2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
21 * Ville Nuorvala: Fixed routing subtrees.
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
33 #include <linux/proc_fs.h>
37 #include <net/ndisc.h>
38 #include <net/addrconf.h>
40 #include <net/ip6_fib.h>
41 #include <net/ip6_route.h>
46 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
48 #define RT6_TRACE(x...) do { ; } while (0)
51 struct rt6_statistics rt6_stats
;
53 static struct kmem_cache
* fib6_node_kmem __read_mostly
;
57 #ifdef CONFIG_IPV6_SUBTREES
68 struct fib6_walker_t w
;
69 int (*func
)(struct rt6_info
*, void *arg
);
73 static DEFINE_RWLOCK(fib6_walker_lock
);
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
78 #define FWS_INIT FWS_L
81 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
);
82 static struct rt6_info
* fib6_find_prefix(struct fib6_node
*fn
);
83 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
);
84 static int fib6_walk(struct fib6_walker_t
*w
);
85 static int fib6_walk_continue(struct fib6_walker_t
*w
);
88 * A routing update causes an increase of the serial number on the
89 * affected subtree. This allows for cached routes to be asynchronously
90 * tested when modifications are made to the destination cache as a
91 * result of redirects, path MTU changes, etc.
94 static __u32 rt_sernum
;
96 static DEFINE_TIMER(ip6_fib_timer
, fib6_run_gc
, 0, 0);
98 static struct fib6_walker_t fib6_walker_list
= {
99 .prev
= &fib6_walker_list
,
100 .next
= &fib6_walker_list
,
103 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
105 static inline void fib6_walker_link(struct fib6_walker_t
*w
)
107 write_lock_bh(&fib6_walker_lock
);
108 w
->next
= fib6_walker_list
.next
;
109 w
->prev
= &fib6_walker_list
;
112 write_unlock_bh(&fib6_walker_lock
);
115 static inline void fib6_walker_unlink(struct fib6_walker_t
*w
)
117 write_lock_bh(&fib6_walker_lock
);
118 w
->next
->prev
= w
->prev
;
119 w
->prev
->next
= w
->next
;
120 w
->prev
= w
->next
= w
;
121 write_unlock_bh(&fib6_walker_lock
);
123 static __inline__ u32
fib6_new_sernum(void)
132 * Auxiliary address test functions for the radix tree.
134 * These assume a 32bit processor (although it will work on
142 static __inline__ __be32
addr_bit_set(void *token
, int fn_bit
)
144 __be32
*addr
= token
;
146 return htonl(1 << ((~fn_bit
)&0x1F)) & addr
[fn_bit
>>5];
149 static __inline__
struct fib6_node
* node_alloc(void)
151 struct fib6_node
*fn
;
153 fn
= kmem_cache_zalloc(fib6_node_kmem
, GFP_ATOMIC
);
158 static __inline__
void node_free(struct fib6_node
* fn
)
160 kmem_cache_free(fib6_node_kmem
, fn
);
163 static __inline__
void rt6_release(struct rt6_info
*rt
)
165 if (atomic_dec_and_test(&rt
->rt6i_ref
))
166 dst_free(&rt
->u
.dst
);
169 static struct fib6_table fib6_main_tbl
= {
170 .tb6_id
= RT6_TABLE_MAIN
,
172 .leaf
= &ip6_null_entry
,
173 .fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
,
177 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
178 #define FIB_TABLE_HASHSZ 256
180 #define FIB_TABLE_HASHSZ 1
182 static struct hlist_head fib_table_hash
[FIB_TABLE_HASHSZ
];
184 static void fib6_link_table(struct fib6_table
*tb
)
189 * Initialize table lock at a single place to give lockdep a key,
190 * tables aren't visible prior to being linked to the list.
192 rwlock_init(&tb
->tb6_lock
);
194 h
= tb
->tb6_id
& (FIB_TABLE_HASHSZ
- 1);
197 * No protection necessary, this is the only list mutatation
198 * operation, tables never disappear once they exist.
200 hlist_add_head_rcu(&tb
->tb6_hlist
, &fib_table_hash
[h
]);
203 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
204 static struct fib6_table fib6_local_tbl
= {
205 .tb6_id
= RT6_TABLE_LOCAL
,
207 .leaf
= &ip6_null_entry
,
208 .fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
,
212 static struct fib6_table
*fib6_alloc_table(u32 id
)
214 struct fib6_table
*table
;
216 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
219 table
->tb6_root
.leaf
= &ip6_null_entry
;
220 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
226 struct fib6_table
*fib6_new_table(u32 id
)
228 struct fib6_table
*tb
;
232 tb
= fib6_get_table(id
);
236 tb
= fib6_alloc_table(id
);
243 struct fib6_table
*fib6_get_table(u32 id
)
245 struct fib6_table
*tb
;
246 struct hlist_node
*node
;
251 h
= id
& (FIB_TABLE_HASHSZ
- 1);
253 hlist_for_each_entry_rcu(tb
, node
, &fib_table_hash
[h
], tb6_hlist
) {
254 if (tb
->tb6_id
== id
) {
264 static void __init
fib6_tables_init(void)
266 fib6_link_table(&fib6_main_tbl
);
267 fib6_link_table(&fib6_local_tbl
);
272 struct fib6_table
*fib6_new_table(u32 id
)
274 return fib6_get_table(id
);
277 struct fib6_table
*fib6_get_table(u32 id
)
279 return &fib6_main_tbl
;
282 struct dst_entry
*fib6_rule_lookup(struct flowi
*fl
, int flags
,
285 return (struct dst_entry
*) lookup(&fib6_main_tbl
, fl
, flags
);
288 static void __init
fib6_tables_init(void)
290 fib6_link_table(&fib6_main_tbl
);
295 static int fib6_dump_node(struct fib6_walker_t
*w
)
300 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
301 res
= rt6_dump_route(rt
, w
->args
);
303 /* Frame is full, suspend walking */
313 static void fib6_dump_end(struct netlink_callback
*cb
)
315 struct fib6_walker_t
*w
= (void*)cb
->args
[2];
321 cb
->done
= (void*)cb
->args
[3];
325 static int fib6_dump_done(struct netlink_callback
*cb
)
328 return cb
->done
? cb
->done(cb
) : 0;
331 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
332 struct netlink_callback
*cb
)
334 struct fib6_walker_t
*w
;
337 w
= (void *)cb
->args
[2];
338 w
->root
= &table
->tb6_root
;
340 if (cb
->args
[4] == 0) {
341 read_lock_bh(&table
->tb6_lock
);
343 read_unlock_bh(&table
->tb6_lock
);
347 read_lock_bh(&table
->tb6_lock
);
348 res
= fib6_walk_continue(w
);
349 read_unlock_bh(&table
->tb6_lock
);
352 fib6_walker_unlink(w
);
355 fib6_walker_unlink(w
);
362 static int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
364 struct net
*net
= skb
->sk
->sk_net
;
366 unsigned int e
= 0, s_e
;
367 struct rt6_rtnl_dump_arg arg
;
368 struct fib6_walker_t
*w
;
369 struct fib6_table
*tb
;
370 struct hlist_node
*node
;
373 if (net
!= &init_net
)
379 w
= (void *)cb
->args
[2];
383 * 1. hook callback destructor.
385 cb
->args
[3] = (long)cb
->done
;
386 cb
->done
= fib6_dump_done
;
389 * 2. allocate and initialize walker.
391 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
394 w
->func
= fib6_dump_node
;
395 cb
->args
[2] = (long)w
;
402 for (h
= s_h
; h
< FIB_TABLE_HASHSZ
; h
++, s_e
= 0) {
404 hlist_for_each_entry(tb
, node
, &fib_table_hash
[h
], tb6_hlist
) {
407 res
= fib6_dump_table(tb
, skb
, cb
);
418 res
= res
< 0 ? res
: skb
->len
;
427 * return the appropriate node for a routing tree "add" operation
428 * by either creating and inserting or by returning an existing
432 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
433 int addrlen
, int plen
,
436 struct fib6_node
*fn
, *in
, *ln
;
437 struct fib6_node
*pn
= NULL
;
441 __u32 sernum
= fib6_new_sernum();
443 RT6_TRACE("fib6_add_1\n");
445 /* insert node in tree */
450 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
455 if (plen
< fn
->fn_bit
||
456 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
463 if (plen
== fn
->fn_bit
) {
464 /* clean up an intermediate node */
465 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
466 rt6_release(fn
->leaf
);
470 fn
->fn_sernum
= sernum
;
476 * We have more bits to go
479 /* Try to walk down on tree. */
480 fn
->fn_sernum
= sernum
;
481 dir
= addr_bit_set(addr
, fn
->fn_bit
);
483 fn
= dir
? fn
->right
: fn
->left
;
487 * We walked to the bottom of tree.
488 * Create new leaf node without children.
498 ln
->fn_sernum
= sernum
;
510 * split since we don't have a common prefix anymore or
511 * we have a less significant route.
512 * we've to insert an intermediate node on the list
513 * this new node will point to the one we need to create
519 /* find 1st bit in difference between the 2 addrs.
521 See comment in __ipv6_addr_diff: bit may be an invalid value,
522 but if it is >= plen, the value is ignored in any case.
525 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
530 * (new leaf node)[ln] (old node)[fn]
536 if (in
== NULL
|| ln
== NULL
) {
545 * new intermediate node.
547 * be off since that an address that chooses one of
548 * the branches would not match less specific routes
549 * in the other branch
556 atomic_inc(&in
->leaf
->rt6i_ref
);
558 in
->fn_sernum
= sernum
;
560 /* update parent pointer */
571 ln
->fn_sernum
= sernum
;
573 if (addr_bit_set(addr
, bit
)) {
580 } else { /* plen <= bit */
583 * (new leaf node)[ln]
585 * (old node)[fn] NULL
597 ln
->fn_sernum
= sernum
;
604 if (addr_bit_set(&key
->addr
, plen
))
615 * Insert routing information in a node.
618 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
619 struct nl_info
*info
)
621 struct rt6_info
*iter
= NULL
;
622 struct rt6_info
**ins
;
626 for (iter
= fn
->leaf
; iter
; iter
=iter
->u
.dst
.rt6_next
) {
628 * Search for duplicates
631 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
633 * Same priority level
636 if (iter
->rt6i_dev
== rt
->rt6i_dev
&&
637 iter
->rt6i_idev
== rt
->rt6i_idev
&&
638 ipv6_addr_equal(&iter
->rt6i_gateway
,
639 &rt
->rt6i_gateway
)) {
640 if (!(iter
->rt6i_flags
&RTF_EXPIRES
))
642 iter
->rt6i_expires
= rt
->rt6i_expires
;
643 if (!(rt
->rt6i_flags
&RTF_EXPIRES
)) {
644 iter
->rt6i_flags
&= ~RTF_EXPIRES
;
645 iter
->rt6i_expires
= 0;
651 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
654 ins
= &iter
->u
.dst
.rt6_next
;
657 /* Reset round-robin state, if necessary */
658 if (ins
== &fn
->leaf
)
665 rt
->u
.dst
.rt6_next
= iter
;
668 atomic_inc(&rt
->rt6i_ref
);
669 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
670 rt6_stats
.fib_rt_entries
++;
672 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
673 rt6_stats
.fib_route_nodes
++;
674 fn
->fn_flags
|= RTN_RTINFO
;
680 static __inline__
void fib6_start_gc(struct rt6_info
*rt
)
682 if (ip6_fib_timer
.expires
== 0 &&
683 (rt
->rt6i_flags
& (RTF_EXPIRES
|RTF_CACHE
)))
684 mod_timer(&ip6_fib_timer
, jiffies
+
685 init_net
.ipv6
.sysctl
.ip6_rt_gc_interval
);
688 void fib6_force_start_gc(void)
690 if (ip6_fib_timer
.expires
== 0)
691 mod_timer(&ip6_fib_timer
, jiffies
+
692 init_net
.ipv6
.sysctl
.ip6_rt_gc_interval
);
696 * Add routing information to the routing tree.
697 * <destination addr>/<source addr>
698 * with source addr info in sub-trees
701 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
, struct nl_info
*info
)
703 struct fib6_node
*fn
, *pn
= NULL
;
706 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
707 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
));
714 #ifdef CONFIG_IPV6_SUBTREES
715 if (rt
->rt6i_src
.plen
) {
716 struct fib6_node
*sn
;
718 if (fn
->subtree
== NULL
) {
719 struct fib6_node
*sfn
;
731 /* Create subtree root node */
736 sfn
->leaf
= &ip6_null_entry
;
737 atomic_inc(&ip6_null_entry
.rt6i_ref
);
738 sfn
->fn_flags
= RTN_ROOT
;
739 sfn
->fn_sernum
= fib6_new_sernum();
741 /* Now add the first leaf node to new subtree */
743 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
744 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
745 offsetof(struct rt6_info
, rt6i_src
));
748 /* If it is failed, discard just allocated
749 root, and then (in st_failure) stale node
756 /* Now link new subtree to main tree */
760 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
761 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
762 offsetof(struct rt6_info
, rt6i_src
));
768 if (fn
->leaf
== NULL
) {
770 atomic_inc(&rt
->rt6i_ref
);
776 err
= fib6_add_rt2node(fn
, rt
, info
);
780 if (!(rt
->rt6i_flags
&RTF_CACHE
))
781 fib6_prune_clones(pn
, rt
);
786 #ifdef CONFIG_IPV6_SUBTREES
788 * If fib6_add_1 has cleared the old leaf pointer in the
789 * super-tree leaf node we have to find a new one for it.
791 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
792 pn
->leaf
= fib6_find_prefix(pn
);
795 BUG_TRAP(pn
->leaf
!= NULL
);
796 pn
->leaf
= &ip6_null_entry
;
799 atomic_inc(&pn
->leaf
->rt6i_ref
);
802 dst_free(&rt
->u
.dst
);
806 #ifdef CONFIG_IPV6_SUBTREES
807 /* Subtree creation failed, probably main tree node
808 is orphan. If it is, shoot it.
811 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
812 fib6_repair_tree(fn
);
813 dst_free(&rt
->u
.dst
);
819 * Routing tree lookup
824 int offset
; /* key offset on rt6_info */
825 struct in6_addr
*addr
; /* search key */
828 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
829 struct lookup_args
*args
)
831 struct fib6_node
*fn
;
834 if (unlikely(args
->offset
== 0))
844 struct fib6_node
*next
;
846 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
848 next
= dir
? fn
->right
: fn
->left
;
859 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
862 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
865 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
866 #ifdef CONFIG_IPV6_SUBTREES
868 fn
= fib6_lookup_1(fn
->subtree
, args
+ 1);
870 if (!fn
|| fn
->fn_flags
& RTN_RTINFO
)
875 if (fn
->fn_flags
& RTN_ROOT
)
884 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, struct in6_addr
*daddr
,
885 struct in6_addr
*saddr
)
887 struct fib6_node
*fn
;
888 struct lookup_args args
[] = {
890 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
893 #ifdef CONFIG_IPV6_SUBTREES
895 .offset
= offsetof(struct rt6_info
, rt6i_src
),
900 .offset
= 0, /* sentinel */
904 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
906 if (fn
== NULL
|| fn
->fn_flags
& RTN_TL_ROOT
)
913 * Get node with specified destination prefix (and source prefix,
914 * if subtrees are used)
918 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
919 struct in6_addr
*addr
,
920 int plen
, int offset
)
922 struct fib6_node
*fn
;
924 for (fn
= root
; fn
; ) {
925 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
930 if (plen
< fn
->fn_bit
||
931 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
934 if (plen
== fn
->fn_bit
)
938 * We have more bits to go
940 if (addr_bit_set(addr
, fn
->fn_bit
))
948 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
949 struct in6_addr
*daddr
, int dst_len
,
950 struct in6_addr
*saddr
, int src_len
)
952 struct fib6_node
*fn
;
954 fn
= fib6_locate_1(root
, daddr
, dst_len
,
955 offsetof(struct rt6_info
, rt6i_dst
));
957 #ifdef CONFIG_IPV6_SUBTREES
959 BUG_TRAP(saddr
!=NULL
);
960 if (fn
&& fn
->subtree
)
961 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
962 offsetof(struct rt6_info
, rt6i_src
));
966 if (fn
&& fn
->fn_flags
&RTN_RTINFO
)
978 static struct rt6_info
* fib6_find_prefix(struct fib6_node
*fn
)
980 if (fn
->fn_flags
&RTN_ROOT
)
981 return &ip6_null_entry
;
985 return fn
->left
->leaf
;
988 return fn
->right
->leaf
;
990 fn
= FIB6_SUBTREE(fn
);
996 * Called to trim the tree of intermediate nodes when possible. "fn"
997 * is the node we want to try and remove.
1000 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
)
1004 struct fib6_node
*child
, *pn
;
1005 struct fib6_walker_t
*w
;
1009 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1012 BUG_TRAP(!(fn
->fn_flags
&RTN_RTINFO
));
1013 BUG_TRAP(!(fn
->fn_flags
&RTN_TL_ROOT
));
1014 BUG_TRAP(fn
->leaf
==NULL
);
1018 if (fn
->right
) child
= fn
->right
, children
|= 1;
1019 if (fn
->left
) child
= fn
->left
, children
|= 2;
1021 if (children
== 3 || FIB6_SUBTREE(fn
)
1022 #ifdef CONFIG_IPV6_SUBTREES
1023 /* Subtree root (i.e. fn) may have one child */
1024 || (children
&& fn
->fn_flags
&RTN_ROOT
)
1027 fn
->leaf
= fib6_find_prefix(fn
);
1029 if (fn
->leaf
==NULL
) {
1031 fn
->leaf
= &ip6_null_entry
;
1034 atomic_inc(&fn
->leaf
->rt6i_ref
);
1039 #ifdef CONFIG_IPV6_SUBTREES
1040 if (FIB6_SUBTREE(pn
) == fn
) {
1041 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
1042 FIB6_SUBTREE(pn
) = NULL
;
1045 BUG_TRAP(!(fn
->fn_flags
&RTN_ROOT
));
1047 if (pn
->right
== fn
) pn
->right
= child
;
1048 else if (pn
->left
== fn
) pn
->left
= child
;
1055 #ifdef CONFIG_IPV6_SUBTREES
1059 read_lock(&fib6_walker_lock
);
1061 if (child
== NULL
) {
1062 if (w
->root
== fn
) {
1063 w
->root
= w
->node
= NULL
;
1064 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1065 } else if (w
->node
== fn
) {
1066 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1071 if (w
->root
== fn
) {
1073 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1075 if (w
->node
== fn
) {
1078 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1079 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
1081 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1082 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
1087 read_unlock(&fib6_walker_lock
);
1090 if (pn
->fn_flags
&RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1093 rt6_release(pn
->leaf
);
1099 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1100 struct nl_info
*info
)
1102 struct fib6_walker_t
*w
;
1103 struct rt6_info
*rt
= *rtp
;
1105 RT6_TRACE("fib6_del_route\n");
1108 *rtp
= rt
->u
.dst
.rt6_next
;
1109 rt
->rt6i_node
= NULL
;
1110 rt6_stats
.fib_rt_entries
--;
1111 rt6_stats
.fib_discarded_routes
++;
1113 /* Reset round-robin state, if necessary */
1114 if (fn
->rr_ptr
== rt
)
1117 /* Adjust walkers */
1118 read_lock(&fib6_walker_lock
);
1120 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1121 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1122 w
->leaf
= rt
->u
.dst
.rt6_next
;
1123 if (w
->leaf
== NULL
)
1127 read_unlock(&fib6_walker_lock
);
1129 rt
->u
.dst
.rt6_next
= NULL
;
1131 /* If it was last route, expunge its radix tree node */
1132 if (fn
->leaf
== NULL
) {
1133 fn
->fn_flags
&= ~RTN_RTINFO
;
1134 rt6_stats
.fib_route_nodes
--;
1135 fn
= fib6_repair_tree(fn
);
1138 if (atomic_read(&rt
->rt6i_ref
) != 1) {
1139 /* This route is used as dummy address holder in some split
1140 * nodes. It is not leaked, but it still holds other resources,
1141 * which must be released in time. So, scan ascendant nodes
1142 * and replace dummy references to this route with references
1143 * to still alive ones.
1146 if (!(fn
->fn_flags
&RTN_RTINFO
) && fn
->leaf
== rt
) {
1147 fn
->leaf
= fib6_find_prefix(fn
);
1148 atomic_inc(&fn
->leaf
->rt6i_ref
);
1153 /* No more references are possible at this point. */
1154 <<<<<<< HEAD
:net
/ipv6
/ip6_fib
.c
1155 if (atomic_read(&rt
->rt6i_ref
) != 1) BUG();
1157 BUG_ON(atomic_read(&rt
->rt6i_ref
) != 1);
1158 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:net
/ipv6
/ip6_fib
.c
1161 inet6_rt_notify(RTM_DELROUTE
, rt
, info
);
1165 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1167 struct fib6_node
*fn
= rt
->rt6i_node
;
1168 struct rt6_info
**rtp
;
1171 if (rt
->u
.dst
.obsolete
>0) {
1176 if (fn
== NULL
|| rt
== &ip6_null_entry
)
1179 BUG_TRAP(fn
->fn_flags
&RTN_RTINFO
);
1181 if (!(rt
->rt6i_flags
&RTF_CACHE
)) {
1182 struct fib6_node
*pn
= fn
;
1183 #ifdef CONFIG_IPV6_SUBTREES
1184 /* clones of this route might be in another subtree */
1185 if (rt
->rt6i_src
.plen
) {
1186 while (!(pn
->fn_flags
&RTN_ROOT
))
1191 fib6_prune_clones(pn
, rt
);
1195 * Walk the leaf entries looking for ourself
1198 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->u
.dst
.rt6_next
) {
1200 fib6_del_route(fn
, rtp
, info
);
1208 * Tree traversal function.
1210 * Certainly, it is not interrupt safe.
1211 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1212 * It means, that we can modify tree during walking
1213 * and use this function for garbage collection, clone pruning,
1214 * cleaning tree when a device goes down etc. etc.
1216 * It guarantees that every node will be traversed,
1217 * and that it will be traversed only once.
1219 * Callback function w->func may return:
1220 * 0 -> continue walking.
1221 * positive value -> walking is suspended (used by tree dumps,
1222 * and probably by gc, if it will be split to several slices)
1223 * negative value -> terminate walking.
1225 * The function itself returns:
1226 * 0 -> walk is complete.
1227 * >0 -> walk is incomplete (i.e. suspended)
1228 * <0 -> walk is terminated by an error.
1231 static int fib6_walk_continue(struct fib6_walker_t
*w
)
1233 struct fib6_node
*fn
, *pn
;
1240 if (w
->prune
&& fn
!= w
->root
&&
1241 fn
->fn_flags
&RTN_RTINFO
&& w
->state
< FWS_C
) {
1246 #ifdef CONFIG_IPV6_SUBTREES
1248 if (FIB6_SUBTREE(fn
)) {
1249 w
->node
= FIB6_SUBTREE(fn
);
1257 w
->state
= FWS_INIT
;
1263 w
->node
= fn
->right
;
1264 w
->state
= FWS_INIT
;
1270 if (w
->leaf
&& fn
->fn_flags
&RTN_RTINFO
) {
1271 int err
= w
->func(w
);
1282 #ifdef CONFIG_IPV6_SUBTREES
1283 if (FIB6_SUBTREE(pn
) == fn
) {
1284 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
1289 if (pn
->left
== fn
) {
1293 if (pn
->right
== fn
) {
1295 w
->leaf
= w
->node
->leaf
;
1305 static int fib6_walk(struct fib6_walker_t
*w
)
1309 w
->state
= FWS_INIT
;
1312 fib6_walker_link(w
);
1313 res
= fib6_walk_continue(w
);
1315 fib6_walker_unlink(w
);
1319 static int fib6_clean_node(struct fib6_walker_t
*w
)
1321 struct nl_info info
= {
1322 .nl_net
= &init_net
,
1325 struct rt6_info
*rt
;
1326 struct fib6_cleaner_t
*c
= container_of(w
, struct fib6_cleaner_t
, w
);
1328 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
1329 res
= c
->func(rt
, c
->arg
);
1332 res
= fib6_del(rt
, &info
);
1335 printk(KERN_DEBUG
"fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt
, rt
->rt6i_node
, res
);
1348 * Convenient frontend to tree walker.
1350 * func is called on each route.
1351 * It may return -1 -> delete this route.
1352 * 0 -> continue walking
1354 * prune==1 -> only immediate children of node (certainly,
1355 * ignoring pure split nodes) will be scanned.
1358 static void fib6_clean_tree(struct fib6_node
*root
,
1359 int (*func
)(struct rt6_info
*, void *arg
),
1360 int prune
, void *arg
)
1362 struct fib6_cleaner_t c
;
1365 c
.w
.func
= fib6_clean_node
;
1373 void fib6_clean_all(int (*func
)(struct rt6_info
*, void *arg
),
1374 int prune
, void *arg
)
1376 struct fib6_table
*table
;
1377 struct hlist_node
*node
;
1381 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
1382 hlist_for_each_entry_rcu(table
, node
, &fib_table_hash
[h
],
1384 write_lock_bh(&table
->tb6_lock
);
1385 fib6_clean_tree(&table
->tb6_root
, func
, prune
, arg
);
1386 write_unlock_bh(&table
->tb6_lock
);
1392 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1394 if (rt
->rt6i_flags
& RTF_CACHE
) {
1395 RT6_TRACE("pruning clone %p\n", rt
);
1402 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
)
1404 fib6_clean_tree(fn
, fib6_prune_clone
, 1, rt
);
1408 * Garbage collection
1411 static struct fib6_gc_args
1417 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1419 unsigned long now
= jiffies
;
1422 * check addrconf expiration here.
1423 * Routes are expired even if they are in use.
1425 * Also age clones. Note, that clones are aged out
1426 * only if they are not in use now.
1429 if (rt
->rt6i_flags
&RTF_EXPIRES
&& rt
->rt6i_expires
) {
1430 if (time_after(now
, rt
->rt6i_expires
)) {
1431 RT6_TRACE("expiring %p\n", rt
);
1435 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1436 if (atomic_read(&rt
->u
.dst
.__refcnt
) == 0 &&
1437 time_after_eq(now
, rt
->u
.dst
.lastuse
+ gc_args
.timeout
)) {
1438 RT6_TRACE("aging clone %p\n", rt
);
1440 } else if ((rt
->rt6i_flags
& RTF_GATEWAY
) &&
1441 (!(rt
->rt6i_nexthop
->flags
& NTF_ROUTER
))) {
1442 RT6_TRACE("purging route %p via non-router but gateway\n",
1452 static DEFINE_SPINLOCK(fib6_gc_lock
);
1454 void fib6_run_gc(unsigned long dummy
)
1456 if (dummy
!= ~0UL) {
1457 spin_lock_bh(&fib6_gc_lock
);
1458 gc_args
.timeout
= dummy
? (int)dummy
:
1459 init_net
.ipv6
.sysctl
.ip6_rt_gc_interval
;
1462 if (!spin_trylock(&fib6_gc_lock
)) {
1463 mod_timer(&ip6_fib_timer
, jiffies
+ HZ
);
1467 gc_args
.timeout
= init_net
.ipv6
.sysctl
.ip6_rt_gc_interval
;
1471 ndisc_dst_gc(&gc_args
.more
);
1472 fib6_clean_all(fib6_age
, 0, NULL
);
1475 mod_timer(&ip6_fib_timer
, jiffies
+
1476 init_net
.ipv6
.sysctl
.ip6_rt_gc_interval
);
1478 del_timer(&ip6_fib_timer
);
1479 ip6_fib_timer
.expires
= 0;
1481 spin_unlock_bh(&fib6_gc_lock
);
1484 int __init
fib6_init(void)
1487 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1488 sizeof(struct fib6_node
),
1489 0, SLAB_HWCACHE_ALIGN
,
1491 if (!fib6_node_kmem
)
1496 ret
= __rtnl_register(PF_INET6
, RTM_GETROUTE
, NULL
, inet6_dump_fib
);
1498 goto out_kmem_cache_create
;
1502 out_kmem_cache_create
:
1503 kmem_cache_destroy(fib6_node_kmem
);
1507 void fib6_gc_cleanup(void)
1509 del_timer(&ip6_fib_timer
);
1510 kmem_cache_destroy(fib6_node_kmem
);