Merge master.kernel.org:/pub/scm/linux/kernel/git/perex/alsa
[wrt350n-kernel.git] / fs / xfs / linux-2.6 / xfs_super.c
blob4754f342a5d3b0cf8f9f57790fa63ed1012ee92a
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_cap.h"
47 #include "xfs_mac.h"
48 #include "xfs_attr.h"
49 #include "xfs_buf_item.h"
50 #include "xfs_utils.h"
51 #include "xfs_version.h"
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
60 STATIC struct quotactl_ops xfs_quotactl_operations;
61 STATIC struct super_operations xfs_super_operations;
62 STATIC kmem_zone_t *xfs_vnode_zone;
63 STATIC kmem_zone_t *xfs_ioend_zone;
64 mempool_t *xfs_ioend_pool;
66 STATIC struct xfs_mount_args *
67 xfs_args_allocate(
68 struct super_block *sb,
69 int silent)
71 struct xfs_mount_args *args;
73 args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
74 args->logbufs = args->logbufsize = -1;
75 strncpy(args->fsname, sb->s_id, MAXNAMELEN);
77 /* Copy the already-parsed mount(2) flags we're interested in */
78 if (sb->s_flags & MS_DIRSYNC)
79 args->flags |= XFSMNT_DIRSYNC;
80 if (sb->s_flags & MS_SYNCHRONOUS)
81 args->flags |= XFSMNT_WSYNC;
82 if (silent)
83 args->flags |= XFSMNT_QUIET;
84 args->flags |= XFSMNT_32BITINODES;
86 return args;
89 __uint64_t
90 xfs_max_file_offset(
91 unsigned int blockshift)
93 unsigned int pagefactor = 1;
94 unsigned int bitshift = BITS_PER_LONG - 1;
96 /* Figure out maximum filesize, on Linux this can depend on
97 * the filesystem blocksize (on 32 bit platforms).
98 * __block_prepare_write does this in an [unsigned] long...
99 * page->index << (PAGE_CACHE_SHIFT - bbits)
100 * So, for page sized blocks (4K on 32 bit platforms),
101 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
102 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
103 * but for smaller blocksizes it is less (bbits = log2 bsize).
104 * Note1: get_block_t takes a long (implicit cast from above)
105 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
106 * can optionally convert the [unsigned] long from above into
107 * an [unsigned] long long.
110 #if BITS_PER_LONG == 32
111 # if defined(CONFIG_LBD)
112 ASSERT(sizeof(sector_t) == 8);
113 pagefactor = PAGE_CACHE_SIZE;
114 bitshift = BITS_PER_LONG;
115 # else
116 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
117 # endif
118 #endif
120 return (((__uint64_t)pagefactor) << bitshift) - 1;
123 STATIC __inline__ void
124 xfs_set_inodeops(
125 struct inode *inode)
127 switch (inode->i_mode & S_IFMT) {
128 case S_IFREG:
129 inode->i_op = &xfs_inode_operations;
130 inode->i_fop = &xfs_file_operations;
131 inode->i_mapping->a_ops = &xfs_address_space_operations;
132 break;
133 case S_IFDIR:
134 inode->i_op = &xfs_dir_inode_operations;
135 inode->i_fop = &xfs_dir_file_operations;
136 break;
137 case S_IFLNK:
138 inode->i_op = &xfs_symlink_inode_operations;
139 if (inode->i_blocks)
140 inode->i_mapping->a_ops = &xfs_address_space_operations;
141 break;
142 default:
143 inode->i_op = &xfs_inode_operations;
144 init_special_inode(inode, inode->i_mode, inode->i_rdev);
145 break;
149 STATIC __inline__ void
150 xfs_revalidate_inode(
151 xfs_mount_t *mp,
152 bhv_vnode_t *vp,
153 xfs_inode_t *ip)
155 struct inode *inode = vn_to_inode(vp);
157 inode->i_mode = ip->i_d.di_mode;
158 inode->i_nlink = ip->i_d.di_nlink;
159 inode->i_uid = ip->i_d.di_uid;
160 inode->i_gid = ip->i_d.di_gid;
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFBLK:
164 case S_IFCHR:
165 inode->i_rdev =
166 MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
167 sysv_minor(ip->i_df.if_u2.if_rdev));
168 break;
169 default:
170 inode->i_rdev = 0;
171 break;
174 inode->i_blksize = xfs_preferred_iosize(mp);
175 inode->i_generation = ip->i_d.di_gen;
176 i_size_write(inode, ip->i_d.di_size);
177 inode->i_blocks =
178 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179 inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
180 inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
181 inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
182 inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
183 inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
184 inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
185 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186 inode->i_flags |= S_IMMUTABLE;
187 else
188 inode->i_flags &= ~S_IMMUTABLE;
189 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190 inode->i_flags |= S_APPEND;
191 else
192 inode->i_flags &= ~S_APPEND;
193 if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194 inode->i_flags |= S_SYNC;
195 else
196 inode->i_flags &= ~S_SYNC;
197 if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198 inode->i_flags |= S_NOATIME;
199 else
200 inode->i_flags &= ~S_NOATIME;
201 vp->v_flag &= ~VMODIFIED;
204 void
205 xfs_initialize_vnode(
206 bhv_desc_t *bdp,
207 bhv_vnode_t *vp,
208 bhv_desc_t *inode_bhv,
209 int unlock)
211 xfs_inode_t *ip = XFS_BHVTOI(inode_bhv);
212 struct inode *inode = vn_to_inode(vp);
214 if (!inode_bhv->bd_vobj) {
215 vp->v_vfsp = bhvtovfs(bdp);
216 bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
217 bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
221 * We need to set the ops vectors, and unlock the inode, but if
222 * we have been called during the new inode create process, it is
223 * too early to fill in the Linux inode. We will get called a
224 * second time once the inode is properly set up, and then we can
225 * finish our work.
227 if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
228 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
229 xfs_set_inodeops(inode);
231 ip->i_flags &= ~XFS_INEW;
232 barrier();
234 unlock_new_inode(inode);
239 xfs_blkdev_get(
240 xfs_mount_t *mp,
241 const char *name,
242 struct block_device **bdevp)
244 int error = 0;
246 *bdevp = open_bdev_excl(name, 0, mp);
247 if (IS_ERR(*bdevp)) {
248 error = PTR_ERR(*bdevp);
249 printk("XFS: Invalid device [%s], error=%d\n", name, error);
252 return -error;
255 void
256 xfs_blkdev_put(
257 struct block_device *bdev)
259 if (bdev)
260 close_bdev_excl(bdev);
264 * Try to write out the superblock using barriers.
266 STATIC int
267 xfs_barrier_test(
268 xfs_mount_t *mp)
270 xfs_buf_t *sbp = xfs_getsb(mp, 0);
271 int error;
273 XFS_BUF_UNDONE(sbp);
274 XFS_BUF_UNREAD(sbp);
275 XFS_BUF_UNDELAYWRITE(sbp);
276 XFS_BUF_WRITE(sbp);
277 XFS_BUF_UNASYNC(sbp);
278 XFS_BUF_ORDERED(sbp);
280 xfsbdstrat(mp, sbp);
281 error = xfs_iowait(sbp);
284 * Clear all the flags we set and possible error state in the
285 * buffer. We only did the write to try out whether barriers
286 * worked and shouldn't leave any traces in the superblock
287 * buffer.
289 XFS_BUF_DONE(sbp);
290 XFS_BUF_ERROR(sbp, 0);
291 XFS_BUF_UNORDERED(sbp);
293 xfs_buf_relse(sbp);
294 return error;
297 void
298 xfs_mountfs_check_barriers(xfs_mount_t *mp)
300 int error;
302 if (mp->m_logdev_targp != mp->m_ddev_targp) {
303 xfs_fs_cmn_err(CE_NOTE, mp,
304 "Disabling barriers, not supported with external log device");
305 mp->m_flags &= ~XFS_MOUNT_BARRIER;
306 return;
309 if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
310 QUEUE_ORDERED_NONE) {
311 xfs_fs_cmn_err(CE_NOTE, mp,
312 "Disabling barriers, not supported by the underlying device");
313 mp->m_flags &= ~XFS_MOUNT_BARRIER;
314 return;
317 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
318 xfs_fs_cmn_err(CE_NOTE, mp,
319 "Disabling barriers, underlying device is readonly");
320 mp->m_flags &= ~XFS_MOUNT_BARRIER;
321 return;
324 error = xfs_barrier_test(mp);
325 if (error) {
326 xfs_fs_cmn_err(CE_NOTE, mp,
327 "Disabling barriers, trial barrier write failed");
328 mp->m_flags &= ~XFS_MOUNT_BARRIER;
329 return;
333 void
334 xfs_blkdev_issue_flush(
335 xfs_buftarg_t *buftarg)
337 blkdev_issue_flush(buftarg->bt_bdev, NULL);
340 STATIC struct inode *
341 xfs_fs_alloc_inode(
342 struct super_block *sb)
344 bhv_vnode_t *vp;
346 vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
347 if (unlikely(!vp))
348 return NULL;
349 return vn_to_inode(vp);
352 STATIC void
353 xfs_fs_destroy_inode(
354 struct inode *inode)
356 kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
359 STATIC void
360 xfs_fs_inode_init_once(
361 void *vnode,
362 kmem_zone_t *zonep,
363 unsigned long flags)
365 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
366 SLAB_CTOR_CONSTRUCTOR)
367 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
370 STATIC int
371 xfs_init_zones(void)
373 xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
374 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
375 KM_ZONE_SPREAD,
376 xfs_fs_inode_init_once);
377 if (!xfs_vnode_zone)
378 goto out;
380 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
381 if (!xfs_ioend_zone)
382 goto out_destroy_vnode_zone;
384 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
385 xfs_ioend_zone);
386 if (!xfs_ioend_pool)
387 goto out_free_ioend_zone;
388 return 0;
390 out_free_ioend_zone:
391 kmem_zone_destroy(xfs_ioend_zone);
392 out_destroy_vnode_zone:
393 kmem_zone_destroy(xfs_vnode_zone);
394 out:
395 return -ENOMEM;
398 STATIC void
399 xfs_destroy_zones(void)
401 mempool_destroy(xfs_ioend_pool);
402 kmem_zone_destroy(xfs_vnode_zone);
403 kmem_zone_destroy(xfs_ioend_zone);
407 * Attempt to flush the inode, this will actually fail
408 * if the inode is pinned, but we dirty the inode again
409 * at the point when it is unpinned after a log write,
410 * since this is when the inode itself becomes flushable.
412 STATIC int
413 xfs_fs_write_inode(
414 struct inode *inode,
415 int sync)
417 bhv_vnode_t *vp = vn_from_inode(inode);
418 int error = 0, flags = FLUSH_INODE;
420 if (vp) {
421 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
422 if (sync)
423 flags |= FLUSH_SYNC;
424 error = bhv_vop_iflush(vp, flags);
425 if (error == EAGAIN)
426 error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
428 return -error;
431 STATIC void
432 xfs_fs_clear_inode(
433 struct inode *inode)
435 bhv_vnode_t *vp = vn_from_inode(inode);
437 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
439 XFS_STATS_INC(vn_rele);
440 XFS_STATS_INC(vn_remove);
441 XFS_STATS_INC(vn_reclaim);
442 XFS_STATS_DEC(vn_active);
445 * This can happen because xfs_iget_core calls xfs_idestroy if we
446 * find an inode with di_mode == 0 but without IGET_CREATE set.
448 if (VNHEAD(vp))
449 bhv_vop_inactive(vp, NULL);
451 VN_LOCK(vp);
452 vp->v_flag &= ~VMODIFIED;
453 VN_UNLOCK(vp, 0);
455 if (VNHEAD(vp))
456 if (bhv_vop_reclaim(vp))
457 panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
459 ASSERT(VNHEAD(vp) == NULL);
461 #ifdef XFS_VNODE_TRACE
462 ktrace_free(vp->v_trace);
463 #endif
467 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
468 * Doing this has two advantages:
469 * - It saves on stack space, which is tight in certain situations
470 * - It can be used (with care) as a mechanism to avoid deadlocks.
471 * Flushing while allocating in a full filesystem requires both.
473 STATIC void
474 xfs_syncd_queue_work(
475 struct bhv_vfs *vfs,
476 void *data,
477 void (*syncer)(bhv_vfs_t *, void *))
479 struct bhv_vfs_sync_work *work;
481 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
482 INIT_LIST_HEAD(&work->w_list);
483 work->w_syncer = syncer;
484 work->w_data = data;
485 work->w_vfs = vfs;
486 spin_lock(&vfs->vfs_sync_lock);
487 list_add_tail(&work->w_list, &vfs->vfs_sync_list);
488 spin_unlock(&vfs->vfs_sync_lock);
489 wake_up_process(vfs->vfs_sync_task);
493 * Flush delayed allocate data, attempting to free up reserved space
494 * from existing allocations. At this point a new allocation attempt
495 * has failed with ENOSPC and we are in the process of scratching our
496 * heads, looking about for more room...
498 STATIC void
499 xfs_flush_inode_work(
500 bhv_vfs_t *vfs,
501 void *inode)
503 filemap_flush(((struct inode *)inode)->i_mapping);
504 iput((struct inode *)inode);
507 void
508 xfs_flush_inode(
509 xfs_inode_t *ip)
511 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
512 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
514 igrab(inode);
515 xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
516 delay(msecs_to_jiffies(500));
520 * This is the "bigger hammer" version of xfs_flush_inode_work...
521 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
523 STATIC void
524 xfs_flush_device_work(
525 bhv_vfs_t *vfs,
526 void *inode)
528 sync_blockdev(vfs->vfs_super->s_bdev);
529 iput((struct inode *)inode);
532 void
533 xfs_flush_device(
534 xfs_inode_t *ip)
536 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
537 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
539 igrab(inode);
540 xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
541 delay(msecs_to_jiffies(500));
542 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
545 STATIC void
546 vfs_sync_worker(
547 bhv_vfs_t *vfsp,
548 void *unused)
550 int error;
552 if (!(vfsp->vfs_flag & VFS_RDONLY))
553 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
554 SYNC_ATTR | SYNC_REFCACHE, NULL);
555 vfsp->vfs_sync_seq++;
556 wmb();
557 wake_up(&vfsp->vfs_wait_single_sync_task);
560 STATIC int
561 xfssyncd(
562 void *arg)
564 long timeleft;
565 bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
566 bhv_vfs_sync_work_t *work, *n;
567 LIST_HEAD (tmp);
569 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
570 for (;;) {
571 timeleft = schedule_timeout_interruptible(timeleft);
572 /* swsusp */
573 try_to_freeze();
574 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
575 break;
577 spin_lock(&vfsp->vfs_sync_lock);
579 * We can get woken by laptop mode, to do a sync -
580 * that's the (only!) case where the list would be
581 * empty with time remaining.
583 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
584 if (!timeleft)
585 timeleft = xfs_syncd_centisecs *
586 msecs_to_jiffies(10);
587 INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
588 list_add_tail(&vfsp->vfs_sync_work.w_list,
589 &vfsp->vfs_sync_list);
591 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
592 list_move(&work->w_list, &tmp);
593 spin_unlock(&vfsp->vfs_sync_lock);
595 list_for_each_entry_safe(work, n, &tmp, w_list) {
596 (*work->w_syncer)(vfsp, work->w_data);
597 list_del(&work->w_list);
598 if (work == &vfsp->vfs_sync_work)
599 continue;
600 kmem_free(work, sizeof(struct bhv_vfs_sync_work));
604 return 0;
607 STATIC int
608 xfs_fs_start_syncd(
609 bhv_vfs_t *vfsp)
611 vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
612 vfsp->vfs_sync_work.w_vfs = vfsp;
613 vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
614 if (IS_ERR(vfsp->vfs_sync_task))
615 return -PTR_ERR(vfsp->vfs_sync_task);
616 return 0;
619 STATIC void
620 xfs_fs_stop_syncd(
621 bhv_vfs_t *vfsp)
623 kthread_stop(vfsp->vfs_sync_task);
626 STATIC void
627 xfs_fs_put_super(
628 struct super_block *sb)
630 bhv_vfs_t *vfsp = vfs_from_sb(sb);
631 int error;
633 xfs_fs_stop_syncd(vfsp);
634 bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
635 error = bhv_vfs_unmount(vfsp, 0, NULL);
636 if (error) {
637 printk("XFS: unmount got error=%d\n", error);
638 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
639 } else {
640 vfs_deallocate(vfsp);
644 STATIC void
645 xfs_fs_write_super(
646 struct super_block *sb)
648 if (!(sb->s_flags & MS_RDONLY))
649 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
650 sb->s_dirt = 0;
653 STATIC int
654 xfs_fs_sync_super(
655 struct super_block *sb,
656 int wait)
658 bhv_vfs_t *vfsp = vfs_from_sb(sb);
659 int error;
660 int flags;
662 if (unlikely(sb->s_frozen == SB_FREEZE_WRITE))
663 flags = SYNC_QUIESCE;
664 else
665 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
667 error = bhv_vfs_sync(vfsp, flags, NULL);
668 sb->s_dirt = 0;
670 if (unlikely(laptop_mode)) {
671 int prev_sync_seq = vfsp->vfs_sync_seq;
674 * The disk must be active because we're syncing.
675 * We schedule xfssyncd now (now that the disk is
676 * active) instead of later (when it might not be).
678 wake_up_process(vfsp->vfs_sync_task);
680 * We have to wait for the sync iteration to complete.
681 * If we don't, the disk activity caused by the sync
682 * will come after the sync is completed, and that
683 * triggers another sync from laptop mode.
685 wait_event(vfsp->vfs_wait_single_sync_task,
686 vfsp->vfs_sync_seq != prev_sync_seq);
689 return -error;
692 STATIC int
693 xfs_fs_statfs(
694 struct dentry *dentry,
695 struct kstatfs *statp)
697 return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
698 vn_from_inode(dentry->d_inode));
701 STATIC int
702 xfs_fs_remount(
703 struct super_block *sb,
704 int *flags,
705 char *options)
707 bhv_vfs_t *vfsp = vfs_from_sb(sb);
708 struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
709 int error;
711 error = bhv_vfs_parseargs(vfsp, options, args, 1);
712 if (!error)
713 error = bhv_vfs_mntupdate(vfsp, flags, args);
714 kmem_free(args, sizeof(*args));
715 return -error;
718 STATIC void
719 xfs_fs_lockfs(
720 struct super_block *sb)
722 bhv_vfs_freeze(vfs_from_sb(sb));
725 STATIC int
726 xfs_fs_show_options(
727 struct seq_file *m,
728 struct vfsmount *mnt)
730 return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
733 STATIC int
734 xfs_fs_quotasync(
735 struct super_block *sb,
736 int type)
738 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
741 STATIC int
742 xfs_fs_getxstate(
743 struct super_block *sb,
744 struct fs_quota_stat *fqs)
746 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
749 STATIC int
750 xfs_fs_setxstate(
751 struct super_block *sb,
752 unsigned int flags,
753 int op)
755 return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
758 STATIC int
759 xfs_fs_getxquota(
760 struct super_block *sb,
761 int type,
762 qid_t id,
763 struct fs_disk_quota *fdq)
765 return -bhv_vfs_quotactl(vfs_from_sb(sb),
766 (type == USRQUOTA) ? Q_XGETQUOTA :
767 ((type == GRPQUOTA) ? Q_XGETGQUOTA :
768 Q_XGETPQUOTA), id, (caddr_t)fdq);
771 STATIC int
772 xfs_fs_setxquota(
773 struct super_block *sb,
774 int type,
775 qid_t id,
776 struct fs_disk_quota *fdq)
778 return -bhv_vfs_quotactl(vfs_from_sb(sb),
779 (type == USRQUOTA) ? Q_XSETQLIM :
780 ((type == GRPQUOTA) ? Q_XSETGQLIM :
781 Q_XSETPQLIM), id, (caddr_t)fdq);
784 STATIC int
785 xfs_fs_fill_super(
786 struct super_block *sb,
787 void *data,
788 int silent)
790 struct bhv_vnode *rootvp;
791 struct bhv_vfs *vfsp = vfs_allocate(sb);
792 struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
793 struct kstatfs statvfs;
794 int error;
796 bhv_insert_all_vfsops(vfsp);
798 error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
799 if (error) {
800 bhv_remove_all_vfsops(vfsp, 1);
801 goto fail_vfsop;
804 sb_min_blocksize(sb, BBSIZE);
805 sb->s_export_op = &xfs_export_operations;
806 sb->s_qcop = &xfs_quotactl_operations;
807 sb->s_op = &xfs_super_operations;
809 error = bhv_vfs_mount(vfsp, args, NULL);
810 if (error) {
811 bhv_remove_all_vfsops(vfsp, 1);
812 goto fail_vfsop;
815 error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
816 if (error)
817 goto fail_unmount;
819 sb->s_dirt = 1;
820 sb->s_magic = statvfs.f_type;
821 sb->s_blocksize = statvfs.f_bsize;
822 sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
823 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
824 sb->s_time_gran = 1;
825 set_posix_acl_flag(sb);
827 error = bhv_vfs_root(vfsp, &rootvp);
828 if (error)
829 goto fail_unmount;
831 sb->s_root = d_alloc_root(vn_to_inode(rootvp));
832 if (!sb->s_root) {
833 error = ENOMEM;
834 goto fail_vnrele;
836 if (is_bad_inode(sb->s_root->d_inode)) {
837 error = EINVAL;
838 goto fail_vnrele;
840 if ((error = xfs_fs_start_syncd(vfsp)))
841 goto fail_vnrele;
842 vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
844 kmem_free(args, sizeof(*args));
845 return 0;
847 fail_vnrele:
848 if (sb->s_root) {
849 dput(sb->s_root);
850 sb->s_root = NULL;
851 } else {
852 VN_RELE(rootvp);
855 fail_unmount:
856 bhv_vfs_unmount(vfsp, 0, NULL);
858 fail_vfsop:
859 vfs_deallocate(vfsp);
860 kmem_free(args, sizeof(*args));
861 return -error;
864 STATIC int
865 xfs_fs_get_sb(
866 struct file_system_type *fs_type,
867 int flags,
868 const char *dev_name,
869 void *data,
870 struct vfsmount *mnt)
872 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
873 mnt);
876 STATIC struct super_operations xfs_super_operations = {
877 .alloc_inode = xfs_fs_alloc_inode,
878 .destroy_inode = xfs_fs_destroy_inode,
879 .write_inode = xfs_fs_write_inode,
880 .clear_inode = xfs_fs_clear_inode,
881 .put_super = xfs_fs_put_super,
882 .write_super = xfs_fs_write_super,
883 .sync_fs = xfs_fs_sync_super,
884 .write_super_lockfs = xfs_fs_lockfs,
885 .statfs = xfs_fs_statfs,
886 .remount_fs = xfs_fs_remount,
887 .show_options = xfs_fs_show_options,
890 STATIC struct quotactl_ops xfs_quotactl_operations = {
891 .quota_sync = xfs_fs_quotasync,
892 .get_xstate = xfs_fs_getxstate,
893 .set_xstate = xfs_fs_setxstate,
894 .get_xquota = xfs_fs_getxquota,
895 .set_xquota = xfs_fs_setxquota,
898 STATIC struct file_system_type xfs_fs_type = {
899 .owner = THIS_MODULE,
900 .name = "xfs",
901 .get_sb = xfs_fs_get_sb,
902 .kill_sb = kill_block_super,
903 .fs_flags = FS_REQUIRES_DEV,
907 STATIC int __init
908 init_xfs_fs( void )
910 int error;
911 struct sysinfo si;
912 static char message[] __initdata = KERN_INFO \
913 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
915 printk(message);
917 si_meminfo(&si);
918 xfs_physmem = si.totalram;
920 ktrace_init(64);
922 error = xfs_init_zones();
923 if (error < 0)
924 goto undo_zones;
926 error = xfs_buf_init();
927 if (error < 0)
928 goto undo_buffers;
930 vn_init();
931 xfs_init();
932 uuid_init();
933 vfs_initquota();
935 error = register_filesystem(&xfs_fs_type);
936 if (error)
937 goto undo_register;
938 return 0;
940 undo_register:
941 xfs_buf_terminate();
943 undo_buffers:
944 xfs_destroy_zones();
946 undo_zones:
947 return error;
950 STATIC void __exit
951 exit_xfs_fs( void )
953 vfs_exitquota();
954 unregister_filesystem(&xfs_fs_type);
955 xfs_cleanup();
956 xfs_buf_terminate();
957 xfs_destroy_zones();
958 ktrace_uninit();
961 module_init(init_xfs_fs);
962 module_exit(exit_xfs_fs);
964 MODULE_AUTHOR("Silicon Graphics, Inc.");
965 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
966 MODULE_LICENSE("GPL");