3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
174 /* Legal flag mask for kmem_cache_create(). */
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
192 * Bufctl's are used for linking objs within a slab
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t
;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 struct list_head list
;
223 unsigned long colouroff
;
224 void *s_mem
; /* including colour offset */
225 unsigned int inuse
; /* num of objs active in slab */
227 unsigned short nodeid
;
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
247 struct rcu_head head
;
248 struct kmem_cache
*cachep
;
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
267 unsigned int batchcount
;
268 unsigned int touched
;
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init
{
283 struct array_cache cache
;
284 void *entries
[BOOT_CPUCACHE_ENTRIES
];
288 * The slab lists for all objects.
291 struct list_head slabs_partial
; /* partial list first, better asm code */
292 struct list_head slabs_full
;
293 struct list_head slabs_free
;
294 unsigned long free_objects
;
295 unsigned int free_limit
;
296 unsigned int colour_next
; /* Per-node cache coloring */
297 spinlock_t list_lock
;
298 struct array_cache
*shared
; /* shared per node */
299 struct array_cache
**alien
; /* on other nodes */
300 unsigned long next_reap
; /* updated without locking */
301 int free_touched
; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
309 #define CACHE_CACHE 0
310 #define SIZE_AC MAX_NUMNODES
311 #define SIZE_L3 (2 * MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache
*cache
,
314 struct kmem_list3
*l3
, int tofree
);
315 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
317 static int enable_cpucache(struct kmem_cache
*cachep
);
318 static void cache_reap(struct work_struct
*unused
);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline
int index_of(const size_t size
)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size
)) {
336 <<<<<<< HEAD
:mm
/slab
.c
337 #include "linux/kmalloc_sizes.h"
339 #include <linux/kmalloc_sizes.h>
340 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/slab
.c
348 static int slab_early_init
= 1;
350 #define INDEX_AC index_of(sizeof(struct arraycache_init))
351 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
353 static void kmem_list3_init(struct kmem_list3
*parent
)
355 INIT_LIST_HEAD(&parent
->slabs_full
);
356 INIT_LIST_HEAD(&parent
->slabs_partial
);
357 INIT_LIST_HEAD(&parent
->slabs_free
);
358 parent
->shared
= NULL
;
359 parent
->alien
= NULL
;
360 parent
->colour_next
= 0;
361 spin_lock_init(&parent
->list_lock
);
362 parent
->free_objects
= 0;
363 parent
->free_touched
= 0;
366 #define MAKE_LIST(cachep, listp, slab, nodeid) \
368 INIT_LIST_HEAD(listp); \
369 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
372 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
374 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
375 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
376 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
386 /* 1) per-cpu data, touched during every alloc/free */
387 struct array_cache
*array
[NR_CPUS
];
388 /* 2) Cache tunables. Protected by cache_chain_mutex */
389 unsigned int batchcount
;
393 unsigned int buffer_size
;
394 u32 reciprocal_buffer_size
;
395 /* 3) touched by every alloc & free from the backend */
397 unsigned int flags
; /* constant flags */
398 unsigned int num
; /* # of objs per slab */
400 /* 4) cache_grow/shrink */
401 /* order of pgs per slab (2^n) */
402 unsigned int gfporder
;
404 /* force GFP flags, e.g. GFP_DMA */
407 size_t colour
; /* cache colouring range */
408 unsigned int colour_off
; /* colour offset */
409 struct kmem_cache
*slabp_cache
;
410 unsigned int slab_size
;
411 unsigned int dflags
; /* dynamic flags */
413 /* constructor func */
414 void (*ctor
)(struct kmem_cache
*, void *);
416 /* 5) cache creation/removal */
418 struct list_head next
;
422 unsigned long num_active
;
423 unsigned long num_allocations
;
424 unsigned long high_mark
;
426 unsigned long reaped
;
427 unsigned long errors
;
428 unsigned long max_freeable
;
429 unsigned long node_allocs
;
430 unsigned long node_frees
;
431 unsigned long node_overflow
;
439 * If debugging is enabled, then the allocator can add additional
440 * fields and/or padding to every object. buffer_size contains the total
441 * object size including these internal fields, the following two
442 * variables contain the offset to the user object and its size.
448 * We put nodelists[] at the end of kmem_cache, because we want to size
449 * this array to nr_node_ids slots instead of MAX_NUMNODES
450 * (see kmem_cache_init())
451 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
452 * is statically defined, so we reserve the max number of nodes.
454 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
456 * Do not add fields after nodelists[]
460 #define CFLGS_OFF_SLAB (0x80000000UL)
461 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
463 #define BATCHREFILL_LIMIT 16
465 * Optimization question: fewer reaps means less probability for unnessary
466 * cpucache drain/refill cycles.
468 * OTOH the cpuarrays can contain lots of objects,
469 * which could lock up otherwise freeable slabs.
471 #define REAPTIMEOUT_CPUC (2*HZ)
472 #define REAPTIMEOUT_LIST3 (4*HZ)
475 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
476 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
477 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
478 #define STATS_INC_GROWN(x) ((x)->grown++)
479 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
480 #define STATS_SET_HIGH(x) \
482 if ((x)->num_active > (x)->high_mark) \
483 (x)->high_mark = (x)->num_active; \
485 #define STATS_INC_ERR(x) ((x)->errors++)
486 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
487 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
488 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
489 #define STATS_SET_FREEABLE(x, i) \
491 if ((x)->max_freeable < i) \
492 (x)->max_freeable = i; \
494 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
495 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
496 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
497 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
499 #define STATS_INC_ACTIVE(x) do { } while (0)
500 #define STATS_DEC_ACTIVE(x) do { } while (0)
501 #define STATS_INC_ALLOCED(x) do { } while (0)
502 #define STATS_INC_GROWN(x) do { } while (0)
503 #define STATS_ADD_REAPED(x,y) do { } while (0)
504 #define STATS_SET_HIGH(x) do { } while (0)
505 #define STATS_INC_ERR(x) do { } while (0)
506 #define STATS_INC_NODEALLOCS(x) do { } while (0)
507 #define STATS_INC_NODEFREES(x) do { } while (0)
508 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
509 #define STATS_SET_FREEABLE(x, i) do { } while (0)
510 #define STATS_INC_ALLOCHIT(x) do { } while (0)
511 #define STATS_INC_ALLOCMISS(x) do { } while (0)
512 #define STATS_INC_FREEHIT(x) do { } while (0)
513 #define STATS_INC_FREEMISS(x) do { } while (0)
519 * memory layout of objects:
521 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
522 * the end of an object is aligned with the end of the real
523 * allocation. Catches writes behind the end of the allocation.
524 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
526 * cachep->obj_offset: The real object.
527 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
528 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
529 * [BYTES_PER_WORD long]
531 static int obj_offset(struct kmem_cache
*cachep
)
533 return cachep
->obj_offset
;
536 static int obj_size(struct kmem_cache
*cachep
)
538 return cachep
->obj_size
;
541 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
543 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
544 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
545 sizeof(unsigned long long));
548 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
550 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
551 if (cachep
->flags
& SLAB_STORE_USER
)
552 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
553 sizeof(unsigned long long) -
555 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
556 sizeof(unsigned long long));
559 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
561 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
562 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
567 #define obj_offset(x) 0
568 #define obj_size(cachep) (cachep->buffer_size)
569 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
570 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
571 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
576 * Do not go above this order unless 0 objects fit into the slab.
578 #define BREAK_GFP_ORDER_HI 1
579 #define BREAK_GFP_ORDER_LO 0
580 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
583 * Functions for storing/retrieving the cachep and or slab from the page
584 * allocator. These are used to find the slab an obj belongs to. With kfree(),
585 * these are used to find the cache which an obj belongs to.
587 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
589 page
->lru
.next
= (struct list_head
*)cache
;
592 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
594 page
= compound_head(page
);
595 BUG_ON(!PageSlab(page
));
596 return (struct kmem_cache
*)page
->lru
.next
;
599 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
601 page
->lru
.prev
= (struct list_head
*)slab
;
604 static inline struct slab
*page_get_slab(struct page
*page
)
606 BUG_ON(!PageSlab(page
));
607 return (struct slab
*)page
->lru
.prev
;
610 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
612 struct page
*page
= virt_to_head_page(obj
);
613 return page_get_cache(page
);
616 static inline struct slab
*virt_to_slab(const void *obj
)
618 struct page
*page
= virt_to_head_page(obj
);
619 return page_get_slab(page
);
622 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
625 return slab
->s_mem
+ cache
->buffer_size
* idx
;
629 * We want to avoid an expensive divide : (offset / cache->buffer_size)
630 * Using the fact that buffer_size is a constant for a particular cache,
631 * we can replace (offset / cache->buffer_size) by
632 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
634 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
635 const struct slab
*slab
, void *obj
)
637 u32 offset
= (obj
- slab
->s_mem
);
638 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
642 * These are the default caches for kmalloc. Custom caches can have other sizes.
644 struct cache_sizes malloc_sizes
[] = {
645 #define CACHE(x) { .cs_size = (x) },
646 #include <linux/kmalloc_sizes.h>
650 EXPORT_SYMBOL(malloc_sizes
);
652 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
658 static struct cache_names __initdata cache_names
[] = {
659 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
660 #include <linux/kmalloc_sizes.h>
665 static struct arraycache_init initarray_cache __initdata
=
666 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
667 static struct arraycache_init initarray_generic
=
668 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
670 /* internal cache of cache description objs */
671 static struct kmem_cache cache_cache
= {
673 .limit
= BOOT_CPUCACHE_ENTRIES
,
675 .buffer_size
= sizeof(struct kmem_cache
),
676 .name
= "kmem_cache",
679 #define BAD_ALIEN_MAGIC 0x01020304ul
681 #ifdef CONFIG_LOCKDEP
684 * Slab sometimes uses the kmalloc slabs to store the slab headers
685 * for other slabs "off slab".
686 * The locking for this is tricky in that it nests within the locks
687 * of all other slabs in a few places; to deal with this special
688 * locking we put on-slab caches into a separate lock-class.
690 * We set lock class for alien array caches which are up during init.
691 * The lock annotation will be lost if all cpus of a node goes down and
692 * then comes back up during hotplug
694 static struct lock_class_key on_slab_l3_key
;
695 static struct lock_class_key on_slab_alc_key
;
697 static inline void init_lock_keys(void)
701 struct cache_sizes
*s
= malloc_sizes
;
703 while (s
->cs_size
!= ULONG_MAX
) {
705 struct array_cache
**alc
;
707 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
708 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
710 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
713 * FIXME: This check for BAD_ALIEN_MAGIC
714 * should go away when common slab code is taught to
715 * work even without alien caches.
716 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
717 * for alloc_alien_cache,
719 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
723 lockdep_set_class(&alc
[r
]->lock
,
731 static inline void init_lock_keys(void)
737 * Guard access to the cache-chain.
739 static DEFINE_MUTEX(cache_chain_mutex
);
740 static struct list_head cache_chain
;
743 * chicken and egg problem: delay the per-cpu array allocation
744 * until the general caches are up.
754 * used by boot code to determine if it can use slab based allocator
756 int slab_is_available(void)
758 return g_cpucache_up
== FULL
;
761 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
763 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
765 return cachep
->array
[smp_processor_id()];
768 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
771 struct cache_sizes
*csizep
= malloc_sizes
;
774 /* This happens if someone tries to call
775 * kmem_cache_create(), or __kmalloc(), before
776 * the generic caches are initialized.
778 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
781 return ZERO_SIZE_PTR
;
783 while (size
> csizep
->cs_size
)
787 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
788 * has cs_{dma,}cachep==NULL. Thus no special case
789 * for large kmalloc calls required.
791 #ifdef CONFIG_ZONE_DMA
792 if (unlikely(gfpflags
& GFP_DMA
))
793 return csizep
->cs_dmacachep
;
795 return csizep
->cs_cachep
;
798 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
800 return __find_general_cachep(size
, gfpflags
);
803 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
805 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
809 * Calculate the number of objects and left-over bytes for a given buffer size.
811 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
812 size_t align
, int flags
, size_t *left_over
,
817 size_t slab_size
= PAGE_SIZE
<< gfporder
;
820 * The slab management structure can be either off the slab or
821 * on it. For the latter case, the memory allocated for a
825 * - One kmem_bufctl_t for each object
826 * - Padding to respect alignment of @align
827 * - @buffer_size bytes for each object
829 * If the slab management structure is off the slab, then the
830 * alignment will already be calculated into the size. Because
831 * the slabs are all pages aligned, the objects will be at the
832 * correct alignment when allocated.
834 if (flags
& CFLGS_OFF_SLAB
) {
836 nr_objs
= slab_size
/ buffer_size
;
838 if (nr_objs
> SLAB_LIMIT
)
839 nr_objs
= SLAB_LIMIT
;
842 * Ignore padding for the initial guess. The padding
843 * is at most @align-1 bytes, and @buffer_size is at
844 * least @align. In the worst case, this result will
845 * be one greater than the number of objects that fit
846 * into the memory allocation when taking the padding
849 nr_objs
= (slab_size
- sizeof(struct slab
)) /
850 (buffer_size
+ sizeof(kmem_bufctl_t
));
853 * This calculated number will be either the right
854 * amount, or one greater than what we want.
856 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
860 if (nr_objs
> SLAB_LIMIT
)
861 nr_objs
= SLAB_LIMIT
;
863 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
866 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
869 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
871 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
874 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
875 function
, cachep
->name
, msg
);
880 * By default on NUMA we use alien caches to stage the freeing of
881 * objects allocated from other nodes. This causes massive memory
882 * inefficiencies when using fake NUMA setup to split memory into a
883 * large number of small nodes, so it can be disabled on the command
887 static int use_alien_caches __read_mostly
= 1;
888 static int numa_platform __read_mostly
= 1;
889 static int __init
noaliencache_setup(char *s
)
891 use_alien_caches
= 0;
894 __setup("noaliencache", noaliencache_setup
);
898 * Special reaping functions for NUMA systems called from cache_reap().
899 * These take care of doing round robin flushing of alien caches (containing
900 * objects freed on different nodes from which they were allocated) and the
901 * flushing of remote pcps by calling drain_node_pages.
903 static DEFINE_PER_CPU(unsigned long, reap_node
);
905 static void init_reap_node(int cpu
)
909 node
= next_node(cpu_to_node(cpu
), node_online_map
);
910 if (node
== MAX_NUMNODES
)
911 node
= first_node(node_online_map
);
913 per_cpu(reap_node
, cpu
) = node
;
916 static void next_reap_node(void)
918 int node
= __get_cpu_var(reap_node
);
920 node
= next_node(node
, node_online_map
);
921 if (unlikely(node
>= MAX_NUMNODES
))
922 node
= first_node(node_online_map
);
923 __get_cpu_var(reap_node
) = node
;
927 #define init_reap_node(cpu) do { } while (0)
928 #define next_reap_node(void) do { } while (0)
932 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
933 * via the workqueue/eventd.
934 * Add the CPU number into the expiration time to minimize the possibility of
935 * the CPUs getting into lockstep and contending for the global cache chain
938 static void __cpuinit
start_cpu_timer(int cpu
)
940 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
943 * When this gets called from do_initcalls via cpucache_init(),
944 * init_workqueues() has already run, so keventd will be setup
947 if (keventd_up() && reap_work
->work
.func
== NULL
) {
949 INIT_DELAYED_WORK(reap_work
, cache_reap
);
950 schedule_delayed_work_on(cpu
, reap_work
,
951 __round_jiffies_relative(HZ
, cpu
));
955 static struct array_cache
*alloc_arraycache(int node
, int entries
,
958 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
959 struct array_cache
*nc
= NULL
;
961 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
965 nc
->batchcount
= batchcount
;
967 spin_lock_init(&nc
->lock
);
973 * Transfer objects in one arraycache to another.
974 * Locking must be handled by the caller.
976 * Return the number of entries transferred.
978 static int transfer_objects(struct array_cache
*to
,
979 struct array_cache
*from
, unsigned int max
)
981 /* Figure out how many entries to transfer */
982 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
987 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
998 #define drain_alien_cache(cachep, alien) do { } while (0)
999 #define reap_alien(cachep, l3) do { } while (0)
1001 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1003 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1006 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1010 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1015 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1021 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1022 gfp_t flags
, int nodeid
)
1027 #else /* CONFIG_NUMA */
1029 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1030 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1032 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1034 struct array_cache
**ac_ptr
;
1035 int memsize
= sizeof(void *) * nr_node_ids
;
1040 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1043 if (i
== node
|| !node_online(i
)) {
1047 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1049 for (i
--; i
>= 0; i
--)
1059 static void free_alien_cache(struct array_cache
**ac_ptr
)
1070 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1071 struct array_cache
*ac
, int node
)
1073 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1076 spin_lock(&rl3
->list_lock
);
1078 * Stuff objects into the remote nodes shared array first.
1079 * That way we could avoid the overhead of putting the objects
1080 * into the free lists and getting them back later.
1083 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1085 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1087 spin_unlock(&rl3
->list_lock
);
1092 * Called from cache_reap() to regularly drain alien caches round robin.
1094 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1096 int node
= __get_cpu_var(reap_node
);
1099 struct array_cache
*ac
= l3
->alien
[node
];
1101 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1102 __drain_alien_cache(cachep
, ac
, node
);
1103 spin_unlock_irq(&ac
->lock
);
1108 static void drain_alien_cache(struct kmem_cache
*cachep
,
1109 struct array_cache
**alien
)
1112 struct array_cache
*ac
;
1113 unsigned long flags
;
1115 for_each_online_node(i
) {
1118 spin_lock_irqsave(&ac
->lock
, flags
);
1119 __drain_alien_cache(cachep
, ac
, i
);
1120 spin_unlock_irqrestore(&ac
->lock
, flags
);
1125 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1127 struct slab
*slabp
= virt_to_slab(objp
);
1128 int nodeid
= slabp
->nodeid
;
1129 struct kmem_list3
*l3
;
1130 struct array_cache
*alien
= NULL
;
1133 node
= numa_node_id();
1136 * Make sure we are not freeing a object from another node to the array
1137 * cache on this cpu.
1139 if (likely(slabp
->nodeid
== node
))
1142 l3
= cachep
->nodelists
[node
];
1143 STATS_INC_NODEFREES(cachep
);
1144 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1145 alien
= l3
->alien
[nodeid
];
1146 spin_lock(&alien
->lock
);
1147 if (unlikely(alien
->avail
== alien
->limit
)) {
1148 STATS_INC_ACOVERFLOW(cachep
);
1149 __drain_alien_cache(cachep
, alien
, nodeid
);
1151 alien
->entry
[alien
->avail
++] = objp
;
1152 spin_unlock(&alien
->lock
);
1154 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1155 free_block(cachep
, &objp
, 1, nodeid
);
1156 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1162 static void __cpuinit
cpuup_canceled(long cpu
)
1164 struct kmem_cache
*cachep
;
1165 struct kmem_list3
*l3
= NULL
;
1166 int node
= cpu_to_node(cpu
);
1168 list_for_each_entry(cachep
, &cache_chain
, next
) {
1169 struct array_cache
*nc
;
1170 struct array_cache
*shared
;
1171 struct array_cache
**alien
;
1174 mask
= node_to_cpumask(node
);
1175 /* cpu is dead; no one can alloc from it. */
1176 nc
= cachep
->array
[cpu
];
1177 cachep
->array
[cpu
] = NULL
;
1178 l3
= cachep
->nodelists
[node
];
1181 goto free_array_cache
;
1183 spin_lock_irq(&l3
->list_lock
);
1185 /* Free limit for this kmem_list3 */
1186 l3
->free_limit
-= cachep
->batchcount
;
1188 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1190 if (!cpus_empty(mask
)) {
1191 spin_unlock_irq(&l3
->list_lock
);
1192 goto free_array_cache
;
1195 shared
= l3
->shared
;
1197 free_block(cachep
, shared
->entry
,
1198 shared
->avail
, node
);
1205 spin_unlock_irq(&l3
->list_lock
);
1209 drain_alien_cache(cachep
, alien
);
1210 free_alien_cache(alien
);
1216 * In the previous loop, all the objects were freed to
1217 * the respective cache's slabs, now we can go ahead and
1218 * shrink each nodelist to its limit.
1220 list_for_each_entry(cachep
, &cache_chain
, next
) {
1221 l3
= cachep
->nodelists
[node
];
1224 drain_freelist(cachep
, l3
, l3
->free_objects
);
1228 static int __cpuinit
cpuup_prepare(long cpu
)
1230 struct kmem_cache
*cachep
;
1231 struct kmem_list3
*l3
= NULL
;
1232 int node
= cpu_to_node(cpu
);
1233 const int memsize
= sizeof(struct kmem_list3
);
1236 * We need to do this right in the beginning since
1237 * alloc_arraycache's are going to use this list.
1238 * kmalloc_node allows us to add the slab to the right
1239 * kmem_list3 and not this cpu's kmem_list3
1242 list_for_each_entry(cachep
, &cache_chain
, next
) {
1244 * Set up the size64 kmemlist for cpu before we can
1245 * begin anything. Make sure some other cpu on this
1246 * node has not already allocated this
1248 if (!cachep
->nodelists
[node
]) {
1249 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1252 kmem_list3_init(l3
);
1253 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1254 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1257 * The l3s don't come and go as CPUs come and
1258 * go. cache_chain_mutex is sufficient
1261 cachep
->nodelists
[node
] = l3
;
1264 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1265 cachep
->nodelists
[node
]->free_limit
=
1266 (1 + nr_cpus_node(node
)) *
1267 cachep
->batchcount
+ cachep
->num
;
1268 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1272 * Now we can go ahead with allocating the shared arrays and
1275 list_for_each_entry(cachep
, &cache_chain
, next
) {
1276 struct array_cache
*nc
;
1277 struct array_cache
*shared
= NULL
;
1278 struct array_cache
**alien
= NULL
;
1280 nc
= alloc_arraycache(node
, cachep
->limit
,
1281 cachep
->batchcount
);
1284 if (cachep
->shared
) {
1285 shared
= alloc_arraycache(node
,
1286 cachep
->shared
* cachep
->batchcount
,
1293 if (use_alien_caches
) {
1294 alien
= alloc_alien_cache(node
, cachep
->limit
);
1301 cachep
->array
[cpu
] = nc
;
1302 l3
= cachep
->nodelists
[node
];
1305 spin_lock_irq(&l3
->list_lock
);
1308 * We are serialised from CPU_DEAD or
1309 * CPU_UP_CANCELLED by the cpucontrol lock
1311 l3
->shared
= shared
;
1320 spin_unlock_irq(&l3
->list_lock
);
1322 free_alien_cache(alien
);
1326 cpuup_canceled(cpu
);
1330 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1331 unsigned long action
, void *hcpu
)
1333 long cpu
= (long)hcpu
;
1337 case CPU_UP_PREPARE
:
1338 case CPU_UP_PREPARE_FROZEN
:
1339 mutex_lock(&cache_chain_mutex
);
1340 err
= cpuup_prepare(cpu
);
1341 mutex_unlock(&cache_chain_mutex
);
1344 case CPU_ONLINE_FROZEN
:
1345 start_cpu_timer(cpu
);
1347 #ifdef CONFIG_HOTPLUG_CPU
1348 case CPU_DOWN_PREPARE
:
1349 case CPU_DOWN_PREPARE_FROZEN
:
1351 * Shutdown cache reaper. Note that the cache_chain_mutex is
1352 * held so that if cache_reap() is invoked it cannot do
1353 * anything expensive but will only modify reap_work
1354 * and reschedule the timer.
1356 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1357 /* Now the cache_reaper is guaranteed to be not running. */
1358 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1360 case CPU_DOWN_FAILED
:
1361 case CPU_DOWN_FAILED_FROZEN
:
1362 start_cpu_timer(cpu
);
1365 case CPU_DEAD_FROZEN
:
1367 * Even if all the cpus of a node are down, we don't free the
1368 * kmem_list3 of any cache. This to avoid a race between
1369 * cpu_down, and a kmalloc allocation from another cpu for
1370 * memory from the node of the cpu going down. The list3
1371 * structure is usually allocated from kmem_cache_create() and
1372 * gets destroyed at kmem_cache_destroy().
1376 case CPU_UP_CANCELED
:
1377 case CPU_UP_CANCELED_FROZEN
:
1378 mutex_lock(&cache_chain_mutex
);
1379 cpuup_canceled(cpu
);
1380 mutex_unlock(&cache_chain_mutex
);
1383 return err
? NOTIFY_BAD
: NOTIFY_OK
;
1386 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1387 &cpuup_callback
, NULL
, 0
1391 * swap the static kmem_list3 with kmalloced memory
1393 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1396 struct kmem_list3
*ptr
;
1398 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1401 local_irq_disable();
1402 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1404 * Do not assume that spinlocks can be initialized via memcpy:
1406 spin_lock_init(&ptr
->list_lock
);
1408 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1409 cachep
->nodelists
[nodeid
] = ptr
;
1414 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1415 * size of kmem_list3.
1417 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1421 for_each_online_node(node
) {
1422 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1423 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1425 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1430 * Initialisation. Called after the page allocator have been initialised and
1431 * before smp_init().
1433 void __init
kmem_cache_init(void)
1436 struct cache_sizes
*sizes
;
1437 struct cache_names
*names
;
1442 if (num_possible_nodes() == 1) {
1443 use_alien_caches
= 0;
1447 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1448 kmem_list3_init(&initkmem_list3
[i
]);
1449 if (i
< MAX_NUMNODES
)
1450 cache_cache
.nodelists
[i
] = NULL
;
1452 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1455 * Fragmentation resistance on low memory - only use bigger
1456 * page orders on machines with more than 32MB of memory.
1458 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1459 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1461 /* Bootstrap is tricky, because several objects are allocated
1462 * from caches that do not exist yet:
1463 * 1) initialize the cache_cache cache: it contains the struct
1464 * kmem_cache structures of all caches, except cache_cache itself:
1465 * cache_cache is statically allocated.
1466 * Initially an __init data area is used for the head array and the
1467 * kmem_list3 structures, it's replaced with a kmalloc allocated
1468 * array at the end of the bootstrap.
1469 * 2) Create the first kmalloc cache.
1470 * The struct kmem_cache for the new cache is allocated normally.
1471 * An __init data area is used for the head array.
1472 * 3) Create the remaining kmalloc caches, with minimally sized
1474 * 4) Replace the __init data head arrays for cache_cache and the first
1475 * kmalloc cache with kmalloc allocated arrays.
1476 * 5) Replace the __init data for kmem_list3 for cache_cache and
1477 * the other cache's with kmalloc allocated memory.
1478 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1481 node
= numa_node_id();
1483 /* 1) create the cache_cache */
1484 INIT_LIST_HEAD(&cache_chain
);
1485 list_add(&cache_cache
.next
, &cache_chain
);
1486 cache_cache
.colour_off
= cache_line_size();
1487 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1488 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
];
1491 * struct kmem_cache size depends on nr_node_ids, which
1492 * can be less than MAX_NUMNODES.
1494 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1495 nr_node_ids
* sizeof(struct kmem_list3
*);
1497 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1499 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1501 cache_cache
.reciprocal_buffer_size
=
1502 reciprocal_value(cache_cache
.buffer_size
);
1504 for (order
= 0; order
< MAX_ORDER
; order
++) {
1505 cache_estimate(order
, cache_cache
.buffer_size
,
1506 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1507 if (cache_cache
.num
)
1510 BUG_ON(!cache_cache
.num
);
1511 cache_cache
.gfporder
= order
;
1512 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1513 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1514 sizeof(struct slab
), cache_line_size());
1516 /* 2+3) create the kmalloc caches */
1517 sizes
= malloc_sizes
;
1518 names
= cache_names
;
1521 * Initialize the caches that provide memory for the array cache and the
1522 * kmem_list3 structures first. Without this, further allocations will
1526 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1527 sizes
[INDEX_AC
].cs_size
,
1528 ARCH_KMALLOC_MINALIGN
,
1529 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1532 if (INDEX_AC
!= INDEX_L3
) {
1533 sizes
[INDEX_L3
].cs_cachep
=
1534 kmem_cache_create(names
[INDEX_L3
].name
,
1535 sizes
[INDEX_L3
].cs_size
,
1536 ARCH_KMALLOC_MINALIGN
,
1537 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1541 slab_early_init
= 0;
1543 while (sizes
->cs_size
!= ULONG_MAX
) {
1545 * For performance, all the general caches are L1 aligned.
1546 * This should be particularly beneficial on SMP boxes, as it
1547 * eliminates "false sharing".
1548 * Note for systems short on memory removing the alignment will
1549 * allow tighter packing of the smaller caches.
1551 if (!sizes
->cs_cachep
) {
1552 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1554 ARCH_KMALLOC_MINALIGN
,
1555 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1558 #ifdef CONFIG_ZONE_DMA
1559 sizes
->cs_dmacachep
= kmem_cache_create(
1562 ARCH_KMALLOC_MINALIGN
,
1563 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1570 /* 4) Replace the bootstrap head arrays */
1572 struct array_cache
*ptr
;
1574 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1576 local_irq_disable();
1577 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1578 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1579 sizeof(struct arraycache_init
));
1581 * Do not assume that spinlocks can be initialized via memcpy:
1583 spin_lock_init(&ptr
->lock
);
1585 cache_cache
.array
[smp_processor_id()] = ptr
;
1588 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1590 local_irq_disable();
1591 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1592 != &initarray_generic
.cache
);
1593 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1594 sizeof(struct arraycache_init
));
1596 * Do not assume that spinlocks can be initialized via memcpy:
1598 spin_lock_init(&ptr
->lock
);
1600 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1604 /* 5) Replace the bootstrap kmem_list3's */
1608 for_each_online_node(nid
) {
1609 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
], nid
);
1611 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1612 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1614 if (INDEX_AC
!= INDEX_L3
) {
1615 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1616 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1621 /* 6) resize the head arrays to their final sizes */
1623 struct kmem_cache
*cachep
;
1624 mutex_lock(&cache_chain_mutex
);
1625 list_for_each_entry(cachep
, &cache_chain
, next
)
1626 if (enable_cpucache(cachep
))
1628 mutex_unlock(&cache_chain_mutex
);
1631 /* Annotate slab for lockdep -- annotate the malloc caches */
1636 g_cpucache_up
= FULL
;
1639 * Register a cpu startup notifier callback that initializes
1640 * cpu_cache_get for all new cpus
1642 register_cpu_notifier(&cpucache_notifier
);
1645 * The reap timers are started later, with a module init call: That part
1646 * of the kernel is not yet operational.
1650 static int __init
cpucache_init(void)
1655 * Register the timers that return unneeded pages to the page allocator
1657 for_each_online_cpu(cpu
)
1658 start_cpu_timer(cpu
);
1661 __initcall(cpucache_init
);
1664 * Interface to system's page allocator. No need to hold the cache-lock.
1666 * If we requested dmaable memory, we will get it. Even if we
1667 * did not request dmaable memory, we might get it, but that
1668 * would be relatively rare and ignorable.
1670 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1678 * Nommu uses slab's for process anonymous memory allocations, and thus
1679 * requires __GFP_COMP to properly refcount higher order allocations
1681 flags
|= __GFP_COMP
;
1684 flags
|= cachep
->gfpflags
;
1685 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1686 flags
|= __GFP_RECLAIMABLE
;
1688 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1692 nr_pages
= (1 << cachep
->gfporder
);
1693 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1694 add_zone_page_state(page_zone(page
),
1695 NR_SLAB_RECLAIMABLE
, nr_pages
);
1697 add_zone_page_state(page_zone(page
),
1698 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1699 for (i
= 0; i
< nr_pages
; i
++)
1700 __SetPageSlab(page
+ i
);
1701 return page_address(page
);
1705 * Interface to system's page release.
1707 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1709 unsigned long i
= (1 << cachep
->gfporder
);
1710 struct page
*page
= virt_to_page(addr
);
1711 const unsigned long nr_freed
= i
;
1713 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1714 sub_zone_page_state(page_zone(page
),
1715 NR_SLAB_RECLAIMABLE
, nr_freed
);
1717 sub_zone_page_state(page_zone(page
),
1718 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1720 BUG_ON(!PageSlab(page
));
1721 __ClearPageSlab(page
);
1724 if (current
->reclaim_state
)
1725 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1726 free_pages((unsigned long)addr
, cachep
->gfporder
);
1729 static void kmem_rcu_free(struct rcu_head
*head
)
1731 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1732 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1734 kmem_freepages(cachep
, slab_rcu
->addr
);
1735 if (OFF_SLAB(cachep
))
1736 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1741 #ifdef CONFIG_DEBUG_PAGEALLOC
1742 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1743 unsigned long caller
)
1745 int size
= obj_size(cachep
);
1747 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1749 if (size
< 5 * sizeof(unsigned long))
1752 *addr
++ = 0x12345678;
1754 *addr
++ = smp_processor_id();
1755 size
-= 3 * sizeof(unsigned long);
1757 unsigned long *sptr
= &caller
;
1758 unsigned long svalue
;
1760 while (!kstack_end(sptr
)) {
1762 if (kernel_text_address(svalue
)) {
1764 size
-= sizeof(unsigned long);
1765 if (size
<= sizeof(unsigned long))
1771 *addr
++ = 0x87654321;
1775 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1777 int size
= obj_size(cachep
);
1778 addr
= &((char *)addr
)[obj_offset(cachep
)];
1780 memset(addr
, val
, size
);
1781 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1784 static void dump_line(char *data
, int offset
, int limit
)
1787 unsigned char error
= 0;
1790 printk(KERN_ERR
"%03x:", offset
);
1791 for (i
= 0; i
< limit
; i
++) {
1792 if (data
[offset
+ i
] != POISON_FREE
) {
1793 error
= data
[offset
+ i
];
1796 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1800 if (bad_count
== 1) {
1801 error
^= POISON_FREE
;
1802 if (!(error
& (error
- 1))) {
1803 printk(KERN_ERR
"Single bit error detected. Probably "
1806 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1809 printk(KERN_ERR
"Run a memory test tool.\n");
1818 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1823 if (cachep
->flags
& SLAB_RED_ZONE
) {
1824 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1825 *dbg_redzone1(cachep
, objp
),
1826 *dbg_redzone2(cachep
, objp
));
1829 if (cachep
->flags
& SLAB_STORE_USER
) {
1830 printk(KERN_ERR
"Last user: [<%p>]",
1831 *dbg_userword(cachep
, objp
));
1832 print_symbol("(%s)",
1833 (unsigned long)*dbg_userword(cachep
, objp
));
1836 realobj
= (char *)objp
+ obj_offset(cachep
);
1837 size
= obj_size(cachep
);
1838 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1841 if (i
+ limit
> size
)
1843 dump_line(realobj
, i
, limit
);
1847 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1853 realobj
= (char *)objp
+ obj_offset(cachep
);
1854 size
= obj_size(cachep
);
1856 for (i
= 0; i
< size
; i
++) {
1857 char exp
= POISON_FREE
;
1860 if (realobj
[i
] != exp
) {
1866 "Slab corruption: %s start=%p, len=%d\n",
1867 cachep
->name
, realobj
, size
);
1868 print_objinfo(cachep
, objp
, 0);
1870 /* Hexdump the affected line */
1873 if (i
+ limit
> size
)
1875 dump_line(realobj
, i
, limit
);
1878 /* Limit to 5 lines */
1884 /* Print some data about the neighboring objects, if they
1887 struct slab
*slabp
= virt_to_slab(objp
);
1890 objnr
= obj_to_index(cachep
, slabp
, objp
);
1892 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1893 realobj
= (char *)objp
+ obj_offset(cachep
);
1894 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1896 print_objinfo(cachep
, objp
, 2);
1898 if (objnr
+ 1 < cachep
->num
) {
1899 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1900 realobj
= (char *)objp
+ obj_offset(cachep
);
1901 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1903 print_objinfo(cachep
, objp
, 2);
1911 * slab_destroy_objs - destroy a slab and its objects
1912 * @cachep: cache pointer being destroyed
1913 * @slabp: slab pointer being destroyed
1915 * Call the registered destructor for each object in a slab that is being
1918 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1921 for (i
= 0; i
< cachep
->num
; i
++) {
1922 void *objp
= index_to_obj(cachep
, slabp
, i
);
1924 if (cachep
->flags
& SLAB_POISON
) {
1925 #ifdef CONFIG_DEBUG_PAGEALLOC
1926 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1928 kernel_map_pages(virt_to_page(objp
),
1929 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1931 check_poison_obj(cachep
, objp
);
1933 check_poison_obj(cachep
, objp
);
1936 if (cachep
->flags
& SLAB_RED_ZONE
) {
1937 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1938 slab_error(cachep
, "start of a freed object "
1940 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1941 slab_error(cachep
, "end of a freed object "
1947 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1953 * slab_destroy - destroy and release all objects in a slab
1954 * @cachep: cache pointer being destroyed
1955 * @slabp: slab pointer being destroyed
1957 * Destroy all the objs in a slab, and release the mem back to the system.
1958 * Before calling the slab must have been unlinked from the cache. The
1959 * cache-lock is not held/needed.
1961 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1963 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1965 slab_destroy_objs(cachep
, slabp
);
1966 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1967 struct slab_rcu
*slab_rcu
;
1969 slab_rcu
= (struct slab_rcu
*)slabp
;
1970 slab_rcu
->cachep
= cachep
;
1971 slab_rcu
->addr
= addr
;
1972 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1974 kmem_freepages(cachep
, addr
);
1975 if (OFF_SLAB(cachep
))
1976 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1980 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1983 struct kmem_list3
*l3
;
1985 for_each_online_cpu(i
)
1986 kfree(cachep
->array
[i
]);
1988 /* NUMA: free the list3 structures */
1989 for_each_online_node(i
) {
1990 l3
= cachep
->nodelists
[i
];
1993 free_alien_cache(l3
->alien
);
1997 kmem_cache_free(&cache_cache
, cachep
);
2002 * calculate_slab_order - calculate size (page order) of slabs
2003 * @cachep: pointer to the cache that is being created
2004 * @size: size of objects to be created in this cache.
2005 * @align: required alignment for the objects.
2006 * @flags: slab allocation flags
2008 * Also calculates the number of objects per slab.
2010 * This could be made much more intelligent. For now, try to avoid using
2011 * high order pages for slabs. When the gfp() functions are more friendly
2012 * towards high-order requests, this should be changed.
2014 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2015 size_t size
, size_t align
, unsigned long flags
)
2017 unsigned long offslab_limit
;
2018 size_t left_over
= 0;
2021 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2025 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2029 if (flags
& CFLGS_OFF_SLAB
) {
2031 * Max number of objs-per-slab for caches which
2032 * use off-slab slabs. Needed to avoid a possible
2033 * looping condition in cache_grow().
2035 offslab_limit
= size
- sizeof(struct slab
);
2036 offslab_limit
/= sizeof(kmem_bufctl_t
);
2038 if (num
> offslab_limit
)
2042 /* Found something acceptable - save it away */
2044 cachep
->gfporder
= gfporder
;
2045 left_over
= remainder
;
2048 * A VFS-reclaimable slab tends to have most allocations
2049 * as GFP_NOFS and we really don't want to have to be allocating
2050 * higher-order pages when we are unable to shrink dcache.
2052 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2056 * Large number of objects is good, but very large slabs are
2057 * currently bad for the gfp()s.
2059 if (gfporder
>= slab_break_gfp_order
)
2063 * Acceptable internal fragmentation?
2065 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2071 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
)
2073 if (g_cpucache_up
== FULL
)
2074 return enable_cpucache(cachep
);
2076 if (g_cpucache_up
== NONE
) {
2078 * Note: the first kmem_cache_create must create the cache
2079 * that's used by kmalloc(24), otherwise the creation of
2080 * further caches will BUG().
2082 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2085 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2086 * the first cache, then we need to set up all its list3s,
2087 * otherwise the creation of further caches will BUG().
2089 set_up_list3s(cachep
, SIZE_AC
);
2090 if (INDEX_AC
== INDEX_L3
)
2091 g_cpucache_up
= PARTIAL_L3
;
2093 g_cpucache_up
= PARTIAL_AC
;
2095 cachep
->array
[smp_processor_id()] =
2096 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2098 if (g_cpucache_up
== PARTIAL_AC
) {
2099 set_up_list3s(cachep
, SIZE_L3
);
2100 g_cpucache_up
= PARTIAL_L3
;
2103 for_each_online_node(node
) {
2104 cachep
->nodelists
[node
] =
2105 kmalloc_node(sizeof(struct kmem_list3
),
2107 BUG_ON(!cachep
->nodelists
[node
]);
2108 kmem_list3_init(cachep
->nodelists
[node
]);
2112 cachep
->nodelists
[numa_node_id()]->next_reap
=
2113 jiffies
+ REAPTIMEOUT_LIST3
+
2114 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2116 cpu_cache_get(cachep
)->avail
= 0;
2117 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2118 cpu_cache_get(cachep
)->batchcount
= 1;
2119 cpu_cache_get(cachep
)->touched
= 0;
2120 cachep
->batchcount
= 1;
2121 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2126 * kmem_cache_create - Create a cache.
2127 * @name: A string which is used in /proc/slabinfo to identify this cache.
2128 * @size: The size of objects to be created in this cache.
2129 * @align: The required alignment for the objects.
2130 * @flags: SLAB flags
2131 * @ctor: A constructor for the objects.
2133 * Returns a ptr to the cache on success, NULL on failure.
2134 * Cannot be called within a int, but can be interrupted.
2135 * The @ctor is run when new pages are allocated by the cache.
2137 * @name must be valid until the cache is destroyed. This implies that
2138 * the module calling this has to destroy the cache before getting unloaded.
2142 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2143 * to catch references to uninitialised memory.
2145 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2146 * for buffer overruns.
2148 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2149 * cacheline. This can be beneficial if you're counting cycles as closely
2153 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2154 unsigned long flags
,
2155 void (*ctor
)(struct kmem_cache
*, void *))
2157 size_t left_over
, slab_size
, ralign
;
2158 struct kmem_cache
*cachep
= NULL
, *pc
;
2161 * Sanity checks... these are all serious usage bugs.
2163 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2164 size
> KMALLOC_MAX_SIZE
) {
2165 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2171 * We use cache_chain_mutex to ensure a consistent view of
2172 * cpu_online_map as well. Please see cpuup_callback
2175 mutex_lock(&cache_chain_mutex
);
2177 list_for_each_entry(pc
, &cache_chain
, next
) {
2182 * This happens when the module gets unloaded and doesn't
2183 * destroy its slab cache and no-one else reuses the vmalloc
2184 * area of the module. Print a warning.
2186 res
= probe_kernel_address(pc
->name
, tmp
);
2189 "SLAB: cache with size %d has lost its name\n",
2194 if (!strcmp(pc
->name
, name
)) {
2196 "kmem_cache_create: duplicate cache %s\n", name
);
2203 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2206 * Enable redzoning and last user accounting, except for caches with
2207 * large objects, if the increased size would increase the object size
2208 * above the next power of two: caches with object sizes just above a
2209 * power of two have a significant amount of internal fragmentation.
2211 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2212 2 * sizeof(unsigned long long)))
2213 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2214 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2215 flags
|= SLAB_POISON
;
2217 if (flags
& SLAB_DESTROY_BY_RCU
)
2218 BUG_ON(flags
& SLAB_POISON
);
2221 * Always checks flags, a caller might be expecting debug support which
2224 BUG_ON(flags
& ~CREATE_MASK
);
2227 * Check that size is in terms of words. This is needed to avoid
2228 * unaligned accesses for some archs when redzoning is used, and makes
2229 * sure any on-slab bufctl's are also correctly aligned.
2231 if (size
& (BYTES_PER_WORD
- 1)) {
2232 size
+= (BYTES_PER_WORD
- 1);
2233 size
&= ~(BYTES_PER_WORD
- 1);
2236 /* calculate the final buffer alignment: */
2238 /* 1) arch recommendation: can be overridden for debug */
2239 if (flags
& SLAB_HWCACHE_ALIGN
) {
2241 * Default alignment: as specified by the arch code. Except if
2242 * an object is really small, then squeeze multiple objects into
2245 ralign
= cache_line_size();
2246 while (size
<= ralign
/ 2)
2249 ralign
= BYTES_PER_WORD
;
2253 * Redzoning and user store require word alignment or possibly larger.
2254 * Note this will be overridden by architecture or caller mandated
2255 * alignment if either is greater than BYTES_PER_WORD.
2257 if (flags
& SLAB_STORE_USER
)
2258 ralign
= BYTES_PER_WORD
;
2260 if (flags
& SLAB_RED_ZONE
) {
2261 ralign
= REDZONE_ALIGN
;
2262 /* If redzoning, ensure that the second redzone is suitably
2263 * aligned, by adjusting the object size accordingly. */
2264 size
+= REDZONE_ALIGN
- 1;
2265 size
&= ~(REDZONE_ALIGN
- 1);
2268 /* 2) arch mandated alignment */
2269 if (ralign
< ARCH_SLAB_MINALIGN
) {
2270 ralign
= ARCH_SLAB_MINALIGN
;
2272 /* 3) caller mandated alignment */
2273 if (ralign
< align
) {
2276 /* disable debug if necessary */
2277 if (ralign
> __alignof__(unsigned long long))
2278 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2284 /* Get cache's description obj. */
2285 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2290 cachep
->obj_size
= size
;
2293 * Both debugging options require word-alignment which is calculated
2296 if (flags
& SLAB_RED_ZONE
) {
2297 /* add space for red zone words */
2298 cachep
->obj_offset
+= sizeof(unsigned long long);
2299 size
+= 2 * sizeof(unsigned long long);
2301 if (flags
& SLAB_STORE_USER
) {
2302 /* user store requires one word storage behind the end of
2303 * the real object. But if the second red zone needs to be
2304 * aligned to 64 bits, we must allow that much space.
2306 if (flags
& SLAB_RED_ZONE
)
2307 size
+= REDZONE_ALIGN
;
2309 size
+= BYTES_PER_WORD
;
2311 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2312 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2313 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2314 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2321 * Determine if the slab management is 'on' or 'off' slab.
2322 * (bootstrapping cannot cope with offslab caches so don't do
2325 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2327 * Size is large, assume best to place the slab management obj
2328 * off-slab (should allow better packing of objs).
2330 flags
|= CFLGS_OFF_SLAB
;
2332 size
= ALIGN(size
, align
);
2334 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2338 "kmem_cache_create: couldn't create cache %s.\n", name
);
2339 kmem_cache_free(&cache_cache
, cachep
);
2343 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2344 + sizeof(struct slab
), align
);
2347 * If the slab has been placed off-slab, and we have enough space then
2348 * move it on-slab. This is at the expense of any extra colouring.
2350 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2351 flags
&= ~CFLGS_OFF_SLAB
;
2352 left_over
-= slab_size
;
2355 if (flags
& CFLGS_OFF_SLAB
) {
2356 /* really off slab. No need for manual alignment */
2358 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2361 cachep
->colour_off
= cache_line_size();
2362 /* Offset must be a multiple of the alignment. */
2363 if (cachep
->colour_off
< align
)
2364 cachep
->colour_off
= align
;
2365 cachep
->colour
= left_over
/ cachep
->colour_off
;
2366 cachep
->slab_size
= slab_size
;
2367 cachep
->flags
= flags
;
2368 cachep
->gfpflags
= 0;
2369 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2370 cachep
->gfpflags
|= GFP_DMA
;
2371 cachep
->buffer_size
= size
;
2372 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2374 if (flags
& CFLGS_OFF_SLAB
) {
2375 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2377 * This is a possibility for one of the malloc_sizes caches.
2378 * But since we go off slab only for object size greater than
2379 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2380 * this should not happen at all.
2381 * But leave a BUG_ON for some lucky dude.
2383 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2385 cachep
->ctor
= ctor
;
2386 cachep
->name
= name
;
2388 if (setup_cpu_cache(cachep
)) {
2389 __kmem_cache_destroy(cachep
);
2394 /* cache setup completed, link it into the list */
2395 list_add(&cachep
->next
, &cache_chain
);
2397 if (!cachep
&& (flags
& SLAB_PANIC
))
2398 panic("kmem_cache_create(): failed to create slab `%s'\n",
2400 mutex_unlock(&cache_chain_mutex
);
2404 EXPORT_SYMBOL(kmem_cache_create
);
2407 static void check_irq_off(void)
2409 BUG_ON(!irqs_disabled());
2412 static void check_irq_on(void)
2414 BUG_ON(irqs_disabled());
2417 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2421 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2425 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2429 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2434 #define check_irq_off() do { } while(0)
2435 #define check_irq_on() do { } while(0)
2436 #define check_spinlock_acquired(x) do { } while(0)
2437 #define check_spinlock_acquired_node(x, y) do { } while(0)
2440 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2441 struct array_cache
*ac
,
2442 int force
, int node
);
2444 static void do_drain(void *arg
)
2446 struct kmem_cache
*cachep
= arg
;
2447 struct array_cache
*ac
;
2448 int node
= numa_node_id();
2451 ac
= cpu_cache_get(cachep
);
2452 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2453 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2454 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2458 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2460 struct kmem_list3
*l3
;
2463 on_each_cpu(do_drain
, cachep
, 1, 1);
2465 for_each_online_node(node
) {
2466 l3
= cachep
->nodelists
[node
];
2467 if (l3
&& l3
->alien
)
2468 drain_alien_cache(cachep
, l3
->alien
);
2471 for_each_online_node(node
) {
2472 l3
= cachep
->nodelists
[node
];
2474 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2479 * Remove slabs from the list of free slabs.
2480 * Specify the number of slabs to drain in tofree.
2482 * Returns the actual number of slabs released.
2484 static int drain_freelist(struct kmem_cache
*cache
,
2485 struct kmem_list3
*l3
, int tofree
)
2487 struct list_head
*p
;
2492 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2494 spin_lock_irq(&l3
->list_lock
);
2495 p
= l3
->slabs_free
.prev
;
2496 if (p
== &l3
->slabs_free
) {
2497 spin_unlock_irq(&l3
->list_lock
);
2501 slabp
= list_entry(p
, struct slab
, list
);
2503 BUG_ON(slabp
->inuse
);
2505 list_del(&slabp
->list
);
2507 * Safe to drop the lock. The slab is no longer linked
2510 l3
->free_objects
-= cache
->num
;
2511 spin_unlock_irq(&l3
->list_lock
);
2512 slab_destroy(cache
, slabp
);
2519 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2520 static int __cache_shrink(struct kmem_cache
*cachep
)
2523 struct kmem_list3
*l3
;
2525 drain_cpu_caches(cachep
);
2528 for_each_online_node(i
) {
2529 l3
= cachep
->nodelists
[i
];
2533 drain_freelist(cachep
, l3
, l3
->free_objects
);
2535 ret
+= !list_empty(&l3
->slabs_full
) ||
2536 !list_empty(&l3
->slabs_partial
);
2538 return (ret
? 1 : 0);
2542 * kmem_cache_shrink - Shrink a cache.
2543 * @cachep: The cache to shrink.
2545 * Releases as many slabs as possible for a cache.
2546 * To help debugging, a zero exit status indicates all slabs were released.
2548 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2551 BUG_ON(!cachep
|| in_interrupt());
2554 mutex_lock(&cache_chain_mutex
);
2555 ret
= __cache_shrink(cachep
);
2556 mutex_unlock(&cache_chain_mutex
);
2560 EXPORT_SYMBOL(kmem_cache_shrink
);
2563 * kmem_cache_destroy - delete a cache
2564 * @cachep: the cache to destroy
2566 * Remove a &struct kmem_cache object from the slab cache.
2568 * It is expected this function will be called by a module when it is
2569 * unloaded. This will remove the cache completely, and avoid a duplicate
2570 * cache being allocated each time a module is loaded and unloaded, if the
2571 * module doesn't have persistent in-kernel storage across loads and unloads.
2573 * The cache must be empty before calling this function.
2575 * The caller must guarantee that noone will allocate memory from the cache
2576 * during the kmem_cache_destroy().
2578 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2580 BUG_ON(!cachep
|| in_interrupt());
2582 /* Find the cache in the chain of caches. */
2584 mutex_lock(&cache_chain_mutex
);
2586 * the chain is never empty, cache_cache is never destroyed
2588 list_del(&cachep
->next
);
2589 if (__cache_shrink(cachep
)) {
2590 slab_error(cachep
, "Can't free all objects");
2591 list_add(&cachep
->next
, &cache_chain
);
2592 mutex_unlock(&cache_chain_mutex
);
2597 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2600 __kmem_cache_destroy(cachep
);
2601 mutex_unlock(&cache_chain_mutex
);
2604 EXPORT_SYMBOL(kmem_cache_destroy
);
2607 * Get the memory for a slab management obj.
2608 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2609 * always come from malloc_sizes caches. The slab descriptor cannot
2610 * come from the same cache which is getting created because,
2611 * when we are searching for an appropriate cache for these
2612 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2613 * If we are creating a malloc_sizes cache here it would not be visible to
2614 * kmem_find_general_cachep till the initialization is complete.
2615 * Hence we cannot have slabp_cache same as the original cache.
2617 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2618 int colour_off
, gfp_t local_flags
,
2623 if (OFF_SLAB(cachep
)) {
2624 /* Slab management obj is off-slab. */
2625 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2626 local_flags
& ~GFP_THISNODE
, nodeid
);
2630 slabp
= objp
+ colour_off
;
2631 colour_off
+= cachep
->slab_size
;
2634 slabp
->colouroff
= colour_off
;
2635 slabp
->s_mem
= objp
+ colour_off
;
2636 slabp
->nodeid
= nodeid
;
2641 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2643 return (kmem_bufctl_t
*) (slabp
+ 1);
2646 static void cache_init_objs(struct kmem_cache
*cachep
,
2651 for (i
= 0; i
< cachep
->num
; i
++) {
2652 void *objp
= index_to_obj(cachep
, slabp
, i
);
2654 /* need to poison the objs? */
2655 if (cachep
->flags
& SLAB_POISON
)
2656 poison_obj(cachep
, objp
, POISON_FREE
);
2657 if (cachep
->flags
& SLAB_STORE_USER
)
2658 *dbg_userword(cachep
, objp
) = NULL
;
2660 if (cachep
->flags
& SLAB_RED_ZONE
) {
2661 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2662 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2665 * Constructors are not allowed to allocate memory from the same
2666 * cache which they are a constructor for. Otherwise, deadlock.
2667 * They must also be threaded.
2669 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2670 cachep
->ctor(cachep
, objp
+ obj_offset(cachep
));
2672 if (cachep
->flags
& SLAB_RED_ZONE
) {
2673 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2674 slab_error(cachep
, "constructor overwrote the"
2675 " end of an object");
2676 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2677 slab_error(cachep
, "constructor overwrote the"
2678 " start of an object");
2680 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2681 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2682 kernel_map_pages(virt_to_page(objp
),
2683 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2686 cachep
->ctor(cachep
, objp
);
2688 slab_bufctl(slabp
)[i
] = i
+ 1;
2690 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2693 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2695 if (CONFIG_ZONE_DMA_FLAG
) {
2696 if (flags
& GFP_DMA
)
2697 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2699 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2703 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2706 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2710 next
= slab_bufctl(slabp
)[slabp
->free
];
2712 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2713 WARN_ON(slabp
->nodeid
!= nodeid
);
2720 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2721 void *objp
, int nodeid
)
2723 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2726 /* Verify that the slab belongs to the intended node */
2727 WARN_ON(slabp
->nodeid
!= nodeid
);
2729 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2730 printk(KERN_ERR
"slab: double free detected in cache "
2731 "'%s', objp %p\n", cachep
->name
, objp
);
2735 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2736 slabp
->free
= objnr
;
2741 * Map pages beginning at addr to the given cache and slab. This is required
2742 * for the slab allocator to be able to lookup the cache and slab of a
2743 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2745 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2751 page
= virt_to_page(addr
);
2754 if (likely(!PageCompound(page
)))
2755 nr_pages
<<= cache
->gfporder
;
2758 page_set_cache(page
, cache
);
2759 page_set_slab(page
, slab
);
2761 } while (--nr_pages
);
2765 * Grow (by 1) the number of slabs within a cache. This is called by
2766 * kmem_cache_alloc() when there are no active objs left in a cache.
2768 static int cache_grow(struct kmem_cache
*cachep
,
2769 gfp_t flags
, int nodeid
, void *objp
)
2774 struct kmem_list3
*l3
;
2777 * Be lazy and only check for valid flags here, keeping it out of the
2778 * critical path in kmem_cache_alloc().
2780 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2781 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2783 /* Take the l3 list lock to change the colour_next on this node */
2785 l3
= cachep
->nodelists
[nodeid
];
2786 spin_lock(&l3
->list_lock
);
2788 /* Get colour for the slab, and cal the next value. */
2789 offset
= l3
->colour_next
;
2791 if (l3
->colour_next
>= cachep
->colour
)
2792 l3
->colour_next
= 0;
2793 spin_unlock(&l3
->list_lock
);
2795 offset
*= cachep
->colour_off
;
2797 if (local_flags
& __GFP_WAIT
)
2801 * The test for missing atomic flag is performed here, rather than
2802 * the more obvious place, simply to reduce the critical path length
2803 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2804 * will eventually be caught here (where it matters).
2806 kmem_flagcheck(cachep
, flags
);
2809 * Get mem for the objs. Attempt to allocate a physical page from
2813 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2817 /* Get slab management. */
2818 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2819 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2823 slab_map_pages(cachep
, slabp
, objp
);
2825 cache_init_objs(cachep
, slabp
);
2827 if (local_flags
& __GFP_WAIT
)
2828 local_irq_disable();
2830 spin_lock(&l3
->list_lock
);
2832 /* Make slab active. */
2833 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2834 STATS_INC_GROWN(cachep
);
2835 l3
->free_objects
+= cachep
->num
;
2836 spin_unlock(&l3
->list_lock
);
2839 kmem_freepages(cachep
, objp
);
2841 if (local_flags
& __GFP_WAIT
)
2842 local_irq_disable();
2849 * Perform extra freeing checks:
2850 * - detect bad pointers.
2851 * - POISON/RED_ZONE checking
2853 static void kfree_debugcheck(const void *objp
)
2855 if (!virt_addr_valid(objp
)) {
2856 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2857 (unsigned long)objp
);
2862 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2864 unsigned long long redzone1
, redzone2
;
2866 redzone1
= *dbg_redzone1(cache
, obj
);
2867 redzone2
= *dbg_redzone2(cache
, obj
);
2872 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2875 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2876 slab_error(cache
, "double free detected");
2878 slab_error(cache
, "memory outside object was overwritten");
2880 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2881 obj
, redzone1
, redzone2
);
2884 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2891 BUG_ON(virt_to_cache(objp
) != cachep
);
2893 objp
-= obj_offset(cachep
);
2894 kfree_debugcheck(objp
);
2895 page
= virt_to_head_page(objp
);
2897 slabp
= page_get_slab(page
);
2899 if (cachep
->flags
& SLAB_RED_ZONE
) {
2900 verify_redzone_free(cachep
, objp
);
2901 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2902 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2904 if (cachep
->flags
& SLAB_STORE_USER
)
2905 *dbg_userword(cachep
, objp
) = caller
;
2907 objnr
= obj_to_index(cachep
, slabp
, objp
);
2909 BUG_ON(objnr
>= cachep
->num
);
2910 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2912 #ifdef CONFIG_DEBUG_SLAB_LEAK
2913 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2915 if (cachep
->flags
& SLAB_POISON
) {
2916 #ifdef CONFIG_DEBUG_PAGEALLOC
2917 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2918 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2919 kernel_map_pages(virt_to_page(objp
),
2920 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2922 poison_obj(cachep
, objp
, POISON_FREE
);
2925 poison_obj(cachep
, objp
, POISON_FREE
);
2931 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2936 /* Check slab's freelist to see if this obj is there. */
2937 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2939 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2942 if (entries
!= cachep
->num
- slabp
->inuse
) {
2944 printk(KERN_ERR
"slab: Internal list corruption detected in "
2945 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2946 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2948 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2951 printk("\n%03x:", i
);
2952 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2959 #define kfree_debugcheck(x) do { } while(0)
2960 #define cache_free_debugcheck(x,objp,z) (objp)
2961 #define check_slabp(x,y) do { } while(0)
2964 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2967 struct kmem_list3
*l3
;
2968 struct array_cache
*ac
;
2971 <<<<<<< HEAD
:mm
/slab
.c
2972 node
= numa_node_id();
2976 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/slab
.c
2978 <<<<<<< HEAD
:mm
/slab
.c
2980 node
= numa_node_id();
2981 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/slab
.c
2982 ac
= cpu_cache_get(cachep
);
2983 <<<<<<< HEAD
:mm
/slab
.c
2986 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/slab
.c
2987 batchcount
= ac
->batchcount
;
2988 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2990 * If there was little recent activity on this cache, then
2991 * perform only a partial refill. Otherwise we could generate
2994 batchcount
= BATCHREFILL_LIMIT
;
2996 l3
= cachep
->nodelists
[node
];
2998 BUG_ON(ac
->avail
> 0 || !l3
);
2999 spin_lock(&l3
->list_lock
);
3001 /* See if we can refill from the shared array */
3002 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
3005 while (batchcount
> 0) {
3006 struct list_head
*entry
;
3008 /* Get slab alloc is to come from. */
3009 entry
= l3
->slabs_partial
.next
;
3010 if (entry
== &l3
->slabs_partial
) {
3011 l3
->free_touched
= 1;
3012 entry
= l3
->slabs_free
.next
;
3013 if (entry
== &l3
->slabs_free
)
3017 slabp
= list_entry(entry
, struct slab
, list
);
3018 check_slabp(cachep
, slabp
);
3019 check_spinlock_acquired(cachep
);
3022 * The slab was either on partial or free list so
3023 * there must be at least one object available for
3026 BUG_ON(slabp
->inuse
< 0 || slabp
->inuse
>= cachep
->num
);
3028 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3029 STATS_INC_ALLOCED(cachep
);
3030 STATS_INC_ACTIVE(cachep
);
3031 STATS_SET_HIGH(cachep
);
3033 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3036 check_slabp(cachep
, slabp
);
3038 /* move slabp to correct slabp list: */
3039 list_del(&slabp
->list
);
3040 if (slabp
->free
== BUFCTL_END
)
3041 list_add(&slabp
->list
, &l3
->slabs_full
);
3043 list_add(&slabp
->list
, &l3
->slabs_partial
);
3047 l3
->free_objects
-= ac
->avail
;
3049 spin_unlock(&l3
->list_lock
);
3051 if (unlikely(!ac
->avail
)) {
3053 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3055 /* cache_grow can reenable interrupts, then ac could change. */
3056 ac
= cpu_cache_get(cachep
);
3057 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3060 if (!ac
->avail
) /* objects refilled by interrupt? */
3064 return ac
->entry
[--ac
->avail
];
3067 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3070 might_sleep_if(flags
& __GFP_WAIT
);
3072 kmem_flagcheck(cachep
, flags
);
3077 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3078 gfp_t flags
, void *objp
, void *caller
)
3082 if (cachep
->flags
& SLAB_POISON
) {
3083 #ifdef CONFIG_DEBUG_PAGEALLOC
3084 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3085 kernel_map_pages(virt_to_page(objp
),
3086 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3088 check_poison_obj(cachep
, objp
);
3090 check_poison_obj(cachep
, objp
);
3092 poison_obj(cachep
, objp
, POISON_INUSE
);
3094 if (cachep
->flags
& SLAB_STORE_USER
)
3095 *dbg_userword(cachep
, objp
) = caller
;
3097 if (cachep
->flags
& SLAB_RED_ZONE
) {
3098 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3099 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3100 slab_error(cachep
, "double free, or memory outside"
3101 " object was overwritten");
3103 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3104 objp
, *dbg_redzone1(cachep
, objp
),
3105 *dbg_redzone2(cachep
, objp
));
3107 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3108 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3110 #ifdef CONFIG_DEBUG_SLAB_LEAK
3115 slabp
= page_get_slab(virt_to_head_page(objp
));
3116 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3117 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3120 objp
+= obj_offset(cachep
);
3121 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3122 cachep
->ctor(cachep
, objp
);
3123 #if ARCH_SLAB_MINALIGN
3124 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3125 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3126 objp
, ARCH_SLAB_MINALIGN
);
3132 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3135 #ifdef CONFIG_FAILSLAB
3137 static struct failslab_attr
{
3139 struct fault_attr attr
;
3141 u32 ignore_gfp_wait
;
3142 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3143 struct dentry
*ignore_gfp_wait_file
;
3147 .attr
= FAULT_ATTR_INITIALIZER
,
3148 .ignore_gfp_wait
= 1,
3151 static int __init
setup_failslab(char *str
)
3153 return setup_fault_attr(&failslab
.attr
, str
);
3155 __setup("failslab=", setup_failslab
);
3157 static int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3159 if (cachep
== &cache_cache
)
3161 if (flags
& __GFP_NOFAIL
)
3163 if (failslab
.ignore_gfp_wait
&& (flags
& __GFP_WAIT
))
3166 return should_fail(&failslab
.attr
, obj_size(cachep
));
3169 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3171 static int __init
failslab_debugfs(void)
3173 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3177 err
= init_fault_attr_dentries(&failslab
.attr
, "failslab");
3180 dir
= failslab
.attr
.dentries
.dir
;
3182 failslab
.ignore_gfp_wait_file
=
3183 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3184 &failslab
.ignore_gfp_wait
);
3186 if (!failslab
.ignore_gfp_wait_file
) {
3188 debugfs_remove(failslab
.ignore_gfp_wait_file
);
3189 cleanup_fault_attr_dentries(&failslab
.attr
);
3195 late_initcall(failslab_debugfs
);
3197 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3199 #else /* CONFIG_FAILSLAB */
3201 static inline int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3206 #endif /* CONFIG_FAILSLAB */
3208 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3211 struct array_cache
*ac
;
3215 ac
= cpu_cache_get(cachep
);
3216 if (likely(ac
->avail
)) {
3217 STATS_INC_ALLOCHIT(cachep
);
3219 objp
= ac
->entry
[--ac
->avail
];
3221 STATS_INC_ALLOCMISS(cachep
);
3222 objp
= cache_alloc_refill(cachep
, flags
);
3229 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3231 * If we are in_interrupt, then process context, including cpusets and
3232 * mempolicy, may not apply and should not be used for allocation policy.
3234 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3236 int nid_alloc
, nid_here
;
3238 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3240 nid_alloc
= nid_here
= numa_node_id();
3241 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3242 nid_alloc
= cpuset_mem_spread_node();
3243 else if (current
->mempolicy
)
3244 nid_alloc
= slab_node(current
->mempolicy
);
3245 if (nid_alloc
!= nid_here
)
3246 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3251 * Fallback function if there was no memory available and no objects on a
3252 * certain node and fall back is permitted. First we scan all the
3253 * available nodelists for available objects. If that fails then we
3254 * perform an allocation without specifying a node. This allows the page
3255 * allocator to do its reclaim / fallback magic. We then insert the
3256 * slab into the proper nodelist and then allocate from it.
3258 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3260 struct zonelist
*zonelist
;
3266 if (flags
& __GFP_THISNODE
)
3269 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
3270 ->node_zonelists
[gfp_zone(flags
)];
3271 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3275 * Look through allowed nodes for objects available
3276 * from existing per node queues.
3278 for (z
= zonelist
->zones
; *z
&& !obj
; z
++) {
3279 nid
= zone_to_nid(*z
);
3281 if (cpuset_zone_allowed_hardwall(*z
, flags
) &&
3282 cache
->nodelists
[nid
] &&
3283 cache
->nodelists
[nid
]->free_objects
)
3284 obj
= ____cache_alloc_node(cache
,
3285 flags
| GFP_THISNODE
, nid
);
3290 * This allocation will be performed within the constraints
3291 * of the current cpuset / memory policy requirements.
3292 * We may trigger various forms of reclaim on the allowed
3293 * set and go into memory reserves if necessary.
3295 if (local_flags
& __GFP_WAIT
)
3297 kmem_flagcheck(cache
, flags
);
3298 <<<<<<< HEAD
:mm
/slab
.c
3299 obj
= kmem_getpages(cache
, flags
, -1);
3301 obj
= kmem_getpages(cache
, local_flags
, -1);
3302 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/slab
.c
3303 if (local_flags
& __GFP_WAIT
)
3304 local_irq_disable();
3307 * Insert into the appropriate per node queues
3309 nid
= page_to_nid(virt_to_page(obj
));
3310 if (cache_grow(cache
, flags
, nid
, obj
)) {
3311 obj
= ____cache_alloc_node(cache
,
3312 flags
| GFP_THISNODE
, nid
);
3315 * Another processor may allocate the
3316 * objects in the slab since we are
3317 * not holding any locks.
3321 /* cache_grow already freed obj */
3330 * A interface to enable slab creation on nodeid
3332 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3335 struct list_head
*entry
;
3337 struct kmem_list3
*l3
;
3341 l3
= cachep
->nodelists
[nodeid
];
3346 spin_lock(&l3
->list_lock
);
3347 entry
= l3
->slabs_partial
.next
;
3348 if (entry
== &l3
->slabs_partial
) {
3349 l3
->free_touched
= 1;
3350 entry
= l3
->slabs_free
.next
;
3351 if (entry
== &l3
->slabs_free
)
3355 slabp
= list_entry(entry
, struct slab
, list
);
3356 check_spinlock_acquired_node(cachep
, nodeid
);
3357 check_slabp(cachep
, slabp
);
3359 STATS_INC_NODEALLOCS(cachep
);
3360 STATS_INC_ACTIVE(cachep
);
3361 STATS_SET_HIGH(cachep
);
3363 BUG_ON(slabp
->inuse
== cachep
->num
);
3365 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3366 check_slabp(cachep
, slabp
);
3368 /* move slabp to correct slabp list: */
3369 list_del(&slabp
->list
);
3371 if (slabp
->free
== BUFCTL_END
)
3372 list_add(&slabp
->list
, &l3
->slabs_full
);
3374 list_add(&slabp
->list
, &l3
->slabs_partial
);
3376 spin_unlock(&l3
->list_lock
);
3380 spin_unlock(&l3
->list_lock
);
3381 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3385 return fallback_alloc(cachep
, flags
);
3392 * kmem_cache_alloc_node - Allocate an object on the specified node
3393 * @cachep: The cache to allocate from.
3394 * @flags: See kmalloc().
3395 * @nodeid: node number of the target node.
3396 * @caller: return address of caller, used for debug information
3398 * Identical to kmem_cache_alloc but it will allocate memory on the given
3399 * node, which can improve the performance for cpu bound structures.
3401 * Fallback to other node is possible if __GFP_THISNODE is not set.
3403 static __always_inline
void *
3404 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3407 unsigned long save_flags
;
3410 if (should_failslab(cachep
, flags
))
3413 cache_alloc_debugcheck_before(cachep
, flags
);
3414 local_irq_save(save_flags
);
3416 if (unlikely(nodeid
== -1))
3417 nodeid
= numa_node_id();
3419 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3420 /* Node not bootstrapped yet */
3421 ptr
= fallback_alloc(cachep
, flags
);
3425 if (nodeid
== numa_node_id()) {
3427 * Use the locally cached objects if possible.
3428 * However ____cache_alloc does not allow fallback
3429 * to other nodes. It may fail while we still have
3430 * objects on other nodes available.
3432 ptr
= ____cache_alloc(cachep
, flags
);
3436 /* ___cache_alloc_node can fall back to other nodes */
3437 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3439 local_irq_restore(save_flags
);
3440 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3442 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3443 memset(ptr
, 0, obj_size(cachep
));
3448 static __always_inline
void *
3449 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3453 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3454 objp
= alternate_node_alloc(cache
, flags
);
3458 objp
= ____cache_alloc(cache
, flags
);
3461 * We may just have run out of memory on the local node.
3462 * ____cache_alloc_node() knows how to locate memory on other nodes
3465 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3472 static __always_inline
void *
3473 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3475 return ____cache_alloc(cachep
, flags
);
3478 #endif /* CONFIG_NUMA */
3480 static __always_inline
void *
3481 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3483 unsigned long save_flags
;
3486 if (should_failslab(cachep
, flags
))
3489 cache_alloc_debugcheck_before(cachep
, flags
);
3490 local_irq_save(save_flags
);
3491 objp
= __do_cache_alloc(cachep
, flags
);
3492 local_irq_restore(save_flags
);
3493 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3496 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3497 memset(objp
, 0, obj_size(cachep
));
3503 * Caller needs to acquire correct kmem_list's list_lock
3505 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3509 struct kmem_list3
*l3
;
3511 for (i
= 0; i
< nr_objects
; i
++) {
3512 void *objp
= objpp
[i
];
3515 slabp
= virt_to_slab(objp
);
3516 l3
= cachep
->nodelists
[node
];
3517 list_del(&slabp
->list
);
3518 check_spinlock_acquired_node(cachep
, node
);
3519 check_slabp(cachep
, slabp
);
3520 slab_put_obj(cachep
, slabp
, objp
, node
);
3521 STATS_DEC_ACTIVE(cachep
);
3523 check_slabp(cachep
, slabp
);
3525 /* fixup slab chains */
3526 if (slabp
->inuse
== 0) {
3527 if (l3
->free_objects
> l3
->free_limit
) {
3528 l3
->free_objects
-= cachep
->num
;
3529 /* No need to drop any previously held
3530 * lock here, even if we have a off-slab slab
3531 * descriptor it is guaranteed to come from
3532 * a different cache, refer to comments before
3535 slab_destroy(cachep
, slabp
);
3537 list_add(&slabp
->list
, &l3
->slabs_free
);
3540 /* Unconditionally move a slab to the end of the
3541 * partial list on free - maximum time for the
3542 * other objects to be freed, too.
3544 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3549 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3552 struct kmem_list3
*l3
;
3553 int node
= numa_node_id();
3555 batchcount
= ac
->batchcount
;
3557 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3560 l3
= cachep
->nodelists
[node
];
3561 spin_lock(&l3
->list_lock
);
3563 struct array_cache
*shared_array
= l3
->shared
;
3564 int max
= shared_array
->limit
- shared_array
->avail
;
3566 if (batchcount
> max
)
3568 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3569 ac
->entry
, sizeof(void *) * batchcount
);
3570 shared_array
->avail
+= batchcount
;
3575 free_block(cachep
, ac
->entry
, batchcount
, node
);
3580 struct list_head
*p
;
3582 p
= l3
->slabs_free
.next
;
3583 while (p
!= &(l3
->slabs_free
)) {
3586 slabp
= list_entry(p
, struct slab
, list
);
3587 BUG_ON(slabp
->inuse
);
3592 STATS_SET_FREEABLE(cachep
, i
);
3595 spin_unlock(&l3
->list_lock
);
3596 ac
->avail
-= batchcount
;
3597 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3601 * Release an obj back to its cache. If the obj has a constructed state, it must
3602 * be in this state _before_ it is released. Called with disabled ints.
3604 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3606 struct array_cache
*ac
= cpu_cache_get(cachep
);
3609 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3612 * Skip calling cache_free_alien() when the platform is not numa.
3613 * This will avoid cache misses that happen while accessing slabp (which
3614 * is per page memory reference) to get nodeid. Instead use a global
3615 * variable to skip the call, which is mostly likely to be present in
3618 if (numa_platform
&& cache_free_alien(cachep
, objp
))
3621 if (likely(ac
->avail
< ac
->limit
)) {
3622 STATS_INC_FREEHIT(cachep
);
3623 ac
->entry
[ac
->avail
++] = objp
;
3626 STATS_INC_FREEMISS(cachep
);
3627 cache_flusharray(cachep
, ac
);
3628 ac
->entry
[ac
->avail
++] = objp
;
3633 * kmem_cache_alloc - Allocate an object
3634 * @cachep: The cache to allocate from.
3635 * @flags: See kmalloc().
3637 * Allocate an object from this cache. The flags are only relevant
3638 * if the cache has no available objects.
3640 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3642 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3644 EXPORT_SYMBOL(kmem_cache_alloc
);
3647 * kmem_ptr_validate - check if an untrusted pointer might
3649 * @cachep: the cache we're checking against
3650 * @ptr: pointer to validate
3652 * This verifies that the untrusted pointer looks sane:
3653 * it is _not_ a guarantee that the pointer is actually
3654 * part of the slab cache in question, but it at least
3655 * validates that the pointer can be dereferenced and
3656 * looks half-way sane.
3658 * Currently only used for dentry validation.
3660 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3662 unsigned long addr
= (unsigned long)ptr
;
3663 unsigned long min_addr
= PAGE_OFFSET
;
3664 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3665 unsigned long size
= cachep
->buffer_size
;
3668 if (unlikely(addr
< min_addr
))
3670 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3672 if (unlikely(addr
& align_mask
))
3674 if (unlikely(!kern_addr_valid(addr
)))
3676 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3678 page
= virt_to_page(ptr
);
3679 if (unlikely(!PageSlab(page
)))
3681 if (unlikely(page_get_cache(page
) != cachep
))
3689 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3691 return __cache_alloc_node(cachep
, flags
, nodeid
,
3692 __builtin_return_address(0));
3694 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3696 static __always_inline
void *
3697 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3699 struct kmem_cache
*cachep
;
3701 cachep
= kmem_find_general_cachep(size
, flags
);
3702 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3704 return kmem_cache_alloc_node(cachep
, flags
, node
);
3707 #ifdef CONFIG_DEBUG_SLAB
3708 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3710 return __do_kmalloc_node(size
, flags
, node
,
3711 __builtin_return_address(0));
3713 EXPORT_SYMBOL(__kmalloc_node
);
3715 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3716 int node
, void *caller
)
3718 return __do_kmalloc_node(size
, flags
, node
, caller
);
3720 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3722 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3724 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3726 EXPORT_SYMBOL(__kmalloc_node
);
3727 #endif /* CONFIG_DEBUG_SLAB */
3728 #endif /* CONFIG_NUMA */
3731 * __do_kmalloc - allocate memory
3732 * @size: how many bytes of memory are required.
3733 * @flags: the type of memory to allocate (see kmalloc).
3734 * @caller: function caller for debug tracking of the caller
3736 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3739 struct kmem_cache
*cachep
;
3741 /* If you want to save a few bytes .text space: replace
3743 * Then kmalloc uses the uninlined functions instead of the inline
3746 cachep
= __find_general_cachep(size
, flags
);
3747 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3749 return __cache_alloc(cachep
, flags
, caller
);
3753 #ifdef CONFIG_DEBUG_SLAB
3754 void *__kmalloc(size_t size
, gfp_t flags
)
3756 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3758 EXPORT_SYMBOL(__kmalloc
);
3760 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3762 return __do_kmalloc(size
, flags
, caller
);
3764 EXPORT_SYMBOL(__kmalloc_track_caller
);
3767 void *__kmalloc(size_t size
, gfp_t flags
)
3769 return __do_kmalloc(size
, flags
, NULL
);
3771 EXPORT_SYMBOL(__kmalloc
);
3775 * kmem_cache_free - Deallocate an object
3776 * @cachep: The cache the allocation was from.
3777 * @objp: The previously allocated object.
3779 * Free an object which was previously allocated from this
3782 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3784 unsigned long flags
;
3786 local_irq_save(flags
);
3787 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3788 __cache_free(cachep
, objp
);
3789 local_irq_restore(flags
);
3791 EXPORT_SYMBOL(kmem_cache_free
);
3794 * kfree - free previously allocated memory
3795 * @objp: pointer returned by kmalloc.
3797 * If @objp is NULL, no operation is performed.
3799 * Don't free memory not originally allocated by kmalloc()
3800 * or you will run into trouble.
3802 void kfree(const void *objp
)
3804 struct kmem_cache
*c
;
3805 unsigned long flags
;
3807 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3809 local_irq_save(flags
);
3810 kfree_debugcheck(objp
);
3811 c
= virt_to_cache(objp
);
3812 debug_check_no_locks_freed(objp
, obj_size(c
));
3813 __cache_free(c
, (void *)objp
);
3814 local_irq_restore(flags
);
3816 EXPORT_SYMBOL(kfree
);
3818 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3820 return obj_size(cachep
);
3822 EXPORT_SYMBOL(kmem_cache_size
);
3824 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3826 return cachep
->name
;
3828 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3831 * This initializes kmem_list3 or resizes various caches for all nodes.
3833 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3836 struct kmem_list3
*l3
;
3837 struct array_cache
*new_shared
;
3838 struct array_cache
**new_alien
= NULL
;
3840 for_each_online_node(node
) {
3842 if (use_alien_caches
) {
3843 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3849 if (cachep
->shared
) {
3850 new_shared
= alloc_arraycache(node
,
3851 cachep
->shared
*cachep
->batchcount
,
3854 free_alien_cache(new_alien
);
3859 l3
= cachep
->nodelists
[node
];
3861 struct array_cache
*shared
= l3
->shared
;
3863 spin_lock_irq(&l3
->list_lock
);
3866 free_block(cachep
, shared
->entry
,
3867 shared
->avail
, node
);
3869 l3
->shared
= new_shared
;
3871 l3
->alien
= new_alien
;
3874 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3875 cachep
->batchcount
+ cachep
->num
;
3876 spin_unlock_irq(&l3
->list_lock
);
3878 free_alien_cache(new_alien
);
3881 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3883 free_alien_cache(new_alien
);
3888 kmem_list3_init(l3
);
3889 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3890 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3891 l3
->shared
= new_shared
;
3892 l3
->alien
= new_alien
;
3893 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3894 cachep
->batchcount
+ cachep
->num
;
3895 cachep
->nodelists
[node
] = l3
;
3900 if (!cachep
->next
.next
) {
3901 /* Cache is not active yet. Roll back what we did */
3904 if (cachep
->nodelists
[node
]) {
3905 l3
= cachep
->nodelists
[node
];
3908 free_alien_cache(l3
->alien
);
3910 cachep
->nodelists
[node
] = NULL
;
3918 struct ccupdate_struct
{
3919 struct kmem_cache
*cachep
;
3920 struct array_cache
*new[NR_CPUS
];
3923 static void do_ccupdate_local(void *info
)
3925 struct ccupdate_struct
*new = info
;
3926 struct array_cache
*old
;
3929 old
= cpu_cache_get(new->cachep
);
3931 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3932 new->new[smp_processor_id()] = old
;
3935 /* Always called with the cache_chain_mutex held */
3936 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3937 int batchcount
, int shared
)
3939 struct ccupdate_struct
*new;
3942 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3946 for_each_online_cpu(i
) {
3947 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3950 for (i
--; i
>= 0; i
--)
3956 new->cachep
= cachep
;
3958 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
3961 cachep
->batchcount
= batchcount
;
3962 cachep
->limit
= limit
;
3963 cachep
->shared
= shared
;
3965 for_each_online_cpu(i
) {
3966 struct array_cache
*ccold
= new->new[i
];
3969 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3970 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3971 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3975 return alloc_kmemlist(cachep
);
3978 /* Called with cache_chain_mutex held always */
3979 static int enable_cpucache(struct kmem_cache
*cachep
)
3985 * The head array serves three purposes:
3986 * - create a LIFO ordering, i.e. return objects that are cache-warm
3987 * - reduce the number of spinlock operations.
3988 * - reduce the number of linked list operations on the slab and
3989 * bufctl chains: array operations are cheaper.
3990 * The numbers are guessed, we should auto-tune as described by
3993 if (cachep
->buffer_size
> 131072)
3995 else if (cachep
->buffer_size
> PAGE_SIZE
)
3997 else if (cachep
->buffer_size
> 1024)
3999 else if (cachep
->buffer_size
> 256)
4005 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4006 * allocation behaviour: Most allocs on one cpu, most free operations
4007 * on another cpu. For these cases, an efficient object passing between
4008 * cpus is necessary. This is provided by a shared array. The array
4009 * replaces Bonwick's magazine layer.
4010 * On uniprocessor, it's functionally equivalent (but less efficient)
4011 * to a larger limit. Thus disabled by default.
4014 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4019 * With debugging enabled, large batchcount lead to excessively long
4020 * periods with disabled local interrupts. Limit the batchcount
4025 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
4027 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4028 cachep
->name
, -err
);
4033 * Drain an array if it contains any elements taking the l3 lock only if
4034 * necessary. Note that the l3 listlock also protects the array_cache
4035 * if drain_array() is used on the shared array.
4037 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4038 struct array_cache
*ac
, int force
, int node
)
4042 if (!ac
|| !ac
->avail
)
4044 if (ac
->touched
&& !force
) {
4047 spin_lock_irq(&l3
->list_lock
);
4049 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4050 if (tofree
> ac
->avail
)
4051 tofree
= (ac
->avail
+ 1) / 2;
4052 free_block(cachep
, ac
->entry
, tofree
, node
);
4053 ac
->avail
-= tofree
;
4054 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4055 sizeof(void *) * ac
->avail
);
4057 spin_unlock_irq(&l3
->list_lock
);
4062 * cache_reap - Reclaim memory from caches.
4063 * @w: work descriptor
4065 * Called from workqueue/eventd every few seconds.
4067 * - clear the per-cpu caches for this CPU.
4068 * - return freeable pages to the main free memory pool.
4070 * If we cannot acquire the cache chain mutex then just give up - we'll try
4071 * again on the next iteration.
4073 static void cache_reap(struct work_struct
*w
)
4075 struct kmem_cache
*searchp
;
4076 struct kmem_list3
*l3
;
4077 int node
= numa_node_id();
4078 struct delayed_work
*work
=
4079 container_of(w
, struct delayed_work
, work
);
4081 if (!mutex_trylock(&cache_chain_mutex
))
4082 /* Give up. Setup the next iteration. */
4085 list_for_each_entry(searchp
, &cache_chain
, next
) {
4089 * We only take the l3 lock if absolutely necessary and we
4090 * have established with reasonable certainty that
4091 * we can do some work if the lock was obtained.
4093 l3
= searchp
->nodelists
[node
];
4095 reap_alien(searchp
, l3
);
4097 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4100 * These are racy checks but it does not matter
4101 * if we skip one check or scan twice.
4103 if (time_after(l3
->next_reap
, jiffies
))
4106 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4108 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4110 if (l3
->free_touched
)
4111 l3
->free_touched
= 0;
4115 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4116 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4117 STATS_ADD_REAPED(searchp
, freed
);
4123 mutex_unlock(&cache_chain_mutex
);
4126 /* Set up the next iteration */
4127 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4130 #ifdef CONFIG_SLABINFO
4132 static void print_slabinfo_header(struct seq_file
*m
)
4135 * Output format version, so at least we can change it
4136 * without _too_ many complaints.
4139 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4141 seq_puts(m
, "slabinfo - version: 2.1\n");
4143 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4144 "<objperslab> <pagesperslab>");
4145 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4146 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4148 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4149 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4150 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4155 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4159 mutex_lock(&cache_chain_mutex
);
4161 print_slabinfo_header(m
);
4163 return seq_list_start(&cache_chain
, *pos
);
4166 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4168 return seq_list_next(p
, &cache_chain
, pos
);
4171 static void s_stop(struct seq_file
*m
, void *p
)
4173 mutex_unlock(&cache_chain_mutex
);
4176 static int s_show(struct seq_file
*m
, void *p
)
4178 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4180 unsigned long active_objs
;
4181 unsigned long num_objs
;
4182 unsigned long active_slabs
= 0;
4183 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4187 struct kmem_list3
*l3
;
4191 for_each_online_node(node
) {
4192 l3
= cachep
->nodelists
[node
];
4197 spin_lock_irq(&l3
->list_lock
);
4199 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4200 if (slabp
->inuse
!= cachep
->num
&& !error
)
4201 error
= "slabs_full accounting error";
4202 active_objs
+= cachep
->num
;
4205 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4206 if (slabp
->inuse
== cachep
->num
&& !error
)
4207 error
= "slabs_partial inuse accounting error";
4208 if (!slabp
->inuse
&& !error
)
4209 error
= "slabs_partial/inuse accounting error";
4210 active_objs
+= slabp
->inuse
;
4213 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4214 if (slabp
->inuse
&& !error
)
4215 error
= "slabs_free/inuse accounting error";
4218 free_objects
+= l3
->free_objects
;
4220 shared_avail
+= l3
->shared
->avail
;
4222 spin_unlock_irq(&l3
->list_lock
);
4224 num_slabs
+= active_slabs
;
4225 num_objs
= num_slabs
* cachep
->num
;
4226 if (num_objs
- active_objs
!= free_objects
&& !error
)
4227 error
= "free_objects accounting error";
4229 name
= cachep
->name
;
4231 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4233 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4234 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4235 cachep
->num
, (1 << cachep
->gfporder
));
4236 seq_printf(m
, " : tunables %4u %4u %4u",
4237 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4238 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4239 active_slabs
, num_slabs
, shared_avail
);
4242 unsigned long high
= cachep
->high_mark
;
4243 unsigned long allocs
= cachep
->num_allocations
;
4244 unsigned long grown
= cachep
->grown
;
4245 unsigned long reaped
= cachep
->reaped
;
4246 unsigned long errors
= cachep
->errors
;
4247 unsigned long max_freeable
= cachep
->max_freeable
;
4248 unsigned long node_allocs
= cachep
->node_allocs
;
4249 unsigned long node_frees
= cachep
->node_frees
;
4250 unsigned long overflows
= cachep
->node_overflow
;
4252 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4253 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4254 reaped
, errors
, max_freeable
, node_allocs
,
4255 node_frees
, overflows
);
4259 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4260 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4261 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4262 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4264 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4265 allochit
, allocmiss
, freehit
, freemiss
);
4273 * slabinfo_op - iterator that generates /proc/slabinfo
4282 * num-pages-per-slab
4283 * + further values on SMP and with statistics enabled
4286 const struct seq_operations slabinfo_op
= {
4293 #define MAX_SLABINFO_WRITE 128
4295 * slabinfo_write - Tuning for the slab allocator
4297 * @buffer: user buffer
4298 * @count: data length
4301 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4302 size_t count
, loff_t
*ppos
)
4304 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4305 int limit
, batchcount
, shared
, res
;
4306 struct kmem_cache
*cachep
;
4308 if (count
> MAX_SLABINFO_WRITE
)
4310 if (copy_from_user(&kbuf
, buffer
, count
))
4312 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4314 tmp
= strchr(kbuf
, ' ');
4319 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4322 /* Find the cache in the chain of caches. */
4323 mutex_lock(&cache_chain_mutex
);
4325 list_for_each_entry(cachep
, &cache_chain
, next
) {
4326 if (!strcmp(cachep
->name
, kbuf
)) {
4327 if (limit
< 1 || batchcount
< 1 ||
4328 batchcount
> limit
|| shared
< 0) {
4331 res
= do_tune_cpucache(cachep
, limit
,
4332 batchcount
, shared
);
4337 mutex_unlock(&cache_chain_mutex
);
4343 #ifdef CONFIG_DEBUG_SLAB_LEAK
4345 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4347 mutex_lock(&cache_chain_mutex
);
4348 return seq_list_start(&cache_chain
, *pos
);
4351 static inline int add_caller(unsigned long *n
, unsigned long v
)
4361 unsigned long *q
= p
+ 2 * i
;
4375 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4381 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4387 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4388 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4390 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4395 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4397 #ifdef CONFIG_KALLSYMS
4398 unsigned long offset
, size
;
4399 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4401 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4402 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4404 seq_printf(m
, " [%s]", modname
);
4408 seq_printf(m
, "%p", (void *)address
);
4411 static int leaks_show(struct seq_file
*m
, void *p
)
4413 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4415 struct kmem_list3
*l3
;
4417 unsigned long *n
= m
->private;
4421 if (!(cachep
->flags
& SLAB_STORE_USER
))
4423 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4426 /* OK, we can do it */
4430 for_each_online_node(node
) {
4431 l3
= cachep
->nodelists
[node
];
4436 spin_lock_irq(&l3
->list_lock
);
4438 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4439 handle_slab(n
, cachep
, slabp
);
4440 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4441 handle_slab(n
, cachep
, slabp
);
4442 spin_unlock_irq(&l3
->list_lock
);
4444 name
= cachep
->name
;
4446 /* Increase the buffer size */
4447 mutex_unlock(&cache_chain_mutex
);
4448 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4450 /* Too bad, we are really out */
4452 mutex_lock(&cache_chain_mutex
);
4455 *(unsigned long *)m
->private = n
[0] * 2;
4457 mutex_lock(&cache_chain_mutex
);
4458 /* Now make sure this entry will be retried */
4462 for (i
= 0; i
< n
[1]; i
++) {
4463 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4464 show_symbol(m
, n
[2*i
+2]);
4471 const struct seq_operations slabstats_op
= {
4472 .start
= leaks_start
,
4481 * ksize - get the actual amount of memory allocated for a given object
4482 * @objp: Pointer to the object
4484 * kmalloc may internally round up allocations and return more memory
4485 * than requested. ksize() can be used to determine the actual amount of
4486 * memory allocated. The caller may use this additional memory, even though
4487 * a smaller amount of memory was initially specified with the kmalloc call.
4488 * The caller must guarantee that objp points to a valid object previously
4489 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4490 * must not be freed during the duration of the call.
4492 size_t ksize(const void *objp
)
4495 if (unlikely(objp
== ZERO_SIZE_PTR
))
4498 return obj_size(virt_to_cache(objp
));
4500 EXPORT_SYMBOL(ksize
);