2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
39 #include "xfs_iomap.h"
40 #include <linux/mpage.h>
41 #include <linux/pagevec.h>
42 #include <linux/writeback.h>
51 struct buffer_head
*bh
, *head
;
53 *delalloc
= *unmapped
= *unwritten
= 0;
55 bh
= head
= page_buffers(page
);
57 if (buffer_uptodate(bh
) && !buffer_mapped(bh
))
59 else if (buffer_unwritten(bh
) && !buffer_delay(bh
))
60 clear_buffer_unwritten(bh
);
61 else if (buffer_unwritten(bh
))
63 else if (buffer_delay(bh
))
65 } while ((bh
= bh
->b_this_page
) != head
);
68 #if defined(XFS_RW_TRACE)
77 bhv_vnode_t
*vp
= vn_from_inode(inode
);
78 loff_t isize
= i_size_read(inode
);
79 loff_t offset
= page_offset(page
);
80 int delalloc
= -1, unmapped
= -1, unwritten
= -1;
82 if (page_has_buffers(page
))
83 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
89 ktrace_enter(ip
->i_rwtrace
,
90 (void *)((unsigned long)tag
),
94 (void *)((unsigned long)mask
),
95 (void *)((unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff)),
96 (void *)((unsigned long)(ip
->i_d
.di_size
& 0xffffffff)),
97 (void *)((unsigned long)((isize
>> 32) & 0xffffffff)),
98 (void *)((unsigned long)(isize
& 0xffffffff)),
99 (void *)((unsigned long)((offset
>> 32) & 0xffffffff)),
100 (void *)((unsigned long)(offset
& 0xffffffff)),
101 (void *)((unsigned long)delalloc
),
102 (void *)((unsigned long)unmapped
),
103 (void *)((unsigned long)unwritten
),
104 (void *)((unsigned long)current_pid()),
108 #define xfs_page_trace(tag, inode, page, mask)
112 * Schedule IO completion handling on a xfsdatad if this was
113 * the final hold on this ioend.
119 if (atomic_dec_and_test(&ioend
->io_remaining
))
120 queue_work(xfsdatad_workqueue
, &ioend
->io_work
);
124 * We're now finished for good with this ioend structure.
125 * Update the page state via the associated buffer_heads,
126 * release holds on the inode and bio, and finally free
127 * up memory. Do not use the ioend after this.
133 struct buffer_head
*bh
, *next
;
135 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
136 next
= bh
->b_private
;
137 bh
->b_end_io(bh
, !ioend
->io_error
);
139 if (unlikely(ioend
->io_error
))
140 vn_ioerror(ioend
->io_vnode
, ioend
->io_error
, __FILE__
,__LINE__
);
141 vn_iowake(ioend
->io_vnode
);
142 mempool_free(ioend
, xfs_ioend_pool
);
146 * Buffered IO write completion for delayed allocate extents.
147 * TODO: Update ondisk isize now that we know the file data
148 * has been flushed (i.e. the notorious "NULL file" problem).
151 xfs_end_bio_delalloc(
154 xfs_ioend_t
*ioend
= data
;
156 xfs_destroy_ioend(ioend
);
160 * Buffered IO write completion for regular, written extents.
166 xfs_ioend_t
*ioend
= data
;
168 xfs_destroy_ioend(ioend
);
172 * IO write completion for unwritten extents.
174 * Issue transactions to convert a buffer range from unwritten
175 * to written extents.
178 xfs_end_bio_unwritten(
181 xfs_ioend_t
*ioend
= data
;
182 bhv_vnode_t
*vp
= ioend
->io_vnode
;
183 xfs_off_t offset
= ioend
->io_offset
;
184 size_t size
= ioend
->io_size
;
186 if (likely(!ioend
->io_error
))
187 bhv_vop_bmap(vp
, offset
, size
, BMAPI_UNWRITTEN
, NULL
, NULL
);
188 xfs_destroy_ioend(ioend
);
192 * Allocate and initialise an IO completion structure.
193 * We need to track unwritten extent write completion here initially.
194 * We'll need to extend this for updating the ondisk inode size later
204 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
207 * Set the count to 1 initially, which will prevent an I/O
208 * completion callback from happening before we have started
209 * all the I/O from calling the completion routine too early.
211 atomic_set(&ioend
->io_remaining
, 1);
213 ioend
->io_list
= NULL
;
214 ioend
->io_type
= type
;
215 ioend
->io_vnode
= vn_from_inode(inode
);
216 ioend
->io_buffer_head
= NULL
;
217 ioend
->io_buffer_tail
= NULL
;
218 atomic_inc(&ioend
->io_vnode
->v_iocount
);
219 ioend
->io_offset
= 0;
222 if (type
== IOMAP_UNWRITTEN
)
223 INIT_WORK(&ioend
->io_work
, xfs_end_bio_unwritten
, ioend
);
224 else if (type
== IOMAP_DELAY
)
225 INIT_WORK(&ioend
->io_work
, xfs_end_bio_delalloc
, ioend
);
227 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
, ioend
);
240 bhv_vnode_t
*vp
= vn_from_inode(inode
);
241 int error
, nmaps
= 1;
243 error
= bhv_vop_bmap(vp
, offset
, count
, flags
, mapp
, &nmaps
);
244 if (!error
&& (flags
& (BMAPI_WRITE
|BMAPI_ALLOCATE
)))
254 return offset
>= iomapp
->iomap_offset
&&
255 offset
< iomapp
->iomap_offset
+ iomapp
->iomap_bsize
;
259 * BIO completion handler for buffered IO.
264 unsigned int bytes_done
,
267 xfs_ioend_t
*ioend
= bio
->bi_private
;
272 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
273 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
275 /* Toss bio and pass work off to an xfsdatad thread */
276 bio
->bi_private
= NULL
;
277 bio
->bi_end_io
= NULL
;
280 xfs_finish_ioend(ioend
);
285 xfs_submit_ioend_bio(
289 atomic_inc(&ioend
->io_remaining
);
291 bio
->bi_private
= ioend
;
292 bio
->bi_end_io
= xfs_end_bio
;
294 submit_bio(WRITE
, bio
);
295 ASSERT(!bio_flagged(bio
, BIO_EOPNOTSUPP
));
301 struct buffer_head
*bh
)
304 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
307 bio
= bio_alloc(GFP_NOIO
, nvecs
);
311 ASSERT(bio
->bi_private
== NULL
);
312 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
313 bio
->bi_bdev
= bh
->b_bdev
;
319 xfs_start_buffer_writeback(
320 struct buffer_head
*bh
)
322 ASSERT(buffer_mapped(bh
));
323 ASSERT(buffer_locked(bh
));
324 ASSERT(!buffer_delay(bh
));
325 ASSERT(!buffer_unwritten(bh
));
327 mark_buffer_async_write(bh
);
328 set_buffer_uptodate(bh
);
329 clear_buffer_dirty(bh
);
333 xfs_start_page_writeback(
335 struct writeback_control
*wbc
,
339 ASSERT(PageLocked(page
));
340 ASSERT(!PageWriteback(page
));
341 set_page_writeback(page
);
343 clear_page_dirty(page
);
346 end_page_writeback(page
);
347 wbc
->pages_skipped
++; /* We didn't write this page */
351 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
353 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
357 * Submit all of the bios for all of the ioends we have saved up, covering the
358 * initial writepage page and also any probed pages.
360 * Because we may have multiple ioends spanning a page, we need to start
361 * writeback on all the buffers before we submit them for I/O. If we mark the
362 * buffers as we got, then we can end up with a page that only has buffers
363 * marked async write and I/O complete on can occur before we mark the other
364 * buffers async write.
366 * The end result of this is that we trip a bug in end_page_writeback() because
367 * we call it twice for the one page as the code in end_buffer_async_write()
368 * assumes that all buffers on the page are started at the same time.
370 * The fix is two passes across the ioend list - one to start writeback on the
371 * buffer_heads, and then submit them for I/O on the second pass.
377 xfs_ioend_t
*head
= ioend
;
379 struct buffer_head
*bh
;
381 sector_t lastblock
= 0;
383 /* Pass 1 - start writeback */
385 next
= ioend
->io_list
;
386 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
387 xfs_start_buffer_writeback(bh
);
389 } while ((ioend
= next
) != NULL
);
391 /* Pass 2 - submit I/O */
394 next
= ioend
->io_list
;
397 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
401 bio
= xfs_alloc_ioend_bio(bh
);
402 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
403 xfs_submit_ioend_bio(ioend
, bio
);
407 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
408 xfs_submit_ioend_bio(ioend
, bio
);
412 lastblock
= bh
->b_blocknr
;
415 xfs_submit_ioend_bio(ioend
, bio
);
416 xfs_finish_ioend(ioend
);
417 } while ((ioend
= next
) != NULL
);
421 * Cancel submission of all buffer_heads so far in this endio.
422 * Toss the endio too. Only ever called for the initial page
423 * in a writepage request, so only ever one page.
430 struct buffer_head
*bh
, *next_bh
;
433 next
= ioend
->io_list
;
434 bh
= ioend
->io_buffer_head
;
436 next_bh
= bh
->b_private
;
437 clear_buffer_async_write(bh
);
439 } while ((bh
= next_bh
) != NULL
);
441 vn_iowake(ioend
->io_vnode
);
442 mempool_free(ioend
, xfs_ioend_pool
);
443 } while ((ioend
= next
) != NULL
);
447 * Test to see if we've been building up a completion structure for
448 * earlier buffers -- if so, we try to append to this ioend if we
449 * can, otherwise we finish off any current ioend and start another.
450 * Return true if we've finished the given ioend.
455 struct buffer_head
*bh
,
458 xfs_ioend_t
**result
,
461 xfs_ioend_t
*ioend
= *result
;
463 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
464 xfs_ioend_t
*previous
= *result
;
466 ioend
= xfs_alloc_ioend(inode
, type
);
467 ioend
->io_offset
= offset
;
468 ioend
->io_buffer_head
= bh
;
469 ioend
->io_buffer_tail
= bh
;
471 previous
->io_list
= ioend
;
474 ioend
->io_buffer_tail
->b_private
= bh
;
475 ioend
->io_buffer_tail
= bh
;
478 bh
->b_private
= NULL
;
479 ioend
->io_size
+= bh
->b_size
;
484 struct buffer_head
*bh
,
491 ASSERT(mp
->iomap_bn
!= IOMAP_DADDR_NULL
);
493 bn
= (mp
->iomap_bn
>> (block_bits
- BBSHIFT
)) +
494 ((offset
- mp
->iomap_offset
) >> block_bits
);
496 ASSERT(bn
|| (mp
->iomap_flags
& IOMAP_REALTIME
));
499 set_buffer_mapped(bh
);
504 struct buffer_head
*bh
,
509 ASSERT(!(iomapp
->iomap_flags
& IOMAP_HOLE
));
510 ASSERT(!(iomapp
->iomap_flags
& IOMAP_DELAY
));
513 xfs_map_buffer(bh
, iomapp
, offset
, block_bits
);
514 bh
->b_bdev
= iomapp
->iomap_target
->bt_bdev
;
515 set_buffer_mapped(bh
);
516 clear_buffer_delay(bh
);
517 clear_buffer_unwritten(bh
);
521 * Look for a page at index that is suitable for clustering.
526 unsigned int pg_offset
,
531 if (PageWriteback(page
))
534 if (page
->mapping
&& PageDirty(page
)) {
535 if (page_has_buffers(page
)) {
536 struct buffer_head
*bh
, *head
;
538 bh
= head
= page_buffers(page
);
540 if (!buffer_uptodate(bh
))
542 if (mapped
!= buffer_mapped(bh
))
545 if (ret
>= pg_offset
)
547 } while ((bh
= bh
->b_this_page
) != head
);
549 ret
= mapped
? 0 : PAGE_CACHE_SIZE
;
558 struct page
*startpage
,
559 struct buffer_head
*bh
,
560 struct buffer_head
*head
,
564 pgoff_t tindex
, tlast
, tloff
;
568 /* First sum forwards in this page */
570 if (!buffer_uptodate(bh
) || (mapped
!= buffer_mapped(bh
)))
573 } while ((bh
= bh
->b_this_page
) != head
);
575 /* if we reached the end of the page, sum forwards in following pages */
576 tlast
= i_size_read(inode
) >> PAGE_CACHE_SHIFT
;
577 tindex
= startpage
->index
+ 1;
579 /* Prune this back to avoid pathological behavior */
580 tloff
= min(tlast
, startpage
->index
+ 64);
582 pagevec_init(&pvec
, 0);
583 while (!done
&& tindex
<= tloff
) {
584 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
586 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
589 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
590 struct page
*page
= pvec
.pages
[i
];
591 size_t pg_offset
, len
= 0;
593 if (tindex
== tlast
) {
595 i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1);
601 pg_offset
= PAGE_CACHE_SIZE
;
603 if (page
->index
== tindex
&& !TestSetPageLocked(page
)) {
604 len
= xfs_probe_page(page
, pg_offset
, mapped
);
617 pagevec_release(&pvec
);
625 * Test if a given page is suitable for writing as part of an unwritten
626 * or delayed allocate extent.
633 if (PageWriteback(page
))
636 if (page
->mapping
&& page_has_buffers(page
)) {
637 struct buffer_head
*bh
, *head
;
640 bh
= head
= page_buffers(page
);
642 if (buffer_unwritten(bh
))
643 acceptable
= (type
== IOMAP_UNWRITTEN
);
644 else if (buffer_delay(bh
))
645 acceptable
= (type
== IOMAP_DELAY
);
646 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
647 acceptable
= (type
== 0);
650 } while ((bh
= bh
->b_this_page
) != head
);
660 * Allocate & map buffers for page given the extent map. Write it out.
661 * except for the original page of a writepage, this is called on
662 * delalloc/unwritten pages only, for the original page it is possible
663 * that the page has no mapping at all.
671 xfs_ioend_t
**ioendp
,
672 struct writeback_control
*wbc
,
676 struct buffer_head
*bh
, *head
;
677 xfs_off_t end_offset
;
678 unsigned long p_offset
;
680 int bbits
= inode
->i_blkbits
;
682 int count
= 0, done
= 0, uptodate
= 1;
683 xfs_off_t offset
= page_offset(page
);
685 if (page
->index
!= tindex
)
687 if (TestSetPageLocked(page
))
689 if (PageWriteback(page
))
690 goto fail_unlock_page
;
691 if (page
->mapping
!= inode
->i_mapping
)
692 goto fail_unlock_page
;
693 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
694 goto fail_unlock_page
;
697 * page_dirty is initially a count of buffers on the page before
698 * EOF and is decremented as we move each into a cleanable state.
702 * End offset is the highest offset that this page should represent.
703 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
704 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
705 * hence give us the correct page_dirty count. On any other page,
706 * it will be zero and in that case we need page_dirty to be the
707 * count of buffers on the page.
709 end_offset
= min_t(unsigned long long,
710 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
713 len
= 1 << inode
->i_blkbits
;
714 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
716 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
717 page_dirty
= p_offset
/ len
;
719 bh
= head
= page_buffers(page
);
721 if (offset
>= end_offset
)
723 if (!buffer_uptodate(bh
))
725 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
730 if (buffer_unwritten(bh
) || buffer_delay(bh
)) {
731 if (buffer_unwritten(bh
))
732 type
= IOMAP_UNWRITTEN
;
736 if (!xfs_iomap_valid(mp
, offset
)) {
741 ASSERT(!(mp
->iomap_flags
& IOMAP_HOLE
));
742 ASSERT(!(mp
->iomap_flags
& IOMAP_DELAY
));
744 xfs_map_at_offset(bh
, offset
, bbits
, mp
);
746 xfs_add_to_ioend(inode
, bh
, offset
,
749 set_buffer_dirty(bh
);
751 mark_buffer_dirty(bh
);
757 if (buffer_mapped(bh
) && all_bh
&& startio
) {
759 xfs_add_to_ioend(inode
, bh
, offset
,
767 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
769 if (uptodate
&& bh
== head
)
770 SetPageUptodate(page
);
774 struct backing_dev_info
*bdi
;
776 bdi
= inode
->i_mapping
->backing_dev_info
;
778 if (bdi_write_congested(bdi
)) {
779 wbc
->encountered_congestion
= 1;
781 } else if (wbc
->nr_to_write
<= 0) {
785 xfs_start_page_writeback(page
, wbc
, !page_dirty
, count
);
796 * Convert & write out a cluster of pages in the same extent as defined
797 * by mp and following the start page.
804 xfs_ioend_t
**ioendp
,
805 struct writeback_control
*wbc
,
813 pagevec_init(&pvec
, 0);
814 while (!done
&& tindex
<= tlast
) {
815 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
817 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
820 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
821 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
822 iomapp
, ioendp
, wbc
, startio
, all_bh
);
827 pagevec_release(&pvec
);
833 * Calling this without startio set means we are being asked to make a dirty
834 * page ready for freeing it's buffers. When called with startio set then
835 * we are coming from writepage.
837 * When called with startio set it is important that we write the WHOLE
839 * The bh->b_state's cannot know if any of the blocks or which block for
840 * that matter are dirty due to mmap writes, and therefore bh uptodate is
841 * only valid if the page itself isn't completely uptodate. Some layers
842 * may clear the page dirty flag prior to calling write page, under the
843 * assumption the entire page will be written out; by not writing out the
844 * whole page the page can be reused before all valid dirty data is
845 * written out. Note: in the case of a page that has been dirty'd by
846 * mapwrite and but partially setup by block_prepare_write the
847 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
848 * valid state, thus the whole page must be written out thing.
852 xfs_page_state_convert(
855 struct writeback_control
*wbc
,
857 int unmapped
) /* also implies page uptodate */
859 struct buffer_head
*bh
, *head
;
861 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
863 unsigned long p_offset
= 0;
865 __uint64_t end_offset
;
866 pgoff_t end_index
, last_index
, tlast
;
868 int flags
, err
, iomap_valid
= 0, uptodate
= 1;
869 int page_dirty
, count
= 0;
871 int all_bh
= unmapped
;
874 if (wbc
->sync_mode
== WB_SYNC_NONE
&& wbc
->nonblocking
)
875 trylock
|= BMAPI_TRYLOCK
;
878 /* Is this page beyond the end of the file? */
879 offset
= i_size_read(inode
);
880 end_index
= offset
>> PAGE_CACHE_SHIFT
;
881 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
882 if (page
->index
>= end_index
) {
883 if ((page
->index
>= end_index
+ 1) ||
884 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
892 * page_dirty is initially a count of buffers on the page before
893 * EOF and is decremented as we move each into a cleanable state.
897 * End offset is the highest offset that this page should represent.
898 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
899 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
900 * hence give us the correct page_dirty count. On any other page,
901 * it will be zero and in that case we need page_dirty to be the
902 * count of buffers on the page.
904 end_offset
= min_t(unsigned long long,
905 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
, offset
);
906 len
= 1 << inode
->i_blkbits
;
907 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
909 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
910 page_dirty
= p_offset
/ len
;
912 bh
= head
= page_buffers(page
);
913 offset
= page_offset(page
);
917 /* TODO: cleanup count and page_dirty */
920 if (offset
>= end_offset
)
922 if (!buffer_uptodate(bh
))
924 if (!(PageUptodate(page
) || buffer_uptodate(bh
)) && !startio
) {
926 * the iomap is actually still valid, but the ioend
927 * isn't. shouldn't happen too often.
934 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
937 * First case, map an unwritten extent and prepare for
938 * extent state conversion transaction on completion.
940 * Second case, allocate space for a delalloc buffer.
941 * We can return EAGAIN here in the release page case.
943 * Third case, an unmapped buffer was found, and we are
944 * in a path where we need to write the whole page out.
946 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
947 ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
948 !buffer_mapped(bh
) && (unmapped
|| startio
))) {
950 * Make sure we don't use a read-only iomap
952 if (flags
== BMAPI_READ
)
955 if (buffer_unwritten(bh
)) {
956 type
= IOMAP_UNWRITTEN
;
957 flags
= BMAPI_WRITE
| BMAPI_IGNSTATE
;
958 } else if (buffer_delay(bh
)) {
960 flags
= BMAPI_ALLOCATE
| trylock
;
963 flags
= BMAPI_WRITE
| BMAPI_MMAP
;
967 if (type
== IOMAP_NEW
) {
968 size
= xfs_probe_cluster(inode
,
974 err
= xfs_map_blocks(inode
, offset
, size
,
978 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
981 xfs_map_at_offset(bh
, offset
,
982 inode
->i_blkbits
, &iomap
);
984 xfs_add_to_ioend(inode
, bh
, offset
,
988 set_buffer_dirty(bh
);
990 mark_buffer_dirty(bh
);
995 } else if (buffer_uptodate(bh
) && startio
) {
997 * we got here because the buffer is already mapped.
998 * That means it must already have extents allocated
999 * underneath it. Map the extent by reading it.
1001 if (!iomap_valid
|| type
!= 0) {
1003 size
= xfs_probe_cluster(inode
, page
, bh
,
1005 err
= xfs_map_blocks(inode
, offset
, size
,
1009 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1013 if (!test_and_set_bit(BH_Lock
, &bh
->b_state
)) {
1014 ASSERT(buffer_mapped(bh
));
1017 xfs_add_to_ioend(inode
, bh
, offset
, type
,
1018 &ioend
, !iomap_valid
);
1024 } else if ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1025 (unmapped
|| startio
)) {
1032 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1034 if (uptodate
&& bh
== head
)
1035 SetPageUptodate(page
);
1038 xfs_start_page_writeback(page
, wbc
, 1, count
);
1040 if (ioend
&& iomap_valid
) {
1041 offset
= (iomap
.iomap_offset
+ iomap
.iomap_bsize
- 1) >>
1043 tlast
= min_t(pgoff_t
, offset
, last_index
);
1044 xfs_cluster_write(inode
, page
->index
+ 1, &iomap
, &ioend
,
1045 wbc
, startio
, all_bh
, tlast
);
1049 xfs_submit_ioend(iohead
);
1055 xfs_cancel_ioend(iohead
);
1058 * If it's delalloc and we have nowhere to put it,
1059 * throw it away, unless the lower layers told
1062 if (err
!= -EAGAIN
) {
1064 block_invalidatepage(page
, 0);
1065 ClearPageUptodate(page
);
1071 * writepage: Called from one of two places:
1073 * 1. we are flushing a delalloc buffer head.
1075 * 2. we are writing out a dirty page. Typically the page dirty
1076 * state is cleared before we get here. In this case is it
1077 * conceivable we have no buffer heads.
1079 * For delalloc space on the page we need to allocate space and
1080 * flush it. For unmapped buffer heads on the page we should
1081 * allocate space if the page is uptodate. For any other dirty
1082 * buffer heads on the page we should flush them.
1084 * If we detect that a transaction would be required to flush
1085 * the page, we have to check the process flags first, if we
1086 * are already in a transaction or disk I/O during allocations
1087 * is off, we need to fail the writepage and redirty the page.
1093 struct writeback_control
*wbc
)
1097 int delalloc
, unmapped
, unwritten
;
1098 struct inode
*inode
= page
->mapping
->host
;
1100 xfs_page_trace(XFS_WRITEPAGE_ENTER
, inode
, page
, 0);
1103 * We need a transaction if:
1104 * 1. There are delalloc buffers on the page
1105 * 2. The page is uptodate and we have unmapped buffers
1106 * 3. The page is uptodate and we have no buffers
1107 * 4. There are unwritten buffers on the page
1110 if (!page_has_buffers(page
)) {
1114 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1115 if (!PageUptodate(page
))
1117 need_trans
= delalloc
+ unmapped
+ unwritten
;
1121 * If we need a transaction and the process flags say
1122 * we are already in a transaction, or no IO is allowed
1123 * then mark the page dirty again and leave the page
1126 if (current_test_flags(PF_FSTRANS
) && need_trans
)
1130 * Delay hooking up buffer heads until we have
1131 * made our go/no-go decision.
1133 if (!page_has_buffers(page
))
1134 create_empty_buffers(page
, 1 << inode
->i_blkbits
, 0);
1137 * Convert delayed allocate, unwritten or unmapped space
1138 * to real space and flush out to disk.
1140 error
= xfs_page_state_convert(inode
, page
, wbc
, 1, unmapped
);
1141 if (error
== -EAGAIN
)
1143 if (unlikely(error
< 0))
1149 redirty_page_for_writepage(wbc
, page
);
1159 struct address_space
*mapping
,
1160 struct writeback_control
*wbc
)
1162 struct bhv_vnode
*vp
= vn_from_inode(mapping
->host
);
1166 return generic_writepages(mapping
, wbc
);
1170 * Called to move a page into cleanable state - and from there
1171 * to be released. Possibly the page is already clean. We always
1172 * have buffer heads in this call.
1174 * Returns 0 if the page is ok to release, 1 otherwise.
1176 * Possible scenarios are:
1178 * 1. We are being called to release a page which has been written
1179 * to via regular I/O. buffer heads will be dirty and possibly
1180 * delalloc. If no delalloc buffer heads in this case then we
1181 * can just return zero.
1183 * 2. We are called to release a page which has been written via
1184 * mmap, all we need to do is ensure there is no delalloc
1185 * state in the buffer heads, if not we can let the caller
1186 * free them and we should come back later via writepage.
1193 struct inode
*inode
= page
->mapping
->host
;
1194 int dirty
, delalloc
, unmapped
, unwritten
;
1195 struct writeback_control wbc
= {
1196 .sync_mode
= WB_SYNC_ALL
,
1200 xfs_page_trace(XFS_RELEASEPAGE_ENTER
, inode
, page
, gfp_mask
);
1202 if (!page_has_buffers(page
))
1205 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1206 if (!delalloc
&& !unwritten
)
1209 if (!(gfp_mask
& __GFP_FS
))
1212 /* If we are already inside a transaction or the thread cannot
1213 * do I/O, we cannot release this page.
1215 if (current_test_flags(PF_FSTRANS
))
1219 * Convert delalloc space to real space, do not flush the
1220 * data out to disk, that will be done by the caller.
1221 * Never need to allocate space here - we will always
1222 * come back to writepage in that case.
1224 dirty
= xfs_page_state_convert(inode
, page
, &wbc
, 0, 0);
1225 if (dirty
== 0 && !unwritten
)
1230 return try_to_free_buffers(page
);
1235 struct inode
*inode
,
1237 struct buffer_head
*bh_result
,
1240 bmapi_flags_t flags
)
1242 bhv_vnode_t
*vp
= vn_from_inode(inode
);
1249 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1250 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1251 size
= bh_result
->b_size
;
1252 error
= bhv_vop_bmap(vp
, offset
, size
,
1253 create
? flags
: BMAPI_READ
, &iomap
, &niomap
);
1259 if (iomap
.iomap_bn
!= IOMAP_DADDR_NULL
) {
1261 * For unwritten extents do not report a disk address on
1262 * the read case (treat as if we're reading into a hole).
1264 if (create
|| !(iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1265 xfs_map_buffer(bh_result
, &iomap
, offset
,
1268 if (create
&& (iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1270 bh_result
->b_private
= inode
;
1271 set_buffer_unwritten(bh_result
);
1272 set_buffer_delay(bh_result
);
1277 * If this is a realtime file, data may be on a different device.
1278 * to that pointed to from the buffer_head b_bdev currently.
1280 bh_result
->b_bdev
= iomap
.iomap_target
->bt_bdev
;
1283 * If we previously allocated a block out beyond eof and we are
1284 * now coming back to use it then we will need to flag it as new
1285 * even if it has a disk address.
1288 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1289 (offset
>= i_size_read(inode
)) || (iomap
.iomap_flags
& IOMAP_NEW
)))
1290 set_buffer_new(bh_result
);
1292 if (iomap
.iomap_flags
& IOMAP_DELAY
) {
1295 set_buffer_uptodate(bh_result
);
1296 set_buffer_mapped(bh_result
);
1297 set_buffer_delay(bh_result
);
1301 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1302 ASSERT(iomap
.iomap_bsize
- iomap
.iomap_delta
> 0);
1303 offset
= min_t(xfs_off_t
,
1304 iomap
.iomap_bsize
- iomap
.iomap_delta
, size
);
1305 bh_result
->b_size
= (ssize_t
)min_t(xfs_off_t
, LONG_MAX
, offset
);
1313 struct inode
*inode
,
1315 struct buffer_head
*bh_result
,
1318 return __xfs_get_blocks(inode
, iblock
,
1319 bh_result
, create
, 0, BMAPI_WRITE
);
1323 xfs_get_blocks_direct(
1324 struct inode
*inode
,
1326 struct buffer_head
*bh_result
,
1329 return __xfs_get_blocks(inode
, iblock
,
1330 bh_result
, create
, 1, BMAPI_WRITE
|BMAPI_DIRECT
);
1340 xfs_ioend_t
*ioend
= iocb
->private;
1343 * Non-NULL private data means we need to issue a transaction to
1344 * convert a range from unwritten to written extents. This needs
1345 * to happen from process context but aio+dio I/O completion
1346 * happens from irq context so we need to defer it to a workqueue.
1347 * This is not necessary for synchronous direct I/O, but we do
1348 * it anyway to keep the code uniform and simpler.
1350 * The core direct I/O code might be changed to always call the
1351 * completion handler in the future, in which case all this can
1354 if (private && size
> 0) {
1355 ioend
->io_offset
= offset
;
1356 ioend
->io_size
= size
;
1357 xfs_finish_ioend(ioend
);
1360 xfs_destroy_ioend(ioend
);
1364 * blockdev_direct_IO can return an error even after the I/O
1365 * completion handler was called. Thus we need to protect
1366 * against double-freeing.
1368 iocb
->private = NULL
;
1375 const struct iovec
*iov
,
1377 unsigned long nr_segs
)
1379 struct file
*file
= iocb
->ki_filp
;
1380 struct inode
*inode
= file
->f_mapping
->host
;
1381 bhv_vnode_t
*vp
= vn_from_inode(inode
);
1387 error
= bhv_vop_bmap(vp
, offset
, 0, BMAPI_DEVICE
, &iomap
, &maps
);
1391 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_UNWRITTEN
);
1393 ret
= blockdev_direct_IO_own_locking(rw
, iocb
, inode
,
1394 iomap
.iomap_target
->bt_bdev
,
1395 iov
, offset
, nr_segs
,
1396 xfs_get_blocks_direct
,
1399 if (unlikely(ret
<= 0 && iocb
->private))
1400 xfs_destroy_ioend(iocb
->private);
1405 xfs_vm_prepare_write(
1411 return block_prepare_write(page
, from
, to
, xfs_get_blocks
);
1416 struct address_space
*mapping
,
1419 struct inode
*inode
= (struct inode
*)mapping
->host
;
1420 bhv_vnode_t
*vp
= vn_from_inode(inode
);
1422 vn_trace_entry(vp
, __FUNCTION__
, (inst_t
*)__return_address
);
1423 bhv_vop_rwlock(vp
, VRWLOCK_READ
);
1424 bhv_vop_flush_pages(vp
, (xfs_off_t
)0, -1, 0, FI_REMAPF
);
1425 bhv_vop_rwunlock(vp
, VRWLOCK_READ
);
1426 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1431 struct file
*unused
,
1434 return mpage_readpage(page
, xfs_get_blocks
);
1439 struct file
*unused
,
1440 struct address_space
*mapping
,
1441 struct list_head
*pages
,
1444 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1448 xfs_vm_invalidatepage(
1450 unsigned long offset
)
1452 xfs_page_trace(XFS_INVALIDPAGE_ENTER
,
1453 page
->mapping
->host
, page
, offset
);
1454 block_invalidatepage(page
, offset
);
1457 const struct address_space_operations xfs_address_space_operations
= {
1458 .readpage
= xfs_vm_readpage
,
1459 .readpages
= xfs_vm_readpages
,
1460 .writepage
= xfs_vm_writepage
,
1461 .writepages
= xfs_vm_writepages
,
1462 .sync_page
= block_sync_page
,
1463 .releasepage
= xfs_vm_releasepage
,
1464 .invalidatepage
= xfs_vm_invalidatepage
,
1465 .prepare_write
= xfs_vm_prepare_write
,
1466 .commit_write
= generic_commit_write
,
1467 .bmap
= xfs_vm_bmap
,
1468 .direct_IO
= xfs_vm_direct_IO
,
1469 .migratepage
= buffer_migrate_page
,