2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
12 #include <linux/time.h>
13 #include <linux/timer.h>
14 #include <linux/timex.h>
15 #include <linux/jiffies.h>
16 #include <linux/hrtimer.h>
17 #include <linux/capability.h>
18 #include <asm/div64.h>
19 #include <asm/timex.h>
22 * Timekeeping variables
24 unsigned long tick_usec
= TICK_USEC
; /* USER_HZ period (usec) */
25 unsigned long tick_nsec
; /* ACTHZ period (nsec) */
26 static u64 tick_length
, tick_length_base
;
28 #define MAX_TICKADJ 500 /* microsecs */
29 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
30 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
33 * phase-lock loop variables
35 /* TIME_ERROR prevents overwriting the CMOS clock */
36 static int time_state
= TIME_OK
; /* clock synchronization status */
37 int time_status
= STA_UNSYNC
; /* clock status bits */
38 static s64 time_offset
; /* time adjustment (ns) */
39 static long time_constant
= 2; /* pll time constant */
40 long time_maxerror
= NTP_PHASE_LIMIT
; /* maximum error (us) */
41 long time_esterror
= NTP_PHASE_LIMIT
; /* estimated error (us) */
42 long time_freq
; /* frequency offset (scaled ppm)*/
43 static long time_reftime
; /* time at last adjustment (s) */
45 <<<<<<< HEAD
:kernel
/time
/ntp
.c
47 static long ntp_tick_adj
;
48 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/time
/ntp
.c
50 static void ntp_update_frequency(void)
52 u64 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
54 <<<<<<< HEAD
:kernel
/time
/ntp
.c
55 second_length
+= (s64
)CLOCK_TICK_ADJUST
<< TICK_LENGTH_SHIFT
;
57 second_length
+= (s64
)ntp_tick_adj
<< TICK_LENGTH_SHIFT
;
58 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/time
/ntp
.c
59 second_length
+= (s64
)time_freq
<< (TICK_LENGTH_SHIFT
- SHIFT_NSEC
);
61 tick_length_base
= second_length
;
63 do_div(second_length
, HZ
);
64 tick_nsec
= second_length
>> TICK_LENGTH_SHIFT
;
66 do_div(tick_length_base
, NTP_INTERVAL_FREQ
);
70 * ntp_clear - Clears the NTP state variables
72 * Must be called while holding a write on the xtime_lock
76 time_adjust
= 0; /* stop active adjtime() */
77 time_status
|= STA_UNSYNC
;
78 time_maxerror
= NTP_PHASE_LIMIT
;
79 time_esterror
= NTP_PHASE_LIMIT
;
81 ntp_update_frequency();
83 tick_length
= tick_length_base
;
88 * this routine handles the overflow of the microsecond field
90 * The tricky bits of code to handle the accurate clock support
91 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
92 * They were originally developed for SUN and DEC kernels.
93 * All the kudos should go to Dave for this stuff.
95 void second_overflow(void)
99 /* Bump the maxerror field */
100 time_maxerror
+= MAXFREQ
>> SHIFT_USEC
;
101 if (time_maxerror
> NTP_PHASE_LIMIT
) {
102 time_maxerror
= NTP_PHASE_LIMIT
;
103 time_status
|= STA_UNSYNC
;
107 * Leap second processing. If in leap-insert state at the end of the
108 * day, the system clock is set back one second; if in leap-delete
109 * state, the system clock is set ahead one second. The microtime()
110 * routine or external clock driver will insure that reported time is
111 * always monotonic. The ugly divides should be replaced.
113 switch (time_state
) {
115 if (time_status
& STA_INS
)
116 time_state
= TIME_INS
;
117 else if (time_status
& STA_DEL
)
118 time_state
= TIME_DEL
;
121 if (xtime
.tv_sec
% 86400 == 0) {
123 wall_to_monotonic
.tv_sec
++;
124 time_state
= TIME_OOP
;
125 printk(KERN_NOTICE
"Clock: inserting leap second "
130 if ((xtime
.tv_sec
+ 1) % 86400 == 0) {
132 wall_to_monotonic
.tv_sec
--;
133 time_state
= TIME_WAIT
;
134 printk(KERN_NOTICE
"Clock: deleting leap second "
139 time_state
= TIME_WAIT
;
142 if (!(time_status
& (STA_INS
| STA_DEL
)))
143 time_state
= TIME_OK
;
147 * Compute the phase adjustment for the next second. The offset is
148 * reduced by a fixed factor times the time constant.
150 tick_length
= tick_length_base
;
151 time_adj
= shift_right(time_offset
, SHIFT_PLL
+ time_constant
);
152 time_offset
-= time_adj
;
153 tick_length
+= (s64
)time_adj
<< (TICK_LENGTH_SHIFT
- SHIFT_UPDATE
);
155 if (unlikely(time_adjust
)) {
156 if (time_adjust
> MAX_TICKADJ
) {
157 time_adjust
-= MAX_TICKADJ
;
158 tick_length
+= MAX_TICKADJ_SCALED
;
159 } else if (time_adjust
< -MAX_TICKADJ
) {
160 time_adjust
+= MAX_TICKADJ
;
161 tick_length
-= MAX_TICKADJ_SCALED
;
163 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/
164 NTP_INTERVAL_FREQ
) << TICK_LENGTH_SHIFT
;
171 * Return how long ticks are at the moment, that is, how much time
172 * update_wall_time_one_tick will add to xtime next time we call it
173 * (assuming no calls to do_adjtimex in the meantime).
174 * The return value is in fixed-point nanoseconds shifted by the
175 * specified number of bits to the right of the binary point.
176 * This function has no side-effects.
178 u64
current_tick_length(void)
183 #ifdef CONFIG_GENERIC_CMOS_UPDATE
185 /* Disable the cmos update - used by virtualization and embedded */
186 int no_sync_cmos_clock __read_mostly
;
188 static void sync_cmos_clock(unsigned long dummy
);
190 static DEFINE_TIMER(sync_cmos_timer
, sync_cmos_clock
, 0, 0);
192 static void sync_cmos_clock(unsigned long dummy
)
194 struct timespec now
, next
;
198 * If we have an externally synchronized Linux clock, then update
199 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
200 * called as close as possible to 500 ms before the new second starts.
201 * This code is run on a timer. If the clock is set, that timer
202 * may not expire at the correct time. Thus, we adjust...
206 * Not synced, exit, do not restart a timer (if one is
207 * running, let it run out).
211 getnstimeofday(&now
);
212 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
/ 2)
213 fail
= update_persistent_clock(now
);
215 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
;
216 if (next
.tv_nsec
<= 0)
217 next
.tv_nsec
+= NSEC_PER_SEC
;
224 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
226 next
.tv_nsec
-= NSEC_PER_SEC
;
228 mod_timer(&sync_cmos_timer
, jiffies
+ timespec_to_jiffies(&next
));
231 static void notify_cmos_timer(void)
233 if (!no_sync_cmos_clock
)
234 mod_timer(&sync_cmos_timer
, jiffies
+ 1);
238 static inline void notify_cmos_timer(void) { }
241 /* adjtimex mainly allows reading (and writing, if superuser) of
242 * kernel time-keeping variables. used by xntpd.
244 int do_adjtimex(struct timex
*txc
)
246 long mtemp
, save_adjust
, rem
;
247 s64 freq_adj
, temp64
;
250 /* In order to modify anything, you gotta be super-user! */
251 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
254 /* Now we validate the data before disabling interrupts */
256 if ((txc
->modes
& ADJ_OFFSET_SINGLESHOT
) == ADJ_OFFSET_SINGLESHOT
) {
257 /* singleshot must not be used with any other mode bits */
258 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&&
259 txc
->modes
!= ADJ_OFFSET_SS_READ
)
263 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&& (txc
->modes
& ADJ_OFFSET
))
264 /* adjustment Offset limited to +- .512 seconds */
265 if (txc
->offset
<= - MAXPHASE
|| txc
->offset
>= MAXPHASE
)
268 /* if the quartz is off by more than 10% something is VERY wrong ! */
269 if (txc
->modes
& ADJ_TICK
)
270 if (txc
->tick
< 900000/USER_HZ
||
271 txc
->tick
> 1100000/USER_HZ
)
274 write_seqlock_irq(&xtime_lock
);
275 result
= time_state
; /* mostly `TIME_OK' */
277 /* Save for later - semantics of adjtime is to return old value */
278 save_adjust
= time_adjust
;
280 #if 0 /* STA_CLOCKERR is never set yet */
281 time_status
&= ~STA_CLOCKERR
; /* reset STA_CLOCKERR */
283 /* If there are input parameters, then process them */
286 if (txc
->modes
& ADJ_STATUS
) /* only set allowed bits */
287 time_status
= (txc
->status
& ~STA_RONLY
) |
288 (time_status
& STA_RONLY
);
290 if (txc
->modes
& ADJ_FREQUENCY
) { /* p. 22 */
291 if (txc
->freq
> MAXFREQ
|| txc
->freq
< -MAXFREQ
) {
295 time_freq
= ((s64
)txc
->freq
* NSEC_PER_USEC
)
296 >> (SHIFT_USEC
- SHIFT_NSEC
);
299 if (txc
->modes
& ADJ_MAXERROR
) {
300 if (txc
->maxerror
< 0 || txc
->maxerror
>= NTP_PHASE_LIMIT
) {
304 time_maxerror
= txc
->maxerror
;
307 if (txc
->modes
& ADJ_ESTERROR
) {
308 if (txc
->esterror
< 0 || txc
->esterror
>= NTP_PHASE_LIMIT
) {
312 time_esterror
= txc
->esterror
;
315 if (txc
->modes
& ADJ_TIMECONST
) { /* p. 24 */
316 if (txc
->constant
< 0) { /* NTP v4 uses values > 6 */
320 time_constant
= min(txc
->constant
+ 4, (long)MAXTC
);
323 if (txc
->modes
& ADJ_OFFSET
) { /* values checked earlier */
324 if (txc
->modes
== ADJ_OFFSET_SINGLESHOT
) {
325 /* adjtime() is independent from ntp_adjtime() */
326 time_adjust
= txc
->offset
;
328 else if (time_status
& STA_PLL
) {
329 time_offset
= txc
->offset
* NSEC_PER_USEC
;
332 * Scale the phase adjustment and
333 * clamp to the operating range.
335 time_offset
= min(time_offset
, (s64
)MAXPHASE
* NSEC_PER_USEC
);
336 time_offset
= max(time_offset
, (s64
)-MAXPHASE
* NSEC_PER_USEC
);
339 * Select whether the frequency is to be controlled
340 * and in which mode (PLL or FLL). Clamp to the operating
341 * range. Ugly multiply/divide should be replaced someday.
344 if (time_status
& STA_FREQHOLD
|| time_reftime
== 0)
345 time_reftime
= xtime
.tv_sec
;
346 mtemp
= xtime
.tv_sec
- time_reftime
;
347 time_reftime
= xtime
.tv_sec
;
349 freq_adj
= time_offset
* mtemp
;
350 freq_adj
= shift_right(freq_adj
, time_constant
* 2 +
351 (SHIFT_PLL
+ 2) * 2 - SHIFT_NSEC
);
352 if (mtemp
>= MINSEC
&& (time_status
& STA_FLL
|| mtemp
> MAXSEC
)) {
353 <<<<<<< HEAD
:kernel
/time
/ntp
.c
356 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/time
/ntp
.c
357 temp64
= time_offset
<< (SHIFT_NSEC
- SHIFT_FLL
);
358 if (time_offset
< 0) {
359 <<<<<<< HEAD
:kernel
/time
/ntp
.c
361 do_div(temp64
, mtemp
);
365 do_div(utemp64
, mtemp
);
367 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/time
/ntp
.c
369 <<<<<<< HEAD
:kernel
/time
/ntp
.c
370 do_div(temp64
, mtemp
);
374 do_div(utemp64
, mtemp
);
376 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/time
/ntp
.c
379 freq_adj
+= time_freq
;
380 freq_adj
= min(freq_adj
, (s64
)MAXFREQ_NSEC
);
381 time_freq
= max(freq_adj
, (s64
)-MAXFREQ_NSEC
);
382 time_offset
= div_long_long_rem_signed(time_offset
,
385 time_offset
<<= SHIFT_UPDATE
;
387 } /* txc->modes & ADJ_OFFSET */
388 if (txc
->modes
& ADJ_TICK
)
389 tick_usec
= txc
->tick
;
391 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
392 ntp_update_frequency();
394 leave
: if ((time_status
& (STA_UNSYNC
|STA_CLOCKERR
)) != 0)
397 if ((txc
->modes
== ADJ_OFFSET_SINGLESHOT
) ||
398 (txc
->modes
== ADJ_OFFSET_SS_READ
))
399 txc
->offset
= save_adjust
;
401 txc
->offset
= ((long)shift_right(time_offset
, SHIFT_UPDATE
)) *
402 NTP_INTERVAL_FREQ
/ 1000;
403 txc
->freq
= (time_freq
/ NSEC_PER_USEC
) <<
404 (SHIFT_USEC
- SHIFT_NSEC
);
405 txc
->maxerror
= time_maxerror
;
406 txc
->esterror
= time_esterror
;
407 txc
->status
= time_status
;
408 txc
->constant
= time_constant
;
410 txc
->tolerance
= MAXFREQ
;
411 txc
->tick
= tick_usec
;
413 /* PPS is not implemented, so these are zero */
422 write_sequnlock_irq(&xtime_lock
);
423 do_gettimeofday(&txc
->time
);
427 <<<<<<< HEAD
:kernel
/time
/ntp
.c
430 static int __init
ntp_tick_adj_setup(char *str
)
432 ntp_tick_adj
= simple_strtol(str
, NULL
, 0);
436 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
437 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/time
/ntp
.c