2 * Freescale DMA ALSA SoC PCM driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
11 * This driver implements ASoC support for the Elo DMA controller, which is
12 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13 * the PCM driver is what handles the DMA buffer.
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
23 #include <sound/driver.h>
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
34 * The formats that the DMA controller supports, which is anything
35 * that is 8, 16, or 32 bits.
37 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
38 SNDRV_PCM_FMTBIT_U8 | \
39 SNDRV_PCM_FMTBIT_S16_LE | \
40 SNDRV_PCM_FMTBIT_S16_BE | \
41 SNDRV_PCM_FMTBIT_U16_LE | \
42 SNDRV_PCM_FMTBIT_U16_BE | \
43 SNDRV_PCM_FMTBIT_S24_LE | \
44 SNDRV_PCM_FMTBIT_S24_BE | \
45 SNDRV_PCM_FMTBIT_U24_LE | \
46 SNDRV_PCM_FMTBIT_U24_BE | \
47 SNDRV_PCM_FMTBIT_S32_LE | \
48 SNDRV_PCM_FMTBIT_S32_BE | \
49 SNDRV_PCM_FMTBIT_U32_LE | \
50 SNDRV_PCM_FMTBIT_U32_BE)
52 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
53 SNDRV_PCM_RATE_CONTINUOUS)
55 /* DMA global data. This structure is used by fsl_dma_open() to determine
56 * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
57 * not allow the machine driver to provide this information to the PCM
58 * driver in advance, and there's no way to differentiate between the two
59 * DMA controllers. So for now, this driver only supports one SSI device
60 * using two DMA channels. We cannot support multiple DMA devices.
62 * ssi_stx_phys: bus address of SSI STX register
63 * ssi_srx_phys: bus address of SSI SRX register
64 * dma_channel: pointer to the DMA channel's registers
65 * irq: IRQ for this DMA channel
66 * assigned: set to 1 if that DMA channel is assigned to a substream
69 dma_addr_t ssi_stx_phys
;
70 dma_addr_t ssi_srx_phys
;
71 struct ccsr_dma_channel __iomem
*dma_channel
[2];
73 unsigned int assigned
[2];
77 * The number of DMA links to use. Two is the bare minimum, but if you
78 * have really small links you might need more.
80 #define NUM_DMA_LINKS 2
82 /** fsl_dma_private: p-substream DMA data
84 * Each substream has a 1-to-1 association with a DMA channel.
86 * The link[] array is first because it needs to be aligned on a 32-byte
87 * boundary, so putting it first will ensure alignment without padding the
90 * @link[]: array of link descriptors
91 * @controller_id: which DMA controller (0, 1, ...)
92 * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
93 * @dma_channel: pointer to the DMA channel's registers
94 * @irq: IRQ for this DMA channel
95 * @substream: pointer to the substream object, needed by the ISR
96 * @ssi_sxx_phys: bus address of the STX or SRX register to use
97 * @ld_buf_phys: physical address of the LD buffer
98 * @current_link: index into link[] of the link currently being processed
99 * @dma_buf_phys: physical address of the DMA buffer
100 * @dma_buf_next: physical address of the next period to process
101 * @dma_buf_end: physical address of the byte after the end of the DMA
102 * @buffer period_size: the size of a single period
103 * @num_periods: the number of periods in the DMA buffer
105 struct fsl_dma_private
{
106 struct fsl_dma_link_descriptor link
[NUM_DMA_LINKS
];
107 unsigned int controller_id
;
108 unsigned int channel_id
;
109 struct ccsr_dma_channel __iomem
*dma_channel
;
111 struct snd_pcm_substream
*substream
;
112 dma_addr_t ssi_sxx_phys
;
113 dma_addr_t ld_buf_phys
;
114 unsigned int current_link
;
115 dma_addr_t dma_buf_phys
;
116 dma_addr_t dma_buf_next
;
117 dma_addr_t dma_buf_end
;
119 unsigned int num_periods
;
123 * fsl_dma_hardare: define characteristics of the PCM hardware.
125 * The PCM hardware is the Freescale DMA controller. This structure defines
126 * the capabilities of that hardware.
128 * Since the sampling rate and data format are not controlled by the DMA
129 * controller, we specify no limits for those values. The only exception is
130 * period_bytes_min, which is set to a reasonably low value to prevent the
131 * DMA controller from generating too many interrupts per second.
133 * Since each link descriptor has a 32-bit byte count field, we set
134 * period_bytes_max to the largest 32-bit number. We also have no maximum
137 static const struct snd_pcm_hardware fsl_dma_hardware
= {
139 .info
= SNDRV_PCM_INFO_INTERLEAVED
|
140 SNDRV_PCM_INFO_MMAP
|
141 SNDRV_PCM_INFO_MMAP_VALID
,
142 .formats
= FSLDMA_PCM_FORMATS
,
143 .rates
= FSLDMA_PCM_RATES
,
146 .period_bytes_min
= 512, /* A reasonable limit */
147 .period_bytes_max
= (u32
) -1,
148 .periods_min
= NUM_DMA_LINKS
,
149 .periods_max
= (unsigned int) -1,
150 .buffer_bytes_max
= 128 * 1024, /* A reasonable limit */
154 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
156 * This function should be called by the ISR whenever the DMA controller
157 * halts data transfer.
159 static void fsl_dma_abort_stream(struct snd_pcm_substream
*substream
)
163 snd_pcm_stream_lock_irqsave(substream
, flags
);
165 if (snd_pcm_running(substream
))
166 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
168 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
172 * fsl_dma_update_pointers - update LD pointers to point to the next period
174 * As each period is completed, this function changes the the link
175 * descriptor pointers for that period to point to the next period.
177 static void fsl_dma_update_pointers(struct fsl_dma_private
*dma_private
)
179 struct fsl_dma_link_descriptor
*link
=
180 &dma_private
->link
[dma_private
->current_link
];
182 /* Update our link descriptors to point to the next period */
183 if (dma_private
->substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
185 cpu_to_be32(dma_private
->dma_buf_next
);
188 cpu_to_be32(dma_private
->dma_buf_next
);
190 /* Update our variables for next time */
191 dma_private
->dma_buf_next
+= dma_private
->period_size
;
193 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
194 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
196 if (++dma_private
->current_link
>= NUM_DMA_LINKS
)
197 dma_private
->current_link
= 0;
201 * fsl_dma_isr: interrupt handler for the DMA controller
203 * @irq: IRQ of the DMA channel
204 * @dev_id: pointer to the dma_private structure for this DMA channel
206 static irqreturn_t
fsl_dma_isr(int irq
, void *dev_id
)
208 struct fsl_dma_private
*dma_private
= dev_id
;
209 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
210 irqreturn_t ret
= IRQ_NONE
;
213 /* We got an interrupt, so read the status register to see what we
214 were interrupted for.
216 sr
= in_be32(&dma_channel
->sr
);
218 if (sr
& CCSR_DMA_SR_TE
) {
219 dev_err(dma_private
->substream
->pcm
->card
->dev
,
220 "DMA transmit error (controller=%u channel=%u irq=%u\n",
221 dma_private
->controller_id
,
222 dma_private
->channel_id
, irq
);
223 fsl_dma_abort_stream(dma_private
->substream
);
224 sr2
|= CCSR_DMA_SR_TE
;
228 if (sr
& CCSR_DMA_SR_CH
)
231 if (sr
& CCSR_DMA_SR_PE
) {
232 dev_err(dma_private
->substream
->pcm
->card
->dev
,
233 "DMA%u programming error (channel=%u irq=%u)\n",
234 dma_private
->controller_id
,
235 dma_private
->channel_id
, irq
);
236 fsl_dma_abort_stream(dma_private
->substream
);
237 sr2
|= CCSR_DMA_SR_PE
;
241 if (sr
& CCSR_DMA_SR_EOLNI
) {
242 sr2
|= CCSR_DMA_SR_EOLNI
;
246 if (sr
& CCSR_DMA_SR_CB
)
249 if (sr
& CCSR_DMA_SR_EOSI
) {
250 struct snd_pcm_substream
*substream
= dma_private
->substream
;
252 /* Tell ALSA we completed a period. */
253 snd_pcm_period_elapsed(substream
);
256 * Update our link descriptors to point to the next period. We
257 * only need to do this if the number of periods is not equal to
258 * the number of links.
260 if (dma_private
->num_periods
!= NUM_DMA_LINKS
)
261 fsl_dma_update_pointers(dma_private
);
263 sr2
|= CCSR_DMA_SR_EOSI
;
267 if (sr
& CCSR_DMA_SR_EOLSI
) {
268 sr2
|= CCSR_DMA_SR_EOLSI
;
272 /* Clear the bits that we set */
274 out_be32(&dma_channel
->sr
, sr2
);
280 * fsl_dma_new: initialize this PCM driver.
282 * This function is called when the codec driver calls snd_soc_new_pcms(),
283 * once for each .dai_link in the machine driver's snd_soc_machine
286 static int fsl_dma_new(struct snd_card
*card
, struct snd_soc_codec_dai
*dai
,
289 static u64 fsl_dma_dmamask
= DMA_BIT_MASK(32);
292 if (!card
->dev
->dma_mask
)
293 card
->dev
->dma_mask
= &fsl_dma_dmamask
;
295 if (!card
->dev
->coherent_dma_mask
)
296 card
->dev
->coherent_dma_mask
= fsl_dma_dmamask
;
298 ret
= snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV
, pcm
->dev
,
299 fsl_dma_hardware
.buffer_bytes_max
,
300 &pcm
->streams
[0].substream
->dma_buffer
);
303 "Can't allocate playback DMA buffer (size=%u)\n",
304 fsl_dma_hardware
.buffer_bytes_max
);
308 ret
= snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV
, pcm
->dev
,
309 fsl_dma_hardware
.buffer_bytes_max
,
310 &pcm
->streams
[1].substream
->dma_buffer
);
312 snd_dma_free_pages(&pcm
->streams
[0].substream
->dma_buffer
);
314 "Can't allocate capture DMA buffer (size=%u)\n",
315 fsl_dma_hardware
.buffer_bytes_max
);
323 * fsl_dma_open: open a new substream.
325 * Each substream has its own DMA buffer.
327 static int fsl_dma_open(struct snd_pcm_substream
*substream
)
329 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
330 struct fsl_dma_private
*dma_private
;
331 dma_addr_t ld_buf_phys
;
332 unsigned int channel
;
336 * Reject any DMA buffer whose size is not a multiple of the period
337 * size. We need to make sure that the DMA buffer can be evenly divided
340 ret
= snd_pcm_hw_constraint_integer(runtime
,
341 SNDRV_PCM_HW_PARAM_PERIODS
);
343 dev_err(substream
->pcm
->card
->dev
, "invalid buffer size\n");
347 channel
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
? 0 : 1;
349 if (dma_global_data
.assigned
[channel
]) {
350 dev_err(substream
->pcm
->card
->dev
,
351 "DMA channel already assigned\n");
355 dma_private
= dma_alloc_coherent(substream
->pcm
->dev
,
356 sizeof(struct fsl_dma_private
), &ld_buf_phys
, GFP_KERNEL
);
358 dev_err(substream
->pcm
->card
->dev
,
359 "can't allocate DMA private data\n");
362 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
363 dma_private
->ssi_sxx_phys
= dma_global_data
.ssi_stx_phys
;
365 dma_private
->ssi_sxx_phys
= dma_global_data
.ssi_srx_phys
;
367 dma_private
->dma_channel
= dma_global_data
.dma_channel
[channel
];
368 dma_private
->irq
= dma_global_data
.irq
[channel
];
369 dma_private
->substream
= substream
;
370 dma_private
->ld_buf_phys
= ld_buf_phys
;
371 dma_private
->dma_buf_phys
= substream
->dma_buffer
.addr
;
373 /* We only support one DMA controller for now */
374 dma_private
->controller_id
= 0;
375 dma_private
->channel_id
= channel
;
377 ret
= request_irq(dma_private
->irq
, fsl_dma_isr
, 0, "DMA", dma_private
);
379 dev_err(substream
->pcm
->card
->dev
,
380 "can't register ISR for IRQ %u (ret=%i)\n",
381 dma_private
->irq
, ret
);
382 dma_free_coherent(substream
->pcm
->dev
,
383 sizeof(struct fsl_dma_private
),
384 dma_private
, dma_private
->ld_buf_phys
);
388 dma_global_data
.assigned
[channel
] = 1;
390 snd_pcm_set_runtime_buffer(substream
, &substream
->dma_buffer
);
391 snd_soc_set_runtime_hwparams(substream
, &fsl_dma_hardware
);
392 runtime
->private_data
= dma_private
;
398 * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
400 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
401 * descriptors that ping-pong from one period to the next. For example, if
402 * there are six periods and two link descriptors, this is how they look
403 * before playback starts:
405 * The last link descriptor
406 * ____________ points back to the first
415 * _________________________________________
416 * | | | | | | | The DMA buffer is
417 * | | | | | | | divided into 6 parts
418 * |______|______|______|______|______|______|
420 * and here's how they look after the first period is finished playing:
432 * _________________________________________
435 * |______|______|______|______|______|______|
437 * The first link descriptor now points to the third period. The DMA
438 * controller is currently playing the second period. When it finishes, it
439 * will jump back to the first descriptor and play the third period.
441 * There are four reasons we do this:
443 * 1. The only way to get the DMA controller to automatically restart the
444 * transfer when it gets to the end of the buffer is to use chaining
445 * mode. Basic direct mode doesn't offer that feature.
446 * 2. We need to receive an interrupt at the end of every period. The DMA
447 * controller can generate an interrupt at the end of every link transfer
448 * (aka segment). Making each period into a DMA segment will give us the
449 * interrupts we need.
450 * 3. By creating only two link descriptors, regardless of the number of
451 * periods, we do not need to reallocate the link descriptors if the
452 * number of periods changes.
453 * 4. All of the audio data is still stored in a single, contiguous DMA
454 * buffer, which is what ALSA expects. We're just dividing it into
455 * contiguous parts, and creating a link descriptor for each one.
457 * Note that due to a quirk of the SSI's STX register, the target address
458 * for the DMA operations depends on the sample size. So we don't program
459 * the dest_addr (for playback -- source_addr for capture) fields in the
460 * link descriptors here. We do that in fsl_dma_prepare()
462 static int fsl_dma_hw_params(struct snd_pcm_substream
*substream
,
463 struct snd_pcm_hw_params
*hw_params
)
465 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
466 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
467 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
469 dma_addr_t temp_addr
; /* Pointer to next period */
470 u64 temp_link
; /* Pointer to next link descriptor */
471 u32 mr
; /* Temporary variable for MR register */
475 /* Get all the parameters we need */
476 size_t buffer_size
= params_buffer_bytes(hw_params
);
477 size_t period_size
= params_period_bytes(hw_params
);
479 /* Initialize our DMA tracking variables */
480 dma_private
->period_size
= period_size
;
481 dma_private
->num_periods
= params_periods(hw_params
);
482 dma_private
->dma_buf_end
= dma_private
->dma_buf_phys
+ buffer_size
;
483 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
+
484 (NUM_DMA_LINKS
* period_size
);
485 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
486 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
489 * Initialize each link descriptor.
491 * The actual address in STX0 (destination for playback, source for
492 * capture) is based on the sample size, but we don't know the sample
493 * size in this function, so we'll have to adjust that later. See
494 * comments in fsl_dma_prepare().
496 * The DMA controller does not have a cache, so the CPU does not
497 * need to tell it to flush its cache. However, the DMA
498 * controller does need to tell the CPU to flush its cache.
499 * That's what the SNOOP bit does.
501 * Also, even though the DMA controller supports 36-bit addressing, for
502 * simplicity we currently support only 32-bit addresses for the audio
505 temp_addr
= substream
->dma_buffer
.addr
;
506 temp_link
= dma_private
->ld_buf_phys
+
507 sizeof(struct fsl_dma_link_descriptor
);
509 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
510 struct fsl_dma_link_descriptor
*link
= &dma_private
->link
[i
];
512 link
->count
= cpu_to_be32(period_size
);
513 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
);
514 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
);
515 link
->next
= cpu_to_be64(temp_link
);
517 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
518 link
->source_addr
= cpu_to_be32(temp_addr
);
520 link
->dest_addr
= cpu_to_be32(temp_addr
);
522 temp_addr
+= period_size
;
523 temp_link
+= sizeof(struct fsl_dma_link_descriptor
);
525 /* The last link descriptor points to the first */
526 dma_private
->link
[i
- 1].next
= cpu_to_be64(dma_private
->ld_buf_phys
);
528 /* Tell the DMA controller where the first link descriptor is */
529 out_be32(&dma_channel
->clndar
,
530 CCSR_DMA_CLNDAR_ADDR(dma_private
->ld_buf_phys
));
531 out_be32(&dma_channel
->eclndar
,
532 CCSR_DMA_ECLNDAR_ADDR(dma_private
->ld_buf_phys
));
534 /* The manual says the BCR must be clear before enabling EMP */
535 out_be32(&dma_channel
->bcr
, 0);
538 * Program the mode register for interrupts, external master control,
539 * and source/destination hold. Also clear the Channel Abort bit.
541 mr
= in_be32(&dma_channel
->mr
) &
542 ~(CCSR_DMA_MR_CA
| CCSR_DMA_MR_DAHE
| CCSR_DMA_MR_SAHE
);
545 * We want External Master Start and External Master Pause enabled,
546 * because the SSI is controlling the DMA controller. We want the DMA
547 * controller to be set up in advance, and then we signal only the SSI
548 * to start transfering.
550 * We want End-Of-Segment Interrupts enabled, because this will generate
551 * an interrupt at the end of each segment (each link descriptor
552 * represents one segment). Each DMA segment is the same thing as an
553 * ALSA period, so this is how we get an interrupt at the end of every
556 * We want Error Interrupt enabled, so that we can get an error if
557 * the DMA controller is mis-programmed somehow.
559 mr
|= CCSR_DMA_MR_EOSIE
| CCSR_DMA_MR_EIE
| CCSR_DMA_MR_EMP_EN
|
562 /* For playback, we want the destination address to be held. For
563 capture, set the source address to be held. */
564 mr
|= (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) ?
565 CCSR_DMA_MR_DAHE
: CCSR_DMA_MR_SAHE
;
567 out_be32(&dma_channel
->mr
, mr
);
573 * fsl_dma_prepare - prepare the DMA registers for playback.
575 * This function is called after the specifics of the audio data are known,
576 * i.e. snd_pcm_runtime is initialized.
578 * In this function, we finish programming the registers of the DMA
579 * controller that are dependent on the sample size.
581 * One of the drawbacks with big-endian is that when copying integers of
582 * different sizes to a fixed-sized register, the address to which the
583 * integer must be copied is dependent on the size of the integer.
585 * For example, if P is the address of a 32-bit register, and X is a 32-bit
586 * integer, then X should be copied to address P. However, if X is a 16-bit
587 * integer, then it should be copied to P+2. If X is an 8-bit register,
588 * then it should be copied to P+3.
590 * So for playback of 8-bit samples, the DMA controller must transfer single
591 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
592 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
594 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
595 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
596 * and 8 bytes at a time). So we do not support packed 24-bit samples.
597 * 24-bit data must be padded to 32 bits.
599 static int fsl_dma_prepare(struct snd_pcm_substream
*substream
)
601 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
602 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
603 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
606 dma_addr_t ssi_sxx_phys
; /* Bus address of SSI STX register */
607 unsigned int frame_size
; /* Number of bytes per frame */
609 ssi_sxx_phys
= dma_private
->ssi_sxx_phys
;
611 mr
= in_be32(&dma_channel
->mr
) & ~(CCSR_DMA_MR_BWC_MASK
|
612 CCSR_DMA_MR_SAHTS_MASK
| CCSR_DMA_MR_DAHTS_MASK
);
614 switch (runtime
->sample_bits
) {
616 mr
|= CCSR_DMA_MR_DAHTS_1
| CCSR_DMA_MR_SAHTS_1
;
620 mr
|= CCSR_DMA_MR_DAHTS_2
| CCSR_DMA_MR_SAHTS_2
;
624 mr
|= CCSR_DMA_MR_DAHTS_4
| CCSR_DMA_MR_SAHTS_4
;
627 dev_err(substream
->pcm
->card
->dev
,
628 "unsupported sample size %u\n", runtime
->sample_bits
);
632 frame_size
= runtime
->frame_bits
/ 8;
634 * BWC should always be a multiple of the frame size. BWC determines
635 * how many bytes are sent/received before the DMA controller checks the
636 * SSI to see if it needs to stop. For playback, the transmit FIFO can
637 * hold three frames, so we want to send two frames at a time. For
638 * capture, the receive FIFO is triggered when it contains one frame, so
639 * we want to receive one frame at a time.
642 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
643 mr
|= CCSR_DMA_MR_BWC(2 * frame_size
);
645 mr
|= CCSR_DMA_MR_BWC(frame_size
);
647 out_be32(&dma_channel
->mr
, mr
);
650 * Program the address of the DMA transfer to/from the SSI.
652 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
653 struct fsl_dma_link_descriptor
*link
= &dma_private
->link
[i
];
655 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
656 link
->dest_addr
= cpu_to_be32(ssi_sxx_phys
);
658 link
->source_addr
= cpu_to_be32(ssi_sxx_phys
);
665 * fsl_dma_pointer: determine the current position of the DMA transfer
667 * This function is called by ALSA when ALSA wants to know where in the
668 * stream buffer the hardware currently is.
670 * For playback, the SAR register contains the physical address of the most
671 * recent DMA transfer. For capture, the value is in the DAR register.
673 * The base address of the buffer is stored in the source_addr field of the
674 * first link descriptor.
676 static snd_pcm_uframes_t
fsl_dma_pointer(struct snd_pcm_substream
*substream
)
678 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
679 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
680 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
682 snd_pcm_uframes_t frames
;
684 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
685 position
= in_be32(&dma_channel
->sar
);
687 position
= in_be32(&dma_channel
->dar
);
689 frames
= bytes_to_frames(runtime
, position
- dma_private
->dma_buf_phys
);
692 * If the current address is just past the end of the buffer, wrap it
695 if (frames
== runtime
->buffer_size
)
702 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
704 * Release the resources allocated in fsl_dma_hw_params() and de-program the
707 * This function can be called multiple times.
709 static int fsl_dma_hw_free(struct snd_pcm_substream
*substream
)
711 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
712 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
715 struct ccsr_dma_channel __iomem
*dma_channel
;
717 dma_channel
= dma_private
->dma_channel
;
720 out_be32(&dma_channel
->mr
, CCSR_DMA_MR_CA
);
721 out_be32(&dma_channel
->mr
, 0);
723 /* Reset all the other registers */
724 out_be32(&dma_channel
->sr
, -1);
725 out_be32(&dma_channel
->clndar
, 0);
726 out_be32(&dma_channel
->eclndar
, 0);
727 out_be32(&dma_channel
->satr
, 0);
728 out_be32(&dma_channel
->sar
, 0);
729 out_be32(&dma_channel
->datr
, 0);
730 out_be32(&dma_channel
->dar
, 0);
731 out_be32(&dma_channel
->bcr
, 0);
732 out_be32(&dma_channel
->nlndar
, 0);
733 out_be32(&dma_channel
->enlndar
, 0);
740 * fsl_dma_close: close the stream.
742 static int fsl_dma_close(struct snd_pcm_substream
*substream
)
744 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
745 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
746 int dir
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
? 0 : 1;
749 if (dma_private
->irq
)
750 free_irq(dma_private
->irq
, dma_private
);
752 if (dma_private
->ld_buf_phys
) {
753 dma_unmap_single(substream
->pcm
->dev
,
754 dma_private
->ld_buf_phys
,
755 sizeof(dma_private
->link
), DMA_TO_DEVICE
);
758 /* Deallocate the fsl_dma_private structure */
759 dma_free_coherent(substream
->pcm
->dev
,
760 sizeof(struct fsl_dma_private
),
761 dma_private
, dma_private
->ld_buf_phys
);
762 substream
->runtime
->private_data
= NULL
;
765 dma_global_data
.assigned
[dir
] = 0;
771 * Remove this PCM driver.
773 static void fsl_dma_free_dma_buffers(struct snd_pcm
*pcm
)
775 struct snd_pcm_substream
*substream
;
778 for (i
= 0; i
< ARRAY_SIZE(pcm
->streams
); i
++) {
779 substream
= pcm
->streams
[i
].substream
;
781 snd_dma_free_pages(&substream
->dma_buffer
);
782 substream
->dma_buffer
.area
= NULL
;
783 substream
->dma_buffer
.addr
= 0;
788 static struct snd_pcm_ops fsl_dma_ops
= {
789 .open
= fsl_dma_open
,
790 .close
= fsl_dma_close
,
791 .ioctl
= snd_pcm_lib_ioctl
,
792 .hw_params
= fsl_dma_hw_params
,
793 .hw_free
= fsl_dma_hw_free
,
794 .prepare
= fsl_dma_prepare
,
795 .pointer
= fsl_dma_pointer
,
798 struct snd_soc_platform fsl_soc_platform
= {
800 .pcm_ops
= &fsl_dma_ops
,
801 .pcm_new
= fsl_dma_new
,
802 .pcm_free
= fsl_dma_free_dma_buffers
,
804 EXPORT_SYMBOL_GPL(fsl_soc_platform
);
807 * fsl_dma_configure: store the DMA parameters from the fabric driver.
809 * This function is called by the ASoC fabric driver to give us the DMA and
810 * SSI channel information.
812 * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
813 * data when a substream is created, so for now we need to store this data
814 * into a global variable. This means that we can only support one DMA
815 * controller, and hence only one SSI.
817 int fsl_dma_configure(struct fsl_dma_info
*dma_info
)
819 static int initialized
;
821 /* We only support one DMA controller for now */
825 dma_global_data
.ssi_stx_phys
= dma_info
->ssi_stx_phys
;
826 dma_global_data
.ssi_srx_phys
= dma_info
->ssi_srx_phys
;
827 dma_global_data
.dma_channel
[0] = dma_info
->dma_channel
[0];
828 dma_global_data
.dma_channel
[1] = dma_info
->dma_channel
[1];
829 dma_global_data
.irq
[0] = dma_info
->dma_irq
[0];
830 dma_global_data
.irq
[1] = dma_info
->dma_irq
[1];
831 dma_global_data
.assigned
[0] = 0;
832 dma_global_data
.assigned
[1] = 0;
837 EXPORT_SYMBOL_GPL(fsl_dma_configure
);
839 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
840 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
841 MODULE_LICENSE("GPL");