2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 32
36 struct scsi_host_sg_pool
{
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
67 static void scsi_run_queue(struct request_queue
*q
);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
81 static void scsi_unprep_request(struct request
*req
)
83 struct scsi_cmnd
*cmd
= req
->special
;
85 req
->flags
&= ~REQ_DONTPREP
;
88 scsi_put_command(cmd
);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
112 struct Scsi_Host
*host
= cmd
->device
->host
;
113 struct scsi_device
*device
= cmd
->device
;
114 struct request_queue
*q
= device
->request_queue
;
118 printk("Inserting command %p into mlqueue\n", cmd
));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason
== SCSI_MLQUEUE_HOST_BUSY
)
134 host
->host_blocked
= host
->max_host_blocked
;
135 else if (reason
== SCSI_MLQUEUE_DEVICE_BUSY
)
136 device
->device_blocked
= device
->max_device_blocked
;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device
);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q
->queue_lock
, flags
);
156 blk_requeue_request(q
, cmd
->request
);
157 spin_unlock_irqrestore(q
->queue_lock
, flags
);
165 * scsi_execute - insert request and wait for the result
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the the scsi_cmnd result
179 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
180 int data_direction
, void *buffer
, unsigned bufflen
,
181 unsigned char *sense
, int timeout
, int retries
, int flags
)
184 int write
= (data_direction
== DMA_TO_DEVICE
);
185 int ret
= DRIVER_ERROR
<< 24;
187 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
189 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
190 buffer
, bufflen
, __GFP_WAIT
))
193 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
194 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
197 req
->retries
= retries
;
198 req
->timeout
= timeout
;
199 req
->flags
|= flags
| REQ_BLOCK_PC
| REQ_SPECIAL
| REQ_QUIET
;
202 * head injection *required* here otherwise quiesce won't work
204 blk_execute_rq(req
->q
, NULL
, req
, 1);
208 blk_put_request(req
);
212 EXPORT_SYMBOL(scsi_execute
);
215 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
216 int data_direction
, void *buffer
, unsigned bufflen
,
217 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
)
223 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
225 return DRIVER_ERROR
<< 24;
227 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
228 sense
, timeout
, retries
, 0);
230 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
235 EXPORT_SYMBOL(scsi_execute_req
);
237 struct scsi_io_context
{
239 void (*done
)(void *data
, char *sense
, int result
, int resid
);
240 char sense
[SCSI_SENSE_BUFFERSIZE
];
243 static kmem_cache_t
*scsi_io_context_cache
;
245 static void scsi_end_async(struct request
*req
, int uptodate
)
247 struct scsi_io_context
*sioc
= req
->end_io_data
;
250 sioc
->done(sioc
->data
, sioc
->sense
, req
->errors
, req
->data_len
);
252 kmem_cache_free(scsi_io_context_cache
, sioc
);
253 __blk_put_request(req
->q
, req
);
256 static int scsi_merge_bio(struct request
*rq
, struct bio
*bio
)
258 struct request_queue
*q
= rq
->q
;
260 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
261 if (rq_data_dir(rq
) == WRITE
)
262 bio
->bi_rw
|= (1 << BIO_RW
);
263 blk_queue_bounce(q
, &bio
);
266 blk_rq_bio_prep(q
, rq
, bio
);
267 else if (!q
->back_merge_fn(q
, rq
, bio
))
270 rq
->biotail
->bi_next
= bio
;
272 rq
->hard_nr_sectors
+= bio_sectors(bio
);
273 rq
->nr_sectors
= rq
->hard_nr_sectors
;
279 static int scsi_bi_endio(struct bio
*bio
, unsigned int bytes_done
, int error
)
289 * scsi_req_map_sg - map a scatterlist into a request
290 * @rq: request to fill
292 * @nsegs: number of elements
293 * @bufflen: len of buffer
294 * @gfp: memory allocation flags
296 * scsi_req_map_sg maps a scatterlist into a request so that the
297 * request can be sent to the block layer. We do not trust the scatterlist
298 * sent to use, as some ULDs use that struct to only organize the pages.
300 static int scsi_req_map_sg(struct request
*rq
, struct scatterlist
*sgl
,
301 int nsegs
, unsigned bufflen
, gfp_t gfp
)
303 struct request_queue
*q
= rq
->q
;
304 int nr_pages
= (bufflen
+ sgl
[0].offset
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
305 unsigned int data_len
= 0, len
, bytes
, off
;
307 struct bio
*bio
= NULL
;
308 int i
, err
, nr_vecs
= 0;
310 for (i
= 0; i
< nsegs
; i
++) {
317 bytes
= min_t(unsigned int, len
, PAGE_SIZE
- off
);
320 nr_vecs
= min_t(int, BIO_MAX_PAGES
, nr_pages
);
323 bio
= bio_alloc(gfp
, nr_vecs
);
328 bio
->bi_end_io
= scsi_bi_endio
;
331 if (bio_add_pc_page(q
, bio
, page
, bytes
, off
) !=
338 if (bio
->bi_vcnt
>= nr_vecs
) {
339 err
= scsi_merge_bio(rq
, bio
);
341 bio_endio(bio
, bio
->bi_size
, 0);
353 rq
->buffer
= rq
->data
= NULL
;
354 rq
->data_len
= data_len
;
358 while ((bio
= rq
->bio
) != NULL
) {
359 rq
->bio
= bio
->bi_next
;
361 * call endio instead of bio_put incase it was bounced
363 bio_endio(bio
, bio
->bi_size
, 0);
370 * scsi_execute_async - insert request
373 * @cmd_len: length of scsi cdb
374 * @data_direction: data direction
375 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
376 * @bufflen: len of buffer
377 * @use_sg: if buffer is a scatterlist this is the number of elements
378 * @timeout: request timeout in seconds
379 * @retries: number of times to retry request
380 * @flags: or into request flags
382 int scsi_execute_async(struct scsi_device
*sdev
, const unsigned char *cmd
,
383 int cmd_len
, int data_direction
, void *buffer
, unsigned bufflen
,
384 int use_sg
, int timeout
, int retries
, void *privdata
,
385 void (*done
)(void *, char *, int, int), gfp_t gfp
)
388 struct scsi_io_context
*sioc
;
390 int write
= (data_direction
== DMA_TO_DEVICE
);
392 sioc
= kmem_cache_alloc(scsi_io_context_cache
, gfp
);
394 return DRIVER_ERROR
<< 24;
395 memset(sioc
, 0, sizeof(*sioc
));
397 req
= blk_get_request(sdev
->request_queue
, write
, gfp
);
400 req
->flags
|= REQ_BLOCK_PC
| REQ_QUIET
;
403 err
= scsi_req_map_sg(req
, buffer
, use_sg
, bufflen
, gfp
);
405 err
= blk_rq_map_kern(req
->q
, req
, buffer
, bufflen
, gfp
);
410 req
->cmd_len
= cmd_len
;
411 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
412 req
->sense
= sioc
->sense
;
414 req
->timeout
= timeout
;
415 req
->retries
= retries
;
416 req
->end_io_data
= sioc
;
418 sioc
->data
= privdata
;
421 blk_execute_rq_nowait(req
->q
, NULL
, req
, 1, scsi_end_async
);
425 blk_put_request(req
);
428 return DRIVER_ERROR
<< 24;
430 EXPORT_SYMBOL_GPL(scsi_execute_async
);
433 * Function: scsi_init_cmd_errh()
435 * Purpose: Initialize cmd fields related to error handling.
437 * Arguments: cmd - command that is ready to be queued.
439 * Notes: This function has the job of initializing a number of
440 * fields related to error handling. Typically this will
441 * be called once for each command, as required.
443 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
445 cmd
->serial_number
= 0;
446 memset(cmd
->sense_buffer
, 0, sizeof cmd
->sense_buffer
);
447 if (cmd
->cmd_len
== 0)
448 cmd
->cmd_len
= COMMAND_SIZE(cmd
->cmnd
[0]);
451 void scsi_device_unbusy(struct scsi_device
*sdev
)
453 struct Scsi_Host
*shost
= sdev
->host
;
456 spin_lock_irqsave(shost
->host_lock
, flags
);
458 if (unlikely(scsi_host_in_recovery(shost
) &&
459 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
460 scsi_eh_wakeup(shost
);
461 spin_unlock(shost
->host_lock
);
462 spin_lock(sdev
->request_queue
->queue_lock
);
464 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
472 * Called with *no* scsi locks held.
474 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
476 struct Scsi_Host
*shost
= current_sdev
->host
;
477 struct scsi_device
*sdev
, *tmp
;
478 struct scsi_target
*starget
= scsi_target(current_sdev
);
481 spin_lock_irqsave(shost
->host_lock
, flags
);
482 starget
->starget_sdev_user
= NULL
;
483 spin_unlock_irqrestore(shost
->host_lock
, flags
);
486 * Call blk_run_queue for all LUNs on the target, starting with
487 * current_sdev. We race with others (to set starget_sdev_user),
488 * but in most cases, we will be first. Ideally, each LU on the
489 * target would get some limited time or requests on the target.
491 blk_run_queue(current_sdev
->request_queue
);
493 spin_lock_irqsave(shost
->host_lock
, flags
);
494 if (starget
->starget_sdev_user
)
496 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
497 same_target_siblings
) {
498 if (sdev
== current_sdev
)
500 if (scsi_device_get(sdev
))
503 spin_unlock_irqrestore(shost
->host_lock
, flags
);
504 blk_run_queue(sdev
->request_queue
);
505 spin_lock_irqsave(shost
->host_lock
, flags
);
507 scsi_device_put(sdev
);
510 spin_unlock_irqrestore(shost
->host_lock
, flags
);
514 * Function: scsi_run_queue()
516 * Purpose: Select a proper request queue to serve next
518 * Arguments: q - last request's queue
522 * Notes: The previous command was completely finished, start
523 * a new one if possible.
525 static void scsi_run_queue(struct request_queue
*q
)
527 struct scsi_device
*sdev
= q
->queuedata
;
528 struct Scsi_Host
*shost
= sdev
->host
;
531 if (sdev
->single_lun
)
532 scsi_single_lun_run(sdev
);
534 spin_lock_irqsave(shost
->host_lock
, flags
);
535 while (!list_empty(&shost
->starved_list
) &&
536 !shost
->host_blocked
&& !shost
->host_self_blocked
&&
537 !((shost
->can_queue
> 0) &&
538 (shost
->host_busy
>= shost
->can_queue
))) {
540 * As long as shost is accepting commands and we have
541 * starved queues, call blk_run_queue. scsi_request_fn
542 * drops the queue_lock and can add us back to the
545 * host_lock protects the starved_list and starved_entry.
546 * scsi_request_fn must get the host_lock before checking
547 * or modifying starved_list or starved_entry.
549 sdev
= list_entry(shost
->starved_list
.next
,
550 struct scsi_device
, starved_entry
);
551 list_del_init(&sdev
->starved_entry
);
552 spin_unlock_irqrestore(shost
->host_lock
, flags
);
554 blk_run_queue(sdev
->request_queue
);
556 spin_lock_irqsave(shost
->host_lock
, flags
);
557 if (unlikely(!list_empty(&sdev
->starved_entry
)))
559 * sdev lost a race, and was put back on the
560 * starved list. This is unlikely but without this
561 * in theory we could loop forever.
565 spin_unlock_irqrestore(shost
->host_lock
, flags
);
571 * Function: scsi_requeue_command()
573 * Purpose: Handle post-processing of completed commands.
575 * Arguments: q - queue to operate on
576 * cmd - command that may need to be requeued.
580 * Notes: After command completion, there may be blocks left
581 * over which weren't finished by the previous command
582 * this can be for a number of reasons - the main one is
583 * I/O errors in the middle of the request, in which case
584 * we need to request the blocks that come after the bad
586 * Notes: Upon return, cmd is a stale pointer.
588 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
590 struct request
*req
= cmd
->request
;
593 scsi_unprep_request(req
);
594 spin_lock_irqsave(q
->queue_lock
, flags
);
595 blk_requeue_request(q
, req
);
596 spin_unlock_irqrestore(q
->queue_lock
, flags
);
601 void scsi_next_command(struct scsi_cmnd
*cmd
)
603 struct scsi_device
*sdev
= cmd
->device
;
604 struct request_queue
*q
= sdev
->request_queue
;
606 /* need to hold a reference on the device before we let go of the cmd */
607 get_device(&sdev
->sdev_gendev
);
609 scsi_put_command(cmd
);
612 /* ok to remove device now */
613 put_device(&sdev
->sdev_gendev
);
616 void scsi_run_host_queues(struct Scsi_Host
*shost
)
618 struct scsi_device
*sdev
;
620 shost_for_each_device(sdev
, shost
)
621 scsi_run_queue(sdev
->request_queue
);
625 * Function: scsi_end_request()
627 * Purpose: Post-processing of completed commands (usually invoked at end
628 * of upper level post-processing and scsi_io_completion).
630 * Arguments: cmd - command that is complete.
631 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
632 * bytes - number of bytes of completed I/O
633 * requeue - indicates whether we should requeue leftovers.
635 * Lock status: Assumed that lock is not held upon entry.
637 * Returns: cmd if requeue required, NULL otherwise.
639 * Notes: This is called for block device requests in order to
640 * mark some number of sectors as complete.
642 * We are guaranteeing that the request queue will be goosed
643 * at some point during this call.
644 * Notes: If cmd was requeued, upon return it will be a stale pointer.
646 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int uptodate
,
647 int bytes
, int requeue
)
649 request_queue_t
*q
= cmd
->device
->request_queue
;
650 struct request
*req
= cmd
->request
;
654 * If there are blocks left over at the end, set up the command
655 * to queue the remainder of them.
657 if (end_that_request_chunk(req
, uptodate
, bytes
)) {
658 int leftover
= (req
->hard_nr_sectors
<< 9);
660 if (blk_pc_request(req
))
661 leftover
= req
->data_len
;
663 /* kill remainder if no retrys */
664 if (!uptodate
&& blk_noretry_request(req
))
665 end_that_request_chunk(req
, 0, leftover
);
669 * Bleah. Leftovers again. Stick the
670 * leftovers in the front of the
671 * queue, and goose the queue again.
673 scsi_requeue_command(q
, cmd
);
680 add_disk_randomness(req
->rq_disk
);
682 spin_lock_irqsave(q
->queue_lock
, flags
);
683 if (blk_rq_tagged(req
))
684 blk_queue_end_tag(q
, req
);
685 end_that_request_last(req
, uptodate
);
686 spin_unlock_irqrestore(q
->queue_lock
, flags
);
689 * This will goose the queue request function at the end, so we don't
690 * need to worry about launching another command.
692 scsi_next_command(cmd
);
696 static struct scatterlist
*scsi_alloc_sgtable(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
698 struct scsi_host_sg_pool
*sgp
;
699 struct scatterlist
*sgl
;
701 BUG_ON(!cmd
->use_sg
);
703 switch (cmd
->use_sg
) {
713 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
717 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
721 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
732 sgp
= scsi_sg_pools
+ cmd
->sglist_len
;
733 sgl
= mempool_alloc(sgp
->pool
, gfp_mask
);
737 static void scsi_free_sgtable(struct scatterlist
*sgl
, int index
)
739 struct scsi_host_sg_pool
*sgp
;
741 BUG_ON(index
>= SG_MEMPOOL_NR
);
743 sgp
= scsi_sg_pools
+ index
;
744 mempool_free(sgl
, sgp
->pool
);
748 * Function: scsi_release_buffers()
750 * Purpose: Completion processing for block device I/O requests.
752 * Arguments: cmd - command that we are bailing.
754 * Lock status: Assumed that no lock is held upon entry.
758 * Notes: In the event that an upper level driver rejects a
759 * command, we must release resources allocated during
760 * the __init_io() function. Primarily this would involve
761 * the scatter-gather table, and potentially any bounce
764 static void scsi_release_buffers(struct scsi_cmnd
*cmd
)
767 scsi_free_sgtable(cmd
->request_buffer
, cmd
->sglist_len
);
770 * Zero these out. They now point to freed memory, and it is
771 * dangerous to hang onto the pointers.
773 cmd
->request_buffer
= NULL
;
774 cmd
->request_bufflen
= 0;
778 * Function: scsi_io_completion()
780 * Purpose: Completion processing for block device I/O requests.
782 * Arguments: cmd - command that is finished.
784 * Lock status: Assumed that no lock is held upon entry.
788 * Notes: This function is matched in terms of capabilities to
789 * the function that created the scatter-gather list.
790 * In other words, if there are no bounce buffers
791 * (the normal case for most drivers), we don't need
792 * the logic to deal with cleaning up afterwards.
794 * We must do one of several things here:
796 * a) Call scsi_end_request. This will finish off the
797 * specified number of sectors. If we are done, the
798 * command block will be released, and the queue
799 * function will be goosed. If we are not done, then
800 * scsi_end_request will directly goose the queue.
802 * b) We can just use scsi_requeue_command() here. This would
803 * be used if we just wanted to retry, for example.
805 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
807 int result
= cmd
->result
;
808 int this_count
= cmd
->request_bufflen
;
809 request_queue_t
*q
= cmd
->device
->request_queue
;
810 struct request
*req
= cmd
->request
;
811 int clear_errors
= 1;
812 struct scsi_sense_hdr sshdr
;
814 int sense_deferred
= 0;
816 scsi_release_buffers(cmd
);
819 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
821 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
824 if (blk_pc_request(req
)) { /* SG_IO ioctl from block level */
825 req
->errors
= result
;
828 if (sense_valid
&& req
->sense
) {
830 * SG_IO wants current and deferred errors
832 int len
= 8 + cmd
->sense_buffer
[7];
834 if (len
> SCSI_SENSE_BUFFERSIZE
)
835 len
= SCSI_SENSE_BUFFERSIZE
;
836 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
837 req
->sense_len
= len
;
840 req
->data_len
= cmd
->resid
;
844 * Next deal with any sectors which we were able to correctly
847 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
849 req
->nr_sectors
, good_bytes
));
850 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd
->use_sg
));
855 /* A number of bytes were successfully read. If there
856 * are leftovers and there is some kind of error
857 * (result != 0), retry the rest.
859 if (scsi_end_request(cmd
, 1, good_bytes
, result
== 0) == NULL
)
862 /* good_bytes = 0, or (inclusive) there were leftovers and
863 * result = 0, so scsi_end_request couldn't retry.
865 if (sense_valid
&& !sense_deferred
) {
866 switch (sshdr
.sense_key
) {
868 if (cmd
->device
->removable
) {
869 /* Detected disc change. Set a bit
870 * and quietly refuse further access.
872 cmd
->device
->changed
= 1;
873 scsi_end_request(cmd
, 0, this_count
, 1);
876 /* Must have been a power glitch, or a
877 * bus reset. Could not have been a
878 * media change, so we just retry the
879 * request and see what happens.
881 scsi_requeue_command(q
, cmd
);
885 case ILLEGAL_REQUEST
:
886 /* If we had an ILLEGAL REQUEST returned, then
887 * we may have performed an unsupported
888 * command. The only thing this should be
889 * would be a ten byte read where only a six
890 * byte read was supported. Also, on a system
891 * where READ CAPACITY failed, we may have
892 * read past the end of the disk.
894 if ((cmd
->device
->use_10_for_rw
&&
895 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
896 (cmd
->cmnd
[0] == READ_10
||
897 cmd
->cmnd
[0] == WRITE_10
)) {
898 cmd
->device
->use_10_for_rw
= 0;
899 /* This will cause a retry with a
902 scsi_requeue_command(q
, cmd
);
905 scsi_end_request(cmd
, 0, this_count
, 1);
910 /* If the device is in the process of becoming
911 * ready, or has a temporary blockage, retry.
913 if (sshdr
.asc
== 0x04) {
914 switch (sshdr
.ascq
) {
915 case 0x01: /* becoming ready */
916 case 0x04: /* format in progress */
917 case 0x05: /* rebuild in progress */
918 case 0x06: /* recalculation in progress */
919 case 0x07: /* operation in progress */
920 case 0x08: /* Long write in progress */
921 case 0x09: /* self test in progress */
922 scsi_requeue_command(q
, cmd
);
928 if (!(req
->flags
& REQ_QUIET
)) {
929 scmd_printk(KERN_INFO
, cmd
,
930 "Device not ready: ");
931 scsi_print_sense_hdr("", &sshdr
);
933 scsi_end_request(cmd
, 0, this_count
, 1);
935 case VOLUME_OVERFLOW
:
936 if (!(req
->flags
& REQ_QUIET
)) {
937 scmd_printk(KERN_INFO
, cmd
,
938 "Volume overflow, CDB: ");
939 __scsi_print_command(cmd
->cmnd
);
940 scsi_print_sense("", cmd
);
942 /* See SSC3rXX or current. */
943 scsi_end_request(cmd
, 0, this_count
, 1);
949 if (host_byte(result
) == DID_RESET
) {
950 /* Third party bus reset or reset for error recovery
951 * reasons. Just retry the request and see what
954 scsi_requeue_command(q
, cmd
);
958 if (!(req
->flags
& REQ_QUIET
)) {
959 scmd_printk(KERN_INFO
, cmd
,
960 "SCSI error: return code = 0x%08x\n",
962 if (driver_byte(result
) & DRIVER_SENSE
)
963 scsi_print_sense("", cmd
);
966 scsi_end_request(cmd
, 0, this_count
, !result
);
968 EXPORT_SYMBOL(scsi_io_completion
);
971 * Function: scsi_init_io()
973 * Purpose: SCSI I/O initialize function.
975 * Arguments: cmd - Command descriptor we wish to initialize
977 * Returns: 0 on success
978 * BLKPREP_DEFER if the failure is retryable
979 * BLKPREP_KILL if the failure is fatal
981 static int scsi_init_io(struct scsi_cmnd
*cmd
)
983 struct request
*req
= cmd
->request
;
984 struct scatterlist
*sgpnt
;
988 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
990 if ((req
->flags
& REQ_BLOCK_PC
) && !req
->bio
) {
991 cmd
->request_bufflen
= req
->data_len
;
992 cmd
->request_buffer
= req
->data
;
993 req
->buffer
= req
->data
;
999 * we used to not use scatter-gather for single segment request,
1000 * but now we do (it makes highmem I/O easier to support without
1003 cmd
->use_sg
= req
->nr_phys_segments
;
1006 * if sg table allocation fails, requeue request later.
1008 sgpnt
= scsi_alloc_sgtable(cmd
, GFP_ATOMIC
);
1009 if (unlikely(!sgpnt
)) {
1010 scsi_unprep_request(req
);
1011 return BLKPREP_DEFER
;
1014 cmd
->request_buffer
= (char *) sgpnt
;
1015 cmd
->request_bufflen
= req
->nr_sectors
<< 9;
1016 if (blk_pc_request(req
))
1017 cmd
->request_bufflen
= req
->data_len
;
1021 * Next, walk the list, and fill in the addresses and sizes of
1024 count
= blk_rq_map_sg(req
->q
, req
, cmd
->request_buffer
);
1027 * mapped well, send it off
1029 if (likely(count
<= cmd
->use_sg
)) {
1030 cmd
->use_sg
= count
;
1034 printk(KERN_ERR
"Incorrect number of segments after building list\n");
1035 printk(KERN_ERR
"counted %d, received %d\n", count
, cmd
->use_sg
);
1036 printk(KERN_ERR
"req nr_sec %lu, cur_nr_sec %u\n", req
->nr_sectors
,
1037 req
->current_nr_sectors
);
1039 /* release the command and kill it */
1040 scsi_release_buffers(cmd
);
1041 scsi_put_command(cmd
);
1042 return BLKPREP_KILL
;
1045 static int scsi_issue_flush_fn(request_queue_t
*q
, struct gendisk
*disk
,
1046 sector_t
*error_sector
)
1048 struct scsi_device
*sdev
= q
->queuedata
;
1049 struct scsi_driver
*drv
;
1051 if (sdev
->sdev_state
!= SDEV_RUNNING
)
1054 drv
= *(struct scsi_driver
**) disk
->private_data
;
1055 if (drv
->issue_flush
)
1056 return drv
->issue_flush(&sdev
->sdev_gendev
, error_sector
);
1061 static void scsi_blk_pc_done(struct scsi_cmnd
*cmd
)
1063 BUG_ON(!blk_pc_request(cmd
->request
));
1065 * This will complete the whole command with uptodate=1 so
1066 * as far as the block layer is concerned the command completed
1067 * successfully. Since this is a REQ_BLOCK_PC command the
1068 * caller should check the request's errors value
1070 scsi_io_completion(cmd
, cmd
->request_bufflen
);
1073 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd
*cmd
)
1075 struct request
*req
= cmd
->request
;
1077 BUG_ON(sizeof(req
->cmd
) > sizeof(cmd
->cmnd
));
1078 memcpy(cmd
->cmnd
, req
->cmd
, sizeof(cmd
->cmnd
));
1079 cmd
->cmd_len
= req
->cmd_len
;
1081 cmd
->sc_data_direction
= DMA_NONE
;
1082 else if (rq_data_dir(req
) == WRITE
)
1083 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1085 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1087 cmd
->transfersize
= req
->data_len
;
1088 cmd
->allowed
= req
->retries
;
1089 cmd
->timeout_per_command
= req
->timeout
;
1090 cmd
->done
= scsi_blk_pc_done
;
1093 static int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1095 struct scsi_device
*sdev
= q
->queuedata
;
1096 struct scsi_cmnd
*cmd
;
1097 int specials_only
= 0;
1100 * Just check to see if the device is online. If it isn't, we
1101 * refuse to process any commands. The device must be brought
1102 * online before trying any recovery commands
1104 if (unlikely(!scsi_device_online(sdev
))) {
1105 sdev_printk(KERN_ERR
, sdev
,
1106 "rejecting I/O to offline device\n");
1109 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1110 /* OK, we're not in a running state don't prep
1112 if (sdev
->sdev_state
== SDEV_DEL
) {
1113 /* Device is fully deleted, no commands
1114 * at all allowed down */
1115 sdev_printk(KERN_ERR
, sdev
,
1116 "rejecting I/O to dead device\n");
1119 /* OK, we only allow special commands (i.e. not
1120 * user initiated ones */
1121 specials_only
= sdev
->sdev_state
;
1125 * Find the actual device driver associated with this command.
1126 * The SPECIAL requests are things like character device or
1127 * ioctls, which did not originate from ll_rw_blk. Note that
1128 * the special field is also used to indicate the cmd for
1129 * the remainder of a partially fulfilled request that can
1130 * come up when there is a medium error. We have to treat
1131 * these two cases differently. We differentiate by looking
1132 * at request->cmd, as this tells us the real story.
1134 if (req
->flags
& REQ_SPECIAL
&& req
->special
) {
1136 } else if (req
->flags
& (REQ_CMD
| REQ_BLOCK_PC
)) {
1138 if(unlikely(specials_only
) && !(req
->flags
& REQ_SPECIAL
)) {
1139 if(specials_only
== SDEV_QUIESCE
||
1140 specials_only
== SDEV_BLOCK
)
1143 sdev_printk(KERN_ERR
, sdev
,
1144 "rejecting I/O to device being removed\n");
1150 * Now try and find a command block that we can use.
1152 if (!req
->special
) {
1153 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1159 /* pull a tag out of the request if we have one */
1160 cmd
->tag
= req
->tag
;
1162 blk_dump_rq_flags(req
, "SCSI bad req");
1166 /* note the overloading of req->special. When the tag
1167 * is active it always means cmd. If the tag goes
1168 * back for re-queueing, it may be reset */
1173 * FIXME: drop the lock here because the functions below
1174 * expect to be called without the queue lock held. Also,
1175 * previously, we dequeued the request before dropping the
1176 * lock. We hope REQ_STARTED prevents anything untoward from
1179 if (req
->flags
& (REQ_CMD
| REQ_BLOCK_PC
)) {
1183 * This will do a couple of things:
1184 * 1) Fill in the actual SCSI command.
1185 * 2) Fill in any other upper-level specific fields
1188 * If this returns 0, it means that the request failed
1189 * (reading past end of disk, reading offline device,
1190 * etc). This won't actually talk to the device, but
1191 * some kinds of consistency checking may cause the
1192 * request to be rejected immediately.
1196 * This sets up the scatter-gather table (allocating if
1199 ret
= scsi_init_io(cmd
);
1201 /* For BLKPREP_KILL/DEFER the cmd was released */
1209 * Initialize the actual SCSI command for this request.
1211 if (req
->flags
& REQ_BLOCK_PC
) {
1212 scsi_setup_blk_pc_cmnd(cmd
);
1213 } else if (req
->rq_disk
) {
1214 struct scsi_driver
*drv
;
1216 drv
= *(struct scsi_driver
**)req
->rq_disk
->private_data
;
1217 if (unlikely(!drv
->init_command(cmd
))) {
1218 scsi_release_buffers(cmd
);
1219 scsi_put_command(cmd
);
1226 * The request is now prepped, no need to come back here
1228 req
->flags
|= REQ_DONTPREP
;
1232 /* If we defer, the elv_next_request() returns NULL, but the
1233 * queue must be restarted, so we plug here if no returning
1234 * command will automatically do that. */
1235 if (sdev
->device_busy
== 0)
1237 return BLKPREP_DEFER
;
1239 req
->errors
= DID_NO_CONNECT
<< 16;
1240 return BLKPREP_KILL
;
1244 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1247 * Called with the queue_lock held.
1249 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1250 struct scsi_device
*sdev
)
1252 if (sdev
->device_busy
>= sdev
->queue_depth
)
1254 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1256 * unblock after device_blocked iterates to zero
1258 if (--sdev
->device_blocked
== 0) {
1260 sdev_printk(KERN_INFO
, sdev
,
1261 "unblocking device at zero depth\n"));
1267 if (sdev
->device_blocked
)
1274 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1275 * return 0. We must end up running the queue again whenever 0 is
1276 * returned, else IO can hang.
1278 * Called with host_lock held.
1280 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1281 struct Scsi_Host
*shost
,
1282 struct scsi_device
*sdev
)
1284 if (scsi_host_in_recovery(shost
))
1286 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1288 * unblock after host_blocked iterates to zero
1290 if (--shost
->host_blocked
== 0) {
1292 printk("scsi%d unblocking host at zero depth\n",
1299 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
1300 shost
->host_blocked
|| shost
->host_self_blocked
) {
1301 if (list_empty(&sdev
->starved_entry
))
1302 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1306 /* We're OK to process the command, so we can't be starved */
1307 if (!list_empty(&sdev
->starved_entry
))
1308 list_del_init(&sdev
->starved_entry
);
1314 * Kill a request for a dead device
1316 static void scsi_kill_request(struct request
*req
, request_queue_t
*q
)
1318 struct scsi_cmnd
*cmd
= req
->special
;
1319 struct scsi_device
*sdev
= cmd
->device
;
1320 struct Scsi_Host
*shost
= sdev
->host
;
1322 blkdev_dequeue_request(req
);
1324 if (unlikely(cmd
== NULL
)) {
1325 printk(KERN_CRIT
"impossible request in %s.\n",
1330 scsi_init_cmd_errh(cmd
);
1331 cmd
->result
= DID_NO_CONNECT
<< 16;
1332 atomic_inc(&cmd
->device
->iorequest_cnt
);
1335 * SCSI request completion path will do scsi_device_unbusy(),
1336 * bump busy counts. To bump the counters, we need to dance
1337 * with the locks as normal issue path does.
1339 sdev
->device_busy
++;
1340 spin_unlock(sdev
->request_queue
->queue_lock
);
1341 spin_lock(shost
->host_lock
);
1343 spin_unlock(shost
->host_lock
);
1344 spin_lock(sdev
->request_queue
->queue_lock
);
1349 static void scsi_softirq_done(struct request
*rq
)
1351 struct scsi_cmnd
*cmd
= rq
->completion_data
;
1352 unsigned long wait_for
= (cmd
->allowed
+ 1) * cmd
->timeout_per_command
;
1355 INIT_LIST_HEAD(&cmd
->eh_entry
);
1357 disposition
= scsi_decide_disposition(cmd
);
1358 if (disposition
!= SUCCESS
&&
1359 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1360 sdev_printk(KERN_ERR
, cmd
->device
,
1361 "timing out command, waited %lus\n",
1363 disposition
= SUCCESS
;
1366 scsi_log_completion(cmd
, disposition
);
1368 switch (disposition
) {
1370 scsi_finish_command(cmd
);
1373 scsi_retry_command(cmd
);
1375 case ADD_TO_MLQUEUE
:
1376 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1379 if (!scsi_eh_scmd_add(cmd
, 0))
1380 scsi_finish_command(cmd
);
1385 * Function: scsi_request_fn()
1387 * Purpose: Main strategy routine for SCSI.
1389 * Arguments: q - Pointer to actual queue.
1393 * Lock status: IO request lock assumed to be held when called.
1395 static void scsi_request_fn(struct request_queue
*q
)
1397 struct scsi_device
*sdev
= q
->queuedata
;
1398 struct Scsi_Host
*shost
;
1399 struct scsi_cmnd
*cmd
;
1400 struct request
*req
;
1403 printk("scsi: killing requests for dead queue\n");
1404 while ((req
= elv_next_request(q
)) != NULL
)
1405 scsi_kill_request(req
, q
);
1409 if(!get_device(&sdev
->sdev_gendev
))
1410 /* We must be tearing the block queue down already */
1414 * To start with, we keep looping until the queue is empty, or until
1415 * the host is no longer able to accept any more requests.
1418 while (!blk_queue_plugged(q
)) {
1421 * get next queueable request. We do this early to make sure
1422 * that the request is fully prepared even if we cannot
1425 req
= elv_next_request(q
);
1426 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1429 if (unlikely(!scsi_device_online(sdev
))) {
1430 sdev_printk(KERN_ERR
, sdev
,
1431 "rejecting I/O to offline device\n");
1432 scsi_kill_request(req
, q
);
1438 * Remove the request from the request list.
1440 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1441 blkdev_dequeue_request(req
);
1442 sdev
->device_busy
++;
1444 spin_unlock(q
->queue_lock
);
1446 if (unlikely(cmd
== NULL
)) {
1447 printk(KERN_CRIT
"impossible request in %s.\n"
1448 "please mail a stack trace to "
1449 "linux-scsi@vger.kernel.org",
1453 spin_lock(shost
->host_lock
);
1455 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1457 if (sdev
->single_lun
) {
1458 if (scsi_target(sdev
)->starget_sdev_user
&&
1459 scsi_target(sdev
)->starget_sdev_user
!= sdev
)
1461 scsi_target(sdev
)->starget_sdev_user
= sdev
;
1466 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1467 * take the lock again.
1469 spin_unlock_irq(shost
->host_lock
);
1472 * Finally, initialize any error handling parameters, and set up
1473 * the timers for timeouts.
1475 scsi_init_cmd_errh(cmd
);
1478 * Dispatch the command to the low-level driver.
1480 rtn
= scsi_dispatch_cmd(cmd
);
1481 spin_lock_irq(q
->queue_lock
);
1483 /* we're refusing the command; because of
1484 * the way locks get dropped, we need to
1485 * check here if plugging is required */
1486 if(sdev
->device_busy
== 0)
1496 spin_unlock_irq(shost
->host_lock
);
1499 * lock q, handle tag, requeue req, and decrement device_busy. We
1500 * must return with queue_lock held.
1502 * Decrementing device_busy without checking it is OK, as all such
1503 * cases (host limits or settings) should run the queue at some
1506 spin_lock_irq(q
->queue_lock
);
1507 blk_requeue_request(q
, req
);
1508 sdev
->device_busy
--;
1509 if(sdev
->device_busy
== 0)
1512 /* must be careful here...if we trigger the ->remove() function
1513 * we cannot be holding the q lock */
1514 spin_unlock_irq(q
->queue_lock
);
1515 put_device(&sdev
->sdev_gendev
);
1516 spin_lock_irq(q
->queue_lock
);
1519 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1521 struct device
*host_dev
;
1522 u64 bounce_limit
= 0xffffffff;
1524 if (shost
->unchecked_isa_dma
)
1525 return BLK_BOUNCE_ISA
;
1527 * Platforms with virtual-DMA translation
1528 * hardware have no practical limit.
1530 if (!PCI_DMA_BUS_IS_PHYS
)
1531 return BLK_BOUNCE_ANY
;
1533 host_dev
= scsi_get_device(shost
);
1534 if (host_dev
&& host_dev
->dma_mask
)
1535 bounce_limit
= *host_dev
->dma_mask
;
1537 return bounce_limit
;
1539 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1541 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1543 struct Scsi_Host
*shost
= sdev
->host
;
1544 struct request_queue
*q
;
1546 q
= blk_init_queue(scsi_request_fn
, NULL
);
1550 blk_queue_prep_rq(q
, scsi_prep_fn
);
1552 blk_queue_max_hw_segments(q
, shost
->sg_tablesize
);
1553 blk_queue_max_phys_segments(q
, SCSI_MAX_PHYS_SEGMENTS
);
1554 blk_queue_max_sectors(q
, shost
->max_sectors
);
1555 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1556 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1557 blk_queue_issue_flush_fn(q
, scsi_issue_flush_fn
);
1558 blk_queue_softirq_done(q
, scsi_softirq_done
);
1560 if (!shost
->use_clustering
)
1561 clear_bit(QUEUE_FLAG_CLUSTER
, &q
->queue_flags
);
1565 void scsi_free_queue(struct request_queue
*q
)
1567 blk_cleanup_queue(q
);
1571 * Function: scsi_block_requests()
1573 * Purpose: Utility function used by low-level drivers to prevent further
1574 * commands from being queued to the device.
1576 * Arguments: shost - Host in question
1580 * Lock status: No locks are assumed held.
1582 * Notes: There is no timer nor any other means by which the requests
1583 * get unblocked other than the low-level driver calling
1584 * scsi_unblock_requests().
1586 void scsi_block_requests(struct Scsi_Host
*shost
)
1588 shost
->host_self_blocked
= 1;
1590 EXPORT_SYMBOL(scsi_block_requests
);
1593 * Function: scsi_unblock_requests()
1595 * Purpose: Utility function used by low-level drivers to allow further
1596 * commands from being queued to the device.
1598 * Arguments: shost - Host in question
1602 * Lock status: No locks are assumed held.
1604 * Notes: There is no timer nor any other means by which the requests
1605 * get unblocked other than the low-level driver calling
1606 * scsi_unblock_requests().
1608 * This is done as an API function so that changes to the
1609 * internals of the scsi mid-layer won't require wholesale
1610 * changes to drivers that use this feature.
1612 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1614 shost
->host_self_blocked
= 0;
1615 scsi_run_host_queues(shost
);
1617 EXPORT_SYMBOL(scsi_unblock_requests
);
1619 int __init
scsi_init_queue(void)
1623 scsi_io_context_cache
= kmem_cache_create("scsi_io_context",
1624 sizeof(struct scsi_io_context
),
1626 if (!scsi_io_context_cache
) {
1627 printk(KERN_ERR
"SCSI: can't init scsi io context cache\n");
1631 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1632 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1633 int size
= sgp
->size
* sizeof(struct scatterlist
);
1635 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1636 SLAB_HWCACHE_ALIGN
, NULL
, NULL
);
1638 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1642 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1645 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1653 void scsi_exit_queue(void)
1657 kmem_cache_destroy(scsi_io_context_cache
);
1659 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1660 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1661 mempool_destroy(sgp
->pool
);
1662 kmem_cache_destroy(sgp
->slab
);
1667 * scsi_mode_select - issue a mode select
1668 * @sdev: SCSI device to be queried
1669 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1670 * @sp: Save page bit (0 == don't save, 1 == save)
1671 * @modepage: mode page being requested
1672 * @buffer: request buffer (may not be smaller than eight bytes)
1673 * @len: length of request buffer.
1674 * @timeout: command timeout
1675 * @retries: number of retries before failing
1676 * @data: returns a structure abstracting the mode header data
1677 * @sense: place to put sense data (or NULL if no sense to be collected).
1678 * must be SCSI_SENSE_BUFFERSIZE big.
1680 * Returns zero if successful; negative error number or scsi
1685 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1686 unsigned char *buffer
, int len
, int timeout
, int retries
,
1687 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1689 unsigned char cmd
[10];
1690 unsigned char *real_buffer
;
1693 memset(cmd
, 0, sizeof(cmd
));
1694 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1696 if (sdev
->use_10_for_ms
) {
1699 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1702 memcpy(real_buffer
+ 8, buffer
, len
);
1706 real_buffer
[2] = data
->medium_type
;
1707 real_buffer
[3] = data
->device_specific
;
1708 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1710 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1711 real_buffer
[7] = data
->block_descriptor_length
;
1713 cmd
[0] = MODE_SELECT_10
;
1717 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1721 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1724 memcpy(real_buffer
+ 4, buffer
, len
);
1727 real_buffer
[1] = data
->medium_type
;
1728 real_buffer
[2] = data
->device_specific
;
1729 real_buffer
[3] = data
->block_descriptor_length
;
1732 cmd
[0] = MODE_SELECT
;
1736 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1737 sshdr
, timeout
, retries
);
1741 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1744 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1745 * six bytes if necessary.
1746 * @sdev: SCSI device to be queried
1747 * @dbd: set if mode sense will allow block descriptors to be returned
1748 * @modepage: mode page being requested
1749 * @buffer: request buffer (may not be smaller than eight bytes)
1750 * @len: length of request buffer.
1751 * @timeout: command timeout
1752 * @retries: number of retries before failing
1753 * @data: returns a structure abstracting the mode header data
1754 * @sense: place to put sense data (or NULL if no sense to be collected).
1755 * must be SCSI_SENSE_BUFFERSIZE big.
1757 * Returns zero if unsuccessful, or the header offset (either 4
1758 * or 8 depending on whether a six or ten byte command was
1759 * issued) if successful.
1762 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1763 unsigned char *buffer
, int len
, int timeout
, int retries
,
1764 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1766 unsigned char cmd
[12];
1770 struct scsi_sense_hdr my_sshdr
;
1772 memset(data
, 0, sizeof(*data
));
1773 memset(&cmd
[0], 0, 12);
1774 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1777 /* caller might not be interested in sense, but we need it */
1782 use_10_for_ms
= sdev
->use_10_for_ms
;
1784 if (use_10_for_ms
) {
1788 cmd
[0] = MODE_SENSE_10
;
1795 cmd
[0] = MODE_SENSE
;
1800 memset(buffer
, 0, len
);
1802 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1803 sshdr
, timeout
, retries
);
1805 /* This code looks awful: what it's doing is making sure an
1806 * ILLEGAL REQUEST sense return identifies the actual command
1807 * byte as the problem. MODE_SENSE commands can return
1808 * ILLEGAL REQUEST if the code page isn't supported */
1810 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1811 (driver_byte(result
) & DRIVER_SENSE
)) {
1812 if (scsi_sense_valid(sshdr
)) {
1813 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1814 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1816 * Invalid command operation code
1818 sdev
->use_10_for_ms
= 0;
1824 if(scsi_status_is_good(result
)) {
1825 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1826 (modepage
== 6 || modepage
== 8))) {
1827 /* Initio breakage? */
1830 data
->medium_type
= 0;
1831 data
->device_specific
= 0;
1833 data
->block_descriptor_length
= 0;
1834 } else if(use_10_for_ms
) {
1835 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1836 data
->medium_type
= buffer
[2];
1837 data
->device_specific
= buffer
[3];
1838 data
->longlba
= buffer
[4] & 0x01;
1839 data
->block_descriptor_length
= buffer
[6]*256
1842 data
->length
= buffer
[0] + 1;
1843 data
->medium_type
= buffer
[1];
1844 data
->device_specific
= buffer
[2];
1845 data
->block_descriptor_length
= buffer
[3];
1847 data
->header_length
= header_length
;
1852 EXPORT_SYMBOL(scsi_mode_sense
);
1855 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
)
1858 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
1860 struct scsi_sense_hdr sshdr
;
1863 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, &sshdr
,
1866 if ((driver_byte(result
) & DRIVER_SENSE
) && sdev
->removable
) {
1868 if ((scsi_sense_valid(&sshdr
)) &&
1869 ((sshdr
.sense_key
== UNIT_ATTENTION
) ||
1870 (sshdr
.sense_key
== NOT_READY
))) {
1877 EXPORT_SYMBOL(scsi_test_unit_ready
);
1880 * scsi_device_set_state - Take the given device through the device
1882 * @sdev: scsi device to change the state of.
1883 * @state: state to change to.
1885 * Returns zero if unsuccessful or an error if the requested
1886 * transition is illegal.
1889 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
1891 enum scsi_device_state oldstate
= sdev
->sdev_state
;
1893 if (state
== oldstate
)
1898 /* There are no legal states that come back to
1899 * created. This is the manually initialised start
1973 sdev
->sdev_state
= state
;
1977 SCSI_LOG_ERROR_RECOVERY(1,
1978 sdev_printk(KERN_ERR
, sdev
,
1979 "Illegal state transition %s->%s\n",
1980 scsi_device_state_name(oldstate
),
1981 scsi_device_state_name(state
))
1985 EXPORT_SYMBOL(scsi_device_set_state
);
1988 * scsi_device_quiesce - Block user issued commands.
1989 * @sdev: scsi device to quiesce.
1991 * This works by trying to transition to the SDEV_QUIESCE state
1992 * (which must be a legal transition). When the device is in this
1993 * state, only special requests will be accepted, all others will
1994 * be deferred. Since special requests may also be requeued requests,
1995 * a successful return doesn't guarantee the device will be
1996 * totally quiescent.
1998 * Must be called with user context, may sleep.
2000 * Returns zero if unsuccessful or an error if not.
2003 scsi_device_quiesce(struct scsi_device
*sdev
)
2005 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2009 scsi_run_queue(sdev
->request_queue
);
2010 while (sdev
->device_busy
) {
2011 msleep_interruptible(200);
2012 scsi_run_queue(sdev
->request_queue
);
2016 EXPORT_SYMBOL(scsi_device_quiesce
);
2019 * scsi_device_resume - Restart user issued commands to a quiesced device.
2020 * @sdev: scsi device to resume.
2022 * Moves the device from quiesced back to running and restarts the
2025 * Must be called with user context, may sleep.
2028 scsi_device_resume(struct scsi_device
*sdev
)
2030 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2032 scsi_run_queue(sdev
->request_queue
);
2034 EXPORT_SYMBOL(scsi_device_resume
);
2037 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2039 scsi_device_quiesce(sdev
);
2043 scsi_target_quiesce(struct scsi_target
*starget
)
2045 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2047 EXPORT_SYMBOL(scsi_target_quiesce
);
2050 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2052 scsi_device_resume(sdev
);
2056 scsi_target_resume(struct scsi_target
*starget
)
2058 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2060 EXPORT_SYMBOL(scsi_target_resume
);
2063 * scsi_internal_device_block - internal function to put a device
2064 * temporarily into the SDEV_BLOCK state
2065 * @sdev: device to block
2067 * Block request made by scsi lld's to temporarily stop all
2068 * scsi commands on the specified device. Called from interrupt
2069 * or normal process context.
2071 * Returns zero if successful or error if not
2074 * This routine transitions the device to the SDEV_BLOCK state
2075 * (which must be a legal transition). When the device is in this
2076 * state, all commands are deferred until the scsi lld reenables
2077 * the device with scsi_device_unblock or device_block_tmo fires.
2078 * This routine assumes the host_lock is held on entry.
2081 scsi_internal_device_block(struct scsi_device
*sdev
)
2083 request_queue_t
*q
= sdev
->request_queue
;
2084 unsigned long flags
;
2087 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2092 * The device has transitioned to SDEV_BLOCK. Stop the
2093 * block layer from calling the midlayer with this device's
2096 spin_lock_irqsave(q
->queue_lock
, flags
);
2098 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2102 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2105 * scsi_internal_device_unblock - resume a device after a block request
2106 * @sdev: device to resume
2108 * Called by scsi lld's or the midlayer to restart the device queue
2109 * for the previously suspended scsi device. Called from interrupt or
2110 * normal process context.
2112 * Returns zero if successful or error if not.
2115 * This routine transitions the device to the SDEV_RUNNING state
2116 * (which must be a legal transition) allowing the midlayer to
2117 * goose the queue for this device. This routine assumes the
2118 * host_lock is held upon entry.
2121 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2123 request_queue_t
*q
= sdev
->request_queue
;
2125 unsigned long flags
;
2128 * Try to transition the scsi device to SDEV_RUNNING
2129 * and goose the device queue if successful.
2131 err
= scsi_device_set_state(sdev
, SDEV_RUNNING
);
2135 spin_lock_irqsave(q
->queue_lock
, flags
);
2137 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2141 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2144 device_block(struct scsi_device
*sdev
, void *data
)
2146 scsi_internal_device_block(sdev
);
2150 target_block(struct device
*dev
, void *data
)
2152 if (scsi_is_target_device(dev
))
2153 starget_for_each_device(to_scsi_target(dev
), NULL
,
2159 scsi_target_block(struct device
*dev
)
2161 if (scsi_is_target_device(dev
))
2162 starget_for_each_device(to_scsi_target(dev
), NULL
,
2165 device_for_each_child(dev
, NULL
, target_block
);
2167 EXPORT_SYMBOL_GPL(scsi_target_block
);
2170 device_unblock(struct scsi_device
*sdev
, void *data
)
2172 scsi_internal_device_unblock(sdev
);
2176 target_unblock(struct device
*dev
, void *data
)
2178 if (scsi_is_target_device(dev
))
2179 starget_for_each_device(to_scsi_target(dev
), NULL
,
2185 scsi_target_unblock(struct device
*dev
)
2187 if (scsi_is_target_device(dev
))
2188 starget_for_each_device(to_scsi_target(dev
), NULL
,
2191 device_for_each_child(dev
, NULL
, target_unblock
);
2193 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2196 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2197 * @sg: scatter-gather list
2198 * @sg_count: number of segments in sg
2199 * @offset: offset in bytes into sg, on return offset into the mapped area
2200 * @len: bytes to map, on return number of bytes mapped
2202 * Returns virtual address of the start of the mapped page
2204 void *scsi_kmap_atomic_sg(struct scatterlist
*sg
, int sg_count
,
2205 size_t *offset
, size_t *len
)
2208 size_t sg_len
= 0, len_complete
= 0;
2211 for (i
= 0; i
< sg_count
; i
++) {
2212 len_complete
= sg_len
; /* Complete sg-entries */
2213 sg_len
+= sg
[i
].length
;
2214 if (sg_len
> *offset
)
2218 if (unlikely(i
== sg_count
)) {
2219 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2221 __FUNCTION__
, sg_len
, *offset
, sg_count
);
2226 /* Offset starting from the beginning of first page in this sg-entry */
2227 *offset
= *offset
- len_complete
+ sg
[i
].offset
;
2229 /* Assumption: contiguous pages can be accessed as "page + i" */
2230 page
= nth_page(sg
[i
].page
, (*offset
>> PAGE_SHIFT
));
2231 *offset
&= ~PAGE_MASK
;
2233 /* Bytes in this sg-entry from *offset to the end of the page */
2234 sg_len
= PAGE_SIZE
- *offset
;
2238 return kmap_atomic(page
, KM_BIO_SRC_IRQ
);
2240 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2243 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2244 * mapped with scsi_kmap_atomic_sg
2245 * @virt: virtual address to be unmapped
2247 void scsi_kunmap_atomic_sg(void *virt
)
2249 kunmap_atomic(virt
, KM_BIO_SRC_IRQ
);
2251 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);