x86: prepare for the unification of the cpa code
[wrt350n-kernel.git] / arch / x86 / xen / multicalls.c
blob5e6f36f6d8767268a48d699b2431fc7d9849fa0b
1 /*
2 * Xen hypercall batching.
4 * Xen allows multiple hypercalls to be issued at once, using the
5 * multicall interface. This allows the cost of trapping into the
6 * hypervisor to be amortized over several calls.
8 * This file implements a simple interface for multicalls. There's a
9 * per-cpu buffer of outstanding multicalls. When you want to queue a
10 * multicall for issuing, you can allocate a multicall slot for the
11 * call and its arguments, along with storage for space which is
12 * pointed to by the arguments (for passing pointers to structures,
13 * etc). When the multicall is actually issued, all the space for the
14 * commands and allocated memory is freed for reuse.
16 * Multicalls are flushed whenever any of the buffers get full, or
17 * when explicitly requested. There's no way to get per-multicall
18 * return results back. It will BUG if any of the multicalls fail.
20 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
22 #include <linux/percpu.h>
23 #include <linux/hardirq.h>
25 #include <asm/xen/hypercall.h>
27 #include "multicalls.h"
29 #define MC_DEBUG 1
31 #define MC_BATCH 32
32 #define MC_ARGS (MC_BATCH * 16 / sizeof(u64))
34 struct mc_buffer {
35 struct multicall_entry entries[MC_BATCH];
36 #if MC_DEBUG
37 struct multicall_entry debug[MC_BATCH];
38 #endif
39 u64 args[MC_ARGS];
40 struct callback {
41 void (*fn)(void *);
42 void *data;
43 } callbacks[MC_BATCH];
44 unsigned mcidx, argidx, cbidx;
47 static DEFINE_PER_CPU(struct mc_buffer, mc_buffer);
48 DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags);
50 void xen_mc_flush(void)
52 struct mc_buffer *b = &__get_cpu_var(mc_buffer);
53 int ret = 0;
54 unsigned long flags;
55 int i;
57 BUG_ON(preemptible());
59 /* Disable interrupts in case someone comes in and queues
60 something in the middle */
61 local_irq_save(flags);
63 if (b->mcidx) {
64 #if MC_DEBUG
65 memcpy(b->debug, b->entries,
66 b->mcidx * sizeof(struct multicall_entry));
67 #endif
69 if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0)
70 BUG();
71 for (i = 0; i < b->mcidx; i++)
72 if (b->entries[i].result < 0)
73 ret++;
75 #if MC_DEBUG
76 if (ret) {
77 printk(KERN_ERR "%d multicall(s) failed: cpu %d\n",
78 ret, smp_processor_id());
79 for(i = 0; i < b->mcidx; i++) {
80 printk(" call %2d/%d: op=%lu arg=[%lx] result=%ld\n",
81 i+1, b->mcidx,
82 b->debug[i].op,
83 b->debug[i].args[0],
84 b->entries[i].result);
87 #endif
89 b->mcidx = 0;
90 b->argidx = 0;
91 } else
92 BUG_ON(b->argidx != 0);
94 local_irq_restore(flags);
96 for(i = 0; i < b->cbidx; i++) {
97 struct callback *cb = &b->callbacks[i];
99 (*cb->fn)(cb->data);
101 b->cbidx = 0;
103 BUG_ON(ret);
106 struct multicall_space __xen_mc_entry(size_t args)
108 struct mc_buffer *b = &__get_cpu_var(mc_buffer);
109 struct multicall_space ret;
110 unsigned argspace = (args + sizeof(u64) - 1) / sizeof(u64);
112 BUG_ON(preemptible());
113 BUG_ON(argspace > MC_ARGS);
115 if (b->mcidx == MC_BATCH ||
116 (b->argidx + argspace) > MC_ARGS)
117 xen_mc_flush();
119 ret.mc = &b->entries[b->mcidx];
120 b->mcidx++;
121 ret.args = &b->args[b->argidx];
122 b->argidx += argspace;
124 return ret;
127 void xen_mc_callback(void (*fn)(void *), void *data)
129 struct mc_buffer *b = &__get_cpu_var(mc_buffer);
130 struct callback *cb;
132 if (b->cbidx == MC_BATCH)
133 xen_mc_flush();
135 cb = &b->callbacks[b->cbidx++];
136 cb->fn = fn;
137 cb->data = data;