Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / mm / slab.c
blobe0e5b9b95825ec08daca22a477c0c314a41d7038
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
144 #endif
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157 #endif
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
168 #endif
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 #endif
174 /* Legal flag mask for kmem_cache_create(). */
175 #if DEBUG
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_CACHE_DMA | \
179 SLAB_STORE_USER | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182 #else
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
184 SLAB_CACHE_DMA | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
187 #endif
190 * kmem_bufctl_t:
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * struct slab
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct slab {
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
231 * struct slab_rcu
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct slab_rcu {
247 struct rcu_head head;
248 struct kmem_cache *cachep;
249 void *addr;
253 * struct array_cache
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
264 struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
269 spinlock_t lock;
270 void *entry[]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
288 * The slab lists for all objects.
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC MAX_NUMNODES
311 #define SIZE_L3 (2 * MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline int index_of(const size_t size)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size)) {
329 int i = 0;
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 <<<<<<< HEAD:mm/slab.c
337 #include "linux/kmalloc_sizes.h"
338 =======
339 #include <linux/kmalloc_sizes.h>
340 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/slab.c
341 #undef CACHE
342 __bad_size();
343 } else
344 __bad_size();
345 return 0;
348 static int slab_early_init = 1;
350 #define INDEX_AC index_of(sizeof(struct arraycache_init))
351 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
353 static void kmem_list3_init(struct kmem_list3 *parent)
355 INIT_LIST_HEAD(&parent->slabs_full);
356 INIT_LIST_HEAD(&parent->slabs_partial);
357 INIT_LIST_HEAD(&parent->slabs_free);
358 parent->shared = NULL;
359 parent->alien = NULL;
360 parent->colour_next = 0;
361 spin_lock_init(&parent->list_lock);
362 parent->free_objects = 0;
363 parent->free_touched = 0;
366 #define MAKE_LIST(cachep, listp, slab, nodeid) \
367 do { \
368 INIT_LIST_HEAD(listp); \
369 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
370 } while (0)
372 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
373 do { \
374 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
375 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
376 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
377 } while (0)
380 * struct kmem_cache
382 * manages a cache.
385 struct kmem_cache {
386 /* 1) per-cpu data, touched during every alloc/free */
387 struct array_cache *array[NR_CPUS];
388 /* 2) Cache tunables. Protected by cache_chain_mutex */
389 unsigned int batchcount;
390 unsigned int limit;
391 unsigned int shared;
393 unsigned int buffer_size;
394 u32 reciprocal_buffer_size;
395 /* 3) touched by every alloc & free from the backend */
397 unsigned int flags; /* constant flags */
398 unsigned int num; /* # of objs per slab */
400 /* 4) cache_grow/shrink */
401 /* order of pgs per slab (2^n) */
402 unsigned int gfporder;
404 /* force GFP flags, e.g. GFP_DMA */
405 gfp_t gfpflags;
407 size_t colour; /* cache colouring range */
408 unsigned int colour_off; /* colour offset */
409 struct kmem_cache *slabp_cache;
410 unsigned int slab_size;
411 unsigned int dflags; /* dynamic flags */
413 /* constructor func */
414 void (*ctor)(struct kmem_cache *, void *);
416 /* 5) cache creation/removal */
417 const char *name;
418 struct list_head next;
420 /* 6) statistics */
421 #if STATS
422 unsigned long num_active;
423 unsigned long num_allocations;
424 unsigned long high_mark;
425 unsigned long grown;
426 unsigned long reaped;
427 unsigned long errors;
428 unsigned long max_freeable;
429 unsigned long node_allocs;
430 unsigned long node_frees;
431 unsigned long node_overflow;
432 atomic_t allochit;
433 atomic_t allocmiss;
434 atomic_t freehit;
435 atomic_t freemiss;
436 #endif
437 #if DEBUG
439 * If debugging is enabled, then the allocator can add additional
440 * fields and/or padding to every object. buffer_size contains the total
441 * object size including these internal fields, the following two
442 * variables contain the offset to the user object and its size.
444 int obj_offset;
445 int obj_size;
446 #endif
448 * We put nodelists[] at the end of kmem_cache, because we want to size
449 * this array to nr_node_ids slots instead of MAX_NUMNODES
450 * (see kmem_cache_init())
451 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
452 * is statically defined, so we reserve the max number of nodes.
454 struct kmem_list3 *nodelists[MAX_NUMNODES];
456 * Do not add fields after nodelists[]
460 #define CFLGS_OFF_SLAB (0x80000000UL)
461 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
463 #define BATCHREFILL_LIMIT 16
465 * Optimization question: fewer reaps means less probability for unnessary
466 * cpucache drain/refill cycles.
468 * OTOH the cpuarrays can contain lots of objects,
469 * which could lock up otherwise freeable slabs.
471 #define REAPTIMEOUT_CPUC (2*HZ)
472 #define REAPTIMEOUT_LIST3 (4*HZ)
474 #if STATS
475 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
476 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
477 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
478 #define STATS_INC_GROWN(x) ((x)->grown++)
479 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
480 #define STATS_SET_HIGH(x) \
481 do { \
482 if ((x)->num_active > (x)->high_mark) \
483 (x)->high_mark = (x)->num_active; \
484 } while (0)
485 #define STATS_INC_ERR(x) ((x)->errors++)
486 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
487 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
488 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
489 #define STATS_SET_FREEABLE(x, i) \
490 do { \
491 if ((x)->max_freeable < i) \
492 (x)->max_freeable = i; \
493 } while (0)
494 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
495 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
496 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
497 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
498 #else
499 #define STATS_INC_ACTIVE(x) do { } while (0)
500 #define STATS_DEC_ACTIVE(x) do { } while (0)
501 #define STATS_INC_ALLOCED(x) do { } while (0)
502 #define STATS_INC_GROWN(x) do { } while (0)
503 #define STATS_ADD_REAPED(x,y) do { } while (0)
504 #define STATS_SET_HIGH(x) do { } while (0)
505 #define STATS_INC_ERR(x) do { } while (0)
506 #define STATS_INC_NODEALLOCS(x) do { } while (0)
507 #define STATS_INC_NODEFREES(x) do { } while (0)
508 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
509 #define STATS_SET_FREEABLE(x, i) do { } while (0)
510 #define STATS_INC_ALLOCHIT(x) do { } while (0)
511 #define STATS_INC_ALLOCMISS(x) do { } while (0)
512 #define STATS_INC_FREEHIT(x) do { } while (0)
513 #define STATS_INC_FREEMISS(x) do { } while (0)
514 #endif
516 #if DEBUG
519 * memory layout of objects:
520 * 0 : objp
521 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
522 * the end of an object is aligned with the end of the real
523 * allocation. Catches writes behind the end of the allocation.
524 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
525 * redzone word.
526 * cachep->obj_offset: The real object.
527 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
528 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
529 * [BYTES_PER_WORD long]
531 static int obj_offset(struct kmem_cache *cachep)
533 return cachep->obj_offset;
536 static int obj_size(struct kmem_cache *cachep)
538 return cachep->obj_size;
541 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
543 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
544 return (unsigned long long*) (objp + obj_offset(cachep) -
545 sizeof(unsigned long long));
548 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
550 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
551 if (cachep->flags & SLAB_STORE_USER)
552 return (unsigned long long *)(objp + cachep->buffer_size -
553 sizeof(unsigned long long) -
554 REDZONE_ALIGN);
555 return (unsigned long long *) (objp + cachep->buffer_size -
556 sizeof(unsigned long long));
559 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
561 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
562 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
565 #else
567 #define obj_offset(x) 0
568 #define obj_size(cachep) (cachep->buffer_size)
569 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
570 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
571 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
573 #endif
576 * Do not go above this order unless 0 objects fit into the slab.
578 #define BREAK_GFP_ORDER_HI 1
579 #define BREAK_GFP_ORDER_LO 0
580 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
583 * Functions for storing/retrieving the cachep and or slab from the page
584 * allocator. These are used to find the slab an obj belongs to. With kfree(),
585 * these are used to find the cache which an obj belongs to.
587 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589 page->lru.next = (struct list_head *)cache;
592 static inline struct kmem_cache *page_get_cache(struct page *page)
594 page = compound_head(page);
595 BUG_ON(!PageSlab(page));
596 return (struct kmem_cache *)page->lru.next;
599 static inline void page_set_slab(struct page *page, struct slab *slab)
601 page->lru.prev = (struct list_head *)slab;
604 static inline struct slab *page_get_slab(struct page *page)
606 BUG_ON(!PageSlab(page));
607 return (struct slab *)page->lru.prev;
610 static inline struct kmem_cache *virt_to_cache(const void *obj)
612 struct page *page = virt_to_head_page(obj);
613 return page_get_cache(page);
616 static inline struct slab *virt_to_slab(const void *obj)
618 struct page *page = virt_to_head_page(obj);
619 return page_get_slab(page);
622 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
623 unsigned int idx)
625 return slab->s_mem + cache->buffer_size * idx;
629 * We want to avoid an expensive divide : (offset / cache->buffer_size)
630 * Using the fact that buffer_size is a constant for a particular cache,
631 * we can replace (offset / cache->buffer_size) by
632 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
634 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
635 const struct slab *slab, void *obj)
637 u32 offset = (obj - slab->s_mem);
638 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
642 * These are the default caches for kmalloc. Custom caches can have other sizes.
644 struct cache_sizes malloc_sizes[] = {
645 #define CACHE(x) { .cs_size = (x) },
646 #include <linux/kmalloc_sizes.h>
647 CACHE(ULONG_MAX)
648 #undef CACHE
650 EXPORT_SYMBOL(malloc_sizes);
652 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
653 struct cache_names {
654 char *name;
655 char *name_dma;
658 static struct cache_names __initdata cache_names[] = {
659 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
660 #include <linux/kmalloc_sizes.h>
661 {NULL,}
662 #undef CACHE
665 static struct arraycache_init initarray_cache __initdata =
666 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
667 static struct arraycache_init initarray_generic =
668 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
670 /* internal cache of cache description objs */
671 static struct kmem_cache cache_cache = {
672 .batchcount = 1,
673 .limit = BOOT_CPUCACHE_ENTRIES,
674 .shared = 1,
675 .buffer_size = sizeof(struct kmem_cache),
676 .name = "kmem_cache",
679 #define BAD_ALIEN_MAGIC 0x01020304ul
681 #ifdef CONFIG_LOCKDEP
684 * Slab sometimes uses the kmalloc slabs to store the slab headers
685 * for other slabs "off slab".
686 * The locking for this is tricky in that it nests within the locks
687 * of all other slabs in a few places; to deal with this special
688 * locking we put on-slab caches into a separate lock-class.
690 * We set lock class for alien array caches which are up during init.
691 * The lock annotation will be lost if all cpus of a node goes down and
692 * then comes back up during hotplug
694 static struct lock_class_key on_slab_l3_key;
695 static struct lock_class_key on_slab_alc_key;
697 static inline void init_lock_keys(void)
700 int q;
701 struct cache_sizes *s = malloc_sizes;
703 while (s->cs_size != ULONG_MAX) {
704 for_each_node(q) {
705 struct array_cache **alc;
706 int r;
707 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
708 if (!l3 || OFF_SLAB(s->cs_cachep))
709 continue;
710 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
711 alc = l3->alien;
713 * FIXME: This check for BAD_ALIEN_MAGIC
714 * should go away when common slab code is taught to
715 * work even without alien caches.
716 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
717 * for alloc_alien_cache,
719 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
720 continue;
721 for_each_node(r) {
722 if (alc[r])
723 lockdep_set_class(&alc[r]->lock,
724 &on_slab_alc_key);
727 s++;
730 #else
731 static inline void init_lock_keys(void)
734 #endif
737 * Guard access to the cache-chain.
739 static DEFINE_MUTEX(cache_chain_mutex);
740 static struct list_head cache_chain;
743 * chicken and egg problem: delay the per-cpu array allocation
744 * until the general caches are up.
746 static enum {
747 NONE,
748 PARTIAL_AC,
749 PARTIAL_L3,
750 FULL
751 } g_cpucache_up;
754 * used by boot code to determine if it can use slab based allocator
756 int slab_is_available(void)
758 return g_cpucache_up == FULL;
761 static DEFINE_PER_CPU(struct delayed_work, reap_work);
763 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
765 return cachep->array[smp_processor_id()];
768 static inline struct kmem_cache *__find_general_cachep(size_t size,
769 gfp_t gfpflags)
771 struct cache_sizes *csizep = malloc_sizes;
773 #if DEBUG
774 /* This happens if someone tries to call
775 * kmem_cache_create(), or __kmalloc(), before
776 * the generic caches are initialized.
778 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
779 #endif
780 if (!size)
781 return ZERO_SIZE_PTR;
783 while (size > csizep->cs_size)
784 csizep++;
787 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
788 * has cs_{dma,}cachep==NULL. Thus no special case
789 * for large kmalloc calls required.
791 #ifdef CONFIG_ZONE_DMA
792 if (unlikely(gfpflags & GFP_DMA))
793 return csizep->cs_dmacachep;
794 #endif
795 return csizep->cs_cachep;
798 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
800 return __find_general_cachep(size, gfpflags);
803 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
805 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
809 * Calculate the number of objects and left-over bytes for a given buffer size.
811 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
812 size_t align, int flags, size_t *left_over,
813 unsigned int *num)
815 int nr_objs;
816 size_t mgmt_size;
817 size_t slab_size = PAGE_SIZE << gfporder;
820 * The slab management structure can be either off the slab or
821 * on it. For the latter case, the memory allocated for a
822 * slab is used for:
824 * - The struct slab
825 * - One kmem_bufctl_t for each object
826 * - Padding to respect alignment of @align
827 * - @buffer_size bytes for each object
829 * If the slab management structure is off the slab, then the
830 * alignment will already be calculated into the size. Because
831 * the slabs are all pages aligned, the objects will be at the
832 * correct alignment when allocated.
834 if (flags & CFLGS_OFF_SLAB) {
835 mgmt_size = 0;
836 nr_objs = slab_size / buffer_size;
838 if (nr_objs > SLAB_LIMIT)
839 nr_objs = SLAB_LIMIT;
840 } else {
842 * Ignore padding for the initial guess. The padding
843 * is at most @align-1 bytes, and @buffer_size is at
844 * least @align. In the worst case, this result will
845 * be one greater than the number of objects that fit
846 * into the memory allocation when taking the padding
847 * into account.
849 nr_objs = (slab_size - sizeof(struct slab)) /
850 (buffer_size + sizeof(kmem_bufctl_t));
853 * This calculated number will be either the right
854 * amount, or one greater than what we want.
856 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
857 > slab_size)
858 nr_objs--;
860 if (nr_objs > SLAB_LIMIT)
861 nr_objs = SLAB_LIMIT;
863 mgmt_size = slab_mgmt_size(nr_objs, align);
865 *num = nr_objs;
866 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
869 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
871 static void __slab_error(const char *function, struct kmem_cache *cachep,
872 char *msg)
874 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
875 function, cachep->name, msg);
876 dump_stack();
880 * By default on NUMA we use alien caches to stage the freeing of
881 * objects allocated from other nodes. This causes massive memory
882 * inefficiencies when using fake NUMA setup to split memory into a
883 * large number of small nodes, so it can be disabled on the command
884 * line
887 static int use_alien_caches __read_mostly = 1;
888 static int numa_platform __read_mostly = 1;
889 static int __init noaliencache_setup(char *s)
891 use_alien_caches = 0;
892 return 1;
894 __setup("noaliencache", noaliencache_setup);
896 #ifdef CONFIG_NUMA
898 * Special reaping functions for NUMA systems called from cache_reap().
899 * These take care of doing round robin flushing of alien caches (containing
900 * objects freed on different nodes from which they were allocated) and the
901 * flushing of remote pcps by calling drain_node_pages.
903 static DEFINE_PER_CPU(unsigned long, reap_node);
905 static void init_reap_node(int cpu)
907 int node;
909 node = next_node(cpu_to_node(cpu), node_online_map);
910 if (node == MAX_NUMNODES)
911 node = first_node(node_online_map);
913 per_cpu(reap_node, cpu) = node;
916 static void next_reap_node(void)
918 int node = __get_cpu_var(reap_node);
920 node = next_node(node, node_online_map);
921 if (unlikely(node >= MAX_NUMNODES))
922 node = first_node(node_online_map);
923 __get_cpu_var(reap_node) = node;
926 #else
927 #define init_reap_node(cpu) do { } while (0)
928 #define next_reap_node(void) do { } while (0)
929 #endif
932 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
933 * via the workqueue/eventd.
934 * Add the CPU number into the expiration time to minimize the possibility of
935 * the CPUs getting into lockstep and contending for the global cache chain
936 * lock.
938 static void __cpuinit start_cpu_timer(int cpu)
940 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
943 * When this gets called from do_initcalls via cpucache_init(),
944 * init_workqueues() has already run, so keventd will be setup
945 * at that time.
947 if (keventd_up() && reap_work->work.func == NULL) {
948 init_reap_node(cpu);
949 INIT_DELAYED_WORK(reap_work, cache_reap);
950 schedule_delayed_work_on(cpu, reap_work,
951 __round_jiffies_relative(HZ, cpu));
955 static struct array_cache *alloc_arraycache(int node, int entries,
956 int batchcount)
958 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
959 struct array_cache *nc = NULL;
961 nc = kmalloc_node(memsize, GFP_KERNEL, node);
962 if (nc) {
963 nc->avail = 0;
964 nc->limit = entries;
965 nc->batchcount = batchcount;
966 nc->touched = 0;
967 spin_lock_init(&nc->lock);
969 return nc;
973 * Transfer objects in one arraycache to another.
974 * Locking must be handled by the caller.
976 * Return the number of entries transferred.
978 static int transfer_objects(struct array_cache *to,
979 struct array_cache *from, unsigned int max)
981 /* Figure out how many entries to transfer */
982 int nr = min(min(from->avail, max), to->limit - to->avail);
984 if (!nr)
985 return 0;
987 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
988 sizeof(void *) *nr);
990 from->avail -= nr;
991 to->avail += nr;
992 to->touched = 1;
993 return nr;
996 #ifndef CONFIG_NUMA
998 #define drain_alien_cache(cachep, alien) do { } while (0)
999 #define reap_alien(cachep, l3) do { } while (0)
1001 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1003 return (struct array_cache **)BAD_ALIEN_MAGIC;
1006 static inline void free_alien_cache(struct array_cache **ac_ptr)
1010 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1012 return 0;
1015 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1016 gfp_t flags)
1018 return NULL;
1021 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1022 gfp_t flags, int nodeid)
1024 return NULL;
1027 #else /* CONFIG_NUMA */
1029 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1030 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1032 static struct array_cache **alloc_alien_cache(int node, int limit)
1034 struct array_cache **ac_ptr;
1035 int memsize = sizeof(void *) * nr_node_ids;
1036 int i;
1038 if (limit > 1)
1039 limit = 12;
1040 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1041 if (ac_ptr) {
1042 for_each_node(i) {
1043 if (i == node || !node_online(i)) {
1044 ac_ptr[i] = NULL;
1045 continue;
1047 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1048 if (!ac_ptr[i]) {
1049 for (i--; i >= 0; i--)
1050 kfree(ac_ptr[i]);
1051 kfree(ac_ptr);
1052 return NULL;
1056 return ac_ptr;
1059 static void free_alien_cache(struct array_cache **ac_ptr)
1061 int i;
1063 if (!ac_ptr)
1064 return;
1065 for_each_node(i)
1066 kfree(ac_ptr[i]);
1067 kfree(ac_ptr);
1070 static void __drain_alien_cache(struct kmem_cache *cachep,
1071 struct array_cache *ac, int node)
1073 struct kmem_list3 *rl3 = cachep->nodelists[node];
1075 if (ac->avail) {
1076 spin_lock(&rl3->list_lock);
1078 * Stuff objects into the remote nodes shared array first.
1079 * That way we could avoid the overhead of putting the objects
1080 * into the free lists and getting them back later.
1082 if (rl3->shared)
1083 transfer_objects(rl3->shared, ac, ac->limit);
1085 free_block(cachep, ac->entry, ac->avail, node);
1086 ac->avail = 0;
1087 spin_unlock(&rl3->list_lock);
1092 * Called from cache_reap() to regularly drain alien caches round robin.
1094 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1096 int node = __get_cpu_var(reap_node);
1098 if (l3->alien) {
1099 struct array_cache *ac = l3->alien[node];
1101 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1102 __drain_alien_cache(cachep, ac, node);
1103 spin_unlock_irq(&ac->lock);
1108 static void drain_alien_cache(struct kmem_cache *cachep,
1109 struct array_cache **alien)
1111 int i = 0;
1112 struct array_cache *ac;
1113 unsigned long flags;
1115 for_each_online_node(i) {
1116 ac = alien[i];
1117 if (ac) {
1118 spin_lock_irqsave(&ac->lock, flags);
1119 __drain_alien_cache(cachep, ac, i);
1120 spin_unlock_irqrestore(&ac->lock, flags);
1125 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1127 struct slab *slabp = virt_to_slab(objp);
1128 int nodeid = slabp->nodeid;
1129 struct kmem_list3 *l3;
1130 struct array_cache *alien = NULL;
1131 int node;
1133 node = numa_node_id();
1136 * Make sure we are not freeing a object from another node to the array
1137 * cache on this cpu.
1139 if (likely(slabp->nodeid == node))
1140 return 0;
1142 l3 = cachep->nodelists[node];
1143 STATS_INC_NODEFREES(cachep);
1144 if (l3->alien && l3->alien[nodeid]) {
1145 alien = l3->alien[nodeid];
1146 spin_lock(&alien->lock);
1147 if (unlikely(alien->avail == alien->limit)) {
1148 STATS_INC_ACOVERFLOW(cachep);
1149 __drain_alien_cache(cachep, alien, nodeid);
1151 alien->entry[alien->avail++] = objp;
1152 spin_unlock(&alien->lock);
1153 } else {
1154 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1155 free_block(cachep, &objp, 1, nodeid);
1156 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1158 return 1;
1160 #endif
1162 static void __cpuinit cpuup_canceled(long cpu)
1164 struct kmem_cache *cachep;
1165 struct kmem_list3 *l3 = NULL;
1166 int node = cpu_to_node(cpu);
1168 list_for_each_entry(cachep, &cache_chain, next) {
1169 struct array_cache *nc;
1170 struct array_cache *shared;
1171 struct array_cache **alien;
1172 cpumask_t mask;
1174 mask = node_to_cpumask(node);
1175 /* cpu is dead; no one can alloc from it. */
1176 nc = cachep->array[cpu];
1177 cachep->array[cpu] = NULL;
1178 l3 = cachep->nodelists[node];
1180 if (!l3)
1181 goto free_array_cache;
1183 spin_lock_irq(&l3->list_lock);
1185 /* Free limit for this kmem_list3 */
1186 l3->free_limit -= cachep->batchcount;
1187 if (nc)
1188 free_block(cachep, nc->entry, nc->avail, node);
1190 if (!cpus_empty(mask)) {
1191 spin_unlock_irq(&l3->list_lock);
1192 goto free_array_cache;
1195 shared = l3->shared;
1196 if (shared) {
1197 free_block(cachep, shared->entry,
1198 shared->avail, node);
1199 l3->shared = NULL;
1202 alien = l3->alien;
1203 l3->alien = NULL;
1205 spin_unlock_irq(&l3->list_lock);
1207 kfree(shared);
1208 if (alien) {
1209 drain_alien_cache(cachep, alien);
1210 free_alien_cache(alien);
1212 free_array_cache:
1213 kfree(nc);
1216 * In the previous loop, all the objects were freed to
1217 * the respective cache's slabs, now we can go ahead and
1218 * shrink each nodelist to its limit.
1220 list_for_each_entry(cachep, &cache_chain, next) {
1221 l3 = cachep->nodelists[node];
1222 if (!l3)
1223 continue;
1224 drain_freelist(cachep, l3, l3->free_objects);
1228 static int __cpuinit cpuup_prepare(long cpu)
1230 struct kmem_cache *cachep;
1231 struct kmem_list3 *l3 = NULL;
1232 int node = cpu_to_node(cpu);
1233 const int memsize = sizeof(struct kmem_list3);
1236 * We need to do this right in the beginning since
1237 * alloc_arraycache's are going to use this list.
1238 * kmalloc_node allows us to add the slab to the right
1239 * kmem_list3 and not this cpu's kmem_list3
1242 list_for_each_entry(cachep, &cache_chain, next) {
1244 * Set up the size64 kmemlist for cpu before we can
1245 * begin anything. Make sure some other cpu on this
1246 * node has not already allocated this
1248 if (!cachep->nodelists[node]) {
1249 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1250 if (!l3)
1251 goto bad;
1252 kmem_list3_init(l3);
1253 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1254 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1257 * The l3s don't come and go as CPUs come and
1258 * go. cache_chain_mutex is sufficient
1259 * protection here.
1261 cachep->nodelists[node] = l3;
1264 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1265 cachep->nodelists[node]->free_limit =
1266 (1 + nr_cpus_node(node)) *
1267 cachep->batchcount + cachep->num;
1268 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1272 * Now we can go ahead with allocating the shared arrays and
1273 * array caches
1275 list_for_each_entry(cachep, &cache_chain, next) {
1276 struct array_cache *nc;
1277 struct array_cache *shared = NULL;
1278 struct array_cache **alien = NULL;
1280 nc = alloc_arraycache(node, cachep->limit,
1281 cachep->batchcount);
1282 if (!nc)
1283 goto bad;
1284 if (cachep->shared) {
1285 shared = alloc_arraycache(node,
1286 cachep->shared * cachep->batchcount,
1287 0xbaadf00d);
1288 if (!shared) {
1289 kfree(nc);
1290 goto bad;
1293 if (use_alien_caches) {
1294 alien = alloc_alien_cache(node, cachep->limit);
1295 if (!alien) {
1296 kfree(shared);
1297 kfree(nc);
1298 goto bad;
1301 cachep->array[cpu] = nc;
1302 l3 = cachep->nodelists[node];
1303 BUG_ON(!l3);
1305 spin_lock_irq(&l3->list_lock);
1306 if (!l3->shared) {
1308 * We are serialised from CPU_DEAD or
1309 * CPU_UP_CANCELLED by the cpucontrol lock
1311 l3->shared = shared;
1312 shared = NULL;
1314 #ifdef CONFIG_NUMA
1315 if (!l3->alien) {
1316 l3->alien = alien;
1317 alien = NULL;
1319 #endif
1320 spin_unlock_irq(&l3->list_lock);
1321 kfree(shared);
1322 free_alien_cache(alien);
1324 return 0;
1325 bad:
1326 cpuup_canceled(cpu);
1327 return -ENOMEM;
1330 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1331 unsigned long action, void *hcpu)
1333 long cpu = (long)hcpu;
1334 int err = 0;
1336 switch (action) {
1337 case CPU_UP_PREPARE:
1338 case CPU_UP_PREPARE_FROZEN:
1339 mutex_lock(&cache_chain_mutex);
1340 err = cpuup_prepare(cpu);
1341 mutex_unlock(&cache_chain_mutex);
1342 break;
1343 case CPU_ONLINE:
1344 case CPU_ONLINE_FROZEN:
1345 start_cpu_timer(cpu);
1346 break;
1347 #ifdef CONFIG_HOTPLUG_CPU
1348 case CPU_DOWN_PREPARE:
1349 case CPU_DOWN_PREPARE_FROZEN:
1351 * Shutdown cache reaper. Note that the cache_chain_mutex is
1352 * held so that if cache_reap() is invoked it cannot do
1353 * anything expensive but will only modify reap_work
1354 * and reschedule the timer.
1356 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1357 /* Now the cache_reaper is guaranteed to be not running. */
1358 per_cpu(reap_work, cpu).work.func = NULL;
1359 break;
1360 case CPU_DOWN_FAILED:
1361 case CPU_DOWN_FAILED_FROZEN:
1362 start_cpu_timer(cpu);
1363 break;
1364 case CPU_DEAD:
1365 case CPU_DEAD_FROZEN:
1367 * Even if all the cpus of a node are down, we don't free the
1368 * kmem_list3 of any cache. This to avoid a race between
1369 * cpu_down, and a kmalloc allocation from another cpu for
1370 * memory from the node of the cpu going down. The list3
1371 * structure is usually allocated from kmem_cache_create() and
1372 * gets destroyed at kmem_cache_destroy().
1374 /* fall through */
1375 #endif
1376 case CPU_UP_CANCELED:
1377 case CPU_UP_CANCELED_FROZEN:
1378 mutex_lock(&cache_chain_mutex);
1379 cpuup_canceled(cpu);
1380 mutex_unlock(&cache_chain_mutex);
1381 break;
1383 return err ? NOTIFY_BAD : NOTIFY_OK;
1386 static struct notifier_block __cpuinitdata cpucache_notifier = {
1387 &cpuup_callback, NULL, 0
1391 * swap the static kmem_list3 with kmalloced memory
1393 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1394 int nodeid)
1396 struct kmem_list3 *ptr;
1398 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1399 BUG_ON(!ptr);
1401 local_irq_disable();
1402 memcpy(ptr, list, sizeof(struct kmem_list3));
1404 * Do not assume that spinlocks can be initialized via memcpy:
1406 spin_lock_init(&ptr->list_lock);
1408 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1409 cachep->nodelists[nodeid] = ptr;
1410 local_irq_enable();
1414 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1415 * size of kmem_list3.
1417 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1419 int node;
1421 for_each_online_node(node) {
1422 cachep->nodelists[node] = &initkmem_list3[index + node];
1423 cachep->nodelists[node]->next_reap = jiffies +
1424 REAPTIMEOUT_LIST3 +
1425 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1430 * Initialisation. Called after the page allocator have been initialised and
1431 * before smp_init().
1433 void __init kmem_cache_init(void)
1435 size_t left_over;
1436 struct cache_sizes *sizes;
1437 struct cache_names *names;
1438 int i;
1439 int order;
1440 int node;
1442 if (num_possible_nodes() == 1) {
1443 use_alien_caches = 0;
1444 numa_platform = 0;
1447 for (i = 0; i < NUM_INIT_LISTS; i++) {
1448 kmem_list3_init(&initkmem_list3[i]);
1449 if (i < MAX_NUMNODES)
1450 cache_cache.nodelists[i] = NULL;
1452 set_up_list3s(&cache_cache, CACHE_CACHE);
1455 * Fragmentation resistance on low memory - only use bigger
1456 * page orders on machines with more than 32MB of memory.
1458 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1459 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1461 /* Bootstrap is tricky, because several objects are allocated
1462 * from caches that do not exist yet:
1463 * 1) initialize the cache_cache cache: it contains the struct
1464 * kmem_cache structures of all caches, except cache_cache itself:
1465 * cache_cache is statically allocated.
1466 * Initially an __init data area is used for the head array and the
1467 * kmem_list3 structures, it's replaced with a kmalloc allocated
1468 * array at the end of the bootstrap.
1469 * 2) Create the first kmalloc cache.
1470 * The struct kmem_cache for the new cache is allocated normally.
1471 * An __init data area is used for the head array.
1472 * 3) Create the remaining kmalloc caches, with minimally sized
1473 * head arrays.
1474 * 4) Replace the __init data head arrays for cache_cache and the first
1475 * kmalloc cache with kmalloc allocated arrays.
1476 * 5) Replace the __init data for kmem_list3 for cache_cache and
1477 * the other cache's with kmalloc allocated memory.
1478 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1481 node = numa_node_id();
1483 /* 1) create the cache_cache */
1484 INIT_LIST_HEAD(&cache_chain);
1485 list_add(&cache_cache.next, &cache_chain);
1486 cache_cache.colour_off = cache_line_size();
1487 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1488 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1491 * struct kmem_cache size depends on nr_node_ids, which
1492 * can be less than MAX_NUMNODES.
1494 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1495 nr_node_ids * sizeof(struct kmem_list3 *);
1496 #if DEBUG
1497 cache_cache.obj_size = cache_cache.buffer_size;
1498 #endif
1499 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1500 cache_line_size());
1501 cache_cache.reciprocal_buffer_size =
1502 reciprocal_value(cache_cache.buffer_size);
1504 for (order = 0; order < MAX_ORDER; order++) {
1505 cache_estimate(order, cache_cache.buffer_size,
1506 cache_line_size(), 0, &left_over, &cache_cache.num);
1507 if (cache_cache.num)
1508 break;
1510 BUG_ON(!cache_cache.num);
1511 cache_cache.gfporder = order;
1512 cache_cache.colour = left_over / cache_cache.colour_off;
1513 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1514 sizeof(struct slab), cache_line_size());
1516 /* 2+3) create the kmalloc caches */
1517 sizes = malloc_sizes;
1518 names = cache_names;
1521 * Initialize the caches that provide memory for the array cache and the
1522 * kmem_list3 structures first. Without this, further allocations will
1523 * bug.
1526 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1527 sizes[INDEX_AC].cs_size,
1528 ARCH_KMALLOC_MINALIGN,
1529 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1530 NULL);
1532 if (INDEX_AC != INDEX_L3) {
1533 sizes[INDEX_L3].cs_cachep =
1534 kmem_cache_create(names[INDEX_L3].name,
1535 sizes[INDEX_L3].cs_size,
1536 ARCH_KMALLOC_MINALIGN,
1537 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1538 NULL);
1541 slab_early_init = 0;
1543 while (sizes->cs_size != ULONG_MAX) {
1545 * For performance, all the general caches are L1 aligned.
1546 * This should be particularly beneficial on SMP boxes, as it
1547 * eliminates "false sharing".
1548 * Note for systems short on memory removing the alignment will
1549 * allow tighter packing of the smaller caches.
1551 if (!sizes->cs_cachep) {
1552 sizes->cs_cachep = kmem_cache_create(names->name,
1553 sizes->cs_size,
1554 ARCH_KMALLOC_MINALIGN,
1555 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1556 NULL);
1558 #ifdef CONFIG_ZONE_DMA
1559 sizes->cs_dmacachep = kmem_cache_create(
1560 names->name_dma,
1561 sizes->cs_size,
1562 ARCH_KMALLOC_MINALIGN,
1563 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1564 SLAB_PANIC,
1565 NULL);
1566 #endif
1567 sizes++;
1568 names++;
1570 /* 4) Replace the bootstrap head arrays */
1572 struct array_cache *ptr;
1574 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1576 local_irq_disable();
1577 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1578 memcpy(ptr, cpu_cache_get(&cache_cache),
1579 sizeof(struct arraycache_init));
1581 * Do not assume that spinlocks can be initialized via memcpy:
1583 spin_lock_init(&ptr->lock);
1585 cache_cache.array[smp_processor_id()] = ptr;
1586 local_irq_enable();
1588 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1590 local_irq_disable();
1591 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1592 != &initarray_generic.cache);
1593 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1594 sizeof(struct arraycache_init));
1596 * Do not assume that spinlocks can be initialized via memcpy:
1598 spin_lock_init(&ptr->lock);
1600 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1601 ptr;
1602 local_irq_enable();
1604 /* 5) Replace the bootstrap kmem_list3's */
1606 int nid;
1608 for_each_online_node(nid) {
1609 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], nid);
1611 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1612 &initkmem_list3[SIZE_AC + nid], nid);
1614 if (INDEX_AC != INDEX_L3) {
1615 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1616 &initkmem_list3[SIZE_L3 + nid], nid);
1621 /* 6) resize the head arrays to their final sizes */
1623 struct kmem_cache *cachep;
1624 mutex_lock(&cache_chain_mutex);
1625 list_for_each_entry(cachep, &cache_chain, next)
1626 if (enable_cpucache(cachep))
1627 BUG();
1628 mutex_unlock(&cache_chain_mutex);
1631 /* Annotate slab for lockdep -- annotate the malloc caches */
1632 init_lock_keys();
1635 /* Done! */
1636 g_cpucache_up = FULL;
1639 * Register a cpu startup notifier callback that initializes
1640 * cpu_cache_get for all new cpus
1642 register_cpu_notifier(&cpucache_notifier);
1645 * The reap timers are started later, with a module init call: That part
1646 * of the kernel is not yet operational.
1650 static int __init cpucache_init(void)
1652 int cpu;
1655 * Register the timers that return unneeded pages to the page allocator
1657 for_each_online_cpu(cpu)
1658 start_cpu_timer(cpu);
1659 return 0;
1661 __initcall(cpucache_init);
1664 * Interface to system's page allocator. No need to hold the cache-lock.
1666 * If we requested dmaable memory, we will get it. Even if we
1667 * did not request dmaable memory, we might get it, but that
1668 * would be relatively rare and ignorable.
1670 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1672 struct page *page;
1673 int nr_pages;
1674 int i;
1676 #ifndef CONFIG_MMU
1678 * Nommu uses slab's for process anonymous memory allocations, and thus
1679 * requires __GFP_COMP to properly refcount higher order allocations
1681 flags |= __GFP_COMP;
1682 #endif
1684 flags |= cachep->gfpflags;
1685 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1686 flags |= __GFP_RECLAIMABLE;
1688 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1689 if (!page)
1690 return NULL;
1692 nr_pages = (1 << cachep->gfporder);
1693 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1694 add_zone_page_state(page_zone(page),
1695 NR_SLAB_RECLAIMABLE, nr_pages);
1696 else
1697 add_zone_page_state(page_zone(page),
1698 NR_SLAB_UNRECLAIMABLE, nr_pages);
1699 for (i = 0; i < nr_pages; i++)
1700 __SetPageSlab(page + i);
1701 return page_address(page);
1705 * Interface to system's page release.
1707 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1709 unsigned long i = (1 << cachep->gfporder);
1710 struct page *page = virt_to_page(addr);
1711 const unsigned long nr_freed = i;
1713 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1714 sub_zone_page_state(page_zone(page),
1715 NR_SLAB_RECLAIMABLE, nr_freed);
1716 else
1717 sub_zone_page_state(page_zone(page),
1718 NR_SLAB_UNRECLAIMABLE, nr_freed);
1719 while (i--) {
1720 BUG_ON(!PageSlab(page));
1721 __ClearPageSlab(page);
1722 page++;
1724 if (current->reclaim_state)
1725 current->reclaim_state->reclaimed_slab += nr_freed;
1726 free_pages((unsigned long)addr, cachep->gfporder);
1729 static void kmem_rcu_free(struct rcu_head *head)
1731 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1732 struct kmem_cache *cachep = slab_rcu->cachep;
1734 kmem_freepages(cachep, slab_rcu->addr);
1735 if (OFF_SLAB(cachep))
1736 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1739 #if DEBUG
1741 #ifdef CONFIG_DEBUG_PAGEALLOC
1742 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1743 unsigned long caller)
1745 int size = obj_size(cachep);
1747 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1749 if (size < 5 * sizeof(unsigned long))
1750 return;
1752 *addr++ = 0x12345678;
1753 *addr++ = caller;
1754 *addr++ = smp_processor_id();
1755 size -= 3 * sizeof(unsigned long);
1757 unsigned long *sptr = &caller;
1758 unsigned long svalue;
1760 while (!kstack_end(sptr)) {
1761 svalue = *sptr++;
1762 if (kernel_text_address(svalue)) {
1763 *addr++ = svalue;
1764 size -= sizeof(unsigned long);
1765 if (size <= sizeof(unsigned long))
1766 break;
1771 *addr++ = 0x87654321;
1773 #endif
1775 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1777 int size = obj_size(cachep);
1778 addr = &((char *)addr)[obj_offset(cachep)];
1780 memset(addr, val, size);
1781 *(unsigned char *)(addr + size - 1) = POISON_END;
1784 static void dump_line(char *data, int offset, int limit)
1786 int i;
1787 unsigned char error = 0;
1788 int bad_count = 0;
1790 printk(KERN_ERR "%03x:", offset);
1791 for (i = 0; i < limit; i++) {
1792 if (data[offset + i] != POISON_FREE) {
1793 error = data[offset + i];
1794 bad_count++;
1796 printk(" %02x", (unsigned char)data[offset + i]);
1798 printk("\n");
1800 if (bad_count == 1) {
1801 error ^= POISON_FREE;
1802 if (!(error & (error - 1))) {
1803 printk(KERN_ERR "Single bit error detected. Probably "
1804 "bad RAM.\n");
1805 #ifdef CONFIG_X86
1806 printk(KERN_ERR "Run memtest86+ or a similar memory "
1807 "test tool.\n");
1808 #else
1809 printk(KERN_ERR "Run a memory test tool.\n");
1810 #endif
1814 #endif
1816 #if DEBUG
1818 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1820 int i, size;
1821 char *realobj;
1823 if (cachep->flags & SLAB_RED_ZONE) {
1824 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1825 *dbg_redzone1(cachep, objp),
1826 *dbg_redzone2(cachep, objp));
1829 if (cachep->flags & SLAB_STORE_USER) {
1830 printk(KERN_ERR "Last user: [<%p>]",
1831 *dbg_userword(cachep, objp));
1832 print_symbol("(%s)",
1833 (unsigned long)*dbg_userword(cachep, objp));
1834 printk("\n");
1836 realobj = (char *)objp + obj_offset(cachep);
1837 size = obj_size(cachep);
1838 for (i = 0; i < size && lines; i += 16, lines--) {
1839 int limit;
1840 limit = 16;
1841 if (i + limit > size)
1842 limit = size - i;
1843 dump_line(realobj, i, limit);
1847 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1849 char *realobj;
1850 int size, i;
1851 int lines = 0;
1853 realobj = (char *)objp + obj_offset(cachep);
1854 size = obj_size(cachep);
1856 for (i = 0; i < size; i++) {
1857 char exp = POISON_FREE;
1858 if (i == size - 1)
1859 exp = POISON_END;
1860 if (realobj[i] != exp) {
1861 int limit;
1862 /* Mismatch ! */
1863 /* Print header */
1864 if (lines == 0) {
1865 printk(KERN_ERR
1866 "Slab corruption: %s start=%p, len=%d\n",
1867 cachep->name, realobj, size);
1868 print_objinfo(cachep, objp, 0);
1870 /* Hexdump the affected line */
1871 i = (i / 16) * 16;
1872 limit = 16;
1873 if (i + limit > size)
1874 limit = size - i;
1875 dump_line(realobj, i, limit);
1876 i += 16;
1877 lines++;
1878 /* Limit to 5 lines */
1879 if (lines > 5)
1880 break;
1883 if (lines != 0) {
1884 /* Print some data about the neighboring objects, if they
1885 * exist:
1887 struct slab *slabp = virt_to_slab(objp);
1888 unsigned int objnr;
1890 objnr = obj_to_index(cachep, slabp, objp);
1891 if (objnr) {
1892 objp = index_to_obj(cachep, slabp, objnr - 1);
1893 realobj = (char *)objp + obj_offset(cachep);
1894 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1895 realobj, size);
1896 print_objinfo(cachep, objp, 2);
1898 if (objnr + 1 < cachep->num) {
1899 objp = index_to_obj(cachep, slabp, objnr + 1);
1900 realobj = (char *)objp + obj_offset(cachep);
1901 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1902 realobj, size);
1903 print_objinfo(cachep, objp, 2);
1907 #endif
1909 #if DEBUG
1911 * slab_destroy_objs - destroy a slab and its objects
1912 * @cachep: cache pointer being destroyed
1913 * @slabp: slab pointer being destroyed
1915 * Call the registered destructor for each object in a slab that is being
1916 * destroyed.
1918 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1920 int i;
1921 for (i = 0; i < cachep->num; i++) {
1922 void *objp = index_to_obj(cachep, slabp, i);
1924 if (cachep->flags & SLAB_POISON) {
1925 #ifdef CONFIG_DEBUG_PAGEALLOC
1926 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1927 OFF_SLAB(cachep))
1928 kernel_map_pages(virt_to_page(objp),
1929 cachep->buffer_size / PAGE_SIZE, 1);
1930 else
1931 check_poison_obj(cachep, objp);
1932 #else
1933 check_poison_obj(cachep, objp);
1934 #endif
1936 if (cachep->flags & SLAB_RED_ZONE) {
1937 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1938 slab_error(cachep, "start of a freed object "
1939 "was overwritten");
1940 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1941 slab_error(cachep, "end of a freed object "
1942 "was overwritten");
1946 #else
1947 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1950 #endif
1953 * slab_destroy - destroy and release all objects in a slab
1954 * @cachep: cache pointer being destroyed
1955 * @slabp: slab pointer being destroyed
1957 * Destroy all the objs in a slab, and release the mem back to the system.
1958 * Before calling the slab must have been unlinked from the cache. The
1959 * cache-lock is not held/needed.
1961 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1963 void *addr = slabp->s_mem - slabp->colouroff;
1965 slab_destroy_objs(cachep, slabp);
1966 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1967 struct slab_rcu *slab_rcu;
1969 slab_rcu = (struct slab_rcu *)slabp;
1970 slab_rcu->cachep = cachep;
1971 slab_rcu->addr = addr;
1972 call_rcu(&slab_rcu->head, kmem_rcu_free);
1973 } else {
1974 kmem_freepages(cachep, addr);
1975 if (OFF_SLAB(cachep))
1976 kmem_cache_free(cachep->slabp_cache, slabp);
1980 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1982 int i;
1983 struct kmem_list3 *l3;
1985 for_each_online_cpu(i)
1986 kfree(cachep->array[i]);
1988 /* NUMA: free the list3 structures */
1989 for_each_online_node(i) {
1990 l3 = cachep->nodelists[i];
1991 if (l3) {
1992 kfree(l3->shared);
1993 free_alien_cache(l3->alien);
1994 kfree(l3);
1997 kmem_cache_free(&cache_cache, cachep);
2002 * calculate_slab_order - calculate size (page order) of slabs
2003 * @cachep: pointer to the cache that is being created
2004 * @size: size of objects to be created in this cache.
2005 * @align: required alignment for the objects.
2006 * @flags: slab allocation flags
2008 * Also calculates the number of objects per slab.
2010 * This could be made much more intelligent. For now, try to avoid using
2011 * high order pages for slabs. When the gfp() functions are more friendly
2012 * towards high-order requests, this should be changed.
2014 static size_t calculate_slab_order(struct kmem_cache *cachep,
2015 size_t size, size_t align, unsigned long flags)
2017 unsigned long offslab_limit;
2018 size_t left_over = 0;
2019 int gfporder;
2021 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2022 unsigned int num;
2023 size_t remainder;
2025 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2026 if (!num)
2027 continue;
2029 if (flags & CFLGS_OFF_SLAB) {
2031 * Max number of objs-per-slab for caches which
2032 * use off-slab slabs. Needed to avoid a possible
2033 * looping condition in cache_grow().
2035 offslab_limit = size - sizeof(struct slab);
2036 offslab_limit /= sizeof(kmem_bufctl_t);
2038 if (num > offslab_limit)
2039 break;
2042 /* Found something acceptable - save it away */
2043 cachep->num = num;
2044 cachep->gfporder = gfporder;
2045 left_over = remainder;
2048 * A VFS-reclaimable slab tends to have most allocations
2049 * as GFP_NOFS and we really don't want to have to be allocating
2050 * higher-order pages when we are unable to shrink dcache.
2052 if (flags & SLAB_RECLAIM_ACCOUNT)
2053 break;
2056 * Large number of objects is good, but very large slabs are
2057 * currently bad for the gfp()s.
2059 if (gfporder >= slab_break_gfp_order)
2060 break;
2063 * Acceptable internal fragmentation?
2065 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2066 break;
2068 return left_over;
2071 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2073 if (g_cpucache_up == FULL)
2074 return enable_cpucache(cachep);
2076 if (g_cpucache_up == NONE) {
2078 * Note: the first kmem_cache_create must create the cache
2079 * that's used by kmalloc(24), otherwise the creation of
2080 * further caches will BUG().
2082 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2085 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2086 * the first cache, then we need to set up all its list3s,
2087 * otherwise the creation of further caches will BUG().
2089 set_up_list3s(cachep, SIZE_AC);
2090 if (INDEX_AC == INDEX_L3)
2091 g_cpucache_up = PARTIAL_L3;
2092 else
2093 g_cpucache_up = PARTIAL_AC;
2094 } else {
2095 cachep->array[smp_processor_id()] =
2096 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2098 if (g_cpucache_up == PARTIAL_AC) {
2099 set_up_list3s(cachep, SIZE_L3);
2100 g_cpucache_up = PARTIAL_L3;
2101 } else {
2102 int node;
2103 for_each_online_node(node) {
2104 cachep->nodelists[node] =
2105 kmalloc_node(sizeof(struct kmem_list3),
2106 GFP_KERNEL, node);
2107 BUG_ON(!cachep->nodelists[node]);
2108 kmem_list3_init(cachep->nodelists[node]);
2112 cachep->nodelists[numa_node_id()]->next_reap =
2113 jiffies + REAPTIMEOUT_LIST3 +
2114 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2116 cpu_cache_get(cachep)->avail = 0;
2117 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2118 cpu_cache_get(cachep)->batchcount = 1;
2119 cpu_cache_get(cachep)->touched = 0;
2120 cachep->batchcount = 1;
2121 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2122 return 0;
2126 * kmem_cache_create - Create a cache.
2127 * @name: A string which is used in /proc/slabinfo to identify this cache.
2128 * @size: The size of objects to be created in this cache.
2129 * @align: The required alignment for the objects.
2130 * @flags: SLAB flags
2131 * @ctor: A constructor for the objects.
2133 * Returns a ptr to the cache on success, NULL on failure.
2134 * Cannot be called within a int, but can be interrupted.
2135 * The @ctor is run when new pages are allocated by the cache.
2137 * @name must be valid until the cache is destroyed. This implies that
2138 * the module calling this has to destroy the cache before getting unloaded.
2140 * The flags are
2142 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2143 * to catch references to uninitialised memory.
2145 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2146 * for buffer overruns.
2148 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2149 * cacheline. This can be beneficial if you're counting cycles as closely
2150 * as davem.
2152 struct kmem_cache *
2153 kmem_cache_create (const char *name, size_t size, size_t align,
2154 unsigned long flags,
2155 void (*ctor)(struct kmem_cache *, void *))
2157 size_t left_over, slab_size, ralign;
2158 struct kmem_cache *cachep = NULL, *pc;
2161 * Sanity checks... these are all serious usage bugs.
2163 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2164 size > KMALLOC_MAX_SIZE) {
2165 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2166 name);
2167 BUG();
2171 * We use cache_chain_mutex to ensure a consistent view of
2172 * cpu_online_map as well. Please see cpuup_callback
2174 get_online_cpus();
2175 mutex_lock(&cache_chain_mutex);
2177 list_for_each_entry(pc, &cache_chain, next) {
2178 char tmp;
2179 int res;
2182 * This happens when the module gets unloaded and doesn't
2183 * destroy its slab cache and no-one else reuses the vmalloc
2184 * area of the module. Print a warning.
2186 res = probe_kernel_address(pc->name, tmp);
2187 if (res) {
2188 printk(KERN_ERR
2189 "SLAB: cache with size %d has lost its name\n",
2190 pc->buffer_size);
2191 continue;
2194 if (!strcmp(pc->name, name)) {
2195 printk(KERN_ERR
2196 "kmem_cache_create: duplicate cache %s\n", name);
2197 dump_stack();
2198 goto oops;
2202 #if DEBUG
2203 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2204 #if FORCED_DEBUG
2206 * Enable redzoning and last user accounting, except for caches with
2207 * large objects, if the increased size would increase the object size
2208 * above the next power of two: caches with object sizes just above a
2209 * power of two have a significant amount of internal fragmentation.
2211 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2212 2 * sizeof(unsigned long long)))
2213 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2214 if (!(flags & SLAB_DESTROY_BY_RCU))
2215 flags |= SLAB_POISON;
2216 #endif
2217 if (flags & SLAB_DESTROY_BY_RCU)
2218 BUG_ON(flags & SLAB_POISON);
2219 #endif
2221 * Always checks flags, a caller might be expecting debug support which
2222 * isn't available.
2224 BUG_ON(flags & ~CREATE_MASK);
2227 * Check that size is in terms of words. This is needed to avoid
2228 * unaligned accesses for some archs when redzoning is used, and makes
2229 * sure any on-slab bufctl's are also correctly aligned.
2231 if (size & (BYTES_PER_WORD - 1)) {
2232 size += (BYTES_PER_WORD - 1);
2233 size &= ~(BYTES_PER_WORD - 1);
2236 /* calculate the final buffer alignment: */
2238 /* 1) arch recommendation: can be overridden for debug */
2239 if (flags & SLAB_HWCACHE_ALIGN) {
2241 * Default alignment: as specified by the arch code. Except if
2242 * an object is really small, then squeeze multiple objects into
2243 * one cacheline.
2245 ralign = cache_line_size();
2246 while (size <= ralign / 2)
2247 ralign /= 2;
2248 } else {
2249 ralign = BYTES_PER_WORD;
2253 * Redzoning and user store require word alignment or possibly larger.
2254 * Note this will be overridden by architecture or caller mandated
2255 * alignment if either is greater than BYTES_PER_WORD.
2257 if (flags & SLAB_STORE_USER)
2258 ralign = BYTES_PER_WORD;
2260 if (flags & SLAB_RED_ZONE) {
2261 ralign = REDZONE_ALIGN;
2262 /* If redzoning, ensure that the second redzone is suitably
2263 * aligned, by adjusting the object size accordingly. */
2264 size += REDZONE_ALIGN - 1;
2265 size &= ~(REDZONE_ALIGN - 1);
2268 /* 2) arch mandated alignment */
2269 if (ralign < ARCH_SLAB_MINALIGN) {
2270 ralign = ARCH_SLAB_MINALIGN;
2272 /* 3) caller mandated alignment */
2273 if (ralign < align) {
2274 ralign = align;
2276 /* disable debug if necessary */
2277 if (ralign > __alignof__(unsigned long long))
2278 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2280 * 4) Store it.
2282 align = ralign;
2284 /* Get cache's description obj. */
2285 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2286 if (!cachep)
2287 goto oops;
2289 #if DEBUG
2290 cachep->obj_size = size;
2293 * Both debugging options require word-alignment which is calculated
2294 * into align above.
2296 if (flags & SLAB_RED_ZONE) {
2297 /* add space for red zone words */
2298 cachep->obj_offset += sizeof(unsigned long long);
2299 size += 2 * sizeof(unsigned long long);
2301 if (flags & SLAB_STORE_USER) {
2302 /* user store requires one word storage behind the end of
2303 * the real object. But if the second red zone needs to be
2304 * aligned to 64 bits, we must allow that much space.
2306 if (flags & SLAB_RED_ZONE)
2307 size += REDZONE_ALIGN;
2308 else
2309 size += BYTES_PER_WORD;
2311 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2312 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2313 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2314 cachep->obj_offset += PAGE_SIZE - size;
2315 size = PAGE_SIZE;
2317 #endif
2318 #endif
2321 * Determine if the slab management is 'on' or 'off' slab.
2322 * (bootstrapping cannot cope with offslab caches so don't do
2323 * it too early on.)
2325 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2327 * Size is large, assume best to place the slab management obj
2328 * off-slab (should allow better packing of objs).
2330 flags |= CFLGS_OFF_SLAB;
2332 size = ALIGN(size, align);
2334 left_over = calculate_slab_order(cachep, size, align, flags);
2336 if (!cachep->num) {
2337 printk(KERN_ERR
2338 "kmem_cache_create: couldn't create cache %s.\n", name);
2339 kmem_cache_free(&cache_cache, cachep);
2340 cachep = NULL;
2341 goto oops;
2343 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2344 + sizeof(struct slab), align);
2347 * If the slab has been placed off-slab, and we have enough space then
2348 * move it on-slab. This is at the expense of any extra colouring.
2350 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2351 flags &= ~CFLGS_OFF_SLAB;
2352 left_over -= slab_size;
2355 if (flags & CFLGS_OFF_SLAB) {
2356 /* really off slab. No need for manual alignment */
2357 slab_size =
2358 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2361 cachep->colour_off = cache_line_size();
2362 /* Offset must be a multiple of the alignment. */
2363 if (cachep->colour_off < align)
2364 cachep->colour_off = align;
2365 cachep->colour = left_over / cachep->colour_off;
2366 cachep->slab_size = slab_size;
2367 cachep->flags = flags;
2368 cachep->gfpflags = 0;
2369 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2370 cachep->gfpflags |= GFP_DMA;
2371 cachep->buffer_size = size;
2372 cachep->reciprocal_buffer_size = reciprocal_value(size);
2374 if (flags & CFLGS_OFF_SLAB) {
2375 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2377 * This is a possibility for one of the malloc_sizes caches.
2378 * But since we go off slab only for object size greater than
2379 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2380 * this should not happen at all.
2381 * But leave a BUG_ON for some lucky dude.
2383 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2385 cachep->ctor = ctor;
2386 cachep->name = name;
2388 if (setup_cpu_cache(cachep)) {
2389 __kmem_cache_destroy(cachep);
2390 cachep = NULL;
2391 goto oops;
2394 /* cache setup completed, link it into the list */
2395 list_add(&cachep->next, &cache_chain);
2396 oops:
2397 if (!cachep && (flags & SLAB_PANIC))
2398 panic("kmem_cache_create(): failed to create slab `%s'\n",
2399 name);
2400 mutex_unlock(&cache_chain_mutex);
2401 put_online_cpus();
2402 return cachep;
2404 EXPORT_SYMBOL(kmem_cache_create);
2406 #if DEBUG
2407 static void check_irq_off(void)
2409 BUG_ON(!irqs_disabled());
2412 static void check_irq_on(void)
2414 BUG_ON(irqs_disabled());
2417 static void check_spinlock_acquired(struct kmem_cache *cachep)
2419 #ifdef CONFIG_SMP
2420 check_irq_off();
2421 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2422 #endif
2425 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2427 #ifdef CONFIG_SMP
2428 check_irq_off();
2429 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2430 #endif
2433 #else
2434 #define check_irq_off() do { } while(0)
2435 #define check_irq_on() do { } while(0)
2436 #define check_spinlock_acquired(x) do { } while(0)
2437 #define check_spinlock_acquired_node(x, y) do { } while(0)
2438 #endif
2440 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2441 struct array_cache *ac,
2442 int force, int node);
2444 static void do_drain(void *arg)
2446 struct kmem_cache *cachep = arg;
2447 struct array_cache *ac;
2448 int node = numa_node_id();
2450 check_irq_off();
2451 ac = cpu_cache_get(cachep);
2452 spin_lock(&cachep->nodelists[node]->list_lock);
2453 free_block(cachep, ac->entry, ac->avail, node);
2454 spin_unlock(&cachep->nodelists[node]->list_lock);
2455 ac->avail = 0;
2458 static void drain_cpu_caches(struct kmem_cache *cachep)
2460 struct kmem_list3 *l3;
2461 int node;
2463 on_each_cpu(do_drain, cachep, 1, 1);
2464 check_irq_on();
2465 for_each_online_node(node) {
2466 l3 = cachep->nodelists[node];
2467 if (l3 && l3->alien)
2468 drain_alien_cache(cachep, l3->alien);
2471 for_each_online_node(node) {
2472 l3 = cachep->nodelists[node];
2473 if (l3)
2474 drain_array(cachep, l3, l3->shared, 1, node);
2479 * Remove slabs from the list of free slabs.
2480 * Specify the number of slabs to drain in tofree.
2482 * Returns the actual number of slabs released.
2484 static int drain_freelist(struct kmem_cache *cache,
2485 struct kmem_list3 *l3, int tofree)
2487 struct list_head *p;
2488 int nr_freed;
2489 struct slab *slabp;
2491 nr_freed = 0;
2492 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2494 spin_lock_irq(&l3->list_lock);
2495 p = l3->slabs_free.prev;
2496 if (p == &l3->slabs_free) {
2497 spin_unlock_irq(&l3->list_lock);
2498 goto out;
2501 slabp = list_entry(p, struct slab, list);
2502 #if DEBUG
2503 BUG_ON(slabp->inuse);
2504 #endif
2505 list_del(&slabp->list);
2507 * Safe to drop the lock. The slab is no longer linked
2508 * to the cache.
2510 l3->free_objects -= cache->num;
2511 spin_unlock_irq(&l3->list_lock);
2512 slab_destroy(cache, slabp);
2513 nr_freed++;
2515 out:
2516 return nr_freed;
2519 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2520 static int __cache_shrink(struct kmem_cache *cachep)
2522 int ret = 0, i = 0;
2523 struct kmem_list3 *l3;
2525 drain_cpu_caches(cachep);
2527 check_irq_on();
2528 for_each_online_node(i) {
2529 l3 = cachep->nodelists[i];
2530 if (!l3)
2531 continue;
2533 drain_freelist(cachep, l3, l3->free_objects);
2535 ret += !list_empty(&l3->slabs_full) ||
2536 !list_empty(&l3->slabs_partial);
2538 return (ret ? 1 : 0);
2542 * kmem_cache_shrink - Shrink a cache.
2543 * @cachep: The cache to shrink.
2545 * Releases as many slabs as possible for a cache.
2546 * To help debugging, a zero exit status indicates all slabs were released.
2548 int kmem_cache_shrink(struct kmem_cache *cachep)
2550 int ret;
2551 BUG_ON(!cachep || in_interrupt());
2553 get_online_cpus();
2554 mutex_lock(&cache_chain_mutex);
2555 ret = __cache_shrink(cachep);
2556 mutex_unlock(&cache_chain_mutex);
2557 put_online_cpus();
2558 return ret;
2560 EXPORT_SYMBOL(kmem_cache_shrink);
2563 * kmem_cache_destroy - delete a cache
2564 * @cachep: the cache to destroy
2566 * Remove a &struct kmem_cache object from the slab cache.
2568 * It is expected this function will be called by a module when it is
2569 * unloaded. This will remove the cache completely, and avoid a duplicate
2570 * cache being allocated each time a module is loaded and unloaded, if the
2571 * module doesn't have persistent in-kernel storage across loads and unloads.
2573 * The cache must be empty before calling this function.
2575 * The caller must guarantee that noone will allocate memory from the cache
2576 * during the kmem_cache_destroy().
2578 void kmem_cache_destroy(struct kmem_cache *cachep)
2580 BUG_ON(!cachep || in_interrupt());
2582 /* Find the cache in the chain of caches. */
2583 get_online_cpus();
2584 mutex_lock(&cache_chain_mutex);
2586 * the chain is never empty, cache_cache is never destroyed
2588 list_del(&cachep->next);
2589 if (__cache_shrink(cachep)) {
2590 slab_error(cachep, "Can't free all objects");
2591 list_add(&cachep->next, &cache_chain);
2592 mutex_unlock(&cache_chain_mutex);
2593 put_online_cpus();
2594 return;
2597 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2598 synchronize_rcu();
2600 __kmem_cache_destroy(cachep);
2601 mutex_unlock(&cache_chain_mutex);
2602 put_online_cpus();
2604 EXPORT_SYMBOL(kmem_cache_destroy);
2607 * Get the memory for a slab management obj.
2608 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2609 * always come from malloc_sizes caches. The slab descriptor cannot
2610 * come from the same cache which is getting created because,
2611 * when we are searching for an appropriate cache for these
2612 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2613 * If we are creating a malloc_sizes cache here it would not be visible to
2614 * kmem_find_general_cachep till the initialization is complete.
2615 * Hence we cannot have slabp_cache same as the original cache.
2617 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2618 int colour_off, gfp_t local_flags,
2619 int nodeid)
2621 struct slab *slabp;
2623 if (OFF_SLAB(cachep)) {
2624 /* Slab management obj is off-slab. */
2625 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2626 local_flags & ~GFP_THISNODE, nodeid);
2627 if (!slabp)
2628 return NULL;
2629 } else {
2630 slabp = objp + colour_off;
2631 colour_off += cachep->slab_size;
2633 slabp->inuse = 0;
2634 slabp->colouroff = colour_off;
2635 slabp->s_mem = objp + colour_off;
2636 slabp->nodeid = nodeid;
2637 slabp->free = 0;
2638 return slabp;
2641 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2643 return (kmem_bufctl_t *) (slabp + 1);
2646 static void cache_init_objs(struct kmem_cache *cachep,
2647 struct slab *slabp)
2649 int i;
2651 for (i = 0; i < cachep->num; i++) {
2652 void *objp = index_to_obj(cachep, slabp, i);
2653 #if DEBUG
2654 /* need to poison the objs? */
2655 if (cachep->flags & SLAB_POISON)
2656 poison_obj(cachep, objp, POISON_FREE);
2657 if (cachep->flags & SLAB_STORE_USER)
2658 *dbg_userword(cachep, objp) = NULL;
2660 if (cachep->flags & SLAB_RED_ZONE) {
2661 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2662 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2665 * Constructors are not allowed to allocate memory from the same
2666 * cache which they are a constructor for. Otherwise, deadlock.
2667 * They must also be threaded.
2669 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2670 cachep->ctor(cachep, objp + obj_offset(cachep));
2672 if (cachep->flags & SLAB_RED_ZONE) {
2673 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2674 slab_error(cachep, "constructor overwrote the"
2675 " end of an object");
2676 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2677 slab_error(cachep, "constructor overwrote the"
2678 " start of an object");
2680 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2681 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2682 kernel_map_pages(virt_to_page(objp),
2683 cachep->buffer_size / PAGE_SIZE, 0);
2684 #else
2685 if (cachep->ctor)
2686 cachep->ctor(cachep, objp);
2687 #endif
2688 slab_bufctl(slabp)[i] = i + 1;
2690 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2693 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2695 if (CONFIG_ZONE_DMA_FLAG) {
2696 if (flags & GFP_DMA)
2697 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2698 else
2699 BUG_ON(cachep->gfpflags & GFP_DMA);
2703 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2704 int nodeid)
2706 void *objp = index_to_obj(cachep, slabp, slabp->free);
2707 kmem_bufctl_t next;
2709 slabp->inuse++;
2710 next = slab_bufctl(slabp)[slabp->free];
2711 #if DEBUG
2712 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2713 WARN_ON(slabp->nodeid != nodeid);
2714 #endif
2715 slabp->free = next;
2717 return objp;
2720 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2721 void *objp, int nodeid)
2723 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2725 #if DEBUG
2726 /* Verify that the slab belongs to the intended node */
2727 WARN_ON(slabp->nodeid != nodeid);
2729 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2730 printk(KERN_ERR "slab: double free detected in cache "
2731 "'%s', objp %p\n", cachep->name, objp);
2732 BUG();
2734 #endif
2735 slab_bufctl(slabp)[objnr] = slabp->free;
2736 slabp->free = objnr;
2737 slabp->inuse--;
2741 * Map pages beginning at addr to the given cache and slab. This is required
2742 * for the slab allocator to be able to lookup the cache and slab of a
2743 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2745 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2746 void *addr)
2748 int nr_pages;
2749 struct page *page;
2751 page = virt_to_page(addr);
2753 nr_pages = 1;
2754 if (likely(!PageCompound(page)))
2755 nr_pages <<= cache->gfporder;
2757 do {
2758 page_set_cache(page, cache);
2759 page_set_slab(page, slab);
2760 page++;
2761 } while (--nr_pages);
2765 * Grow (by 1) the number of slabs within a cache. This is called by
2766 * kmem_cache_alloc() when there are no active objs left in a cache.
2768 static int cache_grow(struct kmem_cache *cachep,
2769 gfp_t flags, int nodeid, void *objp)
2771 struct slab *slabp;
2772 size_t offset;
2773 gfp_t local_flags;
2774 struct kmem_list3 *l3;
2777 * Be lazy and only check for valid flags here, keeping it out of the
2778 * critical path in kmem_cache_alloc().
2780 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2781 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2783 /* Take the l3 list lock to change the colour_next on this node */
2784 check_irq_off();
2785 l3 = cachep->nodelists[nodeid];
2786 spin_lock(&l3->list_lock);
2788 /* Get colour for the slab, and cal the next value. */
2789 offset = l3->colour_next;
2790 l3->colour_next++;
2791 if (l3->colour_next >= cachep->colour)
2792 l3->colour_next = 0;
2793 spin_unlock(&l3->list_lock);
2795 offset *= cachep->colour_off;
2797 if (local_flags & __GFP_WAIT)
2798 local_irq_enable();
2801 * The test for missing atomic flag is performed here, rather than
2802 * the more obvious place, simply to reduce the critical path length
2803 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2804 * will eventually be caught here (where it matters).
2806 kmem_flagcheck(cachep, flags);
2809 * Get mem for the objs. Attempt to allocate a physical page from
2810 * 'nodeid'.
2812 if (!objp)
2813 objp = kmem_getpages(cachep, local_flags, nodeid);
2814 if (!objp)
2815 goto failed;
2817 /* Get slab management. */
2818 slabp = alloc_slabmgmt(cachep, objp, offset,
2819 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2820 if (!slabp)
2821 goto opps1;
2823 slab_map_pages(cachep, slabp, objp);
2825 cache_init_objs(cachep, slabp);
2827 if (local_flags & __GFP_WAIT)
2828 local_irq_disable();
2829 check_irq_off();
2830 spin_lock(&l3->list_lock);
2832 /* Make slab active. */
2833 list_add_tail(&slabp->list, &(l3->slabs_free));
2834 STATS_INC_GROWN(cachep);
2835 l3->free_objects += cachep->num;
2836 spin_unlock(&l3->list_lock);
2837 return 1;
2838 opps1:
2839 kmem_freepages(cachep, objp);
2840 failed:
2841 if (local_flags & __GFP_WAIT)
2842 local_irq_disable();
2843 return 0;
2846 #if DEBUG
2849 * Perform extra freeing checks:
2850 * - detect bad pointers.
2851 * - POISON/RED_ZONE checking
2853 static void kfree_debugcheck(const void *objp)
2855 if (!virt_addr_valid(objp)) {
2856 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2857 (unsigned long)objp);
2858 BUG();
2862 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2864 unsigned long long redzone1, redzone2;
2866 redzone1 = *dbg_redzone1(cache, obj);
2867 redzone2 = *dbg_redzone2(cache, obj);
2870 * Redzone is ok.
2872 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2873 return;
2875 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2876 slab_error(cache, "double free detected");
2877 else
2878 slab_error(cache, "memory outside object was overwritten");
2880 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2881 obj, redzone1, redzone2);
2884 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2885 void *caller)
2887 struct page *page;
2888 unsigned int objnr;
2889 struct slab *slabp;
2891 BUG_ON(virt_to_cache(objp) != cachep);
2893 objp -= obj_offset(cachep);
2894 kfree_debugcheck(objp);
2895 page = virt_to_head_page(objp);
2897 slabp = page_get_slab(page);
2899 if (cachep->flags & SLAB_RED_ZONE) {
2900 verify_redzone_free(cachep, objp);
2901 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2902 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2904 if (cachep->flags & SLAB_STORE_USER)
2905 *dbg_userword(cachep, objp) = caller;
2907 objnr = obj_to_index(cachep, slabp, objp);
2909 BUG_ON(objnr >= cachep->num);
2910 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2912 #ifdef CONFIG_DEBUG_SLAB_LEAK
2913 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2914 #endif
2915 if (cachep->flags & SLAB_POISON) {
2916 #ifdef CONFIG_DEBUG_PAGEALLOC
2917 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2918 store_stackinfo(cachep, objp, (unsigned long)caller);
2919 kernel_map_pages(virt_to_page(objp),
2920 cachep->buffer_size / PAGE_SIZE, 0);
2921 } else {
2922 poison_obj(cachep, objp, POISON_FREE);
2924 #else
2925 poison_obj(cachep, objp, POISON_FREE);
2926 #endif
2928 return objp;
2931 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2933 kmem_bufctl_t i;
2934 int entries = 0;
2936 /* Check slab's freelist to see if this obj is there. */
2937 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2938 entries++;
2939 if (entries > cachep->num || i >= cachep->num)
2940 goto bad;
2942 if (entries != cachep->num - slabp->inuse) {
2943 bad:
2944 printk(KERN_ERR "slab: Internal list corruption detected in "
2945 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2946 cachep->name, cachep->num, slabp, slabp->inuse);
2947 for (i = 0;
2948 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2949 i++) {
2950 if (i % 16 == 0)
2951 printk("\n%03x:", i);
2952 printk(" %02x", ((unsigned char *)slabp)[i]);
2954 printk("\n");
2955 BUG();
2958 #else
2959 #define kfree_debugcheck(x) do { } while(0)
2960 #define cache_free_debugcheck(x,objp,z) (objp)
2961 #define check_slabp(x,y) do { } while(0)
2962 #endif
2964 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2966 int batchcount;
2967 struct kmem_list3 *l3;
2968 struct array_cache *ac;
2969 int node;
2971 <<<<<<< HEAD:mm/slab.c
2972 node = numa_node_id();
2974 =======
2975 retry:
2976 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/slab.c
2977 check_irq_off();
2978 <<<<<<< HEAD:mm/slab.c
2979 =======
2980 node = numa_node_id();
2981 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/slab.c
2982 ac = cpu_cache_get(cachep);
2983 <<<<<<< HEAD:mm/slab.c
2984 retry:
2985 =======
2986 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/slab.c
2987 batchcount = ac->batchcount;
2988 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2990 * If there was little recent activity on this cache, then
2991 * perform only a partial refill. Otherwise we could generate
2992 * refill bouncing.
2994 batchcount = BATCHREFILL_LIMIT;
2996 l3 = cachep->nodelists[node];
2998 BUG_ON(ac->avail > 0 || !l3);
2999 spin_lock(&l3->list_lock);
3001 /* See if we can refill from the shared array */
3002 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
3003 goto alloc_done;
3005 while (batchcount > 0) {
3006 struct list_head *entry;
3007 struct slab *slabp;
3008 /* Get slab alloc is to come from. */
3009 entry = l3->slabs_partial.next;
3010 if (entry == &l3->slabs_partial) {
3011 l3->free_touched = 1;
3012 entry = l3->slabs_free.next;
3013 if (entry == &l3->slabs_free)
3014 goto must_grow;
3017 slabp = list_entry(entry, struct slab, list);
3018 check_slabp(cachep, slabp);
3019 check_spinlock_acquired(cachep);
3022 * The slab was either on partial or free list so
3023 * there must be at least one object available for
3024 * allocation.
3026 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3028 while (slabp->inuse < cachep->num && batchcount--) {
3029 STATS_INC_ALLOCED(cachep);
3030 STATS_INC_ACTIVE(cachep);
3031 STATS_SET_HIGH(cachep);
3033 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3034 node);
3036 check_slabp(cachep, slabp);
3038 /* move slabp to correct slabp list: */
3039 list_del(&slabp->list);
3040 if (slabp->free == BUFCTL_END)
3041 list_add(&slabp->list, &l3->slabs_full);
3042 else
3043 list_add(&slabp->list, &l3->slabs_partial);
3046 must_grow:
3047 l3->free_objects -= ac->avail;
3048 alloc_done:
3049 spin_unlock(&l3->list_lock);
3051 if (unlikely(!ac->avail)) {
3052 int x;
3053 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3055 /* cache_grow can reenable interrupts, then ac could change. */
3056 ac = cpu_cache_get(cachep);
3057 if (!x && ac->avail == 0) /* no objects in sight? abort */
3058 return NULL;
3060 if (!ac->avail) /* objects refilled by interrupt? */
3061 goto retry;
3063 ac->touched = 1;
3064 return ac->entry[--ac->avail];
3067 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3068 gfp_t flags)
3070 might_sleep_if(flags & __GFP_WAIT);
3071 #if DEBUG
3072 kmem_flagcheck(cachep, flags);
3073 #endif
3076 #if DEBUG
3077 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3078 gfp_t flags, void *objp, void *caller)
3080 if (!objp)
3081 return objp;
3082 if (cachep->flags & SLAB_POISON) {
3083 #ifdef CONFIG_DEBUG_PAGEALLOC
3084 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3085 kernel_map_pages(virt_to_page(objp),
3086 cachep->buffer_size / PAGE_SIZE, 1);
3087 else
3088 check_poison_obj(cachep, objp);
3089 #else
3090 check_poison_obj(cachep, objp);
3091 #endif
3092 poison_obj(cachep, objp, POISON_INUSE);
3094 if (cachep->flags & SLAB_STORE_USER)
3095 *dbg_userword(cachep, objp) = caller;
3097 if (cachep->flags & SLAB_RED_ZONE) {
3098 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3099 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3100 slab_error(cachep, "double free, or memory outside"
3101 " object was overwritten");
3102 printk(KERN_ERR
3103 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3104 objp, *dbg_redzone1(cachep, objp),
3105 *dbg_redzone2(cachep, objp));
3107 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3108 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3110 #ifdef CONFIG_DEBUG_SLAB_LEAK
3112 struct slab *slabp;
3113 unsigned objnr;
3115 slabp = page_get_slab(virt_to_head_page(objp));
3116 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3117 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3119 #endif
3120 objp += obj_offset(cachep);
3121 if (cachep->ctor && cachep->flags & SLAB_POISON)
3122 cachep->ctor(cachep, objp);
3123 #if ARCH_SLAB_MINALIGN
3124 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3125 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3126 objp, ARCH_SLAB_MINALIGN);
3128 #endif
3129 return objp;
3131 #else
3132 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3133 #endif
3135 #ifdef CONFIG_FAILSLAB
3137 static struct failslab_attr {
3139 struct fault_attr attr;
3141 u32 ignore_gfp_wait;
3142 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3143 struct dentry *ignore_gfp_wait_file;
3144 #endif
3146 } failslab = {
3147 .attr = FAULT_ATTR_INITIALIZER,
3148 .ignore_gfp_wait = 1,
3151 static int __init setup_failslab(char *str)
3153 return setup_fault_attr(&failslab.attr, str);
3155 __setup("failslab=", setup_failslab);
3157 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3159 if (cachep == &cache_cache)
3160 return 0;
3161 if (flags & __GFP_NOFAIL)
3162 return 0;
3163 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3164 return 0;
3166 return should_fail(&failslab.attr, obj_size(cachep));
3169 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3171 static int __init failslab_debugfs(void)
3173 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3174 struct dentry *dir;
3175 int err;
3177 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3178 if (err)
3179 return err;
3180 dir = failslab.attr.dentries.dir;
3182 failslab.ignore_gfp_wait_file =
3183 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3184 &failslab.ignore_gfp_wait);
3186 if (!failslab.ignore_gfp_wait_file) {
3187 err = -ENOMEM;
3188 debugfs_remove(failslab.ignore_gfp_wait_file);
3189 cleanup_fault_attr_dentries(&failslab.attr);
3192 return err;
3195 late_initcall(failslab_debugfs);
3197 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3199 #else /* CONFIG_FAILSLAB */
3201 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3203 return 0;
3206 #endif /* CONFIG_FAILSLAB */
3208 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3210 void *objp;
3211 struct array_cache *ac;
3213 check_irq_off();
3215 ac = cpu_cache_get(cachep);
3216 if (likely(ac->avail)) {
3217 STATS_INC_ALLOCHIT(cachep);
3218 ac->touched = 1;
3219 objp = ac->entry[--ac->avail];
3220 } else {
3221 STATS_INC_ALLOCMISS(cachep);
3222 objp = cache_alloc_refill(cachep, flags);
3224 return objp;
3227 #ifdef CONFIG_NUMA
3229 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3231 * If we are in_interrupt, then process context, including cpusets and
3232 * mempolicy, may not apply and should not be used for allocation policy.
3234 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3236 int nid_alloc, nid_here;
3238 if (in_interrupt() || (flags & __GFP_THISNODE))
3239 return NULL;
3240 nid_alloc = nid_here = numa_node_id();
3241 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3242 nid_alloc = cpuset_mem_spread_node();
3243 else if (current->mempolicy)
3244 nid_alloc = slab_node(current->mempolicy);
3245 if (nid_alloc != nid_here)
3246 return ____cache_alloc_node(cachep, flags, nid_alloc);
3247 return NULL;
3251 * Fallback function if there was no memory available and no objects on a
3252 * certain node and fall back is permitted. First we scan all the
3253 * available nodelists for available objects. If that fails then we
3254 * perform an allocation without specifying a node. This allows the page
3255 * allocator to do its reclaim / fallback magic. We then insert the
3256 * slab into the proper nodelist and then allocate from it.
3258 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3260 struct zonelist *zonelist;
3261 gfp_t local_flags;
3262 struct zone **z;
3263 void *obj = NULL;
3264 int nid;
3266 if (flags & __GFP_THISNODE)
3267 return NULL;
3269 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3270 ->node_zonelists[gfp_zone(flags)];
3271 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3273 retry:
3275 * Look through allowed nodes for objects available
3276 * from existing per node queues.
3278 for (z = zonelist->zones; *z && !obj; z++) {
3279 nid = zone_to_nid(*z);
3281 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3282 cache->nodelists[nid] &&
3283 cache->nodelists[nid]->free_objects)
3284 obj = ____cache_alloc_node(cache,
3285 flags | GFP_THISNODE, nid);
3288 if (!obj) {
3290 * This allocation will be performed within the constraints
3291 * of the current cpuset / memory policy requirements.
3292 * We may trigger various forms of reclaim on the allowed
3293 * set and go into memory reserves if necessary.
3295 if (local_flags & __GFP_WAIT)
3296 local_irq_enable();
3297 kmem_flagcheck(cache, flags);
3298 <<<<<<< HEAD:mm/slab.c
3299 obj = kmem_getpages(cache, flags, -1);
3300 =======
3301 obj = kmem_getpages(cache, local_flags, -1);
3302 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/slab.c
3303 if (local_flags & __GFP_WAIT)
3304 local_irq_disable();
3305 if (obj) {
3307 * Insert into the appropriate per node queues
3309 nid = page_to_nid(virt_to_page(obj));
3310 if (cache_grow(cache, flags, nid, obj)) {
3311 obj = ____cache_alloc_node(cache,
3312 flags | GFP_THISNODE, nid);
3313 if (!obj)
3315 * Another processor may allocate the
3316 * objects in the slab since we are
3317 * not holding any locks.
3319 goto retry;
3320 } else {
3321 /* cache_grow already freed obj */
3322 obj = NULL;
3326 return obj;
3330 * A interface to enable slab creation on nodeid
3332 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3333 int nodeid)
3335 struct list_head *entry;
3336 struct slab *slabp;
3337 struct kmem_list3 *l3;
3338 void *obj;
3339 int x;
3341 l3 = cachep->nodelists[nodeid];
3342 BUG_ON(!l3);
3344 retry:
3345 check_irq_off();
3346 spin_lock(&l3->list_lock);
3347 entry = l3->slabs_partial.next;
3348 if (entry == &l3->slabs_partial) {
3349 l3->free_touched = 1;
3350 entry = l3->slabs_free.next;
3351 if (entry == &l3->slabs_free)
3352 goto must_grow;
3355 slabp = list_entry(entry, struct slab, list);
3356 check_spinlock_acquired_node(cachep, nodeid);
3357 check_slabp(cachep, slabp);
3359 STATS_INC_NODEALLOCS(cachep);
3360 STATS_INC_ACTIVE(cachep);
3361 STATS_SET_HIGH(cachep);
3363 BUG_ON(slabp->inuse == cachep->num);
3365 obj = slab_get_obj(cachep, slabp, nodeid);
3366 check_slabp(cachep, slabp);
3367 l3->free_objects--;
3368 /* move slabp to correct slabp list: */
3369 list_del(&slabp->list);
3371 if (slabp->free == BUFCTL_END)
3372 list_add(&slabp->list, &l3->slabs_full);
3373 else
3374 list_add(&slabp->list, &l3->slabs_partial);
3376 spin_unlock(&l3->list_lock);
3377 goto done;
3379 must_grow:
3380 spin_unlock(&l3->list_lock);
3381 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3382 if (x)
3383 goto retry;
3385 return fallback_alloc(cachep, flags);
3387 done:
3388 return obj;
3392 * kmem_cache_alloc_node - Allocate an object on the specified node
3393 * @cachep: The cache to allocate from.
3394 * @flags: See kmalloc().
3395 * @nodeid: node number of the target node.
3396 * @caller: return address of caller, used for debug information
3398 * Identical to kmem_cache_alloc but it will allocate memory on the given
3399 * node, which can improve the performance for cpu bound structures.
3401 * Fallback to other node is possible if __GFP_THISNODE is not set.
3403 static __always_inline void *
3404 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3405 void *caller)
3407 unsigned long save_flags;
3408 void *ptr;
3410 if (should_failslab(cachep, flags))
3411 return NULL;
3413 cache_alloc_debugcheck_before(cachep, flags);
3414 local_irq_save(save_flags);
3416 if (unlikely(nodeid == -1))
3417 nodeid = numa_node_id();
3419 if (unlikely(!cachep->nodelists[nodeid])) {
3420 /* Node not bootstrapped yet */
3421 ptr = fallback_alloc(cachep, flags);
3422 goto out;
3425 if (nodeid == numa_node_id()) {
3427 * Use the locally cached objects if possible.
3428 * However ____cache_alloc does not allow fallback
3429 * to other nodes. It may fail while we still have
3430 * objects on other nodes available.
3432 ptr = ____cache_alloc(cachep, flags);
3433 if (ptr)
3434 goto out;
3436 /* ___cache_alloc_node can fall back to other nodes */
3437 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3438 out:
3439 local_irq_restore(save_flags);
3440 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3442 if (unlikely((flags & __GFP_ZERO) && ptr))
3443 memset(ptr, 0, obj_size(cachep));
3445 return ptr;
3448 static __always_inline void *
3449 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3451 void *objp;
3453 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3454 objp = alternate_node_alloc(cache, flags);
3455 if (objp)
3456 goto out;
3458 objp = ____cache_alloc(cache, flags);
3461 * We may just have run out of memory on the local node.
3462 * ____cache_alloc_node() knows how to locate memory on other nodes
3464 if (!objp)
3465 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3467 out:
3468 return objp;
3470 #else
3472 static __always_inline void *
3473 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3475 return ____cache_alloc(cachep, flags);
3478 #endif /* CONFIG_NUMA */
3480 static __always_inline void *
3481 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3483 unsigned long save_flags;
3484 void *objp;
3486 if (should_failslab(cachep, flags))
3487 return NULL;
3489 cache_alloc_debugcheck_before(cachep, flags);
3490 local_irq_save(save_flags);
3491 objp = __do_cache_alloc(cachep, flags);
3492 local_irq_restore(save_flags);
3493 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3494 prefetchw(objp);
3496 if (unlikely((flags & __GFP_ZERO) && objp))
3497 memset(objp, 0, obj_size(cachep));
3499 return objp;
3503 * Caller needs to acquire correct kmem_list's list_lock
3505 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3506 int node)
3508 int i;
3509 struct kmem_list3 *l3;
3511 for (i = 0; i < nr_objects; i++) {
3512 void *objp = objpp[i];
3513 struct slab *slabp;
3515 slabp = virt_to_slab(objp);
3516 l3 = cachep->nodelists[node];
3517 list_del(&slabp->list);
3518 check_spinlock_acquired_node(cachep, node);
3519 check_slabp(cachep, slabp);
3520 slab_put_obj(cachep, slabp, objp, node);
3521 STATS_DEC_ACTIVE(cachep);
3522 l3->free_objects++;
3523 check_slabp(cachep, slabp);
3525 /* fixup slab chains */
3526 if (slabp->inuse == 0) {
3527 if (l3->free_objects > l3->free_limit) {
3528 l3->free_objects -= cachep->num;
3529 /* No need to drop any previously held
3530 * lock here, even if we have a off-slab slab
3531 * descriptor it is guaranteed to come from
3532 * a different cache, refer to comments before
3533 * alloc_slabmgmt.
3535 slab_destroy(cachep, slabp);
3536 } else {
3537 list_add(&slabp->list, &l3->slabs_free);
3539 } else {
3540 /* Unconditionally move a slab to the end of the
3541 * partial list on free - maximum time for the
3542 * other objects to be freed, too.
3544 list_add_tail(&slabp->list, &l3->slabs_partial);
3549 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3551 int batchcount;
3552 struct kmem_list3 *l3;
3553 int node = numa_node_id();
3555 batchcount = ac->batchcount;
3556 #if DEBUG
3557 BUG_ON(!batchcount || batchcount > ac->avail);
3558 #endif
3559 check_irq_off();
3560 l3 = cachep->nodelists[node];
3561 spin_lock(&l3->list_lock);
3562 if (l3->shared) {
3563 struct array_cache *shared_array = l3->shared;
3564 int max = shared_array->limit - shared_array->avail;
3565 if (max) {
3566 if (batchcount > max)
3567 batchcount = max;
3568 memcpy(&(shared_array->entry[shared_array->avail]),
3569 ac->entry, sizeof(void *) * batchcount);
3570 shared_array->avail += batchcount;
3571 goto free_done;
3575 free_block(cachep, ac->entry, batchcount, node);
3576 free_done:
3577 #if STATS
3579 int i = 0;
3580 struct list_head *p;
3582 p = l3->slabs_free.next;
3583 while (p != &(l3->slabs_free)) {
3584 struct slab *slabp;
3586 slabp = list_entry(p, struct slab, list);
3587 BUG_ON(slabp->inuse);
3589 i++;
3590 p = p->next;
3592 STATS_SET_FREEABLE(cachep, i);
3594 #endif
3595 spin_unlock(&l3->list_lock);
3596 ac->avail -= batchcount;
3597 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3601 * Release an obj back to its cache. If the obj has a constructed state, it must
3602 * be in this state _before_ it is released. Called with disabled ints.
3604 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3606 struct array_cache *ac = cpu_cache_get(cachep);
3608 check_irq_off();
3609 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3612 * Skip calling cache_free_alien() when the platform is not numa.
3613 * This will avoid cache misses that happen while accessing slabp (which
3614 * is per page memory reference) to get nodeid. Instead use a global
3615 * variable to skip the call, which is mostly likely to be present in
3616 * the cache.
3618 if (numa_platform && cache_free_alien(cachep, objp))
3619 return;
3621 if (likely(ac->avail < ac->limit)) {
3622 STATS_INC_FREEHIT(cachep);
3623 ac->entry[ac->avail++] = objp;
3624 return;
3625 } else {
3626 STATS_INC_FREEMISS(cachep);
3627 cache_flusharray(cachep, ac);
3628 ac->entry[ac->avail++] = objp;
3633 * kmem_cache_alloc - Allocate an object
3634 * @cachep: The cache to allocate from.
3635 * @flags: See kmalloc().
3637 * Allocate an object from this cache. The flags are only relevant
3638 * if the cache has no available objects.
3640 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3642 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3644 EXPORT_SYMBOL(kmem_cache_alloc);
3647 * kmem_ptr_validate - check if an untrusted pointer might
3648 * be a slab entry.
3649 * @cachep: the cache we're checking against
3650 * @ptr: pointer to validate
3652 * This verifies that the untrusted pointer looks sane:
3653 * it is _not_ a guarantee that the pointer is actually
3654 * part of the slab cache in question, but it at least
3655 * validates that the pointer can be dereferenced and
3656 * looks half-way sane.
3658 * Currently only used for dentry validation.
3660 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3662 unsigned long addr = (unsigned long)ptr;
3663 unsigned long min_addr = PAGE_OFFSET;
3664 unsigned long align_mask = BYTES_PER_WORD - 1;
3665 unsigned long size = cachep->buffer_size;
3666 struct page *page;
3668 if (unlikely(addr < min_addr))
3669 goto out;
3670 if (unlikely(addr > (unsigned long)high_memory - size))
3671 goto out;
3672 if (unlikely(addr & align_mask))
3673 goto out;
3674 if (unlikely(!kern_addr_valid(addr)))
3675 goto out;
3676 if (unlikely(!kern_addr_valid(addr + size - 1)))
3677 goto out;
3678 page = virt_to_page(ptr);
3679 if (unlikely(!PageSlab(page)))
3680 goto out;
3681 if (unlikely(page_get_cache(page) != cachep))
3682 goto out;
3683 return 1;
3684 out:
3685 return 0;
3688 #ifdef CONFIG_NUMA
3689 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3691 return __cache_alloc_node(cachep, flags, nodeid,
3692 __builtin_return_address(0));
3694 EXPORT_SYMBOL(kmem_cache_alloc_node);
3696 static __always_inline void *
3697 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3699 struct kmem_cache *cachep;
3701 cachep = kmem_find_general_cachep(size, flags);
3702 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3703 return cachep;
3704 return kmem_cache_alloc_node(cachep, flags, node);
3707 #ifdef CONFIG_DEBUG_SLAB
3708 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3710 return __do_kmalloc_node(size, flags, node,
3711 __builtin_return_address(0));
3713 EXPORT_SYMBOL(__kmalloc_node);
3715 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3716 int node, void *caller)
3718 return __do_kmalloc_node(size, flags, node, caller);
3720 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3721 #else
3722 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3724 return __do_kmalloc_node(size, flags, node, NULL);
3726 EXPORT_SYMBOL(__kmalloc_node);
3727 #endif /* CONFIG_DEBUG_SLAB */
3728 #endif /* CONFIG_NUMA */
3731 * __do_kmalloc - allocate memory
3732 * @size: how many bytes of memory are required.
3733 * @flags: the type of memory to allocate (see kmalloc).
3734 * @caller: function caller for debug tracking of the caller
3736 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3737 void *caller)
3739 struct kmem_cache *cachep;
3741 /* If you want to save a few bytes .text space: replace
3742 * __ with kmem_.
3743 * Then kmalloc uses the uninlined functions instead of the inline
3744 * functions.
3746 cachep = __find_general_cachep(size, flags);
3747 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3748 return cachep;
3749 return __cache_alloc(cachep, flags, caller);
3753 #ifdef CONFIG_DEBUG_SLAB
3754 void *__kmalloc(size_t size, gfp_t flags)
3756 return __do_kmalloc(size, flags, __builtin_return_address(0));
3758 EXPORT_SYMBOL(__kmalloc);
3760 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3762 return __do_kmalloc(size, flags, caller);
3764 EXPORT_SYMBOL(__kmalloc_track_caller);
3766 #else
3767 void *__kmalloc(size_t size, gfp_t flags)
3769 return __do_kmalloc(size, flags, NULL);
3771 EXPORT_SYMBOL(__kmalloc);
3772 #endif
3775 * kmem_cache_free - Deallocate an object
3776 * @cachep: The cache the allocation was from.
3777 * @objp: The previously allocated object.
3779 * Free an object which was previously allocated from this
3780 * cache.
3782 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3784 unsigned long flags;
3786 local_irq_save(flags);
3787 debug_check_no_locks_freed(objp, obj_size(cachep));
3788 __cache_free(cachep, objp);
3789 local_irq_restore(flags);
3791 EXPORT_SYMBOL(kmem_cache_free);
3794 * kfree - free previously allocated memory
3795 * @objp: pointer returned by kmalloc.
3797 * If @objp is NULL, no operation is performed.
3799 * Don't free memory not originally allocated by kmalloc()
3800 * or you will run into trouble.
3802 void kfree(const void *objp)
3804 struct kmem_cache *c;
3805 unsigned long flags;
3807 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3808 return;
3809 local_irq_save(flags);
3810 kfree_debugcheck(objp);
3811 c = virt_to_cache(objp);
3812 debug_check_no_locks_freed(objp, obj_size(c));
3813 __cache_free(c, (void *)objp);
3814 local_irq_restore(flags);
3816 EXPORT_SYMBOL(kfree);
3818 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3820 return obj_size(cachep);
3822 EXPORT_SYMBOL(kmem_cache_size);
3824 const char *kmem_cache_name(struct kmem_cache *cachep)
3826 return cachep->name;
3828 EXPORT_SYMBOL_GPL(kmem_cache_name);
3831 * This initializes kmem_list3 or resizes various caches for all nodes.
3833 static int alloc_kmemlist(struct kmem_cache *cachep)
3835 int node;
3836 struct kmem_list3 *l3;
3837 struct array_cache *new_shared;
3838 struct array_cache **new_alien = NULL;
3840 for_each_online_node(node) {
3842 if (use_alien_caches) {
3843 new_alien = alloc_alien_cache(node, cachep->limit);
3844 if (!new_alien)
3845 goto fail;
3848 new_shared = NULL;
3849 if (cachep->shared) {
3850 new_shared = alloc_arraycache(node,
3851 cachep->shared*cachep->batchcount,
3852 0xbaadf00d);
3853 if (!new_shared) {
3854 free_alien_cache(new_alien);
3855 goto fail;
3859 l3 = cachep->nodelists[node];
3860 if (l3) {
3861 struct array_cache *shared = l3->shared;
3863 spin_lock_irq(&l3->list_lock);
3865 if (shared)
3866 free_block(cachep, shared->entry,
3867 shared->avail, node);
3869 l3->shared = new_shared;
3870 if (!l3->alien) {
3871 l3->alien = new_alien;
3872 new_alien = NULL;
3874 l3->free_limit = (1 + nr_cpus_node(node)) *
3875 cachep->batchcount + cachep->num;
3876 spin_unlock_irq(&l3->list_lock);
3877 kfree(shared);
3878 free_alien_cache(new_alien);
3879 continue;
3881 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3882 if (!l3) {
3883 free_alien_cache(new_alien);
3884 kfree(new_shared);
3885 goto fail;
3888 kmem_list3_init(l3);
3889 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3890 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3891 l3->shared = new_shared;
3892 l3->alien = new_alien;
3893 l3->free_limit = (1 + nr_cpus_node(node)) *
3894 cachep->batchcount + cachep->num;
3895 cachep->nodelists[node] = l3;
3897 return 0;
3899 fail:
3900 if (!cachep->next.next) {
3901 /* Cache is not active yet. Roll back what we did */
3902 node--;
3903 while (node >= 0) {
3904 if (cachep->nodelists[node]) {
3905 l3 = cachep->nodelists[node];
3907 kfree(l3->shared);
3908 free_alien_cache(l3->alien);
3909 kfree(l3);
3910 cachep->nodelists[node] = NULL;
3912 node--;
3915 return -ENOMEM;
3918 struct ccupdate_struct {
3919 struct kmem_cache *cachep;
3920 struct array_cache *new[NR_CPUS];
3923 static void do_ccupdate_local(void *info)
3925 struct ccupdate_struct *new = info;
3926 struct array_cache *old;
3928 check_irq_off();
3929 old = cpu_cache_get(new->cachep);
3931 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3932 new->new[smp_processor_id()] = old;
3935 /* Always called with the cache_chain_mutex held */
3936 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3937 int batchcount, int shared)
3939 struct ccupdate_struct *new;
3940 int i;
3942 new = kzalloc(sizeof(*new), GFP_KERNEL);
3943 if (!new)
3944 return -ENOMEM;
3946 for_each_online_cpu(i) {
3947 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3948 batchcount);
3949 if (!new->new[i]) {
3950 for (i--; i >= 0; i--)
3951 kfree(new->new[i]);
3952 kfree(new);
3953 return -ENOMEM;
3956 new->cachep = cachep;
3958 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3960 check_irq_on();
3961 cachep->batchcount = batchcount;
3962 cachep->limit = limit;
3963 cachep->shared = shared;
3965 for_each_online_cpu(i) {
3966 struct array_cache *ccold = new->new[i];
3967 if (!ccold)
3968 continue;
3969 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3970 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3971 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3972 kfree(ccold);
3974 kfree(new);
3975 return alloc_kmemlist(cachep);
3978 /* Called with cache_chain_mutex held always */
3979 static int enable_cpucache(struct kmem_cache *cachep)
3981 int err;
3982 int limit, shared;
3985 * The head array serves three purposes:
3986 * - create a LIFO ordering, i.e. return objects that are cache-warm
3987 * - reduce the number of spinlock operations.
3988 * - reduce the number of linked list operations on the slab and
3989 * bufctl chains: array operations are cheaper.
3990 * The numbers are guessed, we should auto-tune as described by
3991 * Bonwick.
3993 if (cachep->buffer_size > 131072)
3994 limit = 1;
3995 else if (cachep->buffer_size > PAGE_SIZE)
3996 limit = 8;
3997 else if (cachep->buffer_size > 1024)
3998 limit = 24;
3999 else if (cachep->buffer_size > 256)
4000 limit = 54;
4001 else
4002 limit = 120;
4005 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4006 * allocation behaviour: Most allocs on one cpu, most free operations
4007 * on another cpu. For these cases, an efficient object passing between
4008 * cpus is necessary. This is provided by a shared array. The array
4009 * replaces Bonwick's magazine layer.
4010 * On uniprocessor, it's functionally equivalent (but less efficient)
4011 * to a larger limit. Thus disabled by default.
4013 shared = 0;
4014 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4015 shared = 8;
4017 #if DEBUG
4019 * With debugging enabled, large batchcount lead to excessively long
4020 * periods with disabled local interrupts. Limit the batchcount
4022 if (limit > 32)
4023 limit = 32;
4024 #endif
4025 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4026 if (err)
4027 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4028 cachep->name, -err);
4029 return err;
4033 * Drain an array if it contains any elements taking the l3 lock only if
4034 * necessary. Note that the l3 listlock also protects the array_cache
4035 * if drain_array() is used on the shared array.
4037 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4038 struct array_cache *ac, int force, int node)
4040 int tofree;
4042 if (!ac || !ac->avail)
4043 return;
4044 if (ac->touched && !force) {
4045 ac->touched = 0;
4046 } else {
4047 spin_lock_irq(&l3->list_lock);
4048 if (ac->avail) {
4049 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4050 if (tofree > ac->avail)
4051 tofree = (ac->avail + 1) / 2;
4052 free_block(cachep, ac->entry, tofree, node);
4053 ac->avail -= tofree;
4054 memmove(ac->entry, &(ac->entry[tofree]),
4055 sizeof(void *) * ac->avail);
4057 spin_unlock_irq(&l3->list_lock);
4062 * cache_reap - Reclaim memory from caches.
4063 * @w: work descriptor
4065 * Called from workqueue/eventd every few seconds.
4066 * Purpose:
4067 * - clear the per-cpu caches for this CPU.
4068 * - return freeable pages to the main free memory pool.
4070 * If we cannot acquire the cache chain mutex then just give up - we'll try
4071 * again on the next iteration.
4073 static void cache_reap(struct work_struct *w)
4075 struct kmem_cache *searchp;
4076 struct kmem_list3 *l3;
4077 int node = numa_node_id();
4078 struct delayed_work *work =
4079 container_of(w, struct delayed_work, work);
4081 if (!mutex_trylock(&cache_chain_mutex))
4082 /* Give up. Setup the next iteration. */
4083 goto out;
4085 list_for_each_entry(searchp, &cache_chain, next) {
4086 check_irq_on();
4089 * We only take the l3 lock if absolutely necessary and we
4090 * have established with reasonable certainty that
4091 * we can do some work if the lock was obtained.
4093 l3 = searchp->nodelists[node];
4095 reap_alien(searchp, l3);
4097 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4100 * These are racy checks but it does not matter
4101 * if we skip one check or scan twice.
4103 if (time_after(l3->next_reap, jiffies))
4104 goto next;
4106 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4108 drain_array(searchp, l3, l3->shared, 0, node);
4110 if (l3->free_touched)
4111 l3->free_touched = 0;
4112 else {
4113 int freed;
4115 freed = drain_freelist(searchp, l3, (l3->free_limit +
4116 5 * searchp->num - 1) / (5 * searchp->num));
4117 STATS_ADD_REAPED(searchp, freed);
4119 next:
4120 cond_resched();
4122 check_irq_on();
4123 mutex_unlock(&cache_chain_mutex);
4124 next_reap_node();
4125 out:
4126 /* Set up the next iteration */
4127 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4130 #ifdef CONFIG_SLABINFO
4132 static void print_slabinfo_header(struct seq_file *m)
4135 * Output format version, so at least we can change it
4136 * without _too_ many complaints.
4138 #if STATS
4139 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4140 #else
4141 seq_puts(m, "slabinfo - version: 2.1\n");
4142 #endif
4143 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4144 "<objperslab> <pagesperslab>");
4145 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4146 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4147 #if STATS
4148 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4149 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4150 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4151 #endif
4152 seq_putc(m, '\n');
4155 static void *s_start(struct seq_file *m, loff_t *pos)
4157 loff_t n = *pos;
4159 mutex_lock(&cache_chain_mutex);
4160 if (!n)
4161 print_slabinfo_header(m);
4163 return seq_list_start(&cache_chain, *pos);
4166 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4168 return seq_list_next(p, &cache_chain, pos);
4171 static void s_stop(struct seq_file *m, void *p)
4173 mutex_unlock(&cache_chain_mutex);
4176 static int s_show(struct seq_file *m, void *p)
4178 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4179 struct slab *slabp;
4180 unsigned long active_objs;
4181 unsigned long num_objs;
4182 unsigned long active_slabs = 0;
4183 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4184 const char *name;
4185 char *error = NULL;
4186 int node;
4187 struct kmem_list3 *l3;
4189 active_objs = 0;
4190 num_slabs = 0;
4191 for_each_online_node(node) {
4192 l3 = cachep->nodelists[node];
4193 if (!l3)
4194 continue;
4196 check_irq_on();
4197 spin_lock_irq(&l3->list_lock);
4199 list_for_each_entry(slabp, &l3->slabs_full, list) {
4200 if (slabp->inuse != cachep->num && !error)
4201 error = "slabs_full accounting error";
4202 active_objs += cachep->num;
4203 active_slabs++;
4205 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4206 if (slabp->inuse == cachep->num && !error)
4207 error = "slabs_partial inuse accounting error";
4208 if (!slabp->inuse && !error)
4209 error = "slabs_partial/inuse accounting error";
4210 active_objs += slabp->inuse;
4211 active_slabs++;
4213 list_for_each_entry(slabp, &l3->slabs_free, list) {
4214 if (slabp->inuse && !error)
4215 error = "slabs_free/inuse accounting error";
4216 num_slabs++;
4218 free_objects += l3->free_objects;
4219 if (l3->shared)
4220 shared_avail += l3->shared->avail;
4222 spin_unlock_irq(&l3->list_lock);
4224 num_slabs += active_slabs;
4225 num_objs = num_slabs * cachep->num;
4226 if (num_objs - active_objs != free_objects && !error)
4227 error = "free_objects accounting error";
4229 name = cachep->name;
4230 if (error)
4231 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4233 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4234 name, active_objs, num_objs, cachep->buffer_size,
4235 cachep->num, (1 << cachep->gfporder));
4236 seq_printf(m, " : tunables %4u %4u %4u",
4237 cachep->limit, cachep->batchcount, cachep->shared);
4238 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4239 active_slabs, num_slabs, shared_avail);
4240 #if STATS
4241 { /* list3 stats */
4242 unsigned long high = cachep->high_mark;
4243 unsigned long allocs = cachep->num_allocations;
4244 unsigned long grown = cachep->grown;
4245 unsigned long reaped = cachep->reaped;
4246 unsigned long errors = cachep->errors;
4247 unsigned long max_freeable = cachep->max_freeable;
4248 unsigned long node_allocs = cachep->node_allocs;
4249 unsigned long node_frees = cachep->node_frees;
4250 unsigned long overflows = cachep->node_overflow;
4252 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4253 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4254 reaped, errors, max_freeable, node_allocs,
4255 node_frees, overflows);
4257 /* cpu stats */
4259 unsigned long allochit = atomic_read(&cachep->allochit);
4260 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4261 unsigned long freehit = atomic_read(&cachep->freehit);
4262 unsigned long freemiss = atomic_read(&cachep->freemiss);
4264 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4265 allochit, allocmiss, freehit, freemiss);
4267 #endif
4268 seq_putc(m, '\n');
4269 return 0;
4273 * slabinfo_op - iterator that generates /proc/slabinfo
4275 * Output layout:
4276 * cache-name
4277 * num-active-objs
4278 * total-objs
4279 * object size
4280 * num-active-slabs
4281 * total-slabs
4282 * num-pages-per-slab
4283 * + further values on SMP and with statistics enabled
4286 const struct seq_operations slabinfo_op = {
4287 .start = s_start,
4288 .next = s_next,
4289 .stop = s_stop,
4290 .show = s_show,
4293 #define MAX_SLABINFO_WRITE 128
4295 * slabinfo_write - Tuning for the slab allocator
4296 * @file: unused
4297 * @buffer: user buffer
4298 * @count: data length
4299 * @ppos: unused
4301 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4302 size_t count, loff_t *ppos)
4304 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4305 int limit, batchcount, shared, res;
4306 struct kmem_cache *cachep;
4308 if (count > MAX_SLABINFO_WRITE)
4309 return -EINVAL;
4310 if (copy_from_user(&kbuf, buffer, count))
4311 return -EFAULT;
4312 kbuf[MAX_SLABINFO_WRITE] = '\0';
4314 tmp = strchr(kbuf, ' ');
4315 if (!tmp)
4316 return -EINVAL;
4317 *tmp = '\0';
4318 tmp++;
4319 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4320 return -EINVAL;
4322 /* Find the cache in the chain of caches. */
4323 mutex_lock(&cache_chain_mutex);
4324 res = -EINVAL;
4325 list_for_each_entry(cachep, &cache_chain, next) {
4326 if (!strcmp(cachep->name, kbuf)) {
4327 if (limit < 1 || batchcount < 1 ||
4328 batchcount > limit || shared < 0) {
4329 res = 0;
4330 } else {
4331 res = do_tune_cpucache(cachep, limit,
4332 batchcount, shared);
4334 break;
4337 mutex_unlock(&cache_chain_mutex);
4338 if (res >= 0)
4339 res = count;
4340 return res;
4343 #ifdef CONFIG_DEBUG_SLAB_LEAK
4345 static void *leaks_start(struct seq_file *m, loff_t *pos)
4347 mutex_lock(&cache_chain_mutex);
4348 return seq_list_start(&cache_chain, *pos);
4351 static inline int add_caller(unsigned long *n, unsigned long v)
4353 unsigned long *p;
4354 int l;
4355 if (!v)
4356 return 1;
4357 l = n[1];
4358 p = n + 2;
4359 while (l) {
4360 int i = l/2;
4361 unsigned long *q = p + 2 * i;
4362 if (*q == v) {
4363 q[1]++;
4364 return 1;
4366 if (*q > v) {
4367 l = i;
4368 } else {
4369 p = q + 2;
4370 l -= i + 1;
4373 if (++n[1] == n[0])
4374 return 0;
4375 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4376 p[0] = v;
4377 p[1] = 1;
4378 return 1;
4381 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4383 void *p;
4384 int i;
4385 if (n[0] == n[1])
4386 return;
4387 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4388 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4389 continue;
4390 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4391 return;
4395 static void show_symbol(struct seq_file *m, unsigned long address)
4397 #ifdef CONFIG_KALLSYMS
4398 unsigned long offset, size;
4399 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4401 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4402 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4403 if (modname[0])
4404 seq_printf(m, " [%s]", modname);
4405 return;
4407 #endif
4408 seq_printf(m, "%p", (void *)address);
4411 static int leaks_show(struct seq_file *m, void *p)
4413 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4414 struct slab *slabp;
4415 struct kmem_list3 *l3;
4416 const char *name;
4417 unsigned long *n = m->private;
4418 int node;
4419 int i;
4421 if (!(cachep->flags & SLAB_STORE_USER))
4422 return 0;
4423 if (!(cachep->flags & SLAB_RED_ZONE))
4424 return 0;
4426 /* OK, we can do it */
4428 n[1] = 0;
4430 for_each_online_node(node) {
4431 l3 = cachep->nodelists[node];
4432 if (!l3)
4433 continue;
4435 check_irq_on();
4436 spin_lock_irq(&l3->list_lock);
4438 list_for_each_entry(slabp, &l3->slabs_full, list)
4439 handle_slab(n, cachep, slabp);
4440 list_for_each_entry(slabp, &l3->slabs_partial, list)
4441 handle_slab(n, cachep, slabp);
4442 spin_unlock_irq(&l3->list_lock);
4444 name = cachep->name;
4445 if (n[0] == n[1]) {
4446 /* Increase the buffer size */
4447 mutex_unlock(&cache_chain_mutex);
4448 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4449 if (!m->private) {
4450 /* Too bad, we are really out */
4451 m->private = n;
4452 mutex_lock(&cache_chain_mutex);
4453 return -ENOMEM;
4455 *(unsigned long *)m->private = n[0] * 2;
4456 kfree(n);
4457 mutex_lock(&cache_chain_mutex);
4458 /* Now make sure this entry will be retried */
4459 m->count = m->size;
4460 return 0;
4462 for (i = 0; i < n[1]; i++) {
4463 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4464 show_symbol(m, n[2*i+2]);
4465 seq_putc(m, '\n');
4468 return 0;
4471 const struct seq_operations slabstats_op = {
4472 .start = leaks_start,
4473 .next = s_next,
4474 .stop = s_stop,
4475 .show = leaks_show,
4477 #endif
4478 #endif
4481 * ksize - get the actual amount of memory allocated for a given object
4482 * @objp: Pointer to the object
4484 * kmalloc may internally round up allocations and return more memory
4485 * than requested. ksize() can be used to determine the actual amount of
4486 * memory allocated. The caller may use this additional memory, even though
4487 * a smaller amount of memory was initially specified with the kmalloc call.
4488 * The caller must guarantee that objp points to a valid object previously
4489 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4490 * must not be freed during the duration of the call.
4492 size_t ksize(const void *objp)
4494 BUG_ON(!objp);
4495 if (unlikely(objp == ZERO_SIZE_PTR))
4496 return 0;
4498 return obj_size(virt_to_cache(objp));
4500 EXPORT_SYMBOL(ksize);