Merge master.kernel.org:/pub/scm/linux/kernel/git/perex/alsa
[wrt350n-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
blob52cf1f02182591f64f527144e1e3a1394ee9a050
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
45 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
46 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
47 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
48 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
50 static void do_dbs_timer(void *data);
52 struct cpu_dbs_info_s {
53 cputime64_t prev_cpu_idle;
54 cputime64_t prev_cpu_wall;
55 struct cpufreq_policy *cur_policy;
56 struct work_struct work;
57 unsigned int enable;
59 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
61 static unsigned int dbs_enable; /* number of CPUs using this policy */
64 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
65 * lock and dbs_mutex. cpu_hotplug lock should always be held before
66 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
67 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
68 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
69 * is recursive for the same process. -Venki
71 static DEFINE_MUTEX(dbs_mutex);
73 static struct workqueue_struct *kondemand_wq;
75 struct dbs_tuners {
76 unsigned int sampling_rate;
77 unsigned int up_threshold;
78 unsigned int ignore_nice;
81 static struct dbs_tuners dbs_tuners_ins = {
82 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
83 .ignore_nice = 0,
86 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
88 cputime64_t retval;
90 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
91 kstat_cpu(cpu).cpustat.iowait);
93 if (dbs_tuners_ins.ignore_nice)
94 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
96 return retval;
99 /************************** sysfs interface ************************/
100 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
102 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
105 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
107 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
110 #define define_one_ro(_name) \
111 static struct freq_attr _name = \
112 __ATTR(_name, 0444, show_##_name, NULL)
114 define_one_ro(sampling_rate_max);
115 define_one_ro(sampling_rate_min);
117 /* cpufreq_ondemand Governor Tunables */
118 #define show_one(file_name, object) \
119 static ssize_t show_##file_name \
120 (struct cpufreq_policy *unused, char *buf) \
122 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
124 show_one(sampling_rate, sampling_rate);
125 show_one(up_threshold, up_threshold);
126 show_one(ignore_nice_load, ignore_nice);
128 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
129 const char *buf, size_t count)
131 unsigned int input;
132 int ret;
133 ret = sscanf(buf, "%u", &input);
135 mutex_lock(&dbs_mutex);
136 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
137 mutex_unlock(&dbs_mutex);
138 return -EINVAL;
141 dbs_tuners_ins.sampling_rate = input;
142 mutex_unlock(&dbs_mutex);
144 return count;
147 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
148 const char *buf, size_t count)
150 unsigned int input;
151 int ret;
152 ret = sscanf(buf, "%u", &input);
154 mutex_lock(&dbs_mutex);
155 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
156 input < MIN_FREQUENCY_UP_THRESHOLD) {
157 mutex_unlock(&dbs_mutex);
158 return -EINVAL;
161 dbs_tuners_ins.up_threshold = input;
162 mutex_unlock(&dbs_mutex);
164 return count;
167 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
168 const char *buf, size_t count)
170 unsigned int input;
171 int ret;
173 unsigned int j;
175 ret = sscanf(buf, "%u", &input);
176 if ( ret != 1 )
177 return -EINVAL;
179 if ( input > 1 )
180 input = 1;
182 mutex_lock(&dbs_mutex);
183 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
184 mutex_unlock(&dbs_mutex);
185 return count;
187 dbs_tuners_ins.ignore_nice = input;
189 /* we need to re-evaluate prev_cpu_idle */
190 for_each_online_cpu(j) {
191 struct cpu_dbs_info_s *dbs_info;
192 dbs_info = &per_cpu(cpu_dbs_info, j);
193 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
194 dbs_info->prev_cpu_wall = get_jiffies_64();
196 mutex_unlock(&dbs_mutex);
198 return count;
201 #define define_one_rw(_name) \
202 static struct freq_attr _name = \
203 __ATTR(_name, 0644, show_##_name, store_##_name)
205 define_one_rw(sampling_rate);
206 define_one_rw(up_threshold);
207 define_one_rw(ignore_nice_load);
209 static struct attribute * dbs_attributes[] = {
210 &sampling_rate_max.attr,
211 &sampling_rate_min.attr,
212 &sampling_rate.attr,
213 &up_threshold.attr,
214 &ignore_nice_load.attr,
215 NULL
218 static struct attribute_group dbs_attr_group = {
219 .attrs = dbs_attributes,
220 .name = "ondemand",
223 /************************** sysfs end ************************/
225 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
227 unsigned int idle_ticks, total_ticks;
228 unsigned int load;
229 cputime64_t cur_jiffies;
231 struct cpufreq_policy *policy;
232 unsigned int j;
234 if (!this_dbs_info->enable)
235 return;
237 policy = this_dbs_info->cur_policy;
238 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
239 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
240 this_dbs_info->prev_cpu_wall);
241 this_dbs_info->prev_cpu_wall = cur_jiffies;
242 if (!total_ticks)
243 return;
245 * Every sampling_rate, we check, if current idle time is less
246 * than 20% (default), then we try to increase frequency
247 * Every sampling_rate, we look for a the lowest
248 * frequency which can sustain the load while keeping idle time over
249 * 30%. If such a frequency exist, we try to decrease to this frequency.
251 * Any frequency increase takes it to the maximum frequency.
252 * Frequency reduction happens at minimum steps of
253 * 5% (default) of current frequency
256 /* Get Idle Time */
257 idle_ticks = UINT_MAX;
258 for_each_cpu_mask(j, policy->cpus) {
259 cputime64_t total_idle_ticks;
260 unsigned int tmp_idle_ticks;
261 struct cpu_dbs_info_s *j_dbs_info;
263 j_dbs_info = &per_cpu(cpu_dbs_info, j);
264 total_idle_ticks = get_cpu_idle_time(j);
265 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
266 j_dbs_info->prev_cpu_idle);
267 j_dbs_info->prev_cpu_idle = total_idle_ticks;
269 if (tmp_idle_ticks < idle_ticks)
270 idle_ticks = tmp_idle_ticks;
272 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
274 /* Check for frequency increase */
275 if (load > dbs_tuners_ins.up_threshold) {
276 /* if we are already at full speed then break out early */
277 if (policy->cur == policy->max)
278 return;
280 __cpufreq_driver_target(policy, policy->max,
281 CPUFREQ_RELATION_H);
282 return;
285 /* Check for frequency decrease */
286 /* if we cannot reduce the frequency anymore, break out early */
287 if (policy->cur == policy->min)
288 return;
291 * The optimal frequency is the frequency that is the lowest that
292 * can support the current CPU usage without triggering the up
293 * policy. To be safe, we focus 10 points under the threshold.
295 if (load < (dbs_tuners_ins.up_threshold - 10)) {
296 unsigned int freq_next;
297 freq_next = (policy->cur * load) /
298 (dbs_tuners_ins.up_threshold - 10);
300 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
304 static void do_dbs_timer(void *data)
306 unsigned int cpu = smp_processor_id();
307 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
309 if (!dbs_info->enable)
310 return;
312 lock_cpu_hotplug();
313 dbs_check_cpu(dbs_info);
314 unlock_cpu_hotplug();
315 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work,
316 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
319 static inline void dbs_timer_init(unsigned int cpu)
321 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
323 INIT_WORK(&dbs_info->work, do_dbs_timer, 0);
324 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work,
325 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
326 return;
329 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
331 dbs_info->enable = 0;
332 cancel_delayed_work(&dbs_info->work);
333 flush_workqueue(kondemand_wq);
336 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
337 unsigned int event)
339 unsigned int cpu = policy->cpu;
340 struct cpu_dbs_info_s *this_dbs_info;
341 unsigned int j;
343 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
345 switch (event) {
346 case CPUFREQ_GOV_START:
347 if ((!cpu_online(cpu)) || (!policy->cur))
348 return -EINVAL;
350 if (policy->cpuinfo.transition_latency >
351 (TRANSITION_LATENCY_LIMIT * 1000)) {
352 printk(KERN_WARNING "ondemand governor failed to load "
353 "due to too long transition latency\n");
354 return -EINVAL;
356 if (this_dbs_info->enable) /* Already enabled */
357 break;
359 mutex_lock(&dbs_mutex);
360 dbs_enable++;
361 if (dbs_enable == 1) {
362 kondemand_wq = create_workqueue("kondemand");
363 if (!kondemand_wq) {
364 printk(KERN_ERR "Creation of kondemand failed\n");
365 dbs_enable--;
366 mutex_unlock(&dbs_mutex);
367 return -ENOSPC;
370 for_each_cpu_mask(j, policy->cpus) {
371 struct cpu_dbs_info_s *j_dbs_info;
372 j_dbs_info = &per_cpu(cpu_dbs_info, j);
373 j_dbs_info->cur_policy = policy;
375 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
376 j_dbs_info->prev_cpu_wall = get_jiffies_64();
378 this_dbs_info->enable = 1;
379 sysfs_create_group(&policy->kobj, &dbs_attr_group);
381 * Start the timerschedule work, when this governor
382 * is used for first time
384 if (dbs_enable == 1) {
385 unsigned int latency;
386 /* policy latency is in nS. Convert it to uS first */
387 latency = policy->cpuinfo.transition_latency / 1000;
388 if (latency == 0)
389 latency = 1;
391 def_sampling_rate = latency *
392 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
394 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
395 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
397 dbs_tuners_ins.sampling_rate = def_sampling_rate;
399 dbs_timer_init(policy->cpu);
401 mutex_unlock(&dbs_mutex);
402 break;
404 case CPUFREQ_GOV_STOP:
405 mutex_lock(&dbs_mutex);
406 dbs_timer_exit(this_dbs_info);
407 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
408 dbs_enable--;
409 if (dbs_enable == 0)
410 destroy_workqueue(kondemand_wq);
412 mutex_unlock(&dbs_mutex);
414 break;
416 case CPUFREQ_GOV_LIMITS:
417 mutex_lock(&dbs_mutex);
418 if (policy->max < this_dbs_info->cur_policy->cur)
419 __cpufreq_driver_target(this_dbs_info->cur_policy,
420 policy->max,
421 CPUFREQ_RELATION_H);
422 else if (policy->min > this_dbs_info->cur_policy->cur)
423 __cpufreq_driver_target(this_dbs_info->cur_policy,
424 policy->min,
425 CPUFREQ_RELATION_L);
426 mutex_unlock(&dbs_mutex);
427 break;
429 return 0;
432 static struct cpufreq_governor cpufreq_gov_dbs = {
433 .name = "ondemand",
434 .governor = cpufreq_governor_dbs,
435 .owner = THIS_MODULE,
438 static int __init cpufreq_gov_dbs_init(void)
440 return cpufreq_register_governor(&cpufreq_gov_dbs);
443 static void __exit cpufreq_gov_dbs_exit(void)
445 cpufreq_unregister_governor(&cpufreq_gov_dbs);
449 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
450 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
451 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
452 "Low Latency Frequency Transition capable processors");
453 MODULE_LICENSE("GPL");
455 module_init(cpufreq_gov_dbs_init);
456 module_exit(cpufreq_gov_dbs_exit);