x86: prepare for the unification of the cpa code
[wrt350n-kernel.git] / arch / x86 / xen / mmu.c
blob45aa771e73a9221792f703e99c980ada406c8fa9
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/mmu_context.h>
48 #include <asm/paravirt.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
53 #include <xen/page.h>
54 #include <xen/interface/xen.h>
56 #include "multicalls.h"
57 #include "mmu.h"
59 xmaddr_t arbitrary_virt_to_machine(unsigned long address)
61 int level;
62 pte_t *pte = lookup_address(address, &level);
63 unsigned offset = address & PAGE_MASK;
65 BUG_ON(pte == NULL);
67 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
70 void make_lowmem_page_readonly(void *vaddr)
72 pte_t *pte, ptev;
73 unsigned long address = (unsigned long)vaddr;
74 int level;
76 pte = lookup_address(address, &level);
77 BUG_ON(pte == NULL);
79 ptev = pte_wrprotect(*pte);
81 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
82 BUG();
85 void make_lowmem_page_readwrite(void *vaddr)
87 pte_t *pte, ptev;
88 unsigned long address = (unsigned long)vaddr;
89 int level;
91 pte = lookup_address(address, &level);
92 BUG_ON(pte == NULL);
94 ptev = pte_mkwrite(*pte);
96 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
97 BUG();
101 void xen_set_pmd(pmd_t *ptr, pmd_t val)
103 struct multicall_space mcs;
104 struct mmu_update *u;
106 preempt_disable();
108 mcs = xen_mc_entry(sizeof(*u));
109 u = mcs.args;
110 u->ptr = virt_to_machine(ptr).maddr;
111 u->val = pmd_val_ma(val);
112 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
114 xen_mc_issue(PARAVIRT_LAZY_MMU);
116 preempt_enable();
120 * Associate a virtual page frame with a given physical page frame
121 * and protection flags for that frame.
123 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
125 pgd_t *pgd;
126 pud_t *pud;
127 pmd_t *pmd;
128 pte_t *pte;
130 pgd = swapper_pg_dir + pgd_index(vaddr);
131 if (pgd_none(*pgd)) {
132 BUG();
133 return;
135 pud = pud_offset(pgd, vaddr);
136 if (pud_none(*pud)) {
137 BUG();
138 return;
140 pmd = pmd_offset(pud, vaddr);
141 if (pmd_none(*pmd)) {
142 BUG();
143 return;
145 pte = pte_offset_kernel(pmd, vaddr);
146 /* <mfn,flags> stored as-is, to permit clearing entries */
147 xen_set_pte(pte, mfn_pte(mfn, flags));
150 * It's enough to flush this one mapping.
151 * (PGE mappings get flushed as well)
153 __flush_tlb_one(vaddr);
156 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
157 pte_t *ptep, pte_t pteval)
159 if (mm == current->mm || mm == &init_mm) {
160 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
161 struct multicall_space mcs;
162 mcs = xen_mc_entry(0);
164 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
165 xen_mc_issue(PARAVIRT_LAZY_MMU);
166 return;
167 } else
168 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
169 return;
171 xen_set_pte(ptep, pteval);
174 #ifdef CONFIG_X86_PAE
175 void xen_set_pud(pud_t *ptr, pud_t val)
177 struct multicall_space mcs;
178 struct mmu_update *u;
180 preempt_disable();
182 mcs = xen_mc_entry(sizeof(*u));
183 u = mcs.args;
184 u->ptr = virt_to_machine(ptr).maddr;
185 u->val = pud_val_ma(val);
186 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
188 xen_mc_issue(PARAVIRT_LAZY_MMU);
190 preempt_enable();
193 void xen_set_pte(pte_t *ptep, pte_t pte)
195 ptep->pte_high = pte.pte_high;
196 smp_wmb();
197 ptep->pte_low = pte.pte_low;
200 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
202 set_64bit((u64 *)ptep, pte_val_ma(pte));
205 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
207 ptep->pte_low = 0;
208 smp_wmb(); /* make sure low gets written first */
209 ptep->pte_high = 0;
212 void xen_pmd_clear(pmd_t *pmdp)
214 xen_set_pmd(pmdp, __pmd(0));
217 unsigned long long xen_pte_val(pte_t pte)
219 unsigned long long ret = 0;
221 if (pte.pte_low) {
222 ret = ((unsigned long long)pte.pte_high << 32) | pte.pte_low;
223 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
226 return ret;
229 unsigned long long xen_pmd_val(pmd_t pmd)
231 unsigned long long ret = pmd.pmd;
232 if (ret)
233 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
234 return ret;
237 unsigned long long xen_pgd_val(pgd_t pgd)
239 unsigned long long ret = pgd.pgd;
240 if (ret)
241 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
242 return ret;
245 pte_t xen_make_pte(unsigned long long pte)
247 if (pte & _PAGE_PRESENT) {
248 pte = phys_to_machine(XPADDR(pte)).maddr;
249 pte &= ~(_PAGE_PCD | _PAGE_PWT);
252 return (pte_t){ .pte = pte };
255 pmd_t xen_make_pmd(unsigned long long pmd)
257 if (pmd & 1)
258 pmd = phys_to_machine(XPADDR(pmd)).maddr;
260 return (pmd_t){ pmd };
263 pgd_t xen_make_pgd(unsigned long long pgd)
265 if (pgd & _PAGE_PRESENT)
266 pgd = phys_to_machine(XPADDR(pgd)).maddr;
268 return (pgd_t){ pgd };
270 #else /* !PAE */
271 void xen_set_pte(pte_t *ptep, pte_t pte)
273 *ptep = pte;
276 unsigned long xen_pte_val(pte_t pte)
278 unsigned long ret = pte.pte_low;
280 if (ret & _PAGE_PRESENT)
281 ret = machine_to_phys(XMADDR(ret)).paddr;
283 return ret;
286 unsigned long xen_pgd_val(pgd_t pgd)
288 unsigned long ret = pgd.pgd;
289 if (ret)
290 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
291 return ret;
294 pte_t xen_make_pte(unsigned long pte)
296 if (pte & _PAGE_PRESENT) {
297 pte = phys_to_machine(XPADDR(pte)).maddr;
298 pte &= ~(_PAGE_PCD | _PAGE_PWT);
301 return (pte_t){ pte };
304 pgd_t xen_make_pgd(unsigned long pgd)
306 if (pgd & _PAGE_PRESENT)
307 pgd = phys_to_machine(XPADDR(pgd)).maddr;
309 return (pgd_t){ pgd };
311 #endif /* CONFIG_X86_PAE */
313 enum pt_level {
314 PT_PGD,
315 PT_PUD,
316 PT_PMD,
317 PT_PTE
321 (Yet another) pagetable walker. This one is intended for pinning a
322 pagetable. This means that it walks a pagetable and calls the
323 callback function on each page it finds making up the page table,
324 at every level. It walks the entire pagetable, but it only bothers
325 pinning pte pages which are below pte_limit. In the normal case
326 this will be TASK_SIZE, but at boot we need to pin up to
327 FIXADDR_TOP. But the important bit is that we don't pin beyond
328 there, because then we start getting into Xen's ptes.
330 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
331 unsigned long limit)
333 pgd_t *pgd = pgd_base;
334 int flush = 0;
335 unsigned long addr = 0;
336 unsigned long pgd_next;
338 BUG_ON(limit > FIXADDR_TOP);
340 if (xen_feature(XENFEAT_auto_translated_physmap))
341 return 0;
343 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
344 pud_t *pud;
345 unsigned long pud_limit, pud_next;
347 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
349 if (!pgd_val(*pgd))
350 continue;
352 pud = pud_offset(pgd, 0);
354 if (PTRS_PER_PUD > 1) /* not folded */
355 flush |= (*func)(virt_to_page(pud), PT_PUD);
357 for (; addr != pud_limit; pud++, addr = pud_next) {
358 pmd_t *pmd;
359 unsigned long pmd_limit;
361 pud_next = pud_addr_end(addr, pud_limit);
363 if (pud_next < limit)
364 pmd_limit = pud_next;
365 else
366 pmd_limit = limit;
368 if (pud_none(*pud))
369 continue;
371 pmd = pmd_offset(pud, 0);
373 if (PTRS_PER_PMD > 1) /* not folded */
374 flush |= (*func)(virt_to_page(pmd), PT_PMD);
376 for (; addr != pmd_limit; pmd++) {
377 addr += (PAGE_SIZE * PTRS_PER_PTE);
378 if ((pmd_limit-1) < (addr-1)) {
379 addr = pmd_limit;
380 break;
383 if (pmd_none(*pmd))
384 continue;
386 flush |= (*func)(pmd_page(*pmd), PT_PTE);
391 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
393 return flush;
396 static spinlock_t *lock_pte(struct page *page)
398 spinlock_t *ptl = NULL;
400 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
401 ptl = __pte_lockptr(page);
402 spin_lock(ptl);
403 #endif
405 return ptl;
408 static void do_unlock(void *v)
410 spinlock_t *ptl = v;
411 spin_unlock(ptl);
414 static void xen_do_pin(unsigned level, unsigned long pfn)
416 struct mmuext_op *op;
417 struct multicall_space mcs;
419 mcs = __xen_mc_entry(sizeof(*op));
420 op = mcs.args;
421 op->cmd = level;
422 op->arg1.mfn = pfn_to_mfn(pfn);
423 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
426 static int pin_page(struct page *page, enum pt_level level)
428 unsigned pgfl = test_and_set_bit(PG_pinned, &page->flags);
429 int flush;
431 if (pgfl)
432 flush = 0; /* already pinned */
433 else if (PageHighMem(page))
434 /* kmaps need flushing if we found an unpinned
435 highpage */
436 flush = 1;
437 else {
438 void *pt = lowmem_page_address(page);
439 unsigned long pfn = page_to_pfn(page);
440 struct multicall_space mcs = __xen_mc_entry(0);
441 spinlock_t *ptl;
443 flush = 0;
445 ptl = NULL;
446 if (level == PT_PTE)
447 ptl = lock_pte(page);
449 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
450 pfn_pte(pfn, PAGE_KERNEL_RO),
451 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
453 if (level == PT_PTE)
454 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
456 if (ptl) {
457 /* Queue a deferred unlock for when this batch
458 is completed. */
459 xen_mc_callback(do_unlock, ptl);
463 return flush;
466 /* This is called just after a mm has been created, but it has not
467 been used yet. We need to make sure that its pagetable is all
468 read-only, and can be pinned. */
469 void xen_pgd_pin(pgd_t *pgd)
471 unsigned level;
473 xen_mc_batch();
475 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
476 /* re-enable interrupts for kmap_flush_unused */
477 xen_mc_issue(0);
478 kmap_flush_unused();
479 xen_mc_batch();
482 #ifdef CONFIG_X86_PAE
483 level = MMUEXT_PIN_L3_TABLE;
484 #else
485 level = MMUEXT_PIN_L2_TABLE;
486 #endif
488 xen_do_pin(level, PFN_DOWN(__pa(pgd)));
490 xen_mc_issue(0);
493 /* The init_mm pagetable is really pinned as soon as its created, but
494 that's before we have page structures to store the bits. So do all
495 the book-keeping now. */
496 static __init int mark_pinned(struct page *page, enum pt_level level)
498 SetPagePinned(page);
499 return 0;
502 void __init xen_mark_init_mm_pinned(void)
504 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
507 static int unpin_page(struct page *page, enum pt_level level)
509 unsigned pgfl = test_and_clear_bit(PG_pinned, &page->flags);
511 if (pgfl && !PageHighMem(page)) {
512 void *pt = lowmem_page_address(page);
513 unsigned long pfn = page_to_pfn(page);
514 spinlock_t *ptl = NULL;
515 struct multicall_space mcs;
517 if (level == PT_PTE) {
518 ptl = lock_pte(page);
520 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
523 mcs = __xen_mc_entry(0);
525 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
526 pfn_pte(pfn, PAGE_KERNEL),
527 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
529 if (ptl) {
530 /* unlock when batch completed */
531 xen_mc_callback(do_unlock, ptl);
535 return 0; /* never need to flush on unpin */
538 /* Release a pagetables pages back as normal RW */
539 static void xen_pgd_unpin(pgd_t *pgd)
541 xen_mc_batch();
543 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
545 pgd_walk(pgd, unpin_page, TASK_SIZE);
547 xen_mc_issue(0);
550 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
552 spin_lock(&next->page_table_lock);
553 xen_pgd_pin(next->pgd);
554 spin_unlock(&next->page_table_lock);
557 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
559 spin_lock(&mm->page_table_lock);
560 xen_pgd_pin(mm->pgd);
561 spin_unlock(&mm->page_table_lock);
565 #ifdef CONFIG_SMP
566 /* Another cpu may still have their %cr3 pointing at the pagetable, so
567 we need to repoint it somewhere else before we can unpin it. */
568 static void drop_other_mm_ref(void *info)
570 struct mm_struct *mm = info;
572 if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
573 leave_mm(smp_processor_id());
575 /* If this cpu still has a stale cr3 reference, then make sure
576 it has been flushed. */
577 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
578 load_cr3(swapper_pg_dir);
579 arch_flush_lazy_cpu_mode();
583 static void drop_mm_ref(struct mm_struct *mm)
585 cpumask_t mask;
586 unsigned cpu;
588 if (current->active_mm == mm) {
589 if (current->mm == mm)
590 load_cr3(swapper_pg_dir);
591 else
592 leave_mm(smp_processor_id());
593 arch_flush_lazy_cpu_mode();
596 /* Get the "official" set of cpus referring to our pagetable. */
597 mask = mm->cpu_vm_mask;
599 /* It's possible that a vcpu may have a stale reference to our
600 cr3, because its in lazy mode, and it hasn't yet flushed
601 its set of pending hypercalls yet. In this case, we can
602 look at its actual current cr3 value, and force it to flush
603 if needed. */
604 for_each_online_cpu(cpu) {
605 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
606 cpu_set(cpu, mask);
609 if (!cpus_empty(mask))
610 xen_smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
612 #else
613 static void drop_mm_ref(struct mm_struct *mm)
615 if (current->active_mm == mm)
616 load_cr3(swapper_pg_dir);
618 #endif
621 * While a process runs, Xen pins its pagetables, which means that the
622 * hypervisor forces it to be read-only, and it controls all updates
623 * to it. This means that all pagetable updates have to go via the
624 * hypervisor, which is moderately expensive.
626 * Since we're pulling the pagetable down, we switch to use init_mm,
627 * unpin old process pagetable and mark it all read-write, which
628 * allows further operations on it to be simple memory accesses.
630 * The only subtle point is that another CPU may be still using the
631 * pagetable because of lazy tlb flushing. This means we need need to
632 * switch all CPUs off this pagetable before we can unpin it.
634 void xen_exit_mmap(struct mm_struct *mm)
636 get_cpu(); /* make sure we don't move around */
637 drop_mm_ref(mm);
638 put_cpu();
640 spin_lock(&mm->page_table_lock);
642 /* pgd may not be pinned in the error exit path of execve */
643 if (PagePinned(virt_to_page(mm->pgd)))
644 xen_pgd_unpin(mm->pgd);
646 spin_unlock(&mm->page_table_lock);