Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / sound / soc / fsl / fsl_dma.c
blob652514fc814206066dbd79c733d77791559241d2
1 /*
2 * Freescale DMA ALSA SoC PCM driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
9 * express or implied.
11 * This driver implements ASoC support for the Elo DMA controller, which is
12 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13 * the PCM driver is what handles the DMA buffer.
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
23 #include <sound/driver.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
29 #include <asm/io.h>
31 #include "fsl_dma.h"
34 * The formats that the DMA controller supports, which is anything
35 * that is 8, 16, or 32 bits.
37 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
38 SNDRV_PCM_FMTBIT_U8 | \
39 SNDRV_PCM_FMTBIT_S16_LE | \
40 SNDRV_PCM_FMTBIT_S16_BE | \
41 SNDRV_PCM_FMTBIT_U16_LE | \
42 SNDRV_PCM_FMTBIT_U16_BE | \
43 SNDRV_PCM_FMTBIT_S24_LE | \
44 SNDRV_PCM_FMTBIT_S24_BE | \
45 SNDRV_PCM_FMTBIT_U24_LE | \
46 SNDRV_PCM_FMTBIT_U24_BE | \
47 SNDRV_PCM_FMTBIT_S32_LE | \
48 SNDRV_PCM_FMTBIT_S32_BE | \
49 SNDRV_PCM_FMTBIT_U32_LE | \
50 SNDRV_PCM_FMTBIT_U32_BE)
52 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
53 SNDRV_PCM_RATE_CONTINUOUS)
55 /* DMA global data. This structure is used by fsl_dma_open() to determine
56 * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
57 * not allow the machine driver to provide this information to the PCM
58 * driver in advance, and there's no way to differentiate between the two
59 * DMA controllers. So for now, this driver only supports one SSI device
60 * using two DMA channels. We cannot support multiple DMA devices.
62 * ssi_stx_phys: bus address of SSI STX register
63 * ssi_srx_phys: bus address of SSI SRX register
64 * dma_channel: pointer to the DMA channel's registers
65 * irq: IRQ for this DMA channel
66 * assigned: set to 1 if that DMA channel is assigned to a substream
68 static struct {
69 dma_addr_t ssi_stx_phys;
70 dma_addr_t ssi_srx_phys;
71 struct ccsr_dma_channel __iomem *dma_channel[2];
72 unsigned int irq[2];
73 unsigned int assigned[2];
74 } dma_global_data;
77 * The number of DMA links to use. Two is the bare minimum, but if you
78 * have really small links you might need more.
80 #define NUM_DMA_LINKS 2
82 /** fsl_dma_private: p-substream DMA data
84 * Each substream has a 1-to-1 association with a DMA channel.
86 * The link[] array is first because it needs to be aligned on a 32-byte
87 * boundary, so putting it first will ensure alignment without padding the
88 * structure.
90 * @link[]: array of link descriptors
91 * @controller_id: which DMA controller (0, 1, ...)
92 * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
93 * @dma_channel: pointer to the DMA channel's registers
94 * @irq: IRQ for this DMA channel
95 * @substream: pointer to the substream object, needed by the ISR
96 * @ssi_sxx_phys: bus address of the STX or SRX register to use
97 * @ld_buf_phys: physical address of the LD buffer
98 * @current_link: index into link[] of the link currently being processed
99 * @dma_buf_phys: physical address of the DMA buffer
100 * @dma_buf_next: physical address of the next period to process
101 * @dma_buf_end: physical address of the byte after the end of the DMA
102 * @buffer period_size: the size of a single period
103 * @num_periods: the number of periods in the DMA buffer
105 struct fsl_dma_private {
106 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
107 unsigned int controller_id;
108 unsigned int channel_id;
109 struct ccsr_dma_channel __iomem *dma_channel;
110 unsigned int irq;
111 struct snd_pcm_substream *substream;
112 dma_addr_t ssi_sxx_phys;
113 dma_addr_t ld_buf_phys;
114 unsigned int current_link;
115 dma_addr_t dma_buf_phys;
116 dma_addr_t dma_buf_next;
117 dma_addr_t dma_buf_end;
118 size_t period_size;
119 unsigned int num_periods;
123 * fsl_dma_hardare: define characteristics of the PCM hardware.
125 * The PCM hardware is the Freescale DMA controller. This structure defines
126 * the capabilities of that hardware.
128 * Since the sampling rate and data format are not controlled by the DMA
129 * controller, we specify no limits for those values. The only exception is
130 * period_bytes_min, which is set to a reasonably low value to prevent the
131 * DMA controller from generating too many interrupts per second.
133 * Since each link descriptor has a 32-bit byte count field, we set
134 * period_bytes_max to the largest 32-bit number. We also have no maximum
135 * number of periods.
137 static const struct snd_pcm_hardware fsl_dma_hardware = {
139 .info = SNDRV_PCM_INFO_INTERLEAVED |
140 SNDRV_PCM_INFO_MMAP |
141 SNDRV_PCM_INFO_MMAP_VALID,
142 .formats = FSLDMA_PCM_FORMATS,
143 .rates = FSLDMA_PCM_RATES,
144 .rate_min = 5512,
145 .rate_max = 192000,
146 .period_bytes_min = 512, /* A reasonable limit */
147 .period_bytes_max = (u32) -1,
148 .periods_min = NUM_DMA_LINKS,
149 .periods_max = (unsigned int) -1,
150 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
154 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
156 * This function should be called by the ISR whenever the DMA controller
157 * halts data transfer.
159 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
161 unsigned long flags;
163 snd_pcm_stream_lock_irqsave(substream, flags);
165 if (snd_pcm_running(substream))
166 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
168 snd_pcm_stream_unlock_irqrestore(substream, flags);
172 * fsl_dma_update_pointers - update LD pointers to point to the next period
174 * As each period is completed, this function changes the the link
175 * descriptor pointers for that period to point to the next period.
177 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
179 struct fsl_dma_link_descriptor *link =
180 &dma_private->link[dma_private->current_link];
182 /* Update our link descriptors to point to the next period */
183 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
184 link->source_addr =
185 cpu_to_be32(dma_private->dma_buf_next);
186 else
187 link->dest_addr =
188 cpu_to_be32(dma_private->dma_buf_next);
190 /* Update our variables for next time */
191 dma_private->dma_buf_next += dma_private->period_size;
193 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
194 dma_private->dma_buf_next = dma_private->dma_buf_phys;
196 if (++dma_private->current_link >= NUM_DMA_LINKS)
197 dma_private->current_link = 0;
201 * fsl_dma_isr: interrupt handler for the DMA controller
203 * @irq: IRQ of the DMA channel
204 * @dev_id: pointer to the dma_private structure for this DMA channel
206 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
208 struct fsl_dma_private *dma_private = dev_id;
209 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
210 irqreturn_t ret = IRQ_NONE;
211 u32 sr, sr2 = 0;
213 /* We got an interrupt, so read the status register to see what we
214 were interrupted for.
216 sr = in_be32(&dma_channel->sr);
218 if (sr & CCSR_DMA_SR_TE) {
219 dev_err(dma_private->substream->pcm->card->dev,
220 "DMA transmit error (controller=%u channel=%u irq=%u\n",
221 dma_private->controller_id,
222 dma_private->channel_id, irq);
223 fsl_dma_abort_stream(dma_private->substream);
224 sr2 |= CCSR_DMA_SR_TE;
225 ret = IRQ_HANDLED;
228 if (sr & CCSR_DMA_SR_CH)
229 ret = IRQ_HANDLED;
231 if (sr & CCSR_DMA_SR_PE) {
232 dev_err(dma_private->substream->pcm->card->dev,
233 "DMA%u programming error (channel=%u irq=%u)\n",
234 dma_private->controller_id,
235 dma_private->channel_id, irq);
236 fsl_dma_abort_stream(dma_private->substream);
237 sr2 |= CCSR_DMA_SR_PE;
238 ret = IRQ_HANDLED;
241 if (sr & CCSR_DMA_SR_EOLNI) {
242 sr2 |= CCSR_DMA_SR_EOLNI;
243 ret = IRQ_HANDLED;
246 if (sr & CCSR_DMA_SR_CB)
247 ret = IRQ_HANDLED;
249 if (sr & CCSR_DMA_SR_EOSI) {
250 struct snd_pcm_substream *substream = dma_private->substream;
252 /* Tell ALSA we completed a period. */
253 snd_pcm_period_elapsed(substream);
256 * Update our link descriptors to point to the next period. We
257 * only need to do this if the number of periods is not equal to
258 * the number of links.
260 if (dma_private->num_periods != NUM_DMA_LINKS)
261 fsl_dma_update_pointers(dma_private);
263 sr2 |= CCSR_DMA_SR_EOSI;
264 ret = IRQ_HANDLED;
267 if (sr & CCSR_DMA_SR_EOLSI) {
268 sr2 |= CCSR_DMA_SR_EOLSI;
269 ret = IRQ_HANDLED;
272 /* Clear the bits that we set */
273 if (sr2)
274 out_be32(&dma_channel->sr, sr2);
276 return ret;
280 * fsl_dma_new: initialize this PCM driver.
282 * This function is called when the codec driver calls snd_soc_new_pcms(),
283 * once for each .dai_link in the machine driver's snd_soc_machine
284 * structure.
286 static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai,
287 struct snd_pcm *pcm)
289 static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
290 int ret;
292 if (!card->dev->dma_mask)
293 card->dev->dma_mask = &fsl_dma_dmamask;
295 if (!card->dev->coherent_dma_mask)
296 card->dev->coherent_dma_mask = fsl_dma_dmamask;
298 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
299 fsl_dma_hardware.buffer_bytes_max,
300 &pcm->streams[0].substream->dma_buffer);
301 if (ret) {
302 dev_err(card->dev,
303 "Can't allocate playback DMA buffer (size=%u)\n",
304 fsl_dma_hardware.buffer_bytes_max);
305 return -ENOMEM;
308 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
309 fsl_dma_hardware.buffer_bytes_max,
310 &pcm->streams[1].substream->dma_buffer);
311 if (ret) {
312 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
313 dev_err(card->dev,
314 "Can't allocate capture DMA buffer (size=%u)\n",
315 fsl_dma_hardware.buffer_bytes_max);
316 return -ENOMEM;
319 return 0;
323 * fsl_dma_open: open a new substream.
325 * Each substream has its own DMA buffer.
327 static int fsl_dma_open(struct snd_pcm_substream *substream)
329 struct snd_pcm_runtime *runtime = substream->runtime;
330 struct fsl_dma_private *dma_private;
331 dma_addr_t ld_buf_phys;
332 unsigned int channel;
333 int ret = 0;
336 * Reject any DMA buffer whose size is not a multiple of the period
337 * size. We need to make sure that the DMA buffer can be evenly divided
338 * into periods.
340 ret = snd_pcm_hw_constraint_integer(runtime,
341 SNDRV_PCM_HW_PARAM_PERIODS);
342 if (ret < 0) {
343 dev_err(substream->pcm->card->dev, "invalid buffer size\n");
344 return ret;
347 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
349 if (dma_global_data.assigned[channel]) {
350 dev_err(substream->pcm->card->dev,
351 "DMA channel already assigned\n");
352 return -EBUSY;
355 dma_private = dma_alloc_coherent(substream->pcm->dev,
356 sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
357 if (!dma_private) {
358 dev_err(substream->pcm->card->dev,
359 "can't allocate DMA private data\n");
360 return -ENOMEM;
362 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
363 dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
364 else
365 dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
367 dma_private->dma_channel = dma_global_data.dma_channel[channel];
368 dma_private->irq = dma_global_data.irq[channel];
369 dma_private->substream = substream;
370 dma_private->ld_buf_phys = ld_buf_phys;
371 dma_private->dma_buf_phys = substream->dma_buffer.addr;
373 /* We only support one DMA controller for now */
374 dma_private->controller_id = 0;
375 dma_private->channel_id = channel;
377 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
378 if (ret) {
379 dev_err(substream->pcm->card->dev,
380 "can't register ISR for IRQ %u (ret=%i)\n",
381 dma_private->irq, ret);
382 dma_free_coherent(substream->pcm->dev,
383 sizeof(struct fsl_dma_private),
384 dma_private, dma_private->ld_buf_phys);
385 return ret;
388 dma_global_data.assigned[channel] = 1;
390 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
391 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
392 runtime->private_data = dma_private;
394 return 0;
398 * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
400 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
401 * descriptors that ping-pong from one period to the next. For example, if
402 * there are six periods and two link descriptors, this is how they look
403 * before playback starts:
405 * The last link descriptor
406 * ____________ points back to the first
407 * | |
408 * V |
409 * ___ ___ |
410 * | |->| |->|
411 * |___| |___|
412 * | |
413 * | |
414 * V V
415 * _________________________________________
416 * | | | | | | | The DMA buffer is
417 * | | | | | | | divided into 6 parts
418 * |______|______|______|______|______|______|
420 * and here's how they look after the first period is finished playing:
422 * ____________
423 * | |
424 * V |
425 * ___ ___ |
426 * | |->| |->|
427 * |___| |___|
428 * | |
429 * |______________
430 * | |
431 * V V
432 * _________________________________________
433 * | | | | | | |
434 * | | | | | | |
435 * |______|______|______|______|______|______|
437 * The first link descriptor now points to the third period. The DMA
438 * controller is currently playing the second period. When it finishes, it
439 * will jump back to the first descriptor and play the third period.
441 * There are four reasons we do this:
443 * 1. The only way to get the DMA controller to automatically restart the
444 * transfer when it gets to the end of the buffer is to use chaining
445 * mode. Basic direct mode doesn't offer that feature.
446 * 2. We need to receive an interrupt at the end of every period. The DMA
447 * controller can generate an interrupt at the end of every link transfer
448 * (aka segment). Making each period into a DMA segment will give us the
449 * interrupts we need.
450 * 3. By creating only two link descriptors, regardless of the number of
451 * periods, we do not need to reallocate the link descriptors if the
452 * number of periods changes.
453 * 4. All of the audio data is still stored in a single, contiguous DMA
454 * buffer, which is what ALSA expects. We're just dividing it into
455 * contiguous parts, and creating a link descriptor for each one.
457 * Note that due to a quirk of the SSI's STX register, the target address
458 * for the DMA operations depends on the sample size. So we don't program
459 * the dest_addr (for playback -- source_addr for capture) fields in the
460 * link descriptors here. We do that in fsl_dma_prepare()
462 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
463 struct snd_pcm_hw_params *hw_params)
465 struct snd_pcm_runtime *runtime = substream->runtime;
466 struct fsl_dma_private *dma_private = runtime->private_data;
467 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
469 dma_addr_t temp_addr; /* Pointer to next period */
470 u64 temp_link; /* Pointer to next link descriptor */
471 u32 mr; /* Temporary variable for MR register */
473 unsigned int i;
475 /* Get all the parameters we need */
476 size_t buffer_size = params_buffer_bytes(hw_params);
477 size_t period_size = params_period_bytes(hw_params);
479 /* Initialize our DMA tracking variables */
480 dma_private->period_size = period_size;
481 dma_private->num_periods = params_periods(hw_params);
482 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
483 dma_private->dma_buf_next = dma_private->dma_buf_phys +
484 (NUM_DMA_LINKS * period_size);
485 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
486 dma_private->dma_buf_next = dma_private->dma_buf_phys;
489 * Initialize each link descriptor.
491 * The actual address in STX0 (destination for playback, source for
492 * capture) is based on the sample size, but we don't know the sample
493 * size in this function, so we'll have to adjust that later. See
494 * comments in fsl_dma_prepare().
496 * The DMA controller does not have a cache, so the CPU does not
497 * need to tell it to flush its cache. However, the DMA
498 * controller does need to tell the CPU to flush its cache.
499 * That's what the SNOOP bit does.
501 * Also, even though the DMA controller supports 36-bit addressing, for
502 * simplicity we currently support only 32-bit addresses for the audio
503 * buffer itself.
505 temp_addr = substream->dma_buffer.addr;
506 temp_link = dma_private->ld_buf_phys +
507 sizeof(struct fsl_dma_link_descriptor);
509 for (i = 0; i < NUM_DMA_LINKS; i++) {
510 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
512 link->count = cpu_to_be32(period_size);
513 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
514 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
515 link->next = cpu_to_be64(temp_link);
517 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
518 link->source_addr = cpu_to_be32(temp_addr);
519 else
520 link->dest_addr = cpu_to_be32(temp_addr);
522 temp_addr += period_size;
523 temp_link += sizeof(struct fsl_dma_link_descriptor);
525 /* The last link descriptor points to the first */
526 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
528 /* Tell the DMA controller where the first link descriptor is */
529 out_be32(&dma_channel->clndar,
530 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
531 out_be32(&dma_channel->eclndar,
532 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
534 /* The manual says the BCR must be clear before enabling EMP */
535 out_be32(&dma_channel->bcr, 0);
538 * Program the mode register for interrupts, external master control,
539 * and source/destination hold. Also clear the Channel Abort bit.
541 mr = in_be32(&dma_channel->mr) &
542 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
545 * We want External Master Start and External Master Pause enabled,
546 * because the SSI is controlling the DMA controller. We want the DMA
547 * controller to be set up in advance, and then we signal only the SSI
548 * to start transfering.
550 * We want End-Of-Segment Interrupts enabled, because this will generate
551 * an interrupt at the end of each segment (each link descriptor
552 * represents one segment). Each DMA segment is the same thing as an
553 * ALSA period, so this is how we get an interrupt at the end of every
554 * period.
556 * We want Error Interrupt enabled, so that we can get an error if
557 * the DMA controller is mis-programmed somehow.
559 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
560 CCSR_DMA_MR_EMS_EN;
562 /* For playback, we want the destination address to be held. For
563 capture, set the source address to be held. */
564 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
565 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
567 out_be32(&dma_channel->mr, mr);
569 return 0;
573 * fsl_dma_prepare - prepare the DMA registers for playback.
575 * This function is called after the specifics of the audio data are known,
576 * i.e. snd_pcm_runtime is initialized.
578 * In this function, we finish programming the registers of the DMA
579 * controller that are dependent on the sample size.
581 * One of the drawbacks with big-endian is that when copying integers of
582 * different sizes to a fixed-sized register, the address to which the
583 * integer must be copied is dependent on the size of the integer.
585 * For example, if P is the address of a 32-bit register, and X is a 32-bit
586 * integer, then X should be copied to address P. However, if X is a 16-bit
587 * integer, then it should be copied to P+2. If X is an 8-bit register,
588 * then it should be copied to P+3.
590 * So for playback of 8-bit samples, the DMA controller must transfer single
591 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
592 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
594 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
595 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
596 * and 8 bytes at a time). So we do not support packed 24-bit samples.
597 * 24-bit data must be padded to 32 bits.
599 static int fsl_dma_prepare(struct snd_pcm_substream *substream)
601 struct snd_pcm_runtime *runtime = substream->runtime;
602 struct fsl_dma_private *dma_private = runtime->private_data;
603 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
604 u32 mr;
605 unsigned int i;
606 dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
607 unsigned int frame_size; /* Number of bytes per frame */
609 ssi_sxx_phys = dma_private->ssi_sxx_phys;
611 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
612 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
614 switch (runtime->sample_bits) {
615 case 8:
616 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
617 ssi_sxx_phys += 3;
618 break;
619 case 16:
620 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
621 ssi_sxx_phys += 2;
622 break;
623 case 32:
624 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
625 break;
626 default:
627 dev_err(substream->pcm->card->dev,
628 "unsupported sample size %u\n", runtime->sample_bits);
629 return -EINVAL;
632 frame_size = runtime->frame_bits / 8;
634 * BWC should always be a multiple of the frame size. BWC determines
635 * how many bytes are sent/received before the DMA controller checks the
636 * SSI to see if it needs to stop. For playback, the transmit FIFO can
637 * hold three frames, so we want to send two frames at a time. For
638 * capture, the receive FIFO is triggered when it contains one frame, so
639 * we want to receive one frame at a time.
642 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
643 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
644 else
645 mr |= CCSR_DMA_MR_BWC(frame_size);
647 out_be32(&dma_channel->mr, mr);
650 * Program the address of the DMA transfer to/from the SSI.
652 for (i = 0; i < NUM_DMA_LINKS; i++) {
653 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
655 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
656 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
657 else
658 link->source_addr = cpu_to_be32(ssi_sxx_phys);
661 return 0;
665 * fsl_dma_pointer: determine the current position of the DMA transfer
667 * This function is called by ALSA when ALSA wants to know where in the
668 * stream buffer the hardware currently is.
670 * For playback, the SAR register contains the physical address of the most
671 * recent DMA transfer. For capture, the value is in the DAR register.
673 * The base address of the buffer is stored in the source_addr field of the
674 * first link descriptor.
676 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
678 struct snd_pcm_runtime *runtime = substream->runtime;
679 struct fsl_dma_private *dma_private = runtime->private_data;
680 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
681 dma_addr_t position;
682 snd_pcm_uframes_t frames;
684 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
685 position = in_be32(&dma_channel->sar);
686 else
687 position = in_be32(&dma_channel->dar);
689 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
692 * If the current address is just past the end of the buffer, wrap it
693 * around.
695 if (frames == runtime->buffer_size)
696 frames = 0;
698 return frames;
702 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
704 * Release the resources allocated in fsl_dma_hw_params() and de-program the
705 * registers.
707 * This function can be called multiple times.
709 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
711 struct snd_pcm_runtime *runtime = substream->runtime;
712 struct fsl_dma_private *dma_private = runtime->private_data;
714 if (dma_private) {
715 struct ccsr_dma_channel __iomem *dma_channel;
717 dma_channel = dma_private->dma_channel;
719 /* Stop the DMA */
720 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
721 out_be32(&dma_channel->mr, 0);
723 /* Reset all the other registers */
724 out_be32(&dma_channel->sr, -1);
725 out_be32(&dma_channel->clndar, 0);
726 out_be32(&dma_channel->eclndar, 0);
727 out_be32(&dma_channel->satr, 0);
728 out_be32(&dma_channel->sar, 0);
729 out_be32(&dma_channel->datr, 0);
730 out_be32(&dma_channel->dar, 0);
731 out_be32(&dma_channel->bcr, 0);
732 out_be32(&dma_channel->nlndar, 0);
733 out_be32(&dma_channel->enlndar, 0);
736 return 0;
740 * fsl_dma_close: close the stream.
742 static int fsl_dma_close(struct snd_pcm_substream *substream)
744 struct snd_pcm_runtime *runtime = substream->runtime;
745 struct fsl_dma_private *dma_private = runtime->private_data;
746 int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
748 if (dma_private) {
749 if (dma_private->irq)
750 free_irq(dma_private->irq, dma_private);
752 if (dma_private->ld_buf_phys) {
753 dma_unmap_single(substream->pcm->dev,
754 dma_private->ld_buf_phys,
755 sizeof(dma_private->link), DMA_TO_DEVICE);
758 /* Deallocate the fsl_dma_private structure */
759 dma_free_coherent(substream->pcm->dev,
760 sizeof(struct fsl_dma_private),
761 dma_private, dma_private->ld_buf_phys);
762 substream->runtime->private_data = NULL;
765 dma_global_data.assigned[dir] = 0;
767 return 0;
771 * Remove this PCM driver.
773 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
775 struct snd_pcm_substream *substream;
776 unsigned int i;
778 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
779 substream = pcm->streams[i].substream;
780 if (substream) {
781 snd_dma_free_pages(&substream->dma_buffer);
782 substream->dma_buffer.area = NULL;
783 substream->dma_buffer.addr = 0;
788 static struct snd_pcm_ops fsl_dma_ops = {
789 .open = fsl_dma_open,
790 .close = fsl_dma_close,
791 .ioctl = snd_pcm_lib_ioctl,
792 .hw_params = fsl_dma_hw_params,
793 .hw_free = fsl_dma_hw_free,
794 .prepare = fsl_dma_prepare,
795 .pointer = fsl_dma_pointer,
798 struct snd_soc_platform fsl_soc_platform = {
799 .name = "fsl-dma",
800 .pcm_ops = &fsl_dma_ops,
801 .pcm_new = fsl_dma_new,
802 .pcm_free = fsl_dma_free_dma_buffers,
804 EXPORT_SYMBOL_GPL(fsl_soc_platform);
807 * fsl_dma_configure: store the DMA parameters from the fabric driver.
809 * This function is called by the ASoC fabric driver to give us the DMA and
810 * SSI channel information.
812 * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
813 * data when a substream is created, so for now we need to store this data
814 * into a global variable. This means that we can only support one DMA
815 * controller, and hence only one SSI.
817 int fsl_dma_configure(struct fsl_dma_info *dma_info)
819 static int initialized;
821 /* We only support one DMA controller for now */
822 if (initialized)
823 return 0;
825 dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
826 dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
827 dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
828 dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
829 dma_global_data.irq[0] = dma_info->dma_irq[0];
830 dma_global_data.irq[1] = dma_info->dma_irq[1];
831 dma_global_data.assigned[0] = 0;
832 dma_global_data.assigned[1] = 0;
834 initialized = 1;
835 return 1;
837 EXPORT_SYMBOL_GPL(fsl_dma_configure);
839 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
840 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
841 MODULE_LICENSE("GPL");