2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 <<<<<<< HEAD
:mm
/page_alloc
.c
24 #include <linux/jiffies.h>
25 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
26 #include <linux/bootmem.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/mempolicy.h>
44 #include <linux/stop_machine.h>
45 #include <linux/sort.h>
46 #include <linux/pfn.h>
47 #include <linux/backing-dev.h>
48 #include <linux/fault-inject.h>
49 #include <linux/page-isolation.h>
50 #include <linux/memcontrol.h>
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
57 * Array of node states.
59 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
60 [N_POSSIBLE
] = NODE_MASK_ALL
,
61 [N_ONLINE
] = { { [0] = 1UL } },
63 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
65 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
67 [N_CPU
] = { { [0] = 1UL } },
70 EXPORT_SYMBOL(node_states
);
72 unsigned long totalram_pages __read_mostly
;
73 unsigned long totalreserve_pages __read_mostly
;
75 int percpu_pagelist_fraction
;
77 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
78 int pageblock_order __read_mostly
;
81 static void __free_pages_ok(struct page
*page
, unsigned int order
);
84 * results with 256, 32 in the lowmem_reserve sysctl:
85 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
86 * 1G machine -> (16M dma, 784M normal, 224M high)
87 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
88 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
89 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91 * TBD: should special case ZONE_DMA32 machines here - in those we normally
92 * don't need any ZONE_NORMAL reservation
94 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
95 #ifdef CONFIG_ZONE_DMA
98 #ifdef CONFIG_ZONE_DMA32
101 #ifdef CONFIG_HIGHMEM
107 EXPORT_SYMBOL(totalram_pages
);
109 static char * const zone_names
[MAX_NR_ZONES
] = {
110 #ifdef CONFIG_ZONE_DMA
113 #ifdef CONFIG_ZONE_DMA32
117 #ifdef CONFIG_HIGHMEM
123 int min_free_kbytes
= 1024;
125 unsigned long __meminitdata nr_kernel_pages
;
126 unsigned long __meminitdata nr_all_pages
;
127 static unsigned long __meminitdata dma_reserve
;
129 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
132 * ranges of memory (RAM) that may be registered with add_active_range().
133 * Ranges passed to add_active_range() will be merged if possible
134 * so the number of times add_active_range() can be called is
135 * related to the number of nodes and the number of holes
137 #ifdef CONFIG_MAX_ACTIVE_REGIONS
138 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
139 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #if MAX_NUMNODES >= 32
142 /* If there can be many nodes, allow up to 50 holes per node */
143 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 /* By default, allow up to 256 distinct regions */
146 #define MAX_ACTIVE_REGIONS 256
150 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
151 static int __meminitdata nr_nodemap_entries
;
152 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
153 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
154 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
155 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
156 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
157 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
158 unsigned long __initdata required_kernelcore
;
159 static unsigned long __initdata required_movablecore
;
160 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
162 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
164 EXPORT_SYMBOL(movable_zone
);
165 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
168 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
169 EXPORT_SYMBOL(nr_node_ids
);
172 int page_group_by_mobility_disabled __read_mostly
;
174 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
176 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
177 PB_migrate
, PB_migrate_end
);
180 #ifdef CONFIG_DEBUG_VM
181 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
185 unsigned long pfn
= page_to_pfn(page
);
188 seq
= zone_span_seqbegin(zone
);
189 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
191 else if (pfn
< zone
->zone_start_pfn
)
193 } while (zone_span_seqretry(zone
, seq
));
198 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
200 if (!pfn_valid_within(page_to_pfn(page
)))
202 if (zone
!= page_zone(page
))
208 * Temporary debugging check for pages not lying within a given zone.
210 static int bad_range(struct zone
*zone
, struct page
*page
)
212 if (page_outside_zone_boundaries(zone
, page
))
214 if (!page_is_consistent(zone
, page
))
220 static inline int bad_range(struct zone
*zone
, struct page
*page
)
226 static void bad_page(struct page
*page
)
228 <<<<<<< HEAD
:mm
/page_alloc
.c
229 printk(KERN_EMERG
"Bad page state in process '%s'\n"
230 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
231 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
232 KERN_EMERG
"Backtrace:\n",
234 void *pc
= page_get_page_cgroup(page
);
236 printk(KERN_EMERG
"Bad page state in process '%s'\n" KERN_EMERG
237 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
238 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
239 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
240 (unsigned long)page
->flags
, page
->mapping
,
241 page_mapcount(page
), page_count(page
));
242 <<<<<<< HEAD
:mm
/page_alloc
.c
245 printk(KERN_EMERG
"cgroup:%p\n", pc
);
246 page_reset_bad_cgroup(page
);
248 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
249 KERN_EMERG
"Backtrace:\n");
250 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
252 page
->flags
&= ~(1 << PG_lru
|
262 set_page_count(page
, 0);
263 reset_page_mapcount(page
);
264 page
->mapping
= NULL
;
265 add_taint(TAINT_BAD_PAGE
);
269 * Higher-order pages are called "compound pages". They are structured thusly:
271 * The first PAGE_SIZE page is called the "head page".
273 * The remaining PAGE_SIZE pages are called "tail pages".
275 * All pages have PG_compound set. All pages have their ->private pointing at
276 * the head page (even the head page has this).
278 * The first tail page's ->lru.next holds the address of the compound page's
279 * put_page() function. Its ->lru.prev holds the order of allocation.
280 * This usage means that zero-order pages may not be compound.
283 static void free_compound_page(struct page
*page
)
285 __free_pages_ok(page
, compound_order(page
));
288 static void prep_compound_page(struct page
*page
, unsigned long order
)
291 int nr_pages
= 1 << order
;
293 set_compound_page_dtor(page
, free_compound_page
);
294 set_compound_order(page
, order
);
296 for (i
= 1; i
< nr_pages
; i
++) {
297 struct page
*p
= page
+ i
;
300 p
->first_page
= page
;
304 static void destroy_compound_page(struct page
*page
, unsigned long order
)
307 int nr_pages
= 1 << order
;
309 if (unlikely(compound_order(page
) != order
))
312 if (unlikely(!PageHead(page
)))
314 __ClearPageHead(page
);
315 for (i
= 1; i
< nr_pages
; i
++) {
316 struct page
*p
= page
+ i
;
318 if (unlikely(!PageTail(p
) |
319 (p
->first_page
!= page
)))
325 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
330 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
331 * and __GFP_HIGHMEM from hard or soft interrupt context.
333 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
334 for (i
= 0; i
< (1 << order
); i
++)
335 clear_highpage(page
+ i
);
338 static inline void set_page_order(struct page
*page
, int order
)
340 set_page_private(page
, order
);
341 __SetPageBuddy(page
);
344 static inline void rmv_page_order(struct page
*page
)
346 __ClearPageBuddy(page
);
347 set_page_private(page
, 0);
351 * Locate the struct page for both the matching buddy in our
352 * pair (buddy1) and the combined O(n+1) page they form (page).
354 * 1) Any buddy B1 will have an order O twin B2 which satisfies
355 * the following equation:
357 * For example, if the starting buddy (buddy2) is #8 its order
359 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
361 * 2) Any buddy B will have an order O+1 parent P which
362 * satisfies the following equation:
365 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
367 static inline struct page
*
368 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
370 unsigned long buddy_idx
= page_idx
^ (1 << order
);
372 return page
+ (buddy_idx
- page_idx
);
375 static inline unsigned long
376 __find_combined_index(unsigned long page_idx
, unsigned int order
)
378 return (page_idx
& ~(1 << order
));
382 * This function checks whether a page is free && is the buddy
383 * we can do coalesce a page and its buddy if
384 * (a) the buddy is not in a hole &&
385 * (b) the buddy is in the buddy system &&
386 * (c) a page and its buddy have the same order &&
387 * (d) a page and its buddy are in the same zone.
389 * For recording whether a page is in the buddy system, we use PG_buddy.
390 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
392 * For recording page's order, we use page_private(page).
394 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
397 if (!pfn_valid_within(page_to_pfn(buddy
)))
400 if (page_zone_id(page
) != page_zone_id(buddy
))
403 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
404 BUG_ON(page_count(buddy
) != 0);
411 * Freeing function for a buddy system allocator.
413 * The concept of a buddy system is to maintain direct-mapped table
414 * (containing bit values) for memory blocks of various "orders".
415 * The bottom level table contains the map for the smallest allocatable
416 * units of memory (here, pages), and each level above it describes
417 * pairs of units from the levels below, hence, "buddies".
418 * At a high level, all that happens here is marking the table entry
419 * at the bottom level available, and propagating the changes upward
420 * as necessary, plus some accounting needed to play nicely with other
421 * parts of the VM system.
422 * At each level, we keep a list of pages, which are heads of continuous
423 * free pages of length of (1 << order) and marked with PG_buddy. Page's
424 * order is recorded in page_private(page) field.
425 * So when we are allocating or freeing one, we can derive the state of the
426 * other. That is, if we allocate a small block, and both were
427 * free, the remainder of the region must be split into blocks.
428 * If a block is freed, and its buddy is also free, then this
429 * triggers coalescing into a block of larger size.
434 static inline void __free_one_page(struct page
*page
,
435 struct zone
*zone
, unsigned int order
)
437 unsigned long page_idx
;
438 int order_size
= 1 << order
;
439 int migratetype
= get_pageblock_migratetype(page
);
441 if (unlikely(PageCompound(page
)))
442 destroy_compound_page(page
, order
);
444 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
446 VM_BUG_ON(page_idx
& (order_size
- 1));
447 VM_BUG_ON(bad_range(zone
, page
));
449 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
450 while (order
< MAX_ORDER
-1) {
451 unsigned long combined_idx
;
454 buddy
= __page_find_buddy(page
, page_idx
, order
);
455 if (!page_is_buddy(page
, buddy
, order
))
456 break; /* Move the buddy up one level. */
458 list_del(&buddy
->lru
);
459 zone
->free_area
[order
].nr_free
--;
460 rmv_page_order(buddy
);
461 combined_idx
= __find_combined_index(page_idx
, order
);
462 page
= page
+ (combined_idx
- page_idx
);
463 page_idx
= combined_idx
;
466 set_page_order(page
, order
);
468 &zone
->free_area
[order
].free_list
[migratetype
]);
469 zone
->free_area
[order
].nr_free
++;
472 static inline int free_pages_check(struct page
*page
)
474 if (unlikely(page_mapcount(page
) |
475 (page
->mapping
!= NULL
) |
476 <<<<<<< HEAD
:mm
/page_alloc
.c
478 (page_get_page_cgroup(page
) != NULL
) |
479 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
480 (page_count(page
) != 0) |
493 __ClearPageDirty(page
);
495 * For now, we report if PG_reserved was found set, but do not
496 * clear it, and do not free the page. But we shall soon need
497 * to do more, for when the ZERO_PAGE count wraps negative.
499 return PageReserved(page
);
503 * Frees a list of pages.
504 * Assumes all pages on list are in same zone, and of same order.
505 * count is the number of pages to free.
507 * If the zone was previously in an "all pages pinned" state then look to
508 * see if this freeing clears that state.
510 * And clear the zone's pages_scanned counter, to hold off the "all pages are
511 * pinned" detection logic.
513 static void free_pages_bulk(struct zone
*zone
, int count
,
514 struct list_head
*list
, int order
)
516 spin_lock(&zone
->lock
);
517 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
518 zone
->pages_scanned
= 0;
522 VM_BUG_ON(list_empty(list
));
523 page
= list_entry(list
->prev
, struct page
, lru
);
524 /* have to delete it as __free_one_page list manipulates */
525 list_del(&page
->lru
);
526 __free_one_page(page
, zone
, order
);
528 spin_unlock(&zone
->lock
);
531 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
533 spin_lock(&zone
->lock
);
534 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
535 zone
->pages_scanned
= 0;
536 __free_one_page(page
, zone
, order
);
537 spin_unlock(&zone
->lock
);
540 static void __free_pages_ok(struct page
*page
, unsigned int order
)
546 for (i
= 0 ; i
< (1 << order
) ; ++i
)
547 reserved
+= free_pages_check(page
+ i
);
551 if (!PageHighMem(page
))
552 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
553 arch_free_page(page
, order
);
554 kernel_map_pages(page
, 1 << order
, 0);
556 local_irq_save(flags
);
557 __count_vm_events(PGFREE
, 1 << order
);
558 free_one_page(page_zone(page
), page
, order
);
559 local_irq_restore(flags
);
563 * permit the bootmem allocator to evade page validation on high-order frees
565 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
568 __ClearPageReserved(page
);
569 set_page_count(page
, 0);
570 set_page_refcounted(page
);
576 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
577 struct page
*p
= &page
[loop
];
579 if (loop
+ 1 < BITS_PER_LONG
)
581 __ClearPageReserved(p
);
582 set_page_count(p
, 0);
585 set_page_refcounted(page
);
586 __free_pages(page
, order
);
592 * The order of subdivision here is critical for the IO subsystem.
593 * Please do not alter this order without good reasons and regression
594 * testing. Specifically, as large blocks of memory are subdivided,
595 * the order in which smaller blocks are delivered depends on the order
596 * they're subdivided in this function. This is the primary factor
597 * influencing the order in which pages are delivered to the IO
598 * subsystem according to empirical testing, and this is also justified
599 * by considering the behavior of a buddy system containing a single
600 * large block of memory acted on by a series of small allocations.
601 * This behavior is a critical factor in sglist merging's success.
605 static inline void expand(struct zone
*zone
, struct page
*page
,
606 int low
, int high
, struct free_area
*area
,
609 unsigned long size
= 1 << high
;
615 VM_BUG_ON(bad_range(zone
, &page
[size
]));
616 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
618 set_page_order(&page
[size
], high
);
623 * This page is about to be returned from the page allocator
625 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
627 if (unlikely(page_mapcount(page
) |
628 (page
->mapping
!= NULL
) |
629 <<<<<<< HEAD
:mm
/page_alloc
.c
631 (page_get_page_cgroup(page
) != NULL
) |
632 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
633 (page_count(page
) != 0) |
648 * For now, we report if PG_reserved was found set, but do not
649 * clear it, and do not allocate the page: as a safety net.
651 if (PageReserved(page
))
654 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_readahead
|
655 1 << PG_referenced
| 1 << PG_arch_1
|
656 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
657 set_page_private(page
, 0);
658 set_page_refcounted(page
);
660 arch_alloc_page(page
, order
);
661 kernel_map_pages(page
, 1 << order
, 1);
663 if (gfp_flags
& __GFP_ZERO
)
664 prep_zero_page(page
, order
, gfp_flags
);
666 if (order
&& (gfp_flags
& __GFP_COMP
))
667 prep_compound_page(page
, order
);
673 * Go through the free lists for the given migratetype and remove
674 * the smallest available page from the freelists
676 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
679 unsigned int current_order
;
680 struct free_area
* area
;
683 /* Find a page of the appropriate size in the preferred list */
684 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
685 area
= &(zone
->free_area
[current_order
]);
686 if (list_empty(&area
->free_list
[migratetype
]))
689 page
= list_entry(area
->free_list
[migratetype
].next
,
691 list_del(&page
->lru
);
692 rmv_page_order(page
);
694 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
695 expand(zone
, page
, order
, current_order
, area
, migratetype
);
704 * This array describes the order lists are fallen back to when
705 * the free lists for the desirable migrate type are depleted
707 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
708 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
709 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
710 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
711 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
715 * Move the free pages in a range to the free lists of the requested type.
716 * Note that start_page and end_pages are not aligned on a pageblock
717 * boundary. If alignment is required, use move_freepages_block()
719 int move_freepages(struct zone
*zone
,
720 struct page
*start_page
, struct page
*end_page
,
727 #ifndef CONFIG_HOLES_IN_ZONE
729 * page_zone is not safe to call in this context when
730 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
731 * anyway as we check zone boundaries in move_freepages_block().
732 * Remove at a later date when no bug reports exist related to
733 * grouping pages by mobility
735 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
738 for (page
= start_page
; page
<= end_page
;) {
739 if (!pfn_valid_within(page_to_pfn(page
))) {
744 if (!PageBuddy(page
)) {
749 order
= page_order(page
);
750 list_del(&page
->lru
);
752 &zone
->free_area
[order
].free_list
[migratetype
]);
754 pages_moved
+= 1 << order
;
760 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
762 unsigned long start_pfn
, end_pfn
;
763 struct page
*start_page
, *end_page
;
765 start_pfn
= page_to_pfn(page
);
766 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
767 start_page
= pfn_to_page(start_pfn
);
768 end_page
= start_page
+ pageblock_nr_pages
- 1;
769 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
771 /* Do not cross zone boundaries */
772 if (start_pfn
< zone
->zone_start_pfn
)
774 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
777 return move_freepages(zone
, start_page
, end_page
, migratetype
);
780 /* Remove an element from the buddy allocator from the fallback list */
781 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
782 int start_migratetype
)
784 struct free_area
* area
;
789 /* Find the largest possible block of pages in the other list */
790 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
792 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
793 migratetype
= fallbacks
[start_migratetype
][i
];
795 /* MIGRATE_RESERVE handled later if necessary */
796 if (migratetype
== MIGRATE_RESERVE
)
799 area
= &(zone
->free_area
[current_order
]);
800 if (list_empty(&area
->free_list
[migratetype
]))
803 page
= list_entry(area
->free_list
[migratetype
].next
,
808 * If breaking a large block of pages, move all free
809 * pages to the preferred allocation list. If falling
810 * back for a reclaimable kernel allocation, be more
811 * agressive about taking ownership of free pages
813 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
814 start_migratetype
== MIGRATE_RECLAIMABLE
) {
816 pages
= move_freepages_block(zone
, page
,
819 /* Claim the whole block if over half of it is free */
820 if (pages
>= (1 << (pageblock_order
-1)))
821 set_pageblock_migratetype(page
,
824 migratetype
= start_migratetype
;
827 /* Remove the page from the freelists */
828 list_del(&page
->lru
);
829 rmv_page_order(page
);
830 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
833 if (current_order
== pageblock_order
)
834 set_pageblock_migratetype(page
,
837 expand(zone
, page
, order
, current_order
, area
, migratetype
);
842 /* Use MIGRATE_RESERVE rather than fail an allocation */
843 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
847 * Do the hard work of removing an element from the buddy allocator.
848 * Call me with the zone->lock already held.
850 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
855 page
= __rmqueue_smallest(zone
, order
, migratetype
);
858 page
= __rmqueue_fallback(zone
, order
, migratetype
);
864 * Obtain a specified number of elements from the buddy allocator, all under
865 * a single hold of the lock, for efficiency. Add them to the supplied list.
866 * Returns the number of new pages which were placed at *list.
868 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
869 unsigned long count
, struct list_head
*list
,
874 spin_lock(&zone
->lock
);
875 for (i
= 0; i
< count
; ++i
) {
876 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
877 if (unlikely(page
== NULL
))
881 * Split buddy pages returned by expand() are received here
882 * in physical page order. The page is added to the callers and
883 * list and the list head then moves forward. From the callers
884 * perspective, the linked list is ordered by page number in
885 * some conditions. This is useful for IO devices that can
886 * merge IO requests if the physical pages are ordered
889 list_add(&page
->lru
, list
);
890 set_page_private(page
, migratetype
);
893 spin_unlock(&zone
->lock
);
899 * Called from the vmstat counter updater to drain pagesets of this
900 * currently executing processor on remote nodes after they have
903 * Note that this function must be called with the thread pinned to
904 * a single processor.
906 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
911 local_irq_save(flags
);
912 if (pcp
->count
>= pcp
->batch
)
913 to_drain
= pcp
->batch
;
915 to_drain
= pcp
->count
;
916 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
917 pcp
->count
-= to_drain
;
918 local_irq_restore(flags
);
923 * Drain pages of the indicated processor.
925 * The processor must either be the current processor and the
926 * thread pinned to the current processor or a processor that
929 static void drain_pages(unsigned int cpu
)
934 for_each_zone(zone
) {
935 struct per_cpu_pageset
*pset
;
936 struct per_cpu_pages
*pcp
;
938 if (!populated_zone(zone
))
941 pset
= zone_pcp(zone
, cpu
);
944 local_irq_save(flags
);
945 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
947 local_irq_restore(flags
);
952 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
954 void drain_local_pages(void *arg
)
956 drain_pages(smp_processor_id());
960 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
962 void drain_all_pages(void)
964 on_each_cpu(drain_local_pages
, NULL
, 0, 1);
967 #ifdef CONFIG_HIBERNATION
969 void mark_free_pages(struct zone
*zone
)
971 unsigned long pfn
, max_zone_pfn
;
974 struct list_head
*curr
;
976 if (!zone
->spanned_pages
)
979 spin_lock_irqsave(&zone
->lock
, flags
);
981 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
982 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
983 if (pfn_valid(pfn
)) {
984 struct page
*page
= pfn_to_page(pfn
);
986 if (!swsusp_page_is_forbidden(page
))
987 swsusp_unset_page_free(page
);
990 for_each_migratetype_order(order
, t
) {
991 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
994 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
995 for (i
= 0; i
< (1UL << order
); i
++)
996 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
999 spin_unlock_irqrestore(&zone
->lock
, flags
);
1001 #endif /* CONFIG_PM */
1004 * Free a 0-order page
1006 static void free_hot_cold_page(struct page
*page
, int cold
)
1008 struct zone
*zone
= page_zone(page
);
1009 struct per_cpu_pages
*pcp
;
1010 unsigned long flags
;
1013 page
->mapping
= NULL
;
1014 if (free_pages_check(page
))
1017 if (!PageHighMem(page
))
1018 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1019 <<<<<<< HEAD
:mm
/page_alloc
.c
1020 VM_BUG_ON(page_get_page_cgroup(page
));
1022 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
1023 arch_free_page(page
, 0);
1024 kernel_map_pages(page
, 1, 0);
1026 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1027 local_irq_save(flags
);
1028 __count_vm_event(PGFREE
);
1030 list_add_tail(&page
->lru
, &pcp
->list
);
1032 list_add(&page
->lru
, &pcp
->list
);
1033 set_page_private(page
, get_pageblock_migratetype(page
));
1035 if (pcp
->count
>= pcp
->high
) {
1036 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1037 pcp
->count
-= pcp
->batch
;
1039 local_irq_restore(flags
);
1043 void free_hot_page(struct page
*page
)
1045 free_hot_cold_page(page
, 0);
1048 void free_cold_page(struct page
*page
)
1050 free_hot_cold_page(page
, 1);
1054 * split_page takes a non-compound higher-order page, and splits it into
1055 * n (1<<order) sub-pages: page[0..n]
1056 * Each sub-page must be freed individually.
1058 * Note: this is probably too low level an operation for use in drivers.
1059 * Please consult with lkml before using this in your driver.
1061 void split_page(struct page
*page
, unsigned int order
)
1065 VM_BUG_ON(PageCompound(page
));
1066 VM_BUG_ON(!page_count(page
));
1067 for (i
= 1; i
< (1 << order
); i
++)
1068 set_page_refcounted(page
+ i
);
1072 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1073 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1076 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
1077 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1079 unsigned long flags
;
1081 int cold
= !!(gfp_flags
& __GFP_COLD
);
1083 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1087 if (likely(order
== 0)) {
1088 struct per_cpu_pages
*pcp
;
1090 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1091 local_irq_save(flags
);
1093 pcp
->count
= rmqueue_bulk(zone
, 0,
1094 pcp
->batch
, &pcp
->list
, migratetype
);
1095 if (unlikely(!pcp
->count
))
1099 /* Find a page of the appropriate migrate type */
1101 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1102 if (page_private(page
) == migratetype
)
1105 list_for_each_entry(page
, &pcp
->list
, lru
)
1106 if (page_private(page
) == migratetype
)
1110 /* Allocate more to the pcp list if necessary */
1111 if (unlikely(&page
->lru
== &pcp
->list
)) {
1112 pcp
->count
+= rmqueue_bulk(zone
, 0,
1113 pcp
->batch
, &pcp
->list
, migratetype
);
1114 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1117 list_del(&page
->lru
);
1120 spin_lock_irqsave(&zone
->lock
, flags
);
1121 page
= __rmqueue(zone
, order
, migratetype
);
1122 spin_unlock(&zone
->lock
);
1127 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1128 zone_statistics(zonelist
, zone
);
1129 local_irq_restore(flags
);
1132 VM_BUG_ON(bad_range(zone
, page
));
1133 if (prep_new_page(page
, order
, gfp_flags
))
1138 local_irq_restore(flags
);
1143 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1144 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1145 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1146 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1147 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1148 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1149 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1151 #ifdef CONFIG_FAIL_PAGE_ALLOC
1153 static struct fail_page_alloc_attr
{
1154 struct fault_attr attr
;
1156 u32 ignore_gfp_highmem
;
1157 u32 ignore_gfp_wait
;
1160 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1162 struct dentry
*ignore_gfp_highmem_file
;
1163 struct dentry
*ignore_gfp_wait_file
;
1164 struct dentry
*min_order_file
;
1166 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1168 } fail_page_alloc
= {
1169 .attr
= FAULT_ATTR_INITIALIZER
,
1170 .ignore_gfp_wait
= 1,
1171 .ignore_gfp_highmem
= 1,
1175 static int __init
setup_fail_page_alloc(char *str
)
1177 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1179 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1181 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1183 if (order
< fail_page_alloc
.min_order
)
1185 if (gfp_mask
& __GFP_NOFAIL
)
1187 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1189 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1192 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1195 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1197 static int __init
fail_page_alloc_debugfs(void)
1199 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1203 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1207 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1209 fail_page_alloc
.ignore_gfp_wait_file
=
1210 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1211 &fail_page_alloc
.ignore_gfp_wait
);
1213 fail_page_alloc
.ignore_gfp_highmem_file
=
1214 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1215 &fail_page_alloc
.ignore_gfp_highmem
);
1216 fail_page_alloc
.min_order_file
=
1217 debugfs_create_u32("min-order", mode
, dir
,
1218 &fail_page_alloc
.min_order
);
1220 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1221 !fail_page_alloc
.ignore_gfp_highmem_file
||
1222 !fail_page_alloc
.min_order_file
) {
1224 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1225 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1226 debugfs_remove(fail_page_alloc
.min_order_file
);
1227 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1233 late_initcall(fail_page_alloc_debugfs
);
1235 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1237 #else /* CONFIG_FAIL_PAGE_ALLOC */
1239 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1244 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1247 * Return 1 if free pages are above 'mark'. This takes into account the order
1248 * of the allocation.
1250 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1251 int classzone_idx
, int alloc_flags
)
1253 /* free_pages my go negative - that's OK */
1255 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1258 if (alloc_flags
& ALLOC_HIGH
)
1260 if (alloc_flags
& ALLOC_HARDER
)
1263 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1265 for (o
= 0; o
< order
; o
++) {
1266 /* At the next order, this order's pages become unavailable */
1267 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1269 /* Require fewer higher order pages to be free */
1272 if (free_pages
<= min
)
1280 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1281 * skip over zones that are not allowed by the cpuset, or that have
1282 * been recently (in last second) found to be nearly full. See further
1283 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1284 * that have to skip over a lot of full or unallowed zones.
1286 * If the zonelist cache is present in the passed in zonelist, then
1287 * returns a pointer to the allowed node mask (either the current
1288 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1290 * If the zonelist cache is not available for this zonelist, does
1291 * nothing and returns NULL.
1293 * If the fullzones BITMAP in the zonelist cache is stale (more than
1294 * a second since last zap'd) then we zap it out (clear its bits.)
1296 * We hold off even calling zlc_setup, until after we've checked the
1297 * first zone in the zonelist, on the theory that most allocations will
1298 * be satisfied from that first zone, so best to examine that zone as
1299 * quickly as we can.
1301 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1303 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1304 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1306 zlc
= zonelist
->zlcache_ptr
;
1310 <<<<<<< HEAD
:mm
/page_alloc
.c
1311 if (jiffies
- zlc
->last_full_zap
> 1 * HZ
) {
1313 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1314 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
1315 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1316 zlc
->last_full_zap
= jiffies
;
1319 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1320 &cpuset_current_mems_allowed
:
1321 &node_states
[N_HIGH_MEMORY
];
1322 return allowednodes
;
1326 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1327 * if it is worth looking at further for free memory:
1328 * 1) Check that the zone isn't thought to be full (doesn't have its
1329 * bit set in the zonelist_cache fullzones BITMAP).
1330 * 2) Check that the zones node (obtained from the zonelist_cache
1331 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1332 * Return true (non-zero) if zone is worth looking at further, or
1333 * else return false (zero) if it is not.
1335 * This check -ignores- the distinction between various watermarks,
1336 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1337 * found to be full for any variation of these watermarks, it will
1338 * be considered full for up to one second by all requests, unless
1339 * we are so low on memory on all allowed nodes that we are forced
1340 * into the second scan of the zonelist.
1342 * In the second scan we ignore this zonelist cache and exactly
1343 * apply the watermarks to all zones, even it is slower to do so.
1344 * We are low on memory in the second scan, and should leave no stone
1345 * unturned looking for a free page.
1347 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1348 nodemask_t
*allowednodes
)
1350 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1351 int i
; /* index of *z in zonelist zones */
1352 int n
; /* node that zone *z is on */
1354 zlc
= zonelist
->zlcache_ptr
;
1358 i
= z
- zonelist
->zones
;
1361 /* This zone is worth trying if it is allowed but not full */
1362 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1366 * Given 'z' scanning a zonelist, set the corresponding bit in
1367 * zlc->fullzones, so that subsequent attempts to allocate a page
1368 * from that zone don't waste time re-examining it.
1370 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1372 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1373 int i
; /* index of *z in zonelist zones */
1375 zlc
= zonelist
->zlcache_ptr
;
1379 i
= z
- zonelist
->zones
;
1381 set_bit(i
, zlc
->fullzones
);
1384 #else /* CONFIG_NUMA */
1386 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1391 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1392 nodemask_t
*allowednodes
)
1397 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1400 #endif /* CONFIG_NUMA */
1403 * get_page_from_freelist goes through the zonelist trying to allocate
1406 static struct page
*
1407 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1408 struct zonelist
*zonelist
, int alloc_flags
)
1411 struct page
*page
= NULL
;
1412 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1414 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1415 int zlc_active
= 0; /* set if using zonelist_cache */
1416 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1417 enum zone_type highest_zoneidx
= -1; /* Gets set for policy zonelists */
1421 * Scan zonelist, looking for a zone with enough free.
1422 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1424 z
= zonelist
->zones
;
1428 * In NUMA, this could be a policy zonelist which contains
1429 * zones that may not be allowed by the current gfp_mask.
1430 * Check the zone is allowed by the current flags
1432 if (unlikely(alloc_should_filter_zonelist(zonelist
))) {
1433 if (highest_zoneidx
== -1)
1434 highest_zoneidx
= gfp_zone(gfp_mask
);
1435 if (zone_idx(*z
) > highest_zoneidx
)
1439 if (NUMA_BUILD
&& zlc_active
&&
1440 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1443 if ((alloc_flags
& ALLOC_CPUSET
) &&
1444 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1447 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1449 if (alloc_flags
& ALLOC_WMARK_MIN
)
1450 mark
= zone
->pages_min
;
1451 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1452 mark
= zone
->pages_low
;
1454 mark
= zone
->pages_high
;
1455 if (!zone_watermark_ok(zone
, order
, mark
,
1456 classzone_idx
, alloc_flags
)) {
1457 if (!zone_reclaim_mode
||
1458 !zone_reclaim(zone
, gfp_mask
, order
))
1459 goto this_zone_full
;
1463 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1468 zlc_mark_zone_full(zonelist
, z
);
1470 if (NUMA_BUILD
&& !did_zlc_setup
) {
1471 /* we do zlc_setup after the first zone is tried */
1472 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1476 } while (*(++z
) != NULL
);
1478 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1479 /* Disable zlc cache for second zonelist scan */
1487 * This is the 'heart' of the zoned buddy allocator.
1490 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1491 struct zonelist
*zonelist
)
1493 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1496 struct reclaim_state reclaim_state
;
1497 struct task_struct
*p
= current
;
1500 int did_some_progress
;
1502 might_sleep_if(wait
);
1504 if (should_fail_alloc_page(gfp_mask
, order
))
1508 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1510 if (unlikely(*z
== NULL
)) {
1512 * Happens if we have an empty zonelist as a result of
1513 * GFP_THISNODE being used on a memoryless node
1518 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1519 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1524 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1525 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1526 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1527 * using a larger set of nodes after it has established that the
1528 * allowed per node queues are empty and that nodes are
1531 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1534 for (z
= zonelist
->zones
; *z
; z
++)
1535 wakeup_kswapd(*z
, order
);
1538 * OK, we're below the kswapd watermark and have kicked background
1539 * reclaim. Now things get more complex, so set up alloc_flags according
1540 * to how we want to proceed.
1542 * The caller may dip into page reserves a bit more if the caller
1543 * cannot run direct reclaim, or if the caller has realtime scheduling
1544 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1545 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1547 alloc_flags
= ALLOC_WMARK_MIN
;
1548 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1549 alloc_flags
|= ALLOC_HARDER
;
1550 if (gfp_mask
& __GFP_HIGH
)
1551 alloc_flags
|= ALLOC_HIGH
;
1553 alloc_flags
|= ALLOC_CPUSET
;
1556 * Go through the zonelist again. Let __GFP_HIGH and allocations
1557 * coming from realtime tasks go deeper into reserves.
1559 * This is the last chance, in general, before the goto nopage.
1560 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1561 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1563 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1567 /* This allocation should allow future memory freeing. */
1570 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1571 && !in_interrupt()) {
1572 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1574 /* go through the zonelist yet again, ignoring mins */
1575 page
= get_page_from_freelist(gfp_mask
, order
,
1576 zonelist
, ALLOC_NO_WATERMARKS
);
1579 if (gfp_mask
& __GFP_NOFAIL
) {
1580 congestion_wait(WRITE
, HZ
/50);
1587 /* Atomic allocations - we can't balance anything */
1593 /* We now go into synchronous reclaim */
1594 cpuset_memory_pressure_bump();
1595 p
->flags
|= PF_MEMALLOC
;
1596 reclaim_state
.reclaimed_slab
= 0;
1597 p
->reclaim_state
= &reclaim_state
;
1599 did_some_progress
= try_to_free_pages(zonelist
->zones
, order
, gfp_mask
);
1601 p
->reclaim_state
= NULL
;
1602 p
->flags
&= ~PF_MEMALLOC
;
1609 if (likely(did_some_progress
)) {
1610 page
= get_page_from_freelist(gfp_mask
, order
,
1611 zonelist
, alloc_flags
);
1614 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1615 if (!try_set_zone_oom(zonelist
)) {
1616 schedule_timeout_uninterruptible(1);
1621 * Go through the zonelist yet one more time, keep
1622 * very high watermark here, this is only to catch
1623 * a parallel oom killing, we must fail if we're still
1624 * under heavy pressure.
1626 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1627 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1629 clear_zonelist_oom(zonelist
);
1633 /* The OOM killer will not help higher order allocs so fail */
1634 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1635 clear_zonelist_oom(zonelist
);
1639 out_of_memory(zonelist
, gfp_mask
, order
);
1640 clear_zonelist_oom(zonelist
);
1645 * Don't let big-order allocations loop unless the caller explicitly
1646 * requests that. Wait for some write requests to complete then retry.
1648 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1649 * <= 3, but that may not be true in other implementations.
1652 if (!(gfp_mask
& __GFP_NORETRY
)) {
1653 if ((order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
1654 (gfp_mask
& __GFP_REPEAT
))
1656 if (gfp_mask
& __GFP_NOFAIL
)
1660 congestion_wait(WRITE
, HZ
/50);
1665 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1666 printk(KERN_WARNING
"%s: page allocation failure."
1667 " order:%d, mode:0x%x\n",
1668 p
->comm
, order
, gfp_mask
);
1676 EXPORT_SYMBOL(__alloc_pages
);
1679 * Common helper functions.
1681 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1684 page
= alloc_pages(gfp_mask
, order
);
1687 return (unsigned long) page_address(page
);
1690 EXPORT_SYMBOL(__get_free_pages
);
1692 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1697 * get_zeroed_page() returns a 32-bit address, which cannot represent
1700 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1702 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1704 return (unsigned long) page_address(page
);
1708 EXPORT_SYMBOL(get_zeroed_page
);
1710 void __pagevec_free(struct pagevec
*pvec
)
1712 int i
= pagevec_count(pvec
);
1715 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1718 void __free_pages(struct page
*page
, unsigned int order
)
1720 if (put_page_testzero(page
)) {
1722 free_hot_page(page
);
1724 __free_pages_ok(page
, order
);
1728 EXPORT_SYMBOL(__free_pages
);
1730 void free_pages(unsigned long addr
, unsigned int order
)
1733 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1734 __free_pages(virt_to_page((void *)addr
), order
);
1738 EXPORT_SYMBOL(free_pages
);
1740 static unsigned int nr_free_zone_pages(int offset
)
1742 /* Just pick one node, since fallback list is circular */
1743 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1744 unsigned int sum
= 0;
1746 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1747 struct zone
**zonep
= zonelist
->zones
;
1750 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1751 unsigned long size
= zone
->present_pages
;
1752 unsigned long high
= zone
->pages_high
;
1761 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1763 unsigned int nr_free_buffer_pages(void)
1765 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1767 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1770 * Amount of free RAM allocatable within all zones
1772 unsigned int nr_free_pagecache_pages(void)
1774 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1777 static inline void show_node(struct zone
*zone
)
1780 printk("Node %d ", zone_to_nid(zone
));
1783 void si_meminfo(struct sysinfo
*val
)
1785 val
->totalram
= totalram_pages
;
1787 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1788 val
->bufferram
= nr_blockdev_pages();
1789 val
->totalhigh
= totalhigh_pages
;
1790 val
->freehigh
= nr_free_highpages();
1791 val
->mem_unit
= PAGE_SIZE
;
1794 EXPORT_SYMBOL(si_meminfo
);
1797 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1799 pg_data_t
*pgdat
= NODE_DATA(nid
);
1801 val
->totalram
= pgdat
->node_present_pages
;
1802 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1803 #ifdef CONFIG_HIGHMEM
1804 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1805 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1811 val
->mem_unit
= PAGE_SIZE
;
1815 #define K(x) ((x) << (PAGE_SHIFT-10))
1818 * Show free area list (used inside shift_scroll-lock stuff)
1819 * We also calculate the percentage fragmentation. We do this by counting the
1820 * memory on each free list with the exception of the first item on the list.
1822 void show_free_areas(void)
1827 for_each_zone(zone
) {
1828 if (!populated_zone(zone
))
1832 printk("%s per-cpu:\n", zone
->name
);
1834 for_each_online_cpu(cpu
) {
1835 struct per_cpu_pageset
*pageset
;
1837 pageset
= zone_pcp(zone
, cpu
);
1839 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1840 cpu
, pageset
->pcp
.high
,
1841 pageset
->pcp
.batch
, pageset
->pcp
.count
);
1845 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1846 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1847 global_page_state(NR_ACTIVE
),
1848 global_page_state(NR_INACTIVE
),
1849 global_page_state(NR_FILE_DIRTY
),
1850 global_page_state(NR_WRITEBACK
),
1851 global_page_state(NR_UNSTABLE_NFS
),
1852 global_page_state(NR_FREE_PAGES
),
1853 global_page_state(NR_SLAB_RECLAIMABLE
) +
1854 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1855 global_page_state(NR_FILE_MAPPED
),
1856 global_page_state(NR_PAGETABLE
),
1857 global_page_state(NR_BOUNCE
));
1859 for_each_zone(zone
) {
1862 if (!populated_zone(zone
))
1874 " pages_scanned:%lu"
1875 " all_unreclaimable? %s"
1878 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1881 K(zone
->pages_high
),
1882 K(zone_page_state(zone
, NR_ACTIVE
)),
1883 K(zone_page_state(zone
, NR_INACTIVE
)),
1884 K(zone
->present_pages
),
1885 zone
->pages_scanned
,
1886 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1888 printk("lowmem_reserve[]:");
1889 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1890 printk(" %lu", zone
->lowmem_reserve
[i
]);
1894 for_each_zone(zone
) {
1895 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1897 if (!populated_zone(zone
))
1901 printk("%s: ", zone
->name
);
1903 spin_lock_irqsave(&zone
->lock
, flags
);
1904 for (order
= 0; order
< MAX_ORDER
; order
++) {
1905 nr
[order
] = zone
->free_area
[order
].nr_free
;
1906 total
+= nr
[order
] << order
;
1908 spin_unlock_irqrestore(&zone
->lock
, flags
);
1909 for (order
= 0; order
< MAX_ORDER
; order
++)
1910 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1911 printk("= %lukB\n", K(total
));
1914 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
1916 show_swap_cache_info();
1920 * Builds allocation fallback zone lists.
1922 * Add all populated zones of a node to the zonelist.
1924 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1925 int nr_zones
, enum zone_type zone_type
)
1929 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1934 zone
= pgdat
->node_zones
+ zone_type
;
1935 if (populated_zone(zone
)) {
1936 zonelist
->zones
[nr_zones
++] = zone
;
1937 check_highest_zone(zone_type
);
1940 } while (zone_type
);
1947 * 0 = automatic detection of better ordering.
1948 * 1 = order by ([node] distance, -zonetype)
1949 * 2 = order by (-zonetype, [node] distance)
1951 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1952 * the same zonelist. So only NUMA can configure this param.
1954 #define ZONELIST_ORDER_DEFAULT 0
1955 #define ZONELIST_ORDER_NODE 1
1956 #define ZONELIST_ORDER_ZONE 2
1958 /* zonelist order in the kernel.
1959 * set_zonelist_order() will set this to NODE or ZONE.
1961 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1962 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1966 /* The value user specified ....changed by config */
1967 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1968 /* string for sysctl */
1969 #define NUMA_ZONELIST_ORDER_LEN 16
1970 char numa_zonelist_order
[16] = "default";
1973 * interface for configure zonelist ordering.
1974 * command line option "numa_zonelist_order"
1975 * = "[dD]efault - default, automatic configuration.
1976 * = "[nN]ode - order by node locality, then by zone within node
1977 * = "[zZ]one - order by zone, then by locality within zone
1980 static int __parse_numa_zonelist_order(char *s
)
1982 if (*s
== 'd' || *s
== 'D') {
1983 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1984 } else if (*s
== 'n' || *s
== 'N') {
1985 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1986 } else if (*s
== 'z' || *s
== 'Z') {
1987 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1990 "Ignoring invalid numa_zonelist_order value: "
1997 static __init
int setup_numa_zonelist_order(char *s
)
2000 return __parse_numa_zonelist_order(s
);
2003 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2006 * sysctl handler for numa_zonelist_order
2008 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2009 struct file
*file
, void __user
*buffer
, size_t *length
,
2012 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2016 strncpy(saved_string
, (char*)table
->data
,
2017 NUMA_ZONELIST_ORDER_LEN
);
2018 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2022 int oldval
= user_zonelist_order
;
2023 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2025 * bogus value. restore saved string
2027 strncpy((char*)table
->data
, saved_string
,
2028 NUMA_ZONELIST_ORDER_LEN
);
2029 user_zonelist_order
= oldval
;
2030 } else if (oldval
!= user_zonelist_order
)
2031 build_all_zonelists();
2037 #define MAX_NODE_LOAD (num_online_nodes())
2038 static int node_load
[MAX_NUMNODES
];
2041 * find_next_best_node - find the next node that should appear in a given node's fallback list
2042 * @node: node whose fallback list we're appending
2043 * @used_node_mask: nodemask_t of already used nodes
2045 * We use a number of factors to determine which is the next node that should
2046 * appear on a given node's fallback list. The node should not have appeared
2047 * already in @node's fallback list, and it should be the next closest node
2048 * according to the distance array (which contains arbitrary distance values
2049 * from each node to each node in the system), and should also prefer nodes
2050 * with no CPUs, since presumably they'll have very little allocation pressure
2051 * on them otherwise.
2052 * It returns -1 if no node is found.
2054 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2057 int min_val
= INT_MAX
;
2060 /* Use the local node if we haven't already */
2061 if (!node_isset(node
, *used_node_mask
)) {
2062 node_set(node
, *used_node_mask
);
2066 for_each_node_state(n
, N_HIGH_MEMORY
) {
2069 /* Don't want a node to appear more than once */
2070 if (node_isset(n
, *used_node_mask
))
2073 /* Use the distance array to find the distance */
2074 val
= node_distance(node
, n
);
2076 /* Penalize nodes under us ("prefer the next node") */
2079 /* Give preference to headless and unused nodes */
2080 tmp
= node_to_cpumask(n
);
2081 if (!cpus_empty(tmp
))
2082 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2084 /* Slight preference for less loaded node */
2085 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2086 val
+= node_load
[n
];
2088 if (val
< min_val
) {
2095 node_set(best_node
, *used_node_mask
);
2102 * Build zonelists ordered by node and zones within node.
2103 * This results in maximum locality--normal zone overflows into local
2104 * DMA zone, if any--but risks exhausting DMA zone.
2106 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2110 struct zonelist
*zonelist
;
2112 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2113 zonelist
= pgdat
->node_zonelists
+ i
;
2114 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++)
2116 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2117 zonelist
->zones
[j
] = NULL
;
2122 * Build gfp_thisnode zonelists
2124 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2128 struct zonelist
*zonelist
;
2130 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2131 zonelist
= pgdat
->node_zonelists
+ MAX_NR_ZONES
+ i
;
2132 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2133 zonelist
->zones
[j
] = NULL
;
2138 * Build zonelists ordered by zone and nodes within zones.
2139 * This results in conserving DMA zone[s] until all Normal memory is
2140 * exhausted, but results in overflowing to remote node while memory
2141 * may still exist in local DMA zone.
2143 static int node_order
[MAX_NUMNODES
];
2145 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2149 int zone_type
; /* needs to be signed */
2151 struct zonelist
*zonelist
;
2153 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2154 zonelist
= pgdat
->node_zonelists
+ i
;
2156 for (zone_type
= i
; zone_type
>= 0; zone_type
--) {
2157 for (j
= 0; j
< nr_nodes
; j
++) {
2158 node
= node_order
[j
];
2159 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2160 if (populated_zone(z
)) {
2161 zonelist
->zones
[pos
++] = z
;
2162 check_highest_zone(zone_type
);
2166 zonelist
->zones
[pos
] = NULL
;
2170 static int default_zonelist_order(void)
2173 unsigned long low_kmem_size
,total_size
;
2177 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2178 * If they are really small and used heavily, the system can fall
2179 * into OOM very easily.
2180 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2182 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2185 for_each_online_node(nid
) {
2186 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2187 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2188 if (populated_zone(z
)) {
2189 if (zone_type
< ZONE_NORMAL
)
2190 low_kmem_size
+= z
->present_pages
;
2191 total_size
+= z
->present_pages
;
2195 if (!low_kmem_size
|| /* there are no DMA area. */
2196 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2197 return ZONELIST_ORDER_NODE
;
2199 * look into each node's config.
2200 * If there is a node whose DMA/DMA32 memory is very big area on
2201 * local memory, NODE_ORDER may be suitable.
2203 average_size
= total_size
/
2204 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2205 for_each_online_node(nid
) {
2208 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2209 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2210 if (populated_zone(z
)) {
2211 if (zone_type
< ZONE_NORMAL
)
2212 low_kmem_size
+= z
->present_pages
;
2213 total_size
+= z
->present_pages
;
2216 if (low_kmem_size
&&
2217 total_size
> average_size
&& /* ignore small node */
2218 low_kmem_size
> total_size
* 70/100)
2219 return ZONELIST_ORDER_NODE
;
2221 return ZONELIST_ORDER_ZONE
;
2224 static void set_zonelist_order(void)
2226 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2227 current_zonelist_order
= default_zonelist_order();
2229 current_zonelist_order
= user_zonelist_order
;
2232 static void build_zonelists(pg_data_t
*pgdat
)
2236 nodemask_t used_mask
;
2237 int local_node
, prev_node
;
2238 struct zonelist
*zonelist
;
2239 int order
= current_zonelist_order
;
2241 /* initialize zonelists */
2242 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2243 zonelist
= pgdat
->node_zonelists
+ i
;
2244 zonelist
->zones
[0] = NULL
;
2247 /* NUMA-aware ordering of nodes */
2248 local_node
= pgdat
->node_id
;
2249 load
= num_online_nodes();
2250 prev_node
= local_node
;
2251 nodes_clear(used_mask
);
2253 memset(node_load
, 0, sizeof(node_load
));
2254 memset(node_order
, 0, sizeof(node_order
));
2257 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2258 int distance
= node_distance(local_node
, node
);
2261 * If another node is sufficiently far away then it is better
2262 * to reclaim pages in a zone before going off node.
2264 if (distance
> RECLAIM_DISTANCE
)
2265 zone_reclaim_mode
= 1;
2268 * We don't want to pressure a particular node.
2269 * So adding penalty to the first node in same
2270 * distance group to make it round-robin.
2272 if (distance
!= node_distance(local_node
, prev_node
))
2273 node_load
[node
] = load
;
2277 if (order
== ZONELIST_ORDER_NODE
)
2278 build_zonelists_in_node_order(pgdat
, node
);
2280 node_order
[j
++] = node
; /* remember order */
2283 if (order
== ZONELIST_ORDER_ZONE
) {
2284 /* calculate node order -- i.e., DMA last! */
2285 build_zonelists_in_zone_order(pgdat
, j
);
2288 build_thisnode_zonelists(pgdat
);
2291 /* Construct the zonelist performance cache - see further mmzone.h */
2292 static void build_zonelist_cache(pg_data_t
*pgdat
)
2296 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2297 struct zonelist
*zonelist
;
2298 struct zonelist_cache
*zlc
;
2301 zonelist
= pgdat
->node_zonelists
+ i
;
2302 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2303 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2304 for (z
= zonelist
->zones
; *z
; z
++)
2305 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
2310 #else /* CONFIG_NUMA */
2312 static void set_zonelist_order(void)
2314 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2317 static void build_zonelists(pg_data_t
*pgdat
)
2319 int node
, local_node
;
2322 local_node
= pgdat
->node_id
;
2323 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2324 struct zonelist
*zonelist
;
2326 zonelist
= pgdat
->node_zonelists
+ i
;
2328 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2330 * Now we build the zonelist so that it contains the zones
2331 * of all the other nodes.
2332 * We don't want to pressure a particular node, so when
2333 * building the zones for node N, we make sure that the
2334 * zones coming right after the local ones are those from
2335 * node N+1 (modulo N)
2337 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2338 if (!node_online(node
))
2340 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2342 for (node
= 0; node
< local_node
; node
++) {
2343 if (!node_online(node
))
2345 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2348 zonelist
->zones
[j
] = NULL
;
2352 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2353 static void build_zonelist_cache(pg_data_t
*pgdat
)
2357 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2358 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
2361 #endif /* CONFIG_NUMA */
2363 /* return values int ....just for stop_machine_run() */
2364 static int __build_all_zonelists(void *dummy
)
2368 for_each_online_node(nid
) {
2369 pg_data_t
*pgdat
= NODE_DATA(nid
);
2371 build_zonelists(pgdat
);
2372 build_zonelist_cache(pgdat
);
2377 void build_all_zonelists(void)
2379 set_zonelist_order();
2381 if (system_state
== SYSTEM_BOOTING
) {
2382 __build_all_zonelists(NULL
);
2383 cpuset_init_current_mems_allowed();
2385 /* we have to stop all cpus to guarantee there is no user
2387 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2388 /* cpuset refresh routine should be here */
2390 vm_total_pages
= nr_free_pagecache_pages();
2392 * Disable grouping by mobility if the number of pages in the
2393 * system is too low to allow the mechanism to work. It would be
2394 * more accurate, but expensive to check per-zone. This check is
2395 * made on memory-hotadd so a system can start with mobility
2396 * disabled and enable it later
2398 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2399 page_group_by_mobility_disabled
= 1;
2401 page_group_by_mobility_disabled
= 0;
2403 printk("Built %i zonelists in %s order, mobility grouping %s. "
2404 "Total pages: %ld\n",
2406 zonelist_order_name
[current_zonelist_order
],
2407 page_group_by_mobility_disabled
? "off" : "on",
2410 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2415 * Helper functions to size the waitqueue hash table.
2416 * Essentially these want to choose hash table sizes sufficiently
2417 * large so that collisions trying to wait on pages are rare.
2418 * But in fact, the number of active page waitqueues on typical
2419 * systems is ridiculously low, less than 200. So this is even
2420 * conservative, even though it seems large.
2422 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2423 * waitqueues, i.e. the size of the waitq table given the number of pages.
2425 #define PAGES_PER_WAITQUEUE 256
2427 #ifndef CONFIG_MEMORY_HOTPLUG
2428 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2430 unsigned long size
= 1;
2432 pages
/= PAGES_PER_WAITQUEUE
;
2434 while (size
< pages
)
2438 * Once we have dozens or even hundreds of threads sleeping
2439 * on IO we've got bigger problems than wait queue collision.
2440 * Limit the size of the wait table to a reasonable size.
2442 size
= min(size
, 4096UL);
2444 return max(size
, 4UL);
2448 * A zone's size might be changed by hot-add, so it is not possible to determine
2449 * a suitable size for its wait_table. So we use the maximum size now.
2451 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2453 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2454 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2455 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2457 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2458 * or more by the traditional way. (See above). It equals:
2460 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2461 * ia64(16K page size) : = ( 8G + 4M)byte.
2462 * powerpc (64K page size) : = (32G +16M)byte.
2464 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2471 * This is an integer logarithm so that shifts can be used later
2472 * to extract the more random high bits from the multiplicative
2473 * hash function before the remainder is taken.
2475 static inline unsigned long wait_table_bits(unsigned long size
)
2480 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2483 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2484 * of blocks reserved is based on zone->pages_min. The memory within the
2485 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2486 * higher will lead to a bigger reserve which will get freed as contiguous
2487 * blocks as reclaim kicks in
2489 static void setup_zone_migrate_reserve(struct zone
*zone
)
2491 unsigned long start_pfn
, pfn
, end_pfn
;
2493 unsigned long reserve
, block_migratetype
;
2495 /* Get the start pfn, end pfn and the number of blocks to reserve */
2496 start_pfn
= zone
->zone_start_pfn
;
2497 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2498 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2501 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2502 if (!pfn_valid(pfn
))
2504 page
= pfn_to_page(pfn
);
2506 /* Blocks with reserved pages will never free, skip them. */
2507 if (PageReserved(page
))
2510 block_migratetype
= get_pageblock_migratetype(page
);
2512 /* If this block is reserved, account for it */
2513 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2518 /* Suitable for reserving if this block is movable */
2519 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2520 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2521 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2527 * If the reserve is met and this is a previous reserved block,
2530 if (block_migratetype
== MIGRATE_RESERVE
) {
2531 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2532 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2538 * Initially all pages are reserved - free ones are freed
2539 * up by free_all_bootmem() once the early boot process is
2540 * done. Non-atomic initialization, single-pass.
2542 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2543 unsigned long start_pfn
, enum memmap_context context
)
2546 unsigned long end_pfn
= start_pfn
+ size
;
2549 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2551 * There can be holes in boot-time mem_map[]s
2552 * handed to this function. They do not
2553 * exist on hotplugged memory.
2555 if (context
== MEMMAP_EARLY
) {
2556 if (!early_pfn_valid(pfn
))
2558 if (!early_pfn_in_nid(pfn
, nid
))
2561 page
= pfn_to_page(pfn
);
2562 set_page_links(page
, zone
, nid
, pfn
);
2563 init_page_count(page
);
2564 reset_page_mapcount(page
);
2565 <<<<<<< HEAD
:mm
/page_alloc
.c
2566 page_assign_page_cgroup(page
, NULL
);
2568 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
2569 SetPageReserved(page
);
2572 * Mark the block movable so that blocks are reserved for
2573 * movable at startup. This will force kernel allocations
2574 * to reserve their blocks rather than leaking throughout
2575 * the address space during boot when many long-lived
2576 * kernel allocations are made. Later some blocks near
2577 * the start are marked MIGRATE_RESERVE by
2578 * setup_zone_migrate_reserve()
2580 if ((pfn
& (pageblock_nr_pages
-1)))
2581 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2583 INIT_LIST_HEAD(&page
->lru
);
2584 #ifdef WANT_PAGE_VIRTUAL
2585 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2586 if (!is_highmem_idx(zone
))
2587 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2592 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2595 for_each_migratetype_order(order
, t
) {
2596 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2597 zone
->free_area
[order
].nr_free
= 0;
2601 #ifndef __HAVE_ARCH_MEMMAP_INIT
2602 #define memmap_init(size, nid, zone, start_pfn) \
2603 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2606 static int zone_batchsize(struct zone
*zone
)
2611 * The per-cpu-pages pools are set to around 1000th of the
2612 * size of the zone. But no more than 1/2 of a meg.
2614 * OK, so we don't know how big the cache is. So guess.
2616 batch
= zone
->present_pages
/ 1024;
2617 if (batch
* PAGE_SIZE
> 512 * 1024)
2618 batch
= (512 * 1024) / PAGE_SIZE
;
2619 batch
/= 4; /* We effectively *= 4 below */
2624 * Clamp the batch to a 2^n - 1 value. Having a power
2625 * of 2 value was found to be more likely to have
2626 * suboptimal cache aliasing properties in some cases.
2628 * For example if 2 tasks are alternately allocating
2629 * batches of pages, one task can end up with a lot
2630 * of pages of one half of the possible page colors
2631 * and the other with pages of the other colors.
2633 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2638 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2640 struct per_cpu_pages
*pcp
;
2642 memset(p
, 0, sizeof(*p
));
2646 pcp
->high
= 6 * batch
;
2647 pcp
->batch
= max(1UL, 1 * batch
);
2648 INIT_LIST_HEAD(&pcp
->list
);
2652 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2653 * to the value high for the pageset p.
2656 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2659 struct per_cpu_pages
*pcp
;
2663 pcp
->batch
= max(1UL, high
/4);
2664 if ((high
/4) > (PAGE_SHIFT
* 8))
2665 pcp
->batch
= PAGE_SHIFT
* 8;
2671 * Boot pageset table. One per cpu which is going to be used for all
2672 * zones and all nodes. The parameters will be set in such a way
2673 * that an item put on a list will immediately be handed over to
2674 * the buddy list. This is safe since pageset manipulation is done
2675 * with interrupts disabled.
2677 * Some NUMA counter updates may also be caught by the boot pagesets.
2679 * The boot_pagesets must be kept even after bootup is complete for
2680 * unused processors and/or zones. They do play a role for bootstrapping
2681 * hotplugged processors.
2683 * zoneinfo_show() and maybe other functions do
2684 * not check if the processor is online before following the pageset pointer.
2685 * Other parts of the kernel may not check if the zone is available.
2687 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2690 * Dynamically allocate memory for the
2691 * per cpu pageset array in struct zone.
2693 static int __cpuinit
process_zones(int cpu
)
2695 struct zone
*zone
, *dzone
;
2696 int node
= cpu_to_node(cpu
);
2698 node_set_state(node
, N_CPU
); /* this node has a cpu */
2700 for_each_zone(zone
) {
2702 if (!populated_zone(zone
))
2705 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2707 if (!zone_pcp(zone
, cpu
))
2710 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2712 if (percpu_pagelist_fraction
)
2713 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2714 (zone
->present_pages
/ percpu_pagelist_fraction
));
2719 for_each_zone(dzone
) {
2720 if (!populated_zone(dzone
))
2724 kfree(zone_pcp(dzone
, cpu
));
2725 zone_pcp(dzone
, cpu
) = NULL
;
2730 static inline void free_zone_pagesets(int cpu
)
2734 for_each_zone(zone
) {
2735 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2737 /* Free per_cpu_pageset if it is slab allocated */
2738 if (pset
!= &boot_pageset
[cpu
])
2740 zone_pcp(zone
, cpu
) = NULL
;
2744 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2745 unsigned long action
,
2748 int cpu
= (long)hcpu
;
2749 int ret
= NOTIFY_OK
;
2752 case CPU_UP_PREPARE
:
2753 case CPU_UP_PREPARE_FROZEN
:
2754 if (process_zones(cpu
))
2757 case CPU_UP_CANCELED
:
2758 case CPU_UP_CANCELED_FROZEN
:
2760 case CPU_DEAD_FROZEN
:
2761 free_zone_pagesets(cpu
);
2769 static struct notifier_block __cpuinitdata pageset_notifier
=
2770 { &pageset_cpuup_callback
, NULL
, 0 };
2772 void __init
setup_per_cpu_pageset(void)
2776 /* Initialize per_cpu_pageset for cpu 0.
2777 * A cpuup callback will do this for every cpu
2778 * as it comes online
2780 err
= process_zones(smp_processor_id());
2782 register_cpu_notifier(&pageset_notifier
);
2787 static noinline __init_refok
2788 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2791 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2795 * The per-page waitqueue mechanism uses hashed waitqueues
2798 zone
->wait_table_hash_nr_entries
=
2799 wait_table_hash_nr_entries(zone_size_pages
);
2800 zone
->wait_table_bits
=
2801 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2802 alloc_size
= zone
->wait_table_hash_nr_entries
2803 * sizeof(wait_queue_head_t
);
2805 if (system_state
== SYSTEM_BOOTING
) {
2806 zone
->wait_table
= (wait_queue_head_t
*)
2807 alloc_bootmem_node(pgdat
, alloc_size
);
2810 * This case means that a zone whose size was 0 gets new memory
2811 * via memory hot-add.
2812 * But it may be the case that a new node was hot-added. In
2813 * this case vmalloc() will not be able to use this new node's
2814 * memory - this wait_table must be initialized to use this new
2815 * node itself as well.
2816 * To use this new node's memory, further consideration will be
2819 zone
->wait_table
= vmalloc(alloc_size
);
2821 if (!zone
->wait_table
)
2824 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2825 init_waitqueue_head(zone
->wait_table
+ i
);
2830 static __meminit
void zone_pcp_init(struct zone
*zone
)
2833 unsigned long batch
= zone_batchsize(zone
);
2835 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2837 /* Early boot. Slab allocator not functional yet */
2838 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2839 setup_pageset(&boot_pageset
[cpu
],0);
2841 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2844 if (zone
->present_pages
)
2845 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2846 zone
->name
, zone
->present_pages
, batch
);
2849 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2850 unsigned long zone_start_pfn
,
2852 enum memmap_context context
)
2854 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2856 ret
= zone_wait_table_init(zone
, size
);
2859 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2861 zone
->zone_start_pfn
= zone_start_pfn
;
2863 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2865 zone_init_free_lists(zone
);
2870 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2872 * Basic iterator support. Return the first range of PFNs for a node
2873 * Note: nid == MAX_NUMNODES returns first region regardless of node
2875 static int __meminit
first_active_region_index_in_nid(int nid
)
2879 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2880 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2887 * Basic iterator support. Return the next active range of PFNs for a node
2888 * Note: nid == MAX_NUMNODES returns next region regardless of node
2890 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2892 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2893 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2899 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2901 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2902 * Architectures may implement their own version but if add_active_range()
2903 * was used and there are no special requirements, this is a convenient
2906 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2910 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2911 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2912 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2914 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2915 return early_node_map
[i
].nid
;
2920 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2922 /* Basic iterator support to walk early_node_map[] */
2923 #define for_each_active_range_index_in_nid(i, nid) \
2924 for (i = first_active_region_index_in_nid(nid); i != -1; \
2925 i = next_active_region_index_in_nid(i, nid))
2928 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2929 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2930 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2932 * If an architecture guarantees that all ranges registered with
2933 * add_active_ranges() contain no holes and may be freed, this
2934 * this function may be used instead of calling free_bootmem() manually.
2936 void __init
free_bootmem_with_active_regions(int nid
,
2937 unsigned long max_low_pfn
)
2941 for_each_active_range_index_in_nid(i
, nid
) {
2942 unsigned long size_pages
= 0;
2943 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2945 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2948 if (end_pfn
> max_low_pfn
)
2949 end_pfn
= max_low_pfn
;
2951 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2952 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2953 PFN_PHYS(early_node_map
[i
].start_pfn
),
2954 size_pages
<< PAGE_SHIFT
);
2959 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2960 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2962 * If an architecture guarantees that all ranges registered with
2963 * add_active_ranges() contain no holes and may be freed, this
2964 * function may be used instead of calling memory_present() manually.
2966 void __init
sparse_memory_present_with_active_regions(int nid
)
2970 for_each_active_range_index_in_nid(i
, nid
)
2971 memory_present(early_node_map
[i
].nid
,
2972 early_node_map
[i
].start_pfn
,
2973 early_node_map
[i
].end_pfn
);
2977 * push_node_boundaries - Push node boundaries to at least the requested boundary
2978 * @nid: The nid of the node to push the boundary for
2979 * @start_pfn: The start pfn of the node
2980 * @end_pfn: The end pfn of the node
2982 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2983 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2984 * be hotplugged even though no physical memory exists. This function allows
2985 * an arch to push out the node boundaries so mem_map is allocated that can
2988 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2989 void __init
push_node_boundaries(unsigned int nid
,
2990 unsigned long start_pfn
, unsigned long end_pfn
)
2992 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2993 nid
, start_pfn
, end_pfn
);
2995 /* Initialise the boundary for this node if necessary */
2996 if (node_boundary_end_pfn
[nid
] == 0)
2997 node_boundary_start_pfn
[nid
] = -1UL;
2999 /* Update the boundaries */
3000 if (node_boundary_start_pfn
[nid
] > start_pfn
)
3001 node_boundary_start_pfn
[nid
] = start_pfn
;
3002 if (node_boundary_end_pfn
[nid
] < end_pfn
)
3003 node_boundary_end_pfn
[nid
] = end_pfn
;
3006 /* If necessary, push the node boundary out for reserve hotadd */
3007 static void __meminit
account_node_boundary(unsigned int nid
,
3008 unsigned long *start_pfn
, unsigned long *end_pfn
)
3010 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
3011 nid
, *start_pfn
, *end_pfn
);
3013 /* Return if boundary information has not been provided */
3014 if (node_boundary_end_pfn
[nid
] == 0)
3017 /* Check the boundaries and update if necessary */
3018 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
3019 *start_pfn
= node_boundary_start_pfn
[nid
];
3020 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
3021 *end_pfn
= node_boundary_end_pfn
[nid
];
3024 void __init
push_node_boundaries(unsigned int nid
,
3025 unsigned long start_pfn
, unsigned long end_pfn
) {}
3027 static void __meminit
account_node_boundary(unsigned int nid
,
3028 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3033 * get_pfn_range_for_nid - Return the start and end page frames for a node
3034 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3035 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3036 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3038 * It returns the start and end page frame of a node based on information
3039 * provided by an arch calling add_active_range(). If called for a node
3040 * with no available memory, a warning is printed and the start and end
3043 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3044 unsigned long *start_pfn
, unsigned long *end_pfn
)
3050 for_each_active_range_index_in_nid(i
, nid
) {
3051 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3052 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3055 if (*start_pfn
== -1UL)
3058 /* Push the node boundaries out if requested */
3059 account_node_boundary(nid
, start_pfn
, end_pfn
);
3063 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3064 * assumption is made that zones within a node are ordered in monotonic
3065 * increasing memory addresses so that the "highest" populated zone is used
3067 void __init
find_usable_zone_for_movable(void)
3070 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3071 if (zone_index
== ZONE_MOVABLE
)
3074 if (arch_zone_highest_possible_pfn
[zone_index
] >
3075 arch_zone_lowest_possible_pfn
[zone_index
])
3079 VM_BUG_ON(zone_index
== -1);
3080 movable_zone
= zone_index
;
3084 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3085 * because it is sized independant of architecture. Unlike the other zones,
3086 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3087 * in each node depending on the size of each node and how evenly kernelcore
3088 * is distributed. This helper function adjusts the zone ranges
3089 * provided by the architecture for a given node by using the end of the
3090 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3091 * zones within a node are in order of monotonic increases memory addresses
3093 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3094 unsigned long zone_type
,
3095 unsigned long node_start_pfn
,
3096 unsigned long node_end_pfn
,
3097 unsigned long *zone_start_pfn
,
3098 unsigned long *zone_end_pfn
)
3100 /* Only adjust if ZONE_MOVABLE is on this node */
3101 if (zone_movable_pfn
[nid
]) {
3102 /* Size ZONE_MOVABLE */
3103 if (zone_type
== ZONE_MOVABLE
) {
3104 *zone_start_pfn
= zone_movable_pfn
[nid
];
3105 *zone_end_pfn
= min(node_end_pfn
,
3106 arch_zone_highest_possible_pfn
[movable_zone
]);
3108 /* Adjust for ZONE_MOVABLE starting within this range */
3109 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3110 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3111 *zone_end_pfn
= zone_movable_pfn
[nid
];
3113 /* Check if this whole range is within ZONE_MOVABLE */
3114 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3115 *zone_start_pfn
= *zone_end_pfn
;
3120 * Return the number of pages a zone spans in a node, including holes
3121 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3123 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3124 unsigned long zone_type
,
3125 unsigned long *ignored
)
3127 unsigned long node_start_pfn
, node_end_pfn
;
3128 unsigned long zone_start_pfn
, zone_end_pfn
;
3130 /* Get the start and end of the node and zone */
3131 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3132 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3133 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3134 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3135 node_start_pfn
, node_end_pfn
,
3136 &zone_start_pfn
, &zone_end_pfn
);
3138 /* Check that this node has pages within the zone's required range */
3139 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3142 /* Move the zone boundaries inside the node if necessary */
3143 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3144 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3146 /* Return the spanned pages */
3147 return zone_end_pfn
- zone_start_pfn
;
3151 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3152 * then all holes in the requested range will be accounted for.
3154 unsigned long __meminit
__absent_pages_in_range(int nid
,
3155 unsigned long range_start_pfn
,
3156 unsigned long range_end_pfn
)
3159 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3160 unsigned long start_pfn
;
3162 /* Find the end_pfn of the first active range of pfns in the node */
3163 i
= first_active_region_index_in_nid(nid
);
3167 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3169 /* Account for ranges before physical memory on this node */
3170 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3171 hole_pages
= prev_end_pfn
- range_start_pfn
;
3173 /* Find all holes for the zone within the node */
3174 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3176 /* No need to continue if prev_end_pfn is outside the zone */
3177 if (prev_end_pfn
>= range_end_pfn
)
3180 /* Make sure the end of the zone is not within the hole */
3181 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3182 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3184 /* Update the hole size cound and move on */
3185 if (start_pfn
> range_start_pfn
) {
3186 BUG_ON(prev_end_pfn
> start_pfn
);
3187 hole_pages
+= start_pfn
- prev_end_pfn
;
3189 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3192 /* Account for ranges past physical memory on this node */
3193 if (range_end_pfn
> prev_end_pfn
)
3194 hole_pages
+= range_end_pfn
-
3195 max(range_start_pfn
, prev_end_pfn
);
3201 * absent_pages_in_range - Return number of page frames in holes within a range
3202 * @start_pfn: The start PFN to start searching for holes
3203 * @end_pfn: The end PFN to stop searching for holes
3205 * It returns the number of pages frames in memory holes within a range.
3207 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3208 unsigned long end_pfn
)
3210 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3213 /* Return the number of page frames in holes in a zone on a node */
3214 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3215 unsigned long zone_type
,
3216 unsigned long *ignored
)
3218 unsigned long node_start_pfn
, node_end_pfn
;
3219 unsigned long zone_start_pfn
, zone_end_pfn
;
3221 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3222 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3224 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3227 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3228 node_start_pfn
, node_end_pfn
,
3229 &zone_start_pfn
, &zone_end_pfn
);
3230 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3234 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3235 unsigned long zone_type
,
3236 unsigned long *zones_size
)
3238 return zones_size
[zone_type
];
3241 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3242 unsigned long zone_type
,
3243 unsigned long *zholes_size
)
3248 return zholes_size
[zone_type
];
3253 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3254 unsigned long *zones_size
, unsigned long *zholes_size
)
3256 unsigned long realtotalpages
, totalpages
= 0;
3259 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3260 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3262 pgdat
->node_spanned_pages
= totalpages
;
3264 realtotalpages
= totalpages
;
3265 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3267 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3269 pgdat
->node_present_pages
= realtotalpages
;
3270 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3274 #ifndef CONFIG_SPARSEMEM
3276 * Calculate the size of the zone->blockflags rounded to an unsigned long
3277 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3278 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3279 * round what is now in bits to nearest long in bits, then return it in
3282 static unsigned long __init
usemap_size(unsigned long zonesize
)
3284 unsigned long usemapsize
;
3286 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3287 usemapsize
= usemapsize
>> pageblock_order
;
3288 usemapsize
*= NR_PAGEBLOCK_BITS
;
3289 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3291 return usemapsize
/ 8;
3294 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3295 struct zone
*zone
, unsigned long zonesize
)
3297 unsigned long usemapsize
= usemap_size(zonesize
);
3298 zone
->pageblock_flags
= NULL
;
3300 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3301 memset(zone
->pageblock_flags
, 0, usemapsize
);
3305 static void inline setup_usemap(struct pglist_data
*pgdat
,
3306 struct zone
*zone
, unsigned long zonesize
) {}
3307 #endif /* CONFIG_SPARSEMEM */
3309 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3311 /* Return a sensible default order for the pageblock size. */
3312 static inline int pageblock_default_order(void)
3314 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3315 return HUGETLB_PAGE_ORDER
;
3320 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3321 static inline void __init
set_pageblock_order(unsigned int order
)
3323 /* Check that pageblock_nr_pages has not already been setup */
3324 if (pageblock_order
)
3328 * Assume the largest contiguous order of interest is a huge page.
3329 * This value may be variable depending on boot parameters on IA64
3331 pageblock_order
= order
;
3333 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3336 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3337 * and pageblock_default_order() are unused as pageblock_order is set
3338 * at compile-time. See include/linux/pageblock-flags.h for the values of
3339 * pageblock_order based on the kernel config
3341 static inline int pageblock_default_order(unsigned int order
)
3345 #define set_pageblock_order(x) do {} while (0)
3347 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3350 * Set up the zone data structures:
3351 * - mark all pages reserved
3352 * - mark all memory queues empty
3353 * - clear the memory bitmaps
3355 <<<<<<< HEAD
:mm
/page_alloc
.c
3356 static void __meminit
free_area_init_core(struct pglist_data
*pgdat
,
3358 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3359 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
3360 unsigned long *zones_size
, unsigned long *zholes_size
)
3363 int nid
= pgdat
->node_id
;
3364 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3367 pgdat_resize_init(pgdat
);
3368 pgdat
->nr_zones
= 0;
3369 init_waitqueue_head(&pgdat
->kswapd_wait
);
3370 pgdat
->kswapd_max_order
= 0;
3372 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3373 struct zone
*zone
= pgdat
->node_zones
+ j
;
3374 unsigned long size
, realsize
, memmap_pages
;
3376 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3377 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3381 * Adjust realsize so that it accounts for how much memory
3382 * is used by this zone for memmap. This affects the watermark
3383 * and per-cpu initialisations
3385 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3386 if (realsize
>= memmap_pages
) {
3387 realsize
-= memmap_pages
;
3389 " %s zone: %lu pages used for memmap\n",
3390 zone_names
[j
], memmap_pages
);
3393 " %s zone: %lu pages exceeds realsize %lu\n",
3394 zone_names
[j
], memmap_pages
, realsize
);
3396 /* Account for reserved pages */
3397 if (j
== 0 && realsize
> dma_reserve
) {
3398 realsize
-= dma_reserve
;
3399 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3400 zone_names
[0], dma_reserve
);
3403 if (!is_highmem_idx(j
))
3404 nr_kernel_pages
+= realsize
;
3405 nr_all_pages
+= realsize
;
3407 zone
->spanned_pages
= size
;
3408 zone
->present_pages
= realsize
;
3411 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3413 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3415 zone
->name
= zone_names
[j
];
3416 spin_lock_init(&zone
->lock
);
3417 spin_lock_init(&zone
->lru_lock
);
3418 zone_seqlock_init(zone
);
3419 zone
->zone_pgdat
= pgdat
;
3421 zone
->prev_priority
= DEF_PRIORITY
;
3423 zone_pcp_init(zone
);
3424 INIT_LIST_HEAD(&zone
->active_list
);
3425 INIT_LIST_HEAD(&zone
->inactive_list
);
3426 zone
->nr_scan_active
= 0;
3427 zone
->nr_scan_inactive
= 0;
3428 zap_zone_vm_stats(zone
);
3433 set_pageblock_order(pageblock_default_order());
3434 setup_usemap(pgdat
, zone
, size
);
3435 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3436 size
, MEMMAP_EARLY
);
3438 zone_start_pfn
+= size
;
3442 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3444 /* Skip empty nodes */
3445 if (!pgdat
->node_spanned_pages
)
3448 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3449 /* ia64 gets its own node_mem_map, before this, without bootmem */
3450 if (!pgdat
->node_mem_map
) {
3451 unsigned long size
, start
, end
;
3455 * The zone's endpoints aren't required to be MAX_ORDER
3456 * aligned but the node_mem_map endpoints must be in order
3457 * for the buddy allocator to function correctly.
3459 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3460 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3461 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3462 size
= (end
- start
) * sizeof(struct page
);
3463 map
= alloc_remap(pgdat
->node_id
, size
);
3465 map
= alloc_bootmem_node(pgdat
, size
);
3466 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3468 #ifndef CONFIG_NEED_MULTIPLE_NODES
3470 * With no DISCONTIG, the global mem_map is just set as node 0's
3472 if (pgdat
== NODE_DATA(0)) {
3473 mem_map
= NODE_DATA(0)->node_mem_map
;
3474 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3475 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3476 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3477 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3480 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3483 <<<<<<< HEAD
:mm
/page_alloc
.c
3484 void __meminit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3486 void __paginginit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3487 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/page_alloc
.c
3488 unsigned long *zones_size
, unsigned long node_start_pfn
,
3489 unsigned long *zholes_size
)
3491 pgdat
->node_id
= nid
;
3492 pgdat
->node_start_pfn
= node_start_pfn
;
3493 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3495 alloc_node_mem_map(pgdat
);
3497 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3500 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3502 #if MAX_NUMNODES > 1
3504 * Figure out the number of possible node ids.
3506 static void __init
setup_nr_node_ids(void)
3509 unsigned int highest
= 0;
3511 for_each_node_mask(node
, node_possible_map
)
3513 nr_node_ids
= highest
+ 1;
3516 static inline void setup_nr_node_ids(void)
3522 * add_active_range - Register a range of PFNs backed by physical memory
3523 * @nid: The node ID the range resides on
3524 * @start_pfn: The start PFN of the available physical memory
3525 * @end_pfn: The end PFN of the available physical memory
3527 * These ranges are stored in an early_node_map[] and later used by
3528 * free_area_init_nodes() to calculate zone sizes and holes. If the
3529 * range spans a memory hole, it is up to the architecture to ensure
3530 * the memory is not freed by the bootmem allocator. If possible
3531 * the range being registered will be merged with existing ranges.
3533 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3534 unsigned long end_pfn
)
3538 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3539 "%d entries of %d used\n",
3540 nid
, start_pfn
, end_pfn
,
3541 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3543 /* Merge with existing active regions if possible */
3544 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3545 if (early_node_map
[i
].nid
!= nid
)
3548 /* Skip if an existing region covers this new one */
3549 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3550 end_pfn
<= early_node_map
[i
].end_pfn
)
3553 /* Merge forward if suitable */
3554 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3555 end_pfn
> early_node_map
[i
].end_pfn
) {
3556 early_node_map
[i
].end_pfn
= end_pfn
;
3560 /* Merge backward if suitable */
3561 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3562 end_pfn
>= early_node_map
[i
].start_pfn
) {
3563 early_node_map
[i
].start_pfn
= start_pfn
;
3568 /* Check that early_node_map is large enough */
3569 if (i
>= MAX_ACTIVE_REGIONS
) {
3570 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3571 MAX_ACTIVE_REGIONS
);
3575 early_node_map
[i
].nid
= nid
;
3576 early_node_map
[i
].start_pfn
= start_pfn
;
3577 early_node_map
[i
].end_pfn
= end_pfn
;
3578 nr_nodemap_entries
= i
+ 1;
3582 * shrink_active_range - Shrink an existing registered range of PFNs
3583 * @nid: The node id the range is on that should be shrunk
3584 * @old_end_pfn: The old end PFN of the range
3585 * @new_end_pfn: The new PFN of the range
3587 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3588 * The map is kept at the end physical page range that has already been
3589 * registered with add_active_range(). This function allows an arch to shrink
3590 * an existing registered range.
3592 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3593 unsigned long new_end_pfn
)
3597 /* Find the old active region end and shrink */
3598 for_each_active_range_index_in_nid(i
, nid
)
3599 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3600 early_node_map
[i
].end_pfn
= new_end_pfn
;
3606 * remove_all_active_ranges - Remove all currently registered regions
3608 * During discovery, it may be found that a table like SRAT is invalid
3609 * and an alternative discovery method must be used. This function removes
3610 * all currently registered regions.
3612 void __init
remove_all_active_ranges(void)
3614 memset(early_node_map
, 0, sizeof(early_node_map
));
3615 nr_nodemap_entries
= 0;
3616 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3617 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3618 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3619 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3622 /* Compare two active node_active_regions */
3623 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3625 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3626 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3628 /* Done this way to avoid overflows */
3629 if (arange
->start_pfn
> brange
->start_pfn
)
3631 if (arange
->start_pfn
< brange
->start_pfn
)
3637 /* sort the node_map by start_pfn */
3638 static void __init
sort_node_map(void)
3640 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3641 sizeof(struct node_active_region
),
3642 cmp_node_active_region
, NULL
);
3645 /* Find the lowest pfn for a node */
3646 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3649 unsigned long min_pfn
= ULONG_MAX
;
3651 /* Assuming a sorted map, the first range found has the starting pfn */
3652 for_each_active_range_index_in_nid(i
, nid
)
3653 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3655 if (min_pfn
== ULONG_MAX
) {
3657 "Could not find start_pfn for node %lu\n", nid
);
3665 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3667 * It returns the minimum PFN based on information provided via
3668 * add_active_range().
3670 unsigned long __init
find_min_pfn_with_active_regions(void)
3672 return find_min_pfn_for_node(MAX_NUMNODES
);
3676 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3678 * It returns the maximum PFN based on information provided via
3679 * add_active_range().
3681 unsigned long __init
find_max_pfn_with_active_regions(void)
3684 unsigned long max_pfn
= 0;
3686 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3687 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3693 * early_calculate_totalpages()
3694 * Sum pages in active regions for movable zone.
3695 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3697 static unsigned long __init
early_calculate_totalpages(void)
3700 unsigned long totalpages
= 0;
3702 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3703 unsigned long pages
= early_node_map
[i
].end_pfn
-
3704 early_node_map
[i
].start_pfn
;
3705 totalpages
+= pages
;
3707 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3713 * Find the PFN the Movable zone begins in each node. Kernel memory
3714 * is spread evenly between nodes as long as the nodes have enough
3715 * memory. When they don't, some nodes will have more kernelcore than
3718 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3721 unsigned long usable_startpfn
;
3722 unsigned long kernelcore_node
, kernelcore_remaining
;
3723 unsigned long totalpages
= early_calculate_totalpages();
3724 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3727 * If movablecore was specified, calculate what size of
3728 * kernelcore that corresponds so that memory usable for
3729 * any allocation type is evenly spread. If both kernelcore
3730 * and movablecore are specified, then the value of kernelcore
3731 * will be used for required_kernelcore if it's greater than
3732 * what movablecore would have allowed.
3734 if (required_movablecore
) {
3735 unsigned long corepages
;
3738 * Round-up so that ZONE_MOVABLE is at least as large as what
3739 * was requested by the user
3741 required_movablecore
=
3742 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3743 corepages
= totalpages
- required_movablecore
;
3745 required_kernelcore
= max(required_kernelcore
, corepages
);
3748 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3749 if (!required_kernelcore
)
3752 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3753 find_usable_zone_for_movable();
3754 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3757 /* Spread kernelcore memory as evenly as possible throughout nodes */
3758 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3759 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3761 * Recalculate kernelcore_node if the division per node
3762 * now exceeds what is necessary to satisfy the requested
3763 * amount of memory for the kernel
3765 if (required_kernelcore
< kernelcore_node
)
3766 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3769 * As the map is walked, we track how much memory is usable
3770 * by the kernel using kernelcore_remaining. When it is
3771 * 0, the rest of the node is usable by ZONE_MOVABLE
3773 kernelcore_remaining
= kernelcore_node
;
3775 /* Go through each range of PFNs within this node */
3776 for_each_active_range_index_in_nid(i
, nid
) {
3777 unsigned long start_pfn
, end_pfn
;
3778 unsigned long size_pages
;
3780 start_pfn
= max(early_node_map
[i
].start_pfn
,
3781 zone_movable_pfn
[nid
]);
3782 end_pfn
= early_node_map
[i
].end_pfn
;
3783 if (start_pfn
>= end_pfn
)
3786 /* Account for what is only usable for kernelcore */
3787 if (start_pfn
< usable_startpfn
) {
3788 unsigned long kernel_pages
;
3789 kernel_pages
= min(end_pfn
, usable_startpfn
)
3792 kernelcore_remaining
-= min(kernel_pages
,
3793 kernelcore_remaining
);
3794 required_kernelcore
-= min(kernel_pages
,
3795 required_kernelcore
);
3797 /* Continue if range is now fully accounted */
3798 if (end_pfn
<= usable_startpfn
) {
3801 * Push zone_movable_pfn to the end so
3802 * that if we have to rebalance
3803 * kernelcore across nodes, we will
3804 * not double account here
3806 zone_movable_pfn
[nid
] = end_pfn
;
3809 start_pfn
= usable_startpfn
;
3813 * The usable PFN range for ZONE_MOVABLE is from
3814 * start_pfn->end_pfn. Calculate size_pages as the
3815 * number of pages used as kernelcore
3817 size_pages
= end_pfn
- start_pfn
;
3818 if (size_pages
> kernelcore_remaining
)
3819 size_pages
= kernelcore_remaining
;
3820 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3823 * Some kernelcore has been met, update counts and
3824 * break if the kernelcore for this node has been
3827 required_kernelcore
-= min(required_kernelcore
,
3829 kernelcore_remaining
-= size_pages
;
3830 if (!kernelcore_remaining
)
3836 * If there is still required_kernelcore, we do another pass with one
3837 * less node in the count. This will push zone_movable_pfn[nid] further
3838 * along on the nodes that still have memory until kernelcore is
3842 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3845 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3846 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3847 zone_movable_pfn
[nid
] =
3848 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3851 /* Any regular memory on that node ? */
3852 static void check_for_regular_memory(pg_data_t
*pgdat
)
3854 #ifdef CONFIG_HIGHMEM
3855 enum zone_type zone_type
;
3857 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3858 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3859 if (zone
->present_pages
)
3860 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3866 * free_area_init_nodes - Initialise all pg_data_t and zone data
3867 * @max_zone_pfn: an array of max PFNs for each zone
3869 * This will call free_area_init_node() for each active node in the system.
3870 * Using the page ranges provided by add_active_range(), the size of each
3871 * zone in each node and their holes is calculated. If the maximum PFN
3872 * between two adjacent zones match, it is assumed that the zone is empty.
3873 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3874 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3875 * starts where the previous one ended. For example, ZONE_DMA32 starts
3876 * at arch_max_dma_pfn.
3878 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3883 /* Sort early_node_map as initialisation assumes it is sorted */
3886 /* Record where the zone boundaries are */
3887 memset(arch_zone_lowest_possible_pfn
, 0,
3888 sizeof(arch_zone_lowest_possible_pfn
));
3889 memset(arch_zone_highest_possible_pfn
, 0,
3890 sizeof(arch_zone_highest_possible_pfn
));
3891 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3892 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3893 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3894 if (i
== ZONE_MOVABLE
)
3896 arch_zone_lowest_possible_pfn
[i
] =
3897 arch_zone_highest_possible_pfn
[i
-1];
3898 arch_zone_highest_possible_pfn
[i
] =
3899 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3901 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3902 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3904 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3905 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3906 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3908 /* Print out the zone ranges */
3909 printk("Zone PFN ranges:\n");
3910 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3911 if (i
== ZONE_MOVABLE
)
3913 printk(" %-8s %8lu -> %8lu\n",
3915 arch_zone_lowest_possible_pfn
[i
],
3916 arch_zone_highest_possible_pfn
[i
]);
3919 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3920 printk("Movable zone start PFN for each node\n");
3921 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3922 if (zone_movable_pfn
[i
])
3923 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3926 /* Print out the early_node_map[] */
3927 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3928 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3929 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3930 early_node_map
[i
].start_pfn
,
3931 early_node_map
[i
].end_pfn
);
3933 /* Initialise every node */
3934 setup_nr_node_ids();
3935 for_each_online_node(nid
) {
3936 pg_data_t
*pgdat
= NODE_DATA(nid
);
3937 free_area_init_node(nid
, pgdat
, NULL
,
3938 find_min_pfn_for_node(nid
), NULL
);
3940 /* Any memory on that node */
3941 if (pgdat
->node_present_pages
)
3942 node_set_state(nid
, N_HIGH_MEMORY
);
3943 check_for_regular_memory(pgdat
);
3947 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3949 unsigned long long coremem
;
3953 coremem
= memparse(p
, &p
);
3954 *core
= coremem
>> PAGE_SHIFT
;
3956 /* Paranoid check that UL is enough for the coremem value */
3957 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3963 * kernelcore=size sets the amount of memory for use for allocations that
3964 * cannot be reclaimed or migrated.
3966 static int __init
cmdline_parse_kernelcore(char *p
)
3968 return cmdline_parse_core(p
, &required_kernelcore
);
3972 * movablecore=size sets the amount of memory for use for allocations that
3973 * can be reclaimed or migrated.
3975 static int __init
cmdline_parse_movablecore(char *p
)
3977 return cmdline_parse_core(p
, &required_movablecore
);
3980 early_param("kernelcore", cmdline_parse_kernelcore
);
3981 early_param("movablecore", cmdline_parse_movablecore
);
3983 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3986 * set_dma_reserve - set the specified number of pages reserved in the first zone
3987 * @new_dma_reserve: The number of pages to mark reserved
3989 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3990 * In the DMA zone, a significant percentage may be consumed by kernel image
3991 * and other unfreeable allocations which can skew the watermarks badly. This
3992 * function may optionally be used to account for unfreeable pages in the
3993 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3994 * smaller per-cpu batchsize.
3996 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3998 dma_reserve
= new_dma_reserve
;
4001 #ifndef CONFIG_NEED_MULTIPLE_NODES
4002 static bootmem_data_t contig_bootmem_data
;
4003 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
4005 EXPORT_SYMBOL(contig_page_data
);
4008 void __init
free_area_init(unsigned long *zones_size
)
4010 free_area_init_node(0, NODE_DATA(0), zones_size
,
4011 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4014 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4015 unsigned long action
, void *hcpu
)
4017 int cpu
= (unsigned long)hcpu
;
4019 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4023 * Spill the event counters of the dead processor
4024 * into the current processors event counters.
4025 * This artificially elevates the count of the current
4028 vm_events_fold_cpu(cpu
);
4031 * Zero the differential counters of the dead processor
4032 * so that the vm statistics are consistent.
4034 * This is only okay since the processor is dead and cannot
4035 * race with what we are doing.
4037 refresh_cpu_vm_stats(cpu
);
4042 void __init
page_alloc_init(void)
4044 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4048 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4049 * or min_free_kbytes changes.
4051 static void calculate_totalreserve_pages(void)
4053 struct pglist_data
*pgdat
;
4054 unsigned long reserve_pages
= 0;
4055 enum zone_type i
, j
;
4057 for_each_online_pgdat(pgdat
) {
4058 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4059 struct zone
*zone
= pgdat
->node_zones
+ i
;
4060 unsigned long max
= 0;
4062 /* Find valid and maximum lowmem_reserve in the zone */
4063 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4064 if (zone
->lowmem_reserve
[j
] > max
)
4065 max
= zone
->lowmem_reserve
[j
];
4068 /* we treat pages_high as reserved pages. */
4069 max
+= zone
->pages_high
;
4071 if (max
> zone
->present_pages
)
4072 max
= zone
->present_pages
;
4073 reserve_pages
+= max
;
4076 totalreserve_pages
= reserve_pages
;
4080 * setup_per_zone_lowmem_reserve - called whenever
4081 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4082 * has a correct pages reserved value, so an adequate number of
4083 * pages are left in the zone after a successful __alloc_pages().
4085 static void setup_per_zone_lowmem_reserve(void)
4087 struct pglist_data
*pgdat
;
4088 enum zone_type j
, idx
;
4090 for_each_online_pgdat(pgdat
) {
4091 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4092 struct zone
*zone
= pgdat
->node_zones
+ j
;
4093 unsigned long present_pages
= zone
->present_pages
;
4095 zone
->lowmem_reserve
[j
] = 0;
4099 struct zone
*lower_zone
;
4103 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4104 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4106 lower_zone
= pgdat
->node_zones
+ idx
;
4107 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4108 sysctl_lowmem_reserve_ratio
[idx
];
4109 present_pages
+= lower_zone
->present_pages
;
4114 /* update totalreserve_pages */
4115 calculate_totalreserve_pages();
4119 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4121 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4122 * with respect to min_free_kbytes.
4124 void setup_per_zone_pages_min(void)
4126 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4127 unsigned long lowmem_pages
= 0;
4129 unsigned long flags
;
4131 /* Calculate total number of !ZONE_HIGHMEM pages */
4132 for_each_zone(zone
) {
4133 if (!is_highmem(zone
))
4134 lowmem_pages
+= zone
->present_pages
;
4137 for_each_zone(zone
) {
4140 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4141 tmp
= (u64
)pages_min
* zone
->present_pages
;
4142 do_div(tmp
, lowmem_pages
);
4143 if (is_highmem(zone
)) {
4145 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4146 * need highmem pages, so cap pages_min to a small
4149 * The (pages_high-pages_low) and (pages_low-pages_min)
4150 * deltas controls asynch page reclaim, and so should
4151 * not be capped for highmem.
4155 min_pages
= zone
->present_pages
/ 1024;
4156 if (min_pages
< SWAP_CLUSTER_MAX
)
4157 min_pages
= SWAP_CLUSTER_MAX
;
4158 if (min_pages
> 128)
4160 zone
->pages_min
= min_pages
;
4163 * If it's a lowmem zone, reserve a number of pages
4164 * proportionate to the zone's size.
4166 zone
->pages_min
= tmp
;
4169 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4170 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4171 setup_zone_migrate_reserve(zone
);
4172 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4175 /* update totalreserve_pages */
4176 calculate_totalreserve_pages();
4180 * Initialise min_free_kbytes.
4182 * For small machines we want it small (128k min). For large machines
4183 * we want it large (64MB max). But it is not linear, because network
4184 * bandwidth does not increase linearly with machine size. We use
4186 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4187 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4203 static int __init
init_per_zone_pages_min(void)
4205 unsigned long lowmem_kbytes
;
4207 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4209 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4210 if (min_free_kbytes
< 128)
4211 min_free_kbytes
= 128;
4212 if (min_free_kbytes
> 65536)
4213 min_free_kbytes
= 65536;
4214 setup_per_zone_pages_min();
4215 setup_per_zone_lowmem_reserve();
4218 module_init(init_per_zone_pages_min
)
4221 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4222 * that we can call two helper functions whenever min_free_kbytes
4225 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4226 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4228 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4230 setup_per_zone_pages_min();
4235 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4236 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4241 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4246 zone
->min_unmapped_pages
= (zone
->present_pages
*
4247 sysctl_min_unmapped_ratio
) / 100;
4251 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4252 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4257 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4262 zone
->min_slab_pages
= (zone
->present_pages
*
4263 sysctl_min_slab_ratio
) / 100;
4269 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4270 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4271 * whenever sysctl_lowmem_reserve_ratio changes.
4273 * The reserve ratio obviously has absolutely no relation with the
4274 * pages_min watermarks. The lowmem reserve ratio can only make sense
4275 * if in function of the boot time zone sizes.
4277 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4278 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4280 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4281 setup_per_zone_lowmem_reserve();
4286 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4287 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4288 * can have before it gets flushed back to buddy allocator.
4291 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4292 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4298 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4299 if (!write
|| (ret
== -EINVAL
))
4301 for_each_zone(zone
) {
4302 for_each_online_cpu(cpu
) {
4304 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4305 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4311 int hashdist
= HASHDIST_DEFAULT
;
4314 static int __init
set_hashdist(char *str
)
4318 hashdist
= simple_strtoul(str
, &str
, 0);
4321 __setup("hashdist=", set_hashdist
);
4325 * allocate a large system hash table from bootmem
4326 * - it is assumed that the hash table must contain an exact power-of-2
4327 * quantity of entries
4328 * - limit is the number of hash buckets, not the total allocation size
4330 void *__init
alloc_large_system_hash(const char *tablename
,
4331 unsigned long bucketsize
,
4332 unsigned long numentries
,
4335 unsigned int *_hash_shift
,
4336 unsigned int *_hash_mask
,
4337 unsigned long limit
)
4339 unsigned long long max
= limit
;
4340 unsigned long log2qty
, size
;
4343 /* allow the kernel cmdline to have a say */
4345 /* round applicable memory size up to nearest megabyte */
4346 numentries
= nr_kernel_pages
;
4347 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4348 numentries
>>= 20 - PAGE_SHIFT
;
4349 numentries
<<= 20 - PAGE_SHIFT
;
4351 /* limit to 1 bucket per 2^scale bytes of low memory */
4352 if (scale
> PAGE_SHIFT
)
4353 numentries
>>= (scale
- PAGE_SHIFT
);
4355 numentries
<<= (PAGE_SHIFT
- scale
);
4357 /* Make sure we've got at least a 0-order allocation.. */
4358 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4359 numentries
= PAGE_SIZE
/ bucketsize
;
4361 numentries
= roundup_pow_of_two(numentries
);
4363 /* limit allocation size to 1/16 total memory by default */
4365 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4366 do_div(max
, bucketsize
);
4369 if (numentries
> max
)
4372 log2qty
= ilog2(numentries
);
4375 size
= bucketsize
<< log2qty
;
4376 if (flags
& HASH_EARLY
)
4377 table
= alloc_bootmem(size
);
4379 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4381 unsigned long order
;
4382 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
4384 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4386 * If bucketsize is not a power-of-two, we may free
4387 * some pages at the end of hash table.
4390 unsigned long alloc_end
= (unsigned long)table
+
4391 (PAGE_SIZE
<< order
);
4392 unsigned long used
= (unsigned long)table
+
4394 split_page(virt_to_page(table
), order
);
4395 while (used
< alloc_end
) {
4401 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4404 panic("Failed to allocate %s hash table\n", tablename
);
4406 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4409 ilog2(size
) - PAGE_SHIFT
,
4413 *_hash_shift
= log2qty
;
4415 *_hash_mask
= (1 << log2qty
) - 1;
4420 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4421 struct page
*pfn_to_page(unsigned long pfn
)
4423 return __pfn_to_page(pfn
);
4425 unsigned long page_to_pfn(struct page
*page
)
4427 return __page_to_pfn(page
);
4429 EXPORT_SYMBOL(pfn_to_page
);
4430 EXPORT_SYMBOL(page_to_pfn
);
4431 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4433 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4434 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4437 #ifdef CONFIG_SPARSEMEM
4438 return __pfn_to_section(pfn
)->pageblock_flags
;
4440 return zone
->pageblock_flags
;
4441 #endif /* CONFIG_SPARSEMEM */
4444 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4446 #ifdef CONFIG_SPARSEMEM
4447 pfn
&= (PAGES_PER_SECTION
-1);
4448 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4450 pfn
= pfn
- zone
->zone_start_pfn
;
4451 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4452 #endif /* CONFIG_SPARSEMEM */
4456 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4457 * @page: The page within the block of interest
4458 * @start_bitidx: The first bit of interest to retrieve
4459 * @end_bitidx: The last bit of interest
4460 * returns pageblock_bits flags
4462 unsigned long get_pageblock_flags_group(struct page
*page
,
4463 int start_bitidx
, int end_bitidx
)
4466 unsigned long *bitmap
;
4467 unsigned long pfn
, bitidx
;
4468 unsigned long flags
= 0;
4469 unsigned long value
= 1;
4471 zone
= page_zone(page
);
4472 pfn
= page_to_pfn(page
);
4473 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4474 bitidx
= pfn_to_bitidx(zone
, pfn
);
4476 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4477 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4484 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4485 * @page: The page within the block of interest
4486 * @start_bitidx: The first bit of interest
4487 * @end_bitidx: The last bit of interest
4488 * @flags: The flags to set
4490 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4491 int start_bitidx
, int end_bitidx
)
4494 unsigned long *bitmap
;
4495 unsigned long pfn
, bitidx
;
4496 unsigned long value
= 1;
4498 zone
= page_zone(page
);
4499 pfn
= page_to_pfn(page
);
4500 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4501 bitidx
= pfn_to_bitidx(zone
, pfn
);
4503 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4505 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4507 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4511 * This is designed as sub function...plz see page_isolation.c also.
4512 * set/clear page block's type to be ISOLATE.
4513 * page allocater never alloc memory from ISOLATE block.
4516 int set_migratetype_isolate(struct page
*page
)
4519 unsigned long flags
;
4522 zone
= page_zone(page
);
4523 spin_lock_irqsave(&zone
->lock
, flags
);
4525 * In future, more migrate types will be able to be isolation target.
4527 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4529 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4530 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4533 spin_unlock_irqrestore(&zone
->lock
, flags
);
4539 void unset_migratetype_isolate(struct page
*page
)
4542 unsigned long flags
;
4543 zone
= page_zone(page
);
4544 spin_lock_irqsave(&zone
->lock
, flags
);
4545 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4547 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4548 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4550 spin_unlock_irqrestore(&zone
->lock
, flags
);
4553 #ifdef CONFIG_MEMORY_HOTREMOVE
4555 * All pages in the range must be isolated before calling this.
4558 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4564 unsigned long flags
;
4565 /* find the first valid pfn */
4566 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4571 zone
= page_zone(pfn_to_page(pfn
));
4572 spin_lock_irqsave(&zone
->lock
, flags
);
4574 while (pfn
< end_pfn
) {
4575 if (!pfn_valid(pfn
)) {
4579 page
= pfn_to_page(pfn
);
4580 BUG_ON(page_count(page
));
4581 BUG_ON(!PageBuddy(page
));
4582 order
= page_order(page
);
4583 #ifdef CONFIG_DEBUG_VM
4584 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4585 pfn
, 1 << order
, end_pfn
);
4587 list_del(&page
->lru
);
4588 rmv_page_order(page
);
4589 zone
->free_area
[order
].nr_free
--;
4590 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4592 for (i
= 0; i
< (1 << order
); i
++)
4593 SetPageReserved((page
+i
));
4594 pfn
+= (1 << order
);
4596 spin_unlock_irqrestore(&zone
->lock
, flags
);