task that preempts
919 * the to-be-scheduled task?
921 if (p
&& (!next
|| (p
->prio
< next
->prio
))) {
922 WARN_ON(p
== src_rq
->curr
);
923 WARN_ON(!p
->se
.on_rq
);
926 * There's a chance that p is higher in priority
927 * than what's currently running on its cpu.
928 * This is just that p is wakeing up and hasn't
929 * had a chance to schedule. We only pull
930 * p if it is lower in priority than the
931 * current task on the run queue or
932 * this_rq next task is lower in prio than
933 * the current task on that rq.
935 if (p
->prio
< src_rq
->curr
->prio
||
936 (next
&& next
->prio
< src_rq
->curr
->prio
))
941 deactivate_task(src_rq
, p
, 0);
942 set_task_cpu(p
, this_cpu
);
943 activate_task(this_rq
, p
, 0);
945 * We continue with the search, just in
946 * case there's an even higher prio task
947 * in another runqueue. (low likelyhood
950 * Update next so that we won't pick a task
951 * on another cpu with a priority lower (or equal)
952 * than the one we just picked.
958 spin_unlock(&src_rq
->lock
);
964 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
966 /* Try to pull RT tasks here if we lower this rq's prio */
967 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
> prev
->prio
)
971 static void post_schedule_rt(struct rq
*rq
)
974 * If we have more than one rt_task queued, then
975 * see if we can push the other rt_tasks off to other CPUS.
976 * Note we may release the rq lock, and since
977 * the lock was owned by prev, we need to release it
978 * first via finish_lock_switch and then reaquire it here.
980 if (unlikely(rq
->rt
.overloaded
)) {
981 spin_lock_irq(&rq
->lock
);
983 spin_unlock_irq(&rq
->lock
);
988 static void task_wake_up_rt(struct rq
*rq
, struct task_struct
*p
)
990 if (!task_running(rq
, p
) &&
991 (p
->prio
>= rq
->rt
.highest_prio
) &&
997 load_balance_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
998 unsigned long max_load_move
,
999 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1000 int *all_pinned
, int *this_best_prio
)
1002 /* don't touch RT tasks */
1007 move_one_task_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1008 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1010 /* don't touch RT tasks */
1014 static void set_cpus_allowed_rt(struct task_struct
*p
, cpumask_t
*new_mask
)
1016 int weight
= cpus_weight(*new_mask
);
1018 BUG_ON(!rt_task(p
));
1021 * Update the migration status of the RQ if we have an RT task
1022 * which is running AND changing its weight value.
1024 if (p
->se
.on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1025 struct rq
*rq
= task_rq(p
);
1027 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1028 rq
->rt
.rt_nr_migratory
++;
1029 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1030 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1031 rq
->rt
.rt_nr_migratory
--;
1034 update_rt_migration(rq
);
1037 p
->cpus_allowed
= *new_mask
;
1038 p
->rt
.nr_cpus_allowed
= weight
;
1041 /* Assumes rq->lock is held */
1042 static void join_domain_rt(struct rq
*rq
)
1044 if (rq
->rt
.overloaded
)
1045 rt_set_overload(rq
);
1048 /* Assumes rq->lock is held */
1049 static void leave_domain_rt(struct rq
*rq
)
1051 if (rq
->rt
.overloaded
)
1052 rt_clear_overload(rq
);
1056 * When switch from the rt queue, we bring ourselves to a position
1057 * that we might want to pull RT tasks from other runqueues.
1059 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
,
1063 * If there are other RT tasks then we will reschedule
1064 * and the scheduling of the other RT tasks will handle
1065 * the balancing. But if we are the last RT task
1066 * we may need to handle the pulling of RT tasks
1069 if (!rq
->rt
.rt_nr_running
)
1072 #endif /* CONFIG_SMP */
1075 * When switching a task to RT, we may overload the runqueue
1076 * with RT tasks. In this case we try to push them off to
1079 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
,
1082 int check_resched
= 1;
1085 * If we are already running, then there's nothing
1086 * that needs to be done. But if we are not running
1087 * we may need to preempt the current running task.
1088 * If that current running task is also an RT task
1089 * then see if we can move to another run queue.
1093 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1094 /* Don't resched if we changed runqueues */
1097 #endif /* CONFIG_SMP */
1098 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1099 resched_task(rq
->curr
);
1104 * Priority of the task has changed. This may cause
1105 * us to initiate a push or pull.
1107 static void prio_changed_rt(struct rq
*rq
, struct task_struct
*p
,
1108 int oldprio
, int running
)
1113 * If our priority decreases while running, we
1114 * may need to pull tasks to this runqueue.
1116 if (oldprio
< p
->prio
)
1119 * If there's a higher priority task waiting to run
1120 <<<<<<< HEAD:kernel/sched_rt.c
1123 * then reschedule. Note, the above pull_rt_task
1124 * can release the rq lock and p could migrate.
1125 * Only reschedule if p is still on the same runqueue.
1126 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:kernel/sched_rt.c
1128 <<<<<<< HEAD
:kernel
/sched_rt
.c
1129 if (p
->prio
> rq
->rt
.highest_prio
)
1131 if (p
->prio
> rq
->rt
.highest_prio
&& rq
->curr
== p
)
1132 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/sched_rt
.c
1135 /* For UP simply resched on drop of prio */
1136 if (oldprio
< p
->prio
)
1138 #endif /* CONFIG_SMP */
1141 * This task is not running, but if it is
1142 * greater than the current running task
1145 if (p
->prio
< rq
->curr
->prio
)
1146 resched_task(rq
->curr
);
1150 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1152 unsigned long soft
, hard
;
1157 soft
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1158 hard
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1160 if (soft
!= RLIM_INFINITY
) {
1164 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1165 if (p
->rt
.timeout
> next
)
1166 p
->it_sched_expires
= p
->se
.sum_exec_runtime
;
1170 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1177 * RR tasks need a special form of timeslice management.
1178 * FIFO tasks have no timeslices.
1180 if (p
->policy
!= SCHED_RR
)
1183 if (--p
->rt
.time_slice
)
1186 p
->rt
.time_slice
= DEF_TIMESLICE
;
1189 * Requeue to the end of queue if we are not the only element
1192 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1193 requeue_task_rt(rq
, p
);
1194 set_tsk_need_resched(p
);
1198 static void set_curr_task_rt(struct rq
*rq
)
1200 struct task_struct
*p
= rq
->curr
;
1202 p
->se
.exec_start
= rq
->clock
;
1205 const struct sched_class rt_sched_class
= {
1206 .next
= &fair_sched_class
,
1207 .enqueue_task
= enqueue_task_rt
,
1208 .dequeue_task
= dequeue_task_rt
,
1209 .yield_task
= yield_task_rt
,
1211 .select_task_rq
= select_task_rq_rt
,
1212 #endif /* CONFIG_SMP */
1214 .check_preempt_curr
= check_preempt_curr_rt
,
1216 .pick_next_task
= pick_next_task_rt
,
1217 .put_prev_task
= put_prev_task_rt
,
1220 .load_balance
= load_balance_rt
,
1221 .move_one_task
= move_one_task_rt
,
1222 .set_cpus_allowed
= set_cpus_allowed_rt
,
1223 .join_domain
= join_domain_rt
,
1224 .leave_domain
= leave_domain_rt
,
1225 .pre_schedule
= pre_schedule_rt
,
1226 .post_schedule
= post_schedule_rt
,
1227 .task_wake_up
= task_wake_up_rt
,
1228 .switched_from
= switched_from_rt
,
1231 .set_curr_task
= set_curr_task_rt
,
1232 .task_tick
= task_tick_rt
,
1234 .prio_changed
= prio_changed_rt
,
1235 .switched_to
= switched_to_rt
,