4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr
;
69 EXPORT_SYMBOL(max_mapnr
);
70 EXPORT_SYMBOL(mem_map
);
73 unsigned long num_physpages
;
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
83 EXPORT_SYMBOL(num_physpages
);
84 EXPORT_SYMBOL(high_memory
);
87 * Randomize the address space (stacks, mmaps, brk, etc.).
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
92 int randomize_va_space __read_mostly
=
93 #ifdef CONFIG_COMPAT_BRK
99 static int __init
disable_randmaps(char *s
)
101 randomize_va_space
= 0;
104 __setup("norandmaps", disable_randmaps
);
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 void pgd_clear_bad(pgd_t
*pgd
)
119 void pud_clear_bad(pud_t
*pud
)
125 void pmd_clear_bad(pmd_t
*pmd
)
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
135 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
137 pgtable_t token
= pmd_pgtable(*pmd
);
139 pte_free_tlb(tlb
, token
);
143 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
144 unsigned long addr
, unsigned long end
,
145 unsigned long floor
, unsigned long ceiling
)
152 pmd
= pmd_offset(pud
, addr
);
154 next
= pmd_addr_end(addr
, end
);
155 if (pmd_none_or_clear_bad(pmd
))
157 free_pte_range(tlb
, pmd
);
158 } while (pmd
++, addr
= next
, addr
!= end
);
168 if (end
- 1 > ceiling
- 1)
171 pmd
= pmd_offset(pud
, start
);
173 pmd_free_tlb(tlb
, pmd
);
176 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
177 unsigned long addr
, unsigned long end
,
178 unsigned long floor
, unsigned long ceiling
)
185 pud
= pud_offset(pgd
, addr
);
187 next
= pud_addr_end(addr
, end
);
188 if (pud_none_or_clear_bad(pud
))
190 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
191 } while (pud
++, addr
= next
, addr
!= end
);
197 ceiling
&= PGDIR_MASK
;
201 if (end
- 1 > ceiling
- 1)
204 pud
= pud_offset(pgd
, start
);
206 pud_free_tlb(tlb
, pud
);
210 * This function frees user-level page tables of a process.
212 * Must be called with pagetable lock held.
214 void free_pgd_range(struct mmu_gather
**tlb
,
215 unsigned long addr
, unsigned long end
,
216 unsigned long floor
, unsigned long ceiling
)
223 * The next few lines have given us lots of grief...
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
259 if (end
- 1 > ceiling
- 1)
265 pgd
= pgd_offset((*tlb
)->mm
, addr
);
267 next
= pgd_addr_end(addr
, end
);
268 if (pgd_none_or_clear_bad(pgd
))
270 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
271 } while (pgd
++, addr
= next
, addr
!= end
);
274 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
275 unsigned long floor
, unsigned long ceiling
)
278 struct vm_area_struct
*next
= vma
->vm_next
;
279 unsigned long addr
= vma
->vm_start
;
282 * Hide vma from rmap and vmtruncate before freeing pgtables
284 anon_vma_unlink(vma
);
285 unlink_file_vma(vma
);
287 if (is_vm_hugetlb_page(vma
)) {
288 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
289 floor
, next
? next
->vm_start
: ceiling
);
292 * Optimization: gather nearby vmas into one call down
294 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
295 && !is_vm_hugetlb_page(next
)) {
298 anon_vma_unlink(vma
);
299 unlink_file_vma(vma
);
301 free_pgd_range(tlb
, addr
, vma
->vm_end
,
302 floor
, next
? next
->vm_start
: ceiling
);
308 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
310 pgtable_t
new = pte_alloc_one(mm
, address
);
314 spin_lock(&mm
->page_table_lock
);
315 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
317 pmd_populate(mm
, pmd
, new);
320 spin_unlock(&mm
->page_table_lock
);
326 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
328 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
332 spin_lock(&init_mm
.page_table_lock
);
333 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
334 pmd_populate_kernel(&init_mm
, pmd
, new);
337 spin_unlock(&init_mm
.page_table_lock
);
339 pte_free_kernel(&init_mm
, new);
343 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
346 add_mm_counter(mm
, file_rss
, file_rss
);
348 add_mm_counter(mm
, anon_rss
, anon_rss
);
352 * This function is called to print an error when a bad pte
353 * is found. For example, we might have a PFN-mapped pte in
354 * a region that doesn't allow it.
356 * The calling function must still handle the error.
358 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
360 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
361 "vm_flags = %lx, vaddr = %lx\n",
362 (long long)pte_val(pte
),
363 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
364 vma
->vm_flags
, vaddr
);
368 static inline int is_cow_mapping(unsigned int flags
)
370 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
374 * This function gets the "struct page" associated with a pte.
376 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
377 * will have each page table entry just pointing to a raw page frame
378 * number, and as far as the VM layer is concerned, those do not have
379 * pages associated with them - even if the PFN might point to memory
380 * that otherwise is perfectly fine and has a "struct page".
382 * The way we recognize those mappings is through the rules set up
383 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
384 * and the vm_pgoff will point to the first PFN mapped: thus every
385 * page that is a raw mapping will always honor the rule
387 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
389 * and if that isn't true, the page has been COW'ed (in which case it
390 * _does_ have a "struct page" associated with it even if it is in a
393 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
395 unsigned long pfn
= pte_pfn(pte
);
397 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
398 unsigned long off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
399 if (pfn
== vma
->vm_pgoff
+ off
)
401 if (!is_cow_mapping(vma
->vm_flags
))
405 #ifdef CONFIG_DEBUG_VM
407 * Add some anal sanity checks for now. Eventually,
408 * we should just do "return pfn_to_page(pfn)", but
409 * in the meantime we check that we get a valid pfn,
410 * and that the resulting page looks ok.
412 if (unlikely(!pfn_valid(pfn
))) {
413 print_bad_pte(vma
, pte
, addr
);
419 * NOTE! We still have PageReserved() pages in the page
422 * The PAGE_ZERO() pages and various VDSO mappings can
423 * cause them to exist.
425 return pfn_to_page(pfn
);
429 * copy one vm_area from one task to the other. Assumes the page tables
430 * already present in the new task to be cleared in the whole range
431 * covered by this vma.
435 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
436 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
437 unsigned long addr
, int *rss
)
439 unsigned long vm_flags
= vma
->vm_flags
;
440 pte_t pte
= *src_pte
;
443 /* pte contains position in swap or file, so copy. */
444 if (unlikely(!pte_present(pte
))) {
445 if (!pte_file(pte
)) {
446 swp_entry_t entry
= pte_to_swp_entry(pte
);
448 swap_duplicate(entry
);
449 /* make sure dst_mm is on swapoff's mmlist. */
450 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
451 spin_lock(&mmlist_lock
);
452 if (list_empty(&dst_mm
->mmlist
))
453 list_add(&dst_mm
->mmlist
,
455 spin_unlock(&mmlist_lock
);
457 if (is_write_migration_entry(entry
) &&
458 is_cow_mapping(vm_flags
)) {
460 * COW mappings require pages in both parent
461 * and child to be set to read.
463 make_migration_entry_read(&entry
);
464 pte
= swp_entry_to_pte(entry
);
465 set_pte_at(src_mm
, addr
, src_pte
, pte
);
472 * If it's a COW mapping, write protect it both
473 * in the parent and the child
475 if (is_cow_mapping(vm_flags
)) {
476 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
477 pte
= pte_wrprotect(pte
);
481 * If it's a shared mapping, mark it clean in
484 if (vm_flags
& VM_SHARED
)
485 pte
= pte_mkclean(pte
);
486 pte
= pte_mkold(pte
);
488 page
= vm_normal_page(vma
, addr
, pte
);
491 page_dup_rmap(page
, vma
, addr
);
492 rss
[!!PageAnon(page
)]++;
496 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
499 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
500 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
501 unsigned long addr
, unsigned long end
)
503 pte_t
*src_pte
, *dst_pte
;
504 spinlock_t
*src_ptl
, *dst_ptl
;
510 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
513 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
514 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
515 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
516 arch_enter_lazy_mmu_mode();
520 * We are holding two locks at this point - either of them
521 * could generate latencies in another task on another CPU.
523 if (progress
>= 32) {
525 if (need_resched() ||
526 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
529 if (pte_none(*src_pte
)) {
533 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
535 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
537 arch_leave_lazy_mmu_mode();
538 spin_unlock(src_ptl
);
539 pte_unmap_nested(src_pte
- 1);
540 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
541 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
548 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
549 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
550 unsigned long addr
, unsigned long end
)
552 pmd_t
*src_pmd
, *dst_pmd
;
555 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
558 src_pmd
= pmd_offset(src_pud
, addr
);
560 next
= pmd_addr_end(addr
, end
);
561 if (pmd_none_or_clear_bad(src_pmd
))
563 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
566 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
570 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
571 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
572 unsigned long addr
, unsigned long end
)
574 pud_t
*src_pud
, *dst_pud
;
577 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
580 src_pud
= pud_offset(src_pgd
, addr
);
582 next
= pud_addr_end(addr
, end
);
583 if (pud_none_or_clear_bad(src_pud
))
585 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
588 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
592 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
593 struct vm_area_struct
*vma
)
595 pgd_t
*src_pgd
, *dst_pgd
;
597 unsigned long addr
= vma
->vm_start
;
598 unsigned long end
= vma
->vm_end
;
601 * Don't copy ptes where a page fault will fill them correctly.
602 * Fork becomes much lighter when there are big shared or private
603 * readonly mappings. The tradeoff is that copy_page_range is more
604 * efficient than faulting.
606 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
611 if (is_vm_hugetlb_page(vma
))
612 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
614 dst_pgd
= pgd_offset(dst_mm
, addr
);
615 src_pgd
= pgd_offset(src_mm
, addr
);
617 next
= pgd_addr_end(addr
, end
);
618 if (pgd_none_or_clear_bad(src_pgd
))
620 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
623 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
627 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
628 struct vm_area_struct
*vma
, pmd_t
*pmd
,
629 unsigned long addr
, unsigned long end
,
630 long *zap_work
, struct zap_details
*details
)
632 struct mm_struct
*mm
= tlb
->mm
;
638 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
639 arch_enter_lazy_mmu_mode();
642 if (pte_none(ptent
)) {
647 (*zap_work
) -= PAGE_SIZE
;
649 if (pte_present(ptent
)) {
652 page
= vm_normal_page(vma
, addr
, ptent
);
653 if (unlikely(details
) && page
) {
655 * unmap_shared_mapping_pages() wants to
656 * invalidate cache without truncating:
657 * unmap shared but keep private pages.
659 if (details
->check_mapping
&&
660 details
->check_mapping
!= page
->mapping
)
663 * Each page->index must be checked when
664 * invalidating or truncating nonlinear.
666 if (details
->nonlinear_vma
&&
667 (page
->index
< details
->first_index
||
668 page
->index
> details
->last_index
))
671 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
673 tlb_remove_tlb_entry(tlb
, pte
, addr
);
676 if (unlikely(details
) && details
->nonlinear_vma
677 && linear_page_index(details
->nonlinear_vma
,
678 addr
) != page
->index
)
679 set_pte_at(mm
, addr
, pte
,
680 pgoff_to_pte(page
->index
));
684 if (pte_dirty(ptent
))
685 set_page_dirty(page
);
686 if (pte_young(ptent
))
687 SetPageReferenced(page
);
690 page_remove_rmap(page
, vma
);
691 tlb_remove_page(tlb
, page
);
695 * If details->check_mapping, we leave swap entries;
696 * if details->nonlinear_vma, we leave file entries.
698 if (unlikely(details
))
700 if (!pte_file(ptent
))
701 free_swap_and_cache(pte_to_swp_entry(ptent
));
702 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
703 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
705 add_mm_rss(mm
, file_rss
, anon_rss
);
706 arch_leave_lazy_mmu_mode();
707 pte_unmap_unlock(pte
- 1, ptl
);
712 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
713 struct vm_area_struct
*vma
, pud_t
*pud
,
714 unsigned long addr
, unsigned long end
,
715 long *zap_work
, struct zap_details
*details
)
720 pmd
= pmd_offset(pud
, addr
);
722 next
= pmd_addr_end(addr
, end
);
723 if (pmd_none_or_clear_bad(pmd
)) {
727 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
729 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
734 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
735 struct vm_area_struct
*vma
, pgd_t
*pgd
,
736 unsigned long addr
, unsigned long end
,
737 long *zap_work
, struct zap_details
*details
)
742 pud
= pud_offset(pgd
, addr
);
744 next
= pud_addr_end(addr
, end
);
745 if (pud_none_or_clear_bad(pud
)) {
749 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
751 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
756 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
757 struct vm_area_struct
*vma
,
758 unsigned long addr
, unsigned long end
,
759 long *zap_work
, struct zap_details
*details
)
764 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
768 tlb_start_vma(tlb
, vma
);
769 pgd
= pgd_offset(vma
->vm_mm
, addr
);
771 next
= pgd_addr_end(addr
, end
);
772 if (pgd_none_or_clear_bad(pgd
)) {
776 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
778 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
779 tlb_end_vma(tlb
, vma
);
784 #ifdef CONFIG_PREEMPT
785 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
787 /* No preempt: go for improved straight-line efficiency */
788 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
792 * unmap_vmas - unmap a range of memory covered by a list of vma's
793 * @tlbp: address of the caller's struct mmu_gather
794 * @vma: the starting vma
795 * @start_addr: virtual address at which to start unmapping
796 * @end_addr: virtual address at which to end unmapping
797 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
798 * @details: details of nonlinear truncation or shared cache invalidation
800 * Returns the end address of the unmapping (restart addr if interrupted).
802 * Unmap all pages in the vma list.
804 * We aim to not hold locks for too long (for scheduling latency reasons).
805 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
806 * return the ending mmu_gather to the caller.
808 * Only addresses between `start' and `end' will be unmapped.
810 * The VMA list must be sorted in ascending virtual address order.
812 * unmap_vmas() assumes that the caller will flush the whole unmapped address
813 * range after unmap_vmas() returns. So the only responsibility here is to
814 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
815 * drops the lock and schedules.
817 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
818 struct vm_area_struct
*vma
, unsigned long start_addr
,
819 unsigned long end_addr
, unsigned long *nr_accounted
,
820 struct zap_details
*details
)
822 long zap_work
= ZAP_BLOCK_SIZE
;
823 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
824 int tlb_start_valid
= 0;
825 unsigned long start
= start_addr
;
826 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
827 int fullmm
= (*tlbp
)->fullmm
;
829 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
832 start
= max(vma
->vm_start
, start_addr
);
833 if (start
>= vma
->vm_end
)
835 end
= min(vma
->vm_end
, end_addr
);
836 if (end
<= vma
->vm_start
)
839 if (vma
->vm_flags
& VM_ACCOUNT
)
840 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
842 while (start
!= end
) {
843 if (!tlb_start_valid
) {
848 if (unlikely(is_vm_hugetlb_page(vma
))) {
849 unmap_hugepage_range(vma
, start
, end
);
850 zap_work
-= (end
- start
) /
851 (HPAGE_SIZE
/ PAGE_SIZE
);
854 start
= unmap_page_range(*tlbp
, vma
,
855 start
, end
, &zap_work
, details
);
858 BUG_ON(start
!= end
);
862 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
864 if (need_resched() ||
865 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
873 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
875 zap_work
= ZAP_BLOCK_SIZE
;
879 return start
; /* which is now the end (or restart) address */
883 * zap_page_range - remove user pages in a given range
884 * @vma: vm_area_struct holding the applicable pages
885 * @address: starting address of pages to zap
886 * @size: number of bytes to zap
887 * @details: details of nonlinear truncation or shared cache invalidation
889 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
890 unsigned long size
, struct zap_details
*details
)
892 struct mm_struct
*mm
= vma
->vm_mm
;
893 struct mmu_gather
*tlb
;
894 unsigned long end
= address
+ size
;
895 unsigned long nr_accounted
= 0;
898 tlb
= tlb_gather_mmu(mm
, 0);
899 update_hiwater_rss(mm
);
900 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
902 tlb_finish_mmu(tlb
, address
, end
);
907 * Do a quick page-table lookup for a single page.
909 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
918 struct mm_struct
*mm
= vma
->vm_mm
;
920 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
922 BUG_ON(flags
& FOLL_GET
);
927 pgd
= pgd_offset(mm
, address
);
928 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
931 pud
= pud_offset(pgd
, address
);
932 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
935 pmd
= pmd_offset(pud
, address
);
936 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
939 if (pmd_huge(*pmd
)) {
940 BUG_ON(flags
& FOLL_GET
);
941 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
945 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
950 if (!pte_present(pte
))
952 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
954 page
= vm_normal_page(vma
, address
, pte
);
958 if (flags
& FOLL_GET
)
960 if (flags
& FOLL_TOUCH
) {
961 if ((flags
& FOLL_WRITE
) &&
962 !pte_dirty(pte
) && !PageDirty(page
))
963 set_page_dirty(page
);
964 mark_page_accessed(page
);
967 pte_unmap_unlock(ptep
, ptl
);
973 * When core dumping an enormous anonymous area that nobody
974 * has touched so far, we don't want to allocate page tables.
976 if (flags
& FOLL_ANON
) {
978 if (flags
& FOLL_GET
)
980 BUG_ON(flags
& FOLL_WRITE
);
985 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
986 unsigned long start
, int len
, int write
, int force
,
987 struct page
**pages
, struct vm_area_struct
**vmas
)
990 unsigned int vm_flags
;
995 * Require read or write permissions.
996 * If 'force' is set, we only require the "MAY" flags.
998 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
999 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1003 struct vm_area_struct
*vma
;
1004 unsigned int foll_flags
;
1006 vma
= find_extend_vma(mm
, start
);
1007 if (!vma
&& in_gate_area(tsk
, start
)) {
1008 unsigned long pg
= start
& PAGE_MASK
;
1009 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1014 if (write
) /* user gate pages are read-only */
1015 return i
? : -EFAULT
;
1017 pgd
= pgd_offset_k(pg
);
1019 pgd
= pgd_offset_gate(mm
, pg
);
1020 BUG_ON(pgd_none(*pgd
));
1021 pud
= pud_offset(pgd
, pg
);
1022 BUG_ON(pud_none(*pud
));
1023 pmd
= pmd_offset(pud
, pg
);
1025 return i
? : -EFAULT
;
1026 pte
= pte_offset_map(pmd
, pg
);
1027 if (pte_none(*pte
)) {
1029 return i
? : -EFAULT
;
1032 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1046 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1047 || !(vm_flags
& vma
->vm_flags
))
1048 return i
? : -EFAULT
;
1050 if (is_vm_hugetlb_page(vma
)) {
1051 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1052 &start
, &len
, i
, write
);
1056 foll_flags
= FOLL_TOUCH
;
1058 foll_flags
|= FOLL_GET
;
1059 if (!write
&& !(vma
->vm_flags
& VM_LOCKED
) &&
1060 (!vma
->vm_ops
|| (!vma
->vm_ops
->nopage
&&
1061 !vma
->vm_ops
->fault
)))
1062 foll_flags
|= FOLL_ANON
;
1068 * If tsk is ooming, cut off its access to large memory
1069 * allocations. It has a pending SIGKILL, but it can't
1070 * be processed until returning to user space.
1072 if (unlikely(test_tsk_thread_flag(tsk
, TIF_MEMDIE
)))
1076 foll_flags
|= FOLL_WRITE
;
1079 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1081 ret
= handle_mm_fault(mm
, vma
, start
,
1082 foll_flags
& FOLL_WRITE
);
1083 if (ret
& VM_FAULT_ERROR
) {
1084 if (ret
& VM_FAULT_OOM
)
1085 return i
? i
: -ENOMEM
;
1086 else if (ret
& VM_FAULT_SIGBUS
)
1087 return i
? i
: -EFAULT
;
1090 if (ret
& VM_FAULT_MAJOR
)
1096 * The VM_FAULT_WRITE bit tells us that
1097 * do_wp_page has broken COW when necessary,
1098 * even if maybe_mkwrite decided not to set
1099 * pte_write. We can thus safely do subsequent
1100 * page lookups as if they were reads.
1102 if (ret
& VM_FAULT_WRITE
)
1103 foll_flags
&= ~FOLL_WRITE
;
1110 flush_anon_page(vma
, page
, start
);
1111 flush_dcache_page(page
);
1118 } while (len
&& start
< vma
->vm_end
);
1122 EXPORT_SYMBOL(get_user_pages
);
1124 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1127 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1128 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1130 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1132 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1138 * This is the old fallback for page remapping.
1140 * For historical reasons, it only allows reserved pages. Only
1141 * old drivers should use this, and they needed to mark their
1142 * pages reserved for the old functions anyway.
1144 static int insert_page(struct mm_struct
*mm
, unsigned long addr
, struct page
*page
, pgprot_t prot
)
1150 retval
= mem_cgroup_charge(page
, mm
, GFP_KERNEL
);
1158 flush_dcache_page(page
);
1159 pte
= get_locked_pte(mm
, addr
, &ptl
);
1163 if (!pte_none(*pte
))
1166 /* Ok, finally just insert the thing.. */
1168 inc_mm_counter(mm
, file_rss
);
1169 page_add_file_rmap(page
);
1170 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1173 pte_unmap_unlock(pte
, ptl
);
1176 pte_unmap_unlock(pte
, ptl
);
1178 mem_cgroup_uncharge_page(page
);
1184 * vm_insert_page - insert single page into user vma
1185 * @vma: user vma to map to
1186 * @addr: target user address of this page
1187 * @page: source kernel page
1189 * This allows drivers to insert individual pages they've allocated
1192 * The page has to be a nice clean _individual_ kernel allocation.
1193 * If you allocate a compound page, you need to have marked it as
1194 * such (__GFP_COMP), or manually just split the page up yourself
1195 * (see split_page()).
1197 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1198 * took an arbitrary page protection parameter. This doesn't allow
1199 * that. Your vma protection will have to be set up correctly, which
1200 * means that if you want a shared writable mapping, you'd better
1201 * ask for a shared writable mapping!
1203 * The page does not need to be reserved.
1205 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
, struct page
*page
)
1207 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1209 if (!page_count(page
))
1211 vma
->vm_flags
|= VM_INSERTPAGE
;
1212 return insert_page(vma
->vm_mm
, addr
, page
, vma
->vm_page_prot
);
1214 EXPORT_SYMBOL(vm_insert_page
);
1217 * vm_insert_pfn - insert single pfn into user vma
1218 * @vma: user vma to map to
1219 * @addr: target user address of this page
1220 * @pfn: source kernel pfn
1222 * Similar to vm_inert_page, this allows drivers to insert individual pages
1223 * they've allocated into a user vma. Same comments apply.
1225 * This function should only be called from a vm_ops->fault handler, and
1226 * in that case the handler should return NULL.
1228 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1231 struct mm_struct
*mm
= vma
->vm_mm
;
1236 BUG_ON(!(vma
->vm_flags
& VM_PFNMAP
));
1237 BUG_ON(is_cow_mapping(vma
->vm_flags
));
1240 pte
= get_locked_pte(mm
, addr
, &ptl
);
1244 if (!pte_none(*pte
))
1247 /* Ok, finally just insert the thing.. */
1248 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
1249 set_pte_at(mm
, addr
, pte
, entry
);
1250 update_mmu_cache(vma
, addr
, entry
);
1254 pte_unmap_unlock(pte
, ptl
);
1259 EXPORT_SYMBOL(vm_insert_pfn
);
1262 * maps a range of physical memory into the requested pages. the old
1263 * mappings are removed. any references to nonexistent pages results
1264 * in null mappings (currently treated as "copy-on-access")
1266 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1267 unsigned long addr
, unsigned long end
,
1268 unsigned long pfn
, pgprot_t prot
)
1273 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1276 arch_enter_lazy_mmu_mode();
1278 BUG_ON(!pte_none(*pte
));
1279 set_pte_at(mm
, addr
, pte
, pfn_pte(pfn
, prot
));
1281 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1282 arch_leave_lazy_mmu_mode();
1283 pte_unmap_unlock(pte
- 1, ptl
);
1287 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1288 unsigned long addr
, unsigned long end
,
1289 unsigned long pfn
, pgprot_t prot
)
1294 pfn
-= addr
>> PAGE_SHIFT
;
1295 pmd
= pmd_alloc(mm
, pud
, addr
);
1299 next
= pmd_addr_end(addr
, end
);
1300 if (remap_pte_range(mm
, pmd
, addr
, next
,
1301 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1303 } while (pmd
++, addr
= next
, addr
!= end
);
1307 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1308 unsigned long addr
, unsigned long end
,
1309 unsigned long pfn
, pgprot_t prot
)
1314 pfn
-= addr
>> PAGE_SHIFT
;
1315 pud
= pud_alloc(mm
, pgd
, addr
);
1319 next
= pud_addr_end(addr
, end
);
1320 if (remap_pmd_range(mm
, pud
, addr
, next
,
1321 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1323 } while (pud
++, addr
= next
, addr
!= end
);
1328 * remap_pfn_range - remap kernel memory to userspace
1329 * @vma: user vma to map to
1330 * @addr: target user address to start at
1331 * @pfn: physical address of kernel memory
1332 * @size: size of map area
1333 * @prot: page protection flags for this mapping
1335 * Note: this is only safe if the mm semaphore is held when called.
1337 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1338 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1342 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1343 struct mm_struct
*mm
= vma
->vm_mm
;
1347 * Physically remapped pages are special. Tell the
1348 * rest of the world about it:
1349 * VM_IO tells people not to look at these pages
1350 * (accesses can have side effects).
1351 * VM_RESERVED is specified all over the place, because
1352 * in 2.4 it kept swapout's vma scan off this vma; but
1353 * in 2.6 the LRU scan won't even find its pages, so this
1354 * flag means no more than count its pages in reserved_vm,
1355 * and omit it from core dump, even when VM_IO turned off.
1356 * VM_PFNMAP tells the core MM that the base pages are just
1357 * raw PFN mappings, and do not have a "struct page" associated
1360 * There's a horrible special case to handle copy-on-write
1361 * behaviour that some programs depend on. We mark the "original"
1362 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1364 if (is_cow_mapping(vma
->vm_flags
)) {
1365 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1367 vma
->vm_pgoff
= pfn
;
1370 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1372 BUG_ON(addr
>= end
);
1373 pfn
-= addr
>> PAGE_SHIFT
;
1374 pgd
= pgd_offset(mm
, addr
);
1375 flush_cache_range(vma
, addr
, end
);
1377 next
= pgd_addr_end(addr
, end
);
1378 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1379 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1382 } while (pgd
++, addr
= next
, addr
!= end
);
1385 EXPORT_SYMBOL(remap_pfn_range
);
1387 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1388 unsigned long addr
, unsigned long end
,
1389 pte_fn_t fn
, void *data
)
1394 spinlock_t
*uninitialized_var(ptl
);
1396 pte
= (mm
== &init_mm
) ?
1397 pte_alloc_kernel(pmd
, addr
) :
1398 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1402 BUG_ON(pmd_huge(*pmd
));
1404 token
= pmd_pgtable(*pmd
);
1407 err
= fn(pte
, token
, addr
, data
);
1410 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1413 pte_unmap_unlock(pte
-1, ptl
);
1417 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1418 unsigned long addr
, unsigned long end
,
1419 pte_fn_t fn
, void *data
)
1425 pmd
= pmd_alloc(mm
, pud
, addr
);
1429 next
= pmd_addr_end(addr
, end
);
1430 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1433 } while (pmd
++, addr
= next
, addr
!= end
);
1437 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1438 unsigned long addr
, unsigned long end
,
1439 pte_fn_t fn
, void *data
)
1445 pud
= pud_alloc(mm
, pgd
, addr
);
1449 next
= pud_addr_end(addr
, end
);
1450 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1453 } while (pud
++, addr
= next
, addr
!= end
);
1458 * Scan a region of virtual memory, filling in page tables as necessary
1459 * and calling a provided function on each leaf page table.
1461 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1462 unsigned long size
, pte_fn_t fn
, void *data
)
1466 unsigned long end
= addr
+ size
;
1469 BUG_ON(addr
>= end
);
1470 pgd
= pgd_offset(mm
, addr
);
1472 next
= pgd_addr_end(addr
, end
);
1473 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1476 } while (pgd
++, addr
= next
, addr
!= end
);
1479 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1482 * handle_pte_fault chooses page fault handler according to an entry
1483 * which was read non-atomically. Before making any commitment, on
1484 * those architectures or configurations (e.g. i386 with PAE) which
1485 * might give a mix of unmatched parts, do_swap_page and do_file_page
1486 * must check under lock before unmapping the pte and proceeding
1487 * (but do_wp_page is only called after already making such a check;
1488 * and do_anonymous_page and do_no_page can safely check later on).
1490 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1491 pte_t
*page_table
, pte_t orig_pte
)
1494 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1495 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1496 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1498 same
= pte_same(*page_table
, orig_pte
);
1502 pte_unmap(page_table
);
1507 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1508 * servicing faults for write access. In the normal case, do always want
1509 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1510 * that do not have writing enabled, when used by access_process_vm.
1512 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1514 if (likely(vma
->vm_flags
& VM_WRITE
))
1515 pte
= pte_mkwrite(pte
);
1519 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1522 * If the source page was a PFN mapping, we don't have
1523 * a "struct page" for it. We do a best-effort copy by
1524 * just copying from the original user address. If that
1525 * fails, we just zero-fill it. Live with it.
1527 if (unlikely(!src
)) {
1528 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1529 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1532 * This really shouldn't fail, because the page is there
1533 * in the page tables. But it might just be unreadable,
1534 * in which case we just give up and fill the result with
1537 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1538 memset(kaddr
, 0, PAGE_SIZE
);
1539 kunmap_atomic(kaddr
, KM_USER0
);
1540 flush_dcache_page(dst
);
1542 copy_user_highpage(dst
, src
, va
, vma
);
1546 * This routine handles present pages, when users try to write
1547 * to a shared page. It is done by copying the page to a new address
1548 * and decrementing the shared-page counter for the old page.
1550 * Note that this routine assumes that the protection checks have been
1551 * done by the caller (the low-level page fault routine in most cases).
1552 * Thus we can safely just mark it writable once we've done any necessary
1555 * We also mark the page dirty at this point even though the page will
1556 * change only once the write actually happens. This avoids a few races,
1557 * and potentially makes it more efficient.
1559 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1560 * but allow concurrent faults), with pte both mapped and locked.
1561 * We return with mmap_sem still held, but pte unmapped and unlocked.
1563 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1564 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1565 spinlock_t
*ptl
, pte_t orig_pte
)
1567 struct page
*old_page
, *new_page
;
1569 int reuse
= 0, ret
= 0;
1570 int page_mkwrite
= 0;
1571 struct page
*dirty_page
= NULL
;
1573 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1578 * Take out anonymous pages first, anonymous shared vmas are
1579 * not dirty accountable.
1581 if (PageAnon(old_page
)) {
1582 if (!TestSetPageLocked(old_page
)) {
1583 reuse
= can_share_swap_page(old_page
);
1584 unlock_page(old_page
);
1586 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1587 (VM_WRITE
|VM_SHARED
))) {
1589 * Only catch write-faults on shared writable pages,
1590 * read-only shared pages can get COWed by
1591 * get_user_pages(.write=1, .force=1).
1593 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1595 * Notify the address space that the page is about to
1596 * become writable so that it can prohibit this or wait
1597 * for the page to get into an appropriate state.
1599 * We do this without the lock held, so that it can
1600 * sleep if it needs to.
1602 page_cache_get(old_page
);
1603 pte_unmap_unlock(page_table
, ptl
);
1605 if (vma
->vm_ops
->page_mkwrite(vma
, old_page
) < 0)
1606 goto unwritable_page
;
1609 * Since we dropped the lock we need to revalidate
1610 * the PTE as someone else may have changed it. If
1611 * they did, we just return, as we can count on the
1612 * MMU to tell us if they didn't also make it writable.
1614 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1616 page_cache_release(old_page
);
1617 if (!pte_same(*page_table
, orig_pte
))
1622 dirty_page
= old_page
;
1623 get_page(dirty_page
);
1628 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1629 entry
= pte_mkyoung(orig_pte
);
1630 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1631 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
1632 update_mmu_cache(vma
, address
, entry
);
1633 ret
|= VM_FAULT_WRITE
;
1638 * Ok, we need to copy. Oh, well..
1640 page_cache_get(old_page
);
1642 pte_unmap_unlock(page_table
, ptl
);
1644 if (unlikely(anon_vma_prepare(vma
)))
1646 VM_BUG_ON(old_page
== ZERO_PAGE(0));
1647 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1650 cow_user_page(new_page
, old_page
, address
, vma
);
1651 __SetPageUptodate(new_page
);
1653 if (mem_cgroup_charge(new_page
, mm
, GFP_KERNEL
))
1657 * Re-check the pte - we dropped the lock
1659 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1660 if (likely(pte_same(*page_table
, orig_pte
))) {
1662 page_remove_rmap(old_page
, vma
);
1663 if (!PageAnon(old_page
)) {
1664 dec_mm_counter(mm
, file_rss
);
1665 inc_mm_counter(mm
, anon_rss
);
1668 inc_mm_counter(mm
, anon_rss
);
1669 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1670 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1671 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1673 * Clear the pte entry and flush it first, before updating the
1674 * pte with the new entry. This will avoid a race condition
1675 * seen in the presence of one thread doing SMC and another
1678 ptep_clear_flush(vma
, address
, page_table
);
1679 set_pte_at(mm
, address
, page_table
, entry
);
1680 update_mmu_cache(vma
, address
, entry
);
1681 lru_cache_add_active(new_page
);
1682 page_add_new_anon_rmap(new_page
, vma
, address
);
1684 /* Free the old page.. */
1685 new_page
= old_page
;
1686 ret
|= VM_FAULT_WRITE
;
1688 mem_cgroup_uncharge_page(new_page
);
1691 page_cache_release(new_page
);
1693 page_cache_release(old_page
);
1695 pte_unmap_unlock(page_table
, ptl
);
1698 file_update_time(vma
->vm_file
);
1701 * Yes, Virginia, this is actually required to prevent a race
1702 * with clear_page_dirty_for_io() from clearing the page dirty
1703 * bit after it clear all dirty ptes, but before a racing
1704 * do_wp_page installs a dirty pte.
1706 * do_no_page is protected similarly.
1708 wait_on_page_locked(dirty_page
);
1709 set_page_dirty_balance(dirty_page
, page_mkwrite
);
1710 put_page(dirty_page
);
1714 <<<<<<< HEAD
:mm
/memory
.c
1715 __free_page(new_page
);
1717 page_cache_release(new_page
);
1718 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/memory
.c
1721 page_cache_release(old_page
);
1722 return VM_FAULT_OOM
;
1725 page_cache_release(old_page
);
1726 return VM_FAULT_SIGBUS
;
1730 * Helper functions for unmap_mapping_range().
1732 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1734 * We have to restart searching the prio_tree whenever we drop the lock,
1735 * since the iterator is only valid while the lock is held, and anyway
1736 * a later vma might be split and reinserted earlier while lock dropped.
1738 * The list of nonlinear vmas could be handled more efficiently, using
1739 * a placeholder, but handle it in the same way until a need is shown.
1740 * It is important to search the prio_tree before nonlinear list: a vma
1741 * may become nonlinear and be shifted from prio_tree to nonlinear list
1742 * while the lock is dropped; but never shifted from list to prio_tree.
1744 * In order to make forward progress despite restarting the search,
1745 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1746 * quickly skip it next time around. Since the prio_tree search only
1747 * shows us those vmas affected by unmapping the range in question, we
1748 * can't efficiently keep all vmas in step with mapping->truncate_count:
1749 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1750 * mapping->truncate_count and vma->vm_truncate_count are protected by
1753 * In order to make forward progress despite repeatedly restarting some
1754 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1755 * and restart from that address when we reach that vma again. It might
1756 * have been split or merged, shrunk or extended, but never shifted: so
1757 * restart_addr remains valid so long as it remains in the vma's range.
1758 * unmap_mapping_range forces truncate_count to leap over page-aligned
1759 * values so we can save vma's restart_addr in its truncate_count field.
1761 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1763 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1765 struct vm_area_struct
*vma
;
1766 struct prio_tree_iter iter
;
1768 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1769 vma
->vm_truncate_count
= 0;
1770 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1771 vma
->vm_truncate_count
= 0;
1774 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1775 unsigned long start_addr
, unsigned long end_addr
,
1776 struct zap_details
*details
)
1778 unsigned long restart_addr
;
1782 * files that support invalidating or truncating portions of the
1783 * file from under mmaped areas must have their ->fault function
1784 * return a locked page (and set VM_FAULT_LOCKED in the return).
1785 * This provides synchronisation against concurrent unmapping here.
1789 restart_addr
= vma
->vm_truncate_count
;
1790 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1791 start_addr
= restart_addr
;
1792 if (start_addr
>= end_addr
) {
1793 /* Top of vma has been split off since last time */
1794 vma
->vm_truncate_count
= details
->truncate_count
;
1799 restart_addr
= zap_page_range(vma
, start_addr
,
1800 end_addr
- start_addr
, details
);
1801 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
1803 if (restart_addr
>= end_addr
) {
1804 /* We have now completed this vma: mark it so */
1805 vma
->vm_truncate_count
= details
->truncate_count
;
1809 /* Note restart_addr in vma's truncate_count field */
1810 vma
->vm_truncate_count
= restart_addr
;
1815 spin_unlock(details
->i_mmap_lock
);
1817 spin_lock(details
->i_mmap_lock
);
1821 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1822 struct zap_details
*details
)
1824 struct vm_area_struct
*vma
;
1825 struct prio_tree_iter iter
;
1826 pgoff_t vba
, vea
, zba
, zea
;
1829 vma_prio_tree_foreach(vma
, &iter
, root
,
1830 details
->first_index
, details
->last_index
) {
1831 /* Skip quickly over those we have already dealt with */
1832 if (vma
->vm_truncate_count
== details
->truncate_count
)
1835 vba
= vma
->vm_pgoff
;
1836 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1837 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1838 zba
= details
->first_index
;
1841 zea
= details
->last_index
;
1845 if (unmap_mapping_range_vma(vma
,
1846 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1847 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
1853 static inline void unmap_mapping_range_list(struct list_head
*head
,
1854 struct zap_details
*details
)
1856 struct vm_area_struct
*vma
;
1859 * In nonlinear VMAs there is no correspondence between virtual address
1860 * offset and file offset. So we must perform an exhaustive search
1861 * across *all* the pages in each nonlinear VMA, not just the pages
1862 * whose virtual address lies outside the file truncation point.
1865 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
1866 /* Skip quickly over those we have already dealt with */
1867 if (vma
->vm_truncate_count
== details
->truncate_count
)
1869 details
->nonlinear_vma
= vma
;
1870 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
1871 vma
->vm_end
, details
) < 0)
1877 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1878 * @mapping: the address space containing mmaps to be unmapped.
1879 * @holebegin: byte in first page to unmap, relative to the start of
1880 * the underlying file. This will be rounded down to a PAGE_SIZE
1881 * boundary. Note that this is different from vmtruncate(), which
1882 * must keep the partial page. In contrast, we must get rid of
1884 * @holelen: size of prospective hole in bytes. This will be rounded
1885 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1887 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1888 * but 0 when invalidating pagecache, don't throw away private data.
1890 void unmap_mapping_range(struct address_space
*mapping
,
1891 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
1893 struct zap_details details
;
1894 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
1895 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1897 /* Check for overflow. */
1898 if (sizeof(holelen
) > sizeof(hlen
)) {
1900 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1901 if (holeend
& ~(long long)ULONG_MAX
)
1902 hlen
= ULONG_MAX
- hba
+ 1;
1905 details
.check_mapping
= even_cows
? NULL
: mapping
;
1906 details
.nonlinear_vma
= NULL
;
1907 details
.first_index
= hba
;
1908 details
.last_index
= hba
+ hlen
- 1;
1909 if (details
.last_index
< details
.first_index
)
1910 details
.last_index
= ULONG_MAX
;
1911 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
1913 spin_lock(&mapping
->i_mmap_lock
);
1915 /* Protect against endless unmapping loops */
1916 mapping
->truncate_count
++;
1917 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
1918 if (mapping
->truncate_count
== 0)
1919 reset_vma_truncate_counts(mapping
);
1920 mapping
->truncate_count
++;
1922 details
.truncate_count
= mapping
->truncate_count
;
1924 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
1925 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
1926 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
1927 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
1928 spin_unlock(&mapping
->i_mmap_lock
);
1930 EXPORT_SYMBOL(unmap_mapping_range
);
1933 * vmtruncate - unmap mappings "freed" by truncate() syscall
1934 * @inode: inode of the file used
1935 * @offset: file offset to start truncating
1937 * NOTE! We have to be ready to update the memory sharing
1938 * between the file and the memory map for a potential last
1939 * incomplete page. Ugly, but necessary.
1941 int vmtruncate(struct inode
* inode
, loff_t offset
)
1943 if (inode
->i_size
< offset
) {
1944 unsigned long limit
;
1946 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1947 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
1949 if (offset
> inode
->i_sb
->s_maxbytes
)
1951 i_size_write(inode
, offset
);
1953 struct address_space
*mapping
= inode
->i_mapping
;
1956 * truncation of in-use swapfiles is disallowed - it would
1957 * cause subsequent swapout to scribble on the now-freed
1960 if (IS_SWAPFILE(inode
))
1962 i_size_write(inode
, offset
);
1965 * unmap_mapping_range is called twice, first simply for
1966 * efficiency so that truncate_inode_pages does fewer
1967 * single-page unmaps. However after this first call, and
1968 * before truncate_inode_pages finishes, it is possible for
1969 * private pages to be COWed, which remain after
1970 * truncate_inode_pages finishes, hence the second
1971 * unmap_mapping_range call must be made for correctness.
1973 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
1974 truncate_inode_pages(mapping
, offset
);
1975 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
1978 if (inode
->i_op
&& inode
->i_op
->truncate
)
1979 inode
->i_op
->truncate(inode
);
1983 send_sig(SIGXFSZ
, current
, 0);
1987 EXPORT_SYMBOL(vmtruncate
);
1989 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
1991 struct address_space
*mapping
= inode
->i_mapping
;
1994 * If the underlying filesystem is not going to provide
1995 * a way to truncate a range of blocks (punch a hole) -
1996 * we should return failure right now.
1998 if (!inode
->i_op
|| !inode
->i_op
->truncate_range
)
2001 mutex_lock(&inode
->i_mutex
);
2002 down_write(&inode
->i_alloc_sem
);
2003 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2004 truncate_inode_pages_range(mapping
, offset
, end
);
2005 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2006 inode
->i_op
->truncate_range(inode
, offset
, end
);
2007 up_write(&inode
->i_alloc_sem
);
2008 mutex_unlock(&inode
->i_mutex
);
2014 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2015 * but allow concurrent faults), and pte mapped but not yet locked.
2016 * We return with mmap_sem still held, but pte unmapped and unlocked.
2018 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2019 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2020 int write_access
, pte_t orig_pte
)
2028 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2031 entry
= pte_to_swp_entry(orig_pte
);
2032 if (is_migration_entry(entry
)) {
2033 migration_entry_wait(mm
, pmd
, address
);
2036 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2037 page
= lookup_swap_cache(entry
);
2039 grab_swap_token(); /* Contend for token _before_ read-in */
2040 page
= swapin_readahead(entry
,
2041 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2044 * Back out if somebody else faulted in this pte
2045 * while we released the pte lock.
2047 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2048 if (likely(pte_same(*page_table
, orig_pte
)))
2050 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2054 /* Had to read the page from swap area: Major fault */
2055 ret
= VM_FAULT_MAJOR
;
2056 count_vm_event(PGMAJFAULT
);
2059 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2060 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2065 mark_page_accessed(page
);
2067 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2070 * Back out if somebody else already faulted in this pte.
2072 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2073 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2076 if (unlikely(!PageUptodate(page
))) {
2077 ret
= VM_FAULT_SIGBUS
;
2081 /* The page isn't present yet, go ahead with the fault. */
2083 inc_mm_counter(mm
, anon_rss
);
2084 pte
= mk_pte(page
, vma
->vm_page_prot
);
2085 if (write_access
&& can_share_swap_page(page
)) {
2086 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2090 flush_icache_page(vma
, page
);
2091 set_pte_at(mm
, address
, page_table
, pte
);
2092 page_add_anon_rmap(page
, vma
, address
);
2096 remove_exclusive_swap_page(page
);
2100 <<<<<<< HEAD
:mm
/memory
.c
2101 /* XXX: We could OR the do_wp_page code with this one? */
2102 if (do_wp_page(mm
, vma
, address
,
2103 page_table
, pmd
, ptl
, pte
) & VM_FAULT_OOM
) {
2104 mem_cgroup_uncharge_page(page
);
2108 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2109 if (ret
& VM_FAULT_ERROR
)
2110 ret
&= VM_FAULT_ERROR
;
2111 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/memory
.c
2115 /* No need to invalidate - it was non-present before */
2116 update_mmu_cache(vma
, address
, pte
);
2118 pte_unmap_unlock(page_table
, ptl
);
2122 mem_cgroup_uncharge_page(page
);
2123 pte_unmap_unlock(page_table
, ptl
);
2125 page_cache_release(page
);
2130 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2131 * but allow concurrent faults), and pte mapped but not yet locked.
2132 * We return with mmap_sem still held, but pte unmapped and unlocked.
2134 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2135 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2142 /* Allocate our own private page. */
2143 pte_unmap(page_table
);
2145 if (unlikely(anon_vma_prepare(vma
)))
2147 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2150 __SetPageUptodate(page
);
2152 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
))
2155 entry
= mk_pte(page
, vma
->vm_page_prot
);
2156 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2158 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2159 if (!pte_none(*page_table
))
2161 inc_mm_counter(mm
, anon_rss
);
2162 lru_cache_add_active(page
);
2163 page_add_new_anon_rmap(page
, vma
, address
);
2164 set_pte_at(mm
, address
, page_table
, entry
);
2166 /* No need to invalidate - it was non-present before */
2167 update_mmu_cache(vma
, address
, entry
);
2169 pte_unmap_unlock(page_table
, ptl
);
2172 mem_cgroup_uncharge_page(page
);
2173 page_cache_release(page
);
2176 <<<<<<< HEAD
:mm
/memory
.c
2179 page_cache_release(page
);
2180 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/memory
.c
2182 return VM_FAULT_OOM
;
2186 * __do_fault() tries to create a new page mapping. It aggressively
2187 * tries to share with existing pages, but makes a separate copy if
2188 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2189 * the next page fault.
2191 * As this is called only for pages that do not currently exist, we
2192 * do not need to flush old virtual caches or the TLB.
2194 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2195 * but allow concurrent faults), and pte neither mapped nor locked.
2196 * We return with mmap_sem still held, but pte unmapped and unlocked.
2198 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2199 unsigned long address
, pmd_t
*pmd
,
2200 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2207 struct page
*dirty_page
= NULL
;
2208 struct vm_fault vmf
;
2210 int page_mkwrite
= 0;
2212 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2217 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2219 if (likely(vma
->vm_ops
->fault
)) {
2220 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2221 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2224 /* Legacy ->nopage path */
2226 vmf
.page
= vma
->vm_ops
->nopage(vma
, address
& PAGE_MASK
, &ret
);
2227 /* no page was available -- either SIGBUS or OOM */
2228 if (unlikely(vmf
.page
== NOPAGE_SIGBUS
))
2229 return VM_FAULT_SIGBUS
;
2230 else if (unlikely(vmf
.page
== NOPAGE_OOM
))
2231 return VM_FAULT_OOM
;
2235 * For consistency in subsequent calls, make the faulted page always
2238 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2239 lock_page(vmf
.page
);
2241 VM_BUG_ON(!PageLocked(vmf
.page
));
2244 * Should we do an early C-O-W break?
2247 if (flags
& FAULT_FLAG_WRITE
) {
2248 if (!(vma
->vm_flags
& VM_SHARED
)) {
2250 if (unlikely(anon_vma_prepare(vma
))) {
2254 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2260 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2261 __SetPageUptodate(page
);
2264 * If the page will be shareable, see if the backing
2265 * address space wants to know that the page is about
2266 * to become writable
2268 if (vma
->vm_ops
->page_mkwrite
) {
2270 if (vma
->vm_ops
->page_mkwrite(vma
, page
) < 0) {
2271 ret
= VM_FAULT_SIGBUS
;
2272 anon
= 1; /* no anon but release vmf.page */
2277 * XXX: this is not quite right (racy vs
2278 * invalidate) to unlock and relock the page
2279 * like this, however a better fix requires
2280 * reworking page_mkwrite locking API, which
2281 * is better done later.
2283 if (!page
->mapping
) {
2285 anon
= 1; /* no anon but release vmf.page */
2294 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2299 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2302 * This silly early PAGE_DIRTY setting removes a race
2303 * due to the bad i386 page protection. But it's valid
2304 * for other architectures too.
2306 * Note that if write_access is true, we either now have
2307 * an exclusive copy of the page, or this is a shared mapping,
2308 * so we can make it writable and dirty to avoid having to
2309 * handle that later.
2311 /* Only go through if we didn't race with anybody else... */
2312 if (likely(pte_same(*page_table
, orig_pte
))) {
2313 flush_icache_page(vma
, page
);
2314 entry
= mk_pte(page
, vma
->vm_page_prot
);
2315 if (flags
& FAULT_FLAG_WRITE
)
2316 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2317 set_pte_at(mm
, address
, page_table
, entry
);
2319 inc_mm_counter(mm
, anon_rss
);
2320 lru_cache_add_active(page
);
2321 page_add_new_anon_rmap(page
, vma
, address
);
2323 inc_mm_counter(mm
, file_rss
);
2324 page_add_file_rmap(page
);
2325 if (flags
& FAULT_FLAG_WRITE
) {
2327 get_page(dirty_page
);
2331 /* no need to invalidate: a not-present page won't be cached */
2332 update_mmu_cache(vma
, address
, entry
);
2334 mem_cgroup_uncharge_page(page
);
2336 page_cache_release(page
);
2338 anon
= 1; /* no anon but release faulted_page */
2341 pte_unmap_unlock(page_table
, ptl
);
2344 unlock_page(vmf
.page
);
2347 page_cache_release(vmf
.page
);
2348 else if (dirty_page
) {
2350 file_update_time(vma
->vm_file
);
2352 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2353 put_page(dirty_page
);
2359 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2360 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2361 int write_access
, pte_t orig_pte
)
2363 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2364 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2365 unsigned int flags
= (write_access
? FAULT_FLAG_WRITE
: 0);
2367 pte_unmap(page_table
);
2368 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2373 * do_no_pfn() tries to create a new page mapping for a page without
2374 * a struct_page backing it
2376 * As this is called only for pages that do not currently exist, we
2377 * do not need to flush old virtual caches or the TLB.
2379 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2380 * but allow concurrent faults), and pte mapped but not yet locked.
2381 * We return with mmap_sem still held, but pte unmapped and unlocked.
2383 * It is expected that the ->nopfn handler always returns the same pfn
2384 * for a given virtual mapping.
2386 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2388 static noinline
int do_no_pfn(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2389 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2396 pte_unmap(page_table
);
2397 BUG_ON(!(vma
->vm_flags
& VM_PFNMAP
));
2398 BUG_ON(is_cow_mapping(vma
->vm_flags
));
2400 pfn
= vma
->vm_ops
->nopfn(vma
, address
& PAGE_MASK
);
2401 if (unlikely(pfn
== NOPFN_OOM
))
2402 return VM_FAULT_OOM
;
2403 else if (unlikely(pfn
== NOPFN_SIGBUS
))
2404 return VM_FAULT_SIGBUS
;
2405 else if (unlikely(pfn
== NOPFN_REFAULT
))
2408 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2410 /* Only go through if we didn't race with anybody else... */
2411 if (pte_none(*page_table
)) {
2412 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
2414 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2415 set_pte_at(mm
, address
, page_table
, entry
);
2417 pte_unmap_unlock(page_table
, ptl
);
2422 * Fault of a previously existing named mapping. Repopulate the pte
2423 * from the encoded file_pte if possible. This enables swappable
2426 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2427 * but allow concurrent faults), and pte mapped but not yet locked.
2428 * We return with mmap_sem still held, but pte unmapped and unlocked.
2430 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2431 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2432 int write_access
, pte_t orig_pte
)
2434 unsigned int flags
= FAULT_FLAG_NONLINEAR
|
2435 (write_access
? FAULT_FLAG_WRITE
: 0);
2438 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2441 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
) ||
2442 !(vma
->vm_flags
& VM_CAN_NONLINEAR
))) {
2444 * Page table corrupted: show pte and kill process.
2446 print_bad_pte(vma
, orig_pte
, address
);
2447 return VM_FAULT_OOM
;
2450 pgoff
= pte_to_pgoff(orig_pte
);
2451 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2455 * These routines also need to handle stuff like marking pages dirty
2456 * and/or accessed for architectures that don't do it in hardware (most
2457 * RISC architectures). The early dirtying is also good on the i386.
2459 * There is also a hook called "update_mmu_cache()" that architectures
2460 * with external mmu caches can use to update those (ie the Sparc or
2461 * PowerPC hashed page tables that act as extended TLBs).
2463 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2464 * but allow concurrent faults), and pte mapped but not yet locked.
2465 * We return with mmap_sem still held, but pte unmapped and unlocked.
2467 static inline int handle_pte_fault(struct mm_struct
*mm
,
2468 struct vm_area_struct
*vma
, unsigned long address
,
2469 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2475 if (!pte_present(entry
)) {
2476 if (pte_none(entry
)) {
2478 if (vma
->vm_ops
->fault
|| vma
->vm_ops
->nopage
)
2479 return do_linear_fault(mm
, vma
, address
,
2480 pte
, pmd
, write_access
, entry
);
2481 if (unlikely(vma
->vm_ops
->nopfn
))
2482 return do_no_pfn(mm
, vma
, address
, pte
,
2485 return do_anonymous_page(mm
, vma
, address
,
2486 pte
, pmd
, write_access
);
2488 if (pte_file(entry
))
2489 return do_nonlinear_fault(mm
, vma
, address
,
2490 pte
, pmd
, write_access
, entry
);
2491 return do_swap_page(mm
, vma
, address
,
2492 pte
, pmd
, write_access
, entry
);
2495 ptl
= pte_lockptr(mm
, pmd
);
2497 if (unlikely(!pte_same(*pte
, entry
)))
2500 if (!pte_write(entry
))
2501 return do_wp_page(mm
, vma
, address
,
2502 pte
, pmd
, ptl
, entry
);
2503 entry
= pte_mkdirty(entry
);
2505 entry
= pte_mkyoung(entry
);
2506 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2507 update_mmu_cache(vma
, address
, entry
);
2510 * This is needed only for protection faults but the arch code
2511 * is not yet telling us if this is a protection fault or not.
2512 * This still avoids useless tlb flushes for .text page faults
2516 flush_tlb_page(vma
, address
);
2519 pte_unmap_unlock(pte
, ptl
);
2524 * By the time we get here, we already hold the mm semaphore
2526 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2527 unsigned long address
, int write_access
)
2534 __set_current_state(TASK_RUNNING
);
2536 count_vm_event(PGFAULT
);
2538 if (unlikely(is_vm_hugetlb_page(vma
)))
2539 return hugetlb_fault(mm
, vma
, address
, write_access
);
2541 pgd
= pgd_offset(mm
, address
);
2542 pud
= pud_alloc(mm
, pgd
, address
);
2544 return VM_FAULT_OOM
;
2545 pmd
= pmd_alloc(mm
, pud
, address
);
2547 return VM_FAULT_OOM
;
2548 pte
= pte_alloc_map(mm
, pmd
, address
);
2550 return VM_FAULT_OOM
;
2552 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2555 #ifndef __PAGETABLE_PUD_FOLDED
2557 * Allocate page upper directory.
2558 * We've already handled the fast-path in-line.
2560 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2562 pud_t
*new = pud_alloc_one(mm
, address
);
2566 spin_lock(&mm
->page_table_lock
);
2567 if (pgd_present(*pgd
)) /* Another has populated it */
2570 pgd_populate(mm
, pgd
, new);
2571 spin_unlock(&mm
->page_table_lock
);
2574 #endif /* __PAGETABLE_PUD_FOLDED */
2576 #ifndef __PAGETABLE_PMD_FOLDED
2578 * Allocate page middle directory.
2579 * We've already handled the fast-path in-line.
2581 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2583 pmd_t
*new = pmd_alloc_one(mm
, address
);
2587 spin_lock(&mm
->page_table_lock
);
2588 #ifndef __ARCH_HAS_4LEVEL_HACK
2589 if (pud_present(*pud
)) /* Another has populated it */
2592 pud_populate(mm
, pud
, new);
2594 if (pgd_present(*pud
)) /* Another has populated it */
2597 pgd_populate(mm
, pud
, new);
2598 #endif /* __ARCH_HAS_4LEVEL_HACK */
2599 spin_unlock(&mm
->page_table_lock
);
2602 #endif /* __PAGETABLE_PMD_FOLDED */
2604 int make_pages_present(unsigned long addr
, unsigned long end
)
2606 int ret
, len
, write
;
2607 struct vm_area_struct
* vma
;
2609 vma
= find_vma(current
->mm
, addr
);
2612 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2613 BUG_ON(addr
>= end
);
2614 BUG_ON(end
> vma
->vm_end
);
2615 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
2616 ret
= get_user_pages(current
, current
->mm
, addr
,
2617 len
, write
, 0, NULL
, NULL
);
2620 return ret
== len
? 0 : -1;
2623 #if !defined(__HAVE_ARCH_GATE_AREA)
2625 #if defined(AT_SYSINFO_EHDR)
2626 static struct vm_area_struct gate_vma
;
2628 static int __init
gate_vma_init(void)
2630 gate_vma
.vm_mm
= NULL
;
2631 gate_vma
.vm_start
= FIXADDR_USER_START
;
2632 gate_vma
.vm_end
= FIXADDR_USER_END
;
2633 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
2634 gate_vma
.vm_page_prot
= __P101
;
2636 * Make sure the vDSO gets into every core dump.
2637 * Dumping its contents makes post-mortem fully interpretable later
2638 * without matching up the same kernel and hardware config to see
2639 * what PC values meant.
2641 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
2644 __initcall(gate_vma_init
);
2647 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2649 #ifdef AT_SYSINFO_EHDR
2656 int in_gate_area_no_task(unsigned long addr
)
2658 #ifdef AT_SYSINFO_EHDR
2659 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2665 #endif /* __HAVE_ARCH_GATE_AREA */
2668 * Access another process' address space.
2669 * Source/target buffer must be kernel space,
2670 * Do not walk the page table directly, use get_user_pages
2672 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2674 struct mm_struct
*mm
;
2675 struct vm_area_struct
*vma
;
2677 void *old_buf
= buf
;
2679 mm
= get_task_mm(tsk
);
2683 down_read(&mm
->mmap_sem
);
2684 /* ignore errors, just check how much was successfully transferred */
2686 int bytes
, ret
, offset
;
2689 ret
= get_user_pages(tsk
, mm
, addr
, 1,
2690 write
, 1, &page
, &vma
);
2695 offset
= addr
& (PAGE_SIZE
-1);
2696 if (bytes
> PAGE_SIZE
-offset
)
2697 bytes
= PAGE_SIZE
-offset
;
2701 copy_to_user_page(vma
, page
, addr
,
2702 maddr
+ offset
, buf
, bytes
);
2703 set_page_dirty_lock(page
);
2705 copy_from_user_page(vma
, page
, addr
,
2706 buf
, maddr
+ offset
, bytes
);
2709 page_cache_release(page
);
2714 up_read(&mm
->mmap_sem
);
2717 return buf
- old_buf
;
2721 * Print the name of a VMA.
2723 void print_vma_addr(char *prefix
, unsigned long ip
)
2725 struct mm_struct
*mm
= current
->mm
;
2726 struct vm_area_struct
*vma
;
2729 * Do not print if we are in atomic
2730 * contexts (in exception stacks, etc.):
2732 if (preempt_count())
2735 down_read(&mm
->mmap_sem
);
2736 vma
= find_vma(mm
, ip
);
2737 if (vma
&& vma
->vm_file
) {
2738 struct file
*f
= vma
->vm_file
;
2739 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
2743 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
2746 s
= strrchr(p
, '/');
2749 printk("%s%s[%lx+%lx]", prefix
, p
,
2751 vma
->vm_end
- vma
->vm_start
);
2752 free_page((unsigned long)buf
);
2755 up_read(¤t
->mm
->mmap_sem
);