2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
26 #include <asm/byteorder.h>
28 #include <asm/uaccess.h>
32 * Conventional PIO operations for ATA devices
35 static u8
ide_inb (unsigned long port
)
37 return (u8
) inb(port
);
40 static u16
ide_inw (unsigned long port
)
42 return (u16
) inw(port
);
45 static void ide_insw (unsigned long port
, void *addr
, u32 count
)
47 insw(port
, addr
, count
);
50 static void ide_insl (unsigned long port
, void *addr
, u32 count
)
52 insl(port
, addr
, count
);
55 static void ide_outb (u8 val
, unsigned long port
)
60 static void ide_outbsync (ide_drive_t
*drive
, u8 addr
, unsigned long port
)
65 static void ide_outw (u16 val
, unsigned long port
)
70 static void ide_outsw (unsigned long port
, void *addr
, u32 count
)
72 outsw(port
, addr
, count
);
75 static void ide_outsl (unsigned long port
, void *addr
, u32 count
)
77 outsl(port
, addr
, count
);
80 void default_hwif_iops (ide_hwif_t
*hwif
)
82 hwif
->OUTB
= ide_outb
;
83 hwif
->OUTBSYNC
= ide_outbsync
;
84 hwif
->OUTW
= ide_outw
;
85 hwif
->OUTSW
= ide_outsw
;
86 hwif
->OUTSL
= ide_outsl
;
89 hwif
->INSW
= ide_insw
;
90 hwif
->INSL
= ide_insl
;
94 * MMIO operations, typically used for SATA controllers
97 static u8
ide_mm_inb (unsigned long port
)
99 return (u8
) readb((void __iomem
*) port
);
102 static u16
ide_mm_inw (unsigned long port
)
104 return (u16
) readw((void __iomem
*) port
);
107 static void ide_mm_insw (unsigned long port
, void *addr
, u32 count
)
109 __ide_mm_insw((void __iomem
*) port
, addr
, count
);
112 static void ide_mm_insl (unsigned long port
, void *addr
, u32 count
)
114 __ide_mm_insl((void __iomem
*) port
, addr
, count
);
117 static void ide_mm_outb (u8 value
, unsigned long port
)
119 writeb(value
, (void __iomem
*) port
);
122 static void ide_mm_outbsync (ide_drive_t
*drive
, u8 value
, unsigned long port
)
124 writeb(value
, (void __iomem
*) port
);
127 static void ide_mm_outw (u16 value
, unsigned long port
)
129 writew(value
, (void __iomem
*) port
);
132 static void ide_mm_outsw (unsigned long port
, void *addr
, u32 count
)
134 __ide_mm_outsw((void __iomem
*) port
, addr
, count
);
137 static void ide_mm_outsl (unsigned long port
, void *addr
, u32 count
)
139 __ide_mm_outsl((void __iomem
*) port
, addr
, count
);
142 void default_hwif_mmiops (ide_hwif_t
*hwif
)
144 hwif
->OUTB
= ide_mm_outb
;
145 /* Most systems will need to override OUTBSYNC, alas however
146 this one is controller specific! */
147 hwif
->OUTBSYNC
= ide_mm_outbsync
;
148 hwif
->OUTW
= ide_mm_outw
;
149 hwif
->OUTSW
= ide_mm_outsw
;
150 hwif
->OUTSL
= ide_mm_outsl
;
151 hwif
->INB
= ide_mm_inb
;
152 hwif
->INW
= ide_mm_inw
;
153 hwif
->INSW
= ide_mm_insw
;
154 hwif
->INSL
= ide_mm_insl
;
157 EXPORT_SYMBOL(default_hwif_mmiops
);
159 void SELECT_DRIVE (ide_drive_t
*drive
)
161 if (HWIF(drive
)->selectproc
)
162 HWIF(drive
)->selectproc(drive
);
163 HWIF(drive
)->OUTB(drive
->select
.all
, IDE_SELECT_REG
);
166 EXPORT_SYMBOL(SELECT_DRIVE
);
168 void SELECT_MASK (ide_drive_t
*drive
, int mask
)
170 if (HWIF(drive
)->maskproc
)
171 HWIF(drive
)->maskproc(drive
, mask
);
175 * Some localbus EIDE interfaces require a special access sequence
176 * when using 32-bit I/O instructions to transfer data. We call this
177 * the "vlb_sync" sequence, which consists of three successive reads
178 * of the sector count register location, with interrupts disabled
179 * to ensure that the reads all happen together.
181 static void ata_vlb_sync(ide_drive_t
*drive
, unsigned long port
)
183 (void) HWIF(drive
)->INB(port
);
184 (void) HWIF(drive
)->INB(port
);
185 (void) HWIF(drive
)->INB(port
);
189 * This is used for most PIO data transfers *from* the IDE interface
191 static void ata_input_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
193 ide_hwif_t
*hwif
= HWIF(drive
);
194 u8 io_32bit
= drive
->io_32bit
;
199 local_irq_save(flags
);
200 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
201 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
202 local_irq_restore(flags
);
204 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
206 hwif
->INSW(IDE_DATA_REG
, buffer
, wcount
<<1);
211 * This is used for most PIO data transfers *to* the IDE interface
213 static void ata_output_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
215 ide_hwif_t
*hwif
= HWIF(drive
);
216 u8 io_32bit
= drive
->io_32bit
;
221 local_irq_save(flags
);
222 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
223 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
224 local_irq_restore(flags
);
226 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
228 hwif
->OUTSW(IDE_DATA_REG
, buffer
, wcount
<<1);
233 * The following routines are mainly used by the ATAPI drivers.
235 * These routines will round up any request for an odd number of bytes,
236 * so if an odd bytecount is specified, be sure that there's at least one
237 * extra byte allocated for the buffer.
240 static void atapi_input_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
242 ide_hwif_t
*hwif
= HWIF(drive
);
245 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
246 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
247 /* Atari has a byte-swapped IDE interface */
248 insw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
251 #endif /* CONFIG_ATARI || CONFIG_Q40 */
252 hwif
->ata_input_data(drive
, buffer
, bytecount
/ 4);
253 if ((bytecount
& 0x03) >= 2)
254 hwif
->INSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
257 static void atapi_output_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
259 ide_hwif_t
*hwif
= HWIF(drive
);
262 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
263 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
264 /* Atari has a byte-swapped IDE interface */
265 outsw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
268 #endif /* CONFIG_ATARI || CONFIG_Q40 */
269 hwif
->ata_output_data(drive
, buffer
, bytecount
/ 4);
270 if ((bytecount
& 0x03) >= 2)
271 hwif
->OUTSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
274 void default_hwif_transport(ide_hwif_t
*hwif
)
276 hwif
->ata_input_data
= ata_input_data
;
277 hwif
->ata_output_data
= ata_output_data
;
278 hwif
->atapi_input_bytes
= atapi_input_bytes
;
279 hwif
->atapi_output_bytes
= atapi_output_bytes
;
282 void ide_fix_driveid (struct hd_driveid
*id
)
284 #ifndef __LITTLE_ENDIAN
289 id
->config
= __le16_to_cpu(id
->config
);
290 id
->cyls
= __le16_to_cpu(id
->cyls
);
291 id
->reserved2
= __le16_to_cpu(id
->reserved2
);
292 id
->heads
= __le16_to_cpu(id
->heads
);
293 id
->track_bytes
= __le16_to_cpu(id
->track_bytes
);
294 id
->sector_bytes
= __le16_to_cpu(id
->sector_bytes
);
295 id
->sectors
= __le16_to_cpu(id
->sectors
);
296 id
->vendor0
= __le16_to_cpu(id
->vendor0
);
297 id
->vendor1
= __le16_to_cpu(id
->vendor1
);
298 id
->vendor2
= __le16_to_cpu(id
->vendor2
);
299 stringcast
= (u16
*)&id
->serial_no
[0];
300 for (i
= 0; i
< (20/2); i
++)
301 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
302 id
->buf_type
= __le16_to_cpu(id
->buf_type
);
303 id
->buf_size
= __le16_to_cpu(id
->buf_size
);
304 id
->ecc_bytes
= __le16_to_cpu(id
->ecc_bytes
);
305 stringcast
= (u16
*)&id
->fw_rev
[0];
306 for (i
= 0; i
< (8/2); i
++)
307 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
308 stringcast
= (u16
*)&id
->model
[0];
309 for (i
= 0; i
< (40/2); i
++)
310 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
311 id
->dword_io
= __le16_to_cpu(id
->dword_io
);
312 id
->reserved50
= __le16_to_cpu(id
->reserved50
);
313 id
->field_valid
= __le16_to_cpu(id
->field_valid
);
314 id
->cur_cyls
= __le16_to_cpu(id
->cur_cyls
);
315 id
->cur_heads
= __le16_to_cpu(id
->cur_heads
);
316 id
->cur_sectors
= __le16_to_cpu(id
->cur_sectors
);
317 id
->cur_capacity0
= __le16_to_cpu(id
->cur_capacity0
);
318 id
->cur_capacity1
= __le16_to_cpu(id
->cur_capacity1
);
319 id
->lba_capacity
= __le32_to_cpu(id
->lba_capacity
);
320 id
->dma_1word
= __le16_to_cpu(id
->dma_1word
);
321 id
->dma_mword
= __le16_to_cpu(id
->dma_mword
);
322 id
->eide_pio_modes
= __le16_to_cpu(id
->eide_pio_modes
);
323 id
->eide_dma_min
= __le16_to_cpu(id
->eide_dma_min
);
324 id
->eide_dma_time
= __le16_to_cpu(id
->eide_dma_time
);
325 id
->eide_pio
= __le16_to_cpu(id
->eide_pio
);
326 id
->eide_pio_iordy
= __le16_to_cpu(id
->eide_pio_iordy
);
327 for (i
= 0; i
< 2; ++i
)
328 id
->words69_70
[i
] = __le16_to_cpu(id
->words69_70
[i
]);
329 for (i
= 0; i
< 4; ++i
)
330 id
->words71_74
[i
] = __le16_to_cpu(id
->words71_74
[i
]);
331 id
->queue_depth
= __le16_to_cpu(id
->queue_depth
);
332 for (i
= 0; i
< 4; ++i
)
333 id
->words76_79
[i
] = __le16_to_cpu(id
->words76_79
[i
]);
334 id
->major_rev_num
= __le16_to_cpu(id
->major_rev_num
);
335 id
->minor_rev_num
= __le16_to_cpu(id
->minor_rev_num
);
336 id
->command_set_1
= __le16_to_cpu(id
->command_set_1
);
337 id
->command_set_2
= __le16_to_cpu(id
->command_set_2
);
338 id
->cfsse
= __le16_to_cpu(id
->cfsse
);
339 id
->cfs_enable_1
= __le16_to_cpu(id
->cfs_enable_1
);
340 id
->cfs_enable_2
= __le16_to_cpu(id
->cfs_enable_2
);
341 id
->csf_default
= __le16_to_cpu(id
->csf_default
);
342 id
->dma_ultra
= __le16_to_cpu(id
->dma_ultra
);
343 id
->trseuc
= __le16_to_cpu(id
->trseuc
);
344 id
->trsEuc
= __le16_to_cpu(id
->trsEuc
);
345 id
->CurAPMvalues
= __le16_to_cpu(id
->CurAPMvalues
);
346 id
->mprc
= __le16_to_cpu(id
->mprc
);
347 id
->hw_config
= __le16_to_cpu(id
->hw_config
);
348 id
->acoustic
= __le16_to_cpu(id
->acoustic
);
349 id
->msrqs
= __le16_to_cpu(id
->msrqs
);
350 id
->sxfert
= __le16_to_cpu(id
->sxfert
);
351 id
->sal
= __le16_to_cpu(id
->sal
);
352 id
->spg
= __le32_to_cpu(id
->spg
);
353 id
->lba_capacity_2
= __le64_to_cpu(id
->lba_capacity_2
);
354 for (i
= 0; i
< 22; i
++)
355 id
->words104_125
[i
] = __le16_to_cpu(id
->words104_125
[i
]);
356 id
->last_lun
= __le16_to_cpu(id
->last_lun
);
357 id
->word127
= __le16_to_cpu(id
->word127
);
358 id
->dlf
= __le16_to_cpu(id
->dlf
);
359 id
->csfo
= __le16_to_cpu(id
->csfo
);
360 for (i
= 0; i
< 26; i
++)
361 id
->words130_155
[i
] = __le16_to_cpu(id
->words130_155
[i
]);
362 id
->word156
= __le16_to_cpu(id
->word156
);
363 for (i
= 0; i
< 3; i
++)
364 id
->words157_159
[i
] = __le16_to_cpu(id
->words157_159
[i
]);
365 id
->cfa_power
= __le16_to_cpu(id
->cfa_power
);
366 for (i
= 0; i
< 14; i
++)
367 id
->words161_175
[i
] = __le16_to_cpu(id
->words161_175
[i
]);
368 for (i
= 0; i
< 31; i
++)
369 id
->words176_205
[i
] = __le16_to_cpu(id
->words176_205
[i
]);
370 for (i
= 0; i
< 48; i
++)
371 id
->words206_254
[i
] = __le16_to_cpu(id
->words206_254
[i
]);
372 id
->integrity_word
= __le16_to_cpu(id
->integrity_word
);
374 # error "Please fix <asm/byteorder.h>"
380 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
381 * removing leading/trailing blanks and compressing internal blanks.
382 * It is primarily used to tidy up the model name/number fields as
383 * returned by the WIN_[P]IDENTIFY commands.
386 void ide_fixstring (u8
*s
, const int bytecount
, const int byteswap
)
388 u8
*p
= s
, *end
= &s
[bytecount
& ~1]; /* bytecount must be even */
391 /* convert from big-endian to host byte order */
392 for (p
= end
; p
!= s
;) {
393 unsigned short *pp
= (unsigned short *) (p
-= 2);
397 /* strip leading blanks */
398 while (s
!= end
&& *s
== ' ')
400 /* compress internal blanks and strip trailing blanks */
401 while (s
!= end
&& *s
) {
402 if (*s
++ != ' ' || (s
!= end
&& *s
&& *s
!= ' '))
405 /* wipe out trailing garbage */
410 EXPORT_SYMBOL(ide_fixstring
);
413 * Needed for PCI irq sharing
415 int drive_is_ready (ide_drive_t
*drive
)
417 ide_hwif_t
*hwif
= HWIF(drive
);
420 if (drive
->waiting_for_dma
)
421 return hwif
->ide_dma_test_irq(drive
);
424 /* need to guarantee 400ns since last command was issued */
429 * We do a passive status test under shared PCI interrupts on
430 * cards that truly share the ATA side interrupt, but may also share
431 * an interrupt with another pci card/device. We make no assumptions
432 * about possible isa-pnp and pci-pnp issues yet.
435 stat
= hwif
->INB(IDE_ALTSTATUS_REG
);
437 /* Note: this may clear a pending IRQ!! */
438 stat
= hwif
->INB(IDE_STATUS_REG
);
440 if (stat
& BUSY_STAT
)
441 /* drive busy: definitely not interrupting */
444 /* drive ready: *might* be interrupting */
448 EXPORT_SYMBOL(drive_is_ready
);
451 * This routine busy-waits for the drive status to be not "busy".
452 * It then checks the status for all of the "good" bits and none
453 * of the "bad" bits, and if all is okay it returns 0. All other
454 * cases return error -- caller may then invoke ide_error().
456 * This routine should get fixed to not hog the cpu during extra long waits..
457 * That could be done by busy-waiting for the first jiffy or two, and then
458 * setting a timer to wake up at half second intervals thereafter,
459 * until timeout is achieved, before timing out.
461 static int __ide_wait_stat(ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
, u8
*rstat
)
463 ide_hwif_t
*hwif
= drive
->hwif
;
468 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
469 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
470 local_irq_set(flags
);
472 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
473 if (time_after(jiffies
, timeout
)) {
475 * One last read after the timeout in case
476 * heavy interrupt load made us not make any
477 * progress during the timeout..
479 stat
= hwif
->INB(IDE_STATUS_REG
);
480 if (!(stat
& BUSY_STAT
))
483 local_irq_restore(flags
);
488 local_irq_restore(flags
);
491 * Allow status to settle, then read it again.
492 * A few rare drives vastly violate the 400ns spec here,
493 * so we'll wait up to 10usec for a "good" status
494 * rather than expensively fail things immediately.
495 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
497 for (i
= 0; i
< 10; i
++) {
499 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), good
, bad
)) {
509 * In case of error returns error value after doing "*startstop = ide_error()".
510 * The caller should return the updated value of "startstop" in this case,
511 * "startstop" is unchanged when the function returns 0.
513 int ide_wait_stat(ide_startstop_t
*startstop
, ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
)
518 /* bail early if we've exceeded max_failures */
519 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
520 *startstop
= ide_stopped
;
524 err
= __ide_wait_stat(drive
, good
, bad
, timeout
, &stat
);
527 char *s
= (err
== -EBUSY
) ? "status timeout" : "status error";
528 *startstop
= ide_error(drive
, s
, stat
);
534 EXPORT_SYMBOL(ide_wait_stat
);
537 * ide_in_drive_list - look for drive in black/white list
538 * @id: drive identifier
539 * @drive_table: list to inspect
541 * Look for a drive in the blacklist and the whitelist tables
542 * Returns 1 if the drive is found in the table.
545 int ide_in_drive_list(struct hd_driveid
*id
, const struct drive_list_entry
*drive_table
)
547 for ( ; drive_table
->id_model
; drive_table
++)
548 if ((!strcmp(drive_table
->id_model
, id
->model
)) &&
549 (!drive_table
->id_firmware
||
550 strstr(id
->fw_rev
, drive_table
->id_firmware
)))
555 EXPORT_SYMBOL_GPL(ide_in_drive_list
);
558 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
559 * We list them here and depend on the device side cable detection for them.
561 * Some optical devices with the buggy firmwares have the same problem.
563 static const struct drive_list_entry ivb_list
[] = {
564 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
565 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
566 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
567 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
568 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
573 * All hosts that use the 80c ribbon must use!
574 * The name is derived from upper byte of word 93 and the 80c ribbon.
576 u8
eighty_ninty_three (ide_drive_t
*drive
)
578 ide_hwif_t
*hwif
= drive
->hwif
;
579 struct hd_driveid
*id
= drive
->id
;
580 int ivb
= ide_in_drive_list(id
, ivb_list
);
582 if (hwif
->cbl
== ATA_CBL_PATA40_SHORT
)
586 printk(KERN_DEBUG
"%s: skipping word 93 validity check\n",
589 if (ide_dev_is_sata(id
) && !ivb
)
592 if (hwif
->cbl
!= ATA_CBL_PATA80
&& !ivb
)
597 * - force bit13 (80c cable present) check also for !ivb devices
598 * (unless the slave device is pre-ATA3)
600 if ((id
->hw_config
& 0x4000) || (ivb
&& (id
->hw_config
& 0x2000)))
604 if (drive
->udma33_warned
== 1)
607 printk(KERN_WARNING
"%s: %s side 80-wire cable detection failed, "
608 "limiting max speed to UDMA33\n",
610 hwif
->cbl
== ATA_CBL_PATA80
? "drive" : "host");
612 drive
->udma33_warned
= 1;
617 int ide_ata66_check (ide_drive_t
*drive
, ide_task_t
*args
)
619 if (args
->tf
.command
== WIN_SETFEATURES
&&
620 args
->tf
.nsect
> XFER_UDMA_2
&&
621 args
->tf
.feature
== SETFEATURES_XFER
) {
622 if (eighty_ninty_three(drive
) == 0) {
623 printk(KERN_WARNING
"%s: UDMA speeds >UDMA33 cannot "
624 "be set\n", drive
->name
);
633 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
634 * 1 : Safe to update drive->id DMA registers.
635 * 0 : OOPs not allowed.
637 int set_transfer (ide_drive_t
*drive
, ide_task_t
*args
)
639 if (args
->tf
.command
== WIN_SETFEATURES
&&
640 args
->tf
.nsect
>= XFER_SW_DMA_0
&&
641 args
->tf
.feature
== SETFEATURES_XFER
&&
642 (drive
->id
->dma_ultra
||
643 drive
->id
->dma_mword
||
644 drive
->id
->dma_1word
))
650 #ifdef CONFIG_BLK_DEV_IDEDMA
651 static u8
ide_auto_reduce_xfer (ide_drive_t
*drive
)
653 if (!drive
->crc_count
)
654 return drive
->current_speed
;
655 drive
->crc_count
= 0;
657 switch(drive
->current_speed
) {
658 case XFER_UDMA_7
: return XFER_UDMA_6
;
659 case XFER_UDMA_6
: return XFER_UDMA_5
;
660 case XFER_UDMA_5
: return XFER_UDMA_4
;
661 case XFER_UDMA_4
: return XFER_UDMA_3
;
662 case XFER_UDMA_3
: return XFER_UDMA_2
;
663 case XFER_UDMA_2
: return XFER_UDMA_1
;
664 case XFER_UDMA_1
: return XFER_UDMA_0
;
666 * OOPS we do not goto non Ultra DMA modes
667 * without iCRC's available we force
668 * the system to PIO and make the user
669 * invoke the ATA-1 ATA-2 DMA modes.
672 default: return XFER_PIO_4
;
675 #endif /* CONFIG_BLK_DEV_IDEDMA */
677 int ide_driveid_update(ide_drive_t
*drive
)
679 ide_hwif_t
*hwif
= drive
->hwif
;
680 struct hd_driveid
*id
;
681 unsigned long timeout
, flags
;
684 * Re-read drive->id for possible DMA mode
685 * change (copied from ide-probe.c)
688 SELECT_MASK(drive
, 1);
689 ide_set_irq(drive
, 1);
691 hwif
->OUTB(WIN_IDENTIFY
, IDE_COMMAND_REG
);
692 timeout
= jiffies
+ WAIT_WORSTCASE
;
694 if (time_after(jiffies
, timeout
)) {
695 SELECT_MASK(drive
, 0);
696 return 0; /* drive timed-out */
698 msleep(50); /* give drive a breather */
699 } while (hwif
->INB(IDE_ALTSTATUS_REG
) & BUSY_STAT
);
700 msleep(50); /* wait for IRQ and DRQ_STAT */
701 if (!OK_STAT(hwif
->INB(IDE_STATUS_REG
),DRQ_STAT
,BAD_R_STAT
)) {
702 SELECT_MASK(drive
, 0);
703 printk("%s: CHECK for good STATUS\n", drive
->name
);
706 local_irq_save(flags
);
707 SELECT_MASK(drive
, 0);
708 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
710 local_irq_restore(flags
);
713 ata_input_data(drive
, id
, SECTOR_WORDS
);
714 (void) hwif
->INB(IDE_STATUS_REG
); /* clear drive IRQ */
716 local_irq_restore(flags
);
719 drive
->id
->dma_ultra
= id
->dma_ultra
;
720 drive
->id
->dma_mword
= id
->dma_mword
;
721 drive
->id
->dma_1word
= id
->dma_1word
;
722 /* anything more ? */
725 if (drive
->using_dma
&& ide_id_dma_bug(drive
))
732 int ide_config_drive_speed(ide_drive_t
*drive
, u8 speed
)
734 ide_hwif_t
*hwif
= drive
->hwif
;
738 // while (HWGROUP(drive)->busy)
741 #ifdef CONFIG_BLK_DEV_IDEDMA
742 if (hwif
->dma_host_set
) /* check if host supports DMA */
743 hwif
->dma_host_set(drive
, 0);
746 /* Skip setting PIO flow-control modes on pre-EIDE drives */
747 if ((speed
& 0xf8) == XFER_PIO_0
&& !(drive
->id
->capability
& 0x08))
751 * Don't use ide_wait_cmd here - it will
752 * attempt to set_geometry and recalibrate,
753 * but for some reason these don't work at
754 * this point (lost interrupt).
757 * Select the drive, and issue the SETFEATURES command
759 disable_irq_nosync(hwif
->irq
);
762 * FIXME: we race against the running IRQ here if
763 * this is called from non IRQ context. If we use
764 * disable_irq() we hang on the error path. Work
770 SELECT_MASK(drive
, 0);
772 ide_set_irq(drive
, 0);
773 hwif
->OUTB(speed
, IDE_NSECTOR_REG
);
774 hwif
->OUTB(SETFEATURES_XFER
, IDE_FEATURE_REG
);
775 hwif
->OUTBSYNC(drive
, WIN_SETFEATURES
, IDE_COMMAND_REG
);
776 if (drive
->quirk_list
== 2)
777 ide_set_irq(drive
, 1);
779 error
= __ide_wait_stat(drive
, drive
->ready_stat
,
780 BUSY_STAT
|DRQ_STAT
|ERR_STAT
,
783 SELECT_MASK(drive
, 0);
785 enable_irq(hwif
->irq
);
788 (void) ide_dump_status(drive
, "set_drive_speed_status", stat
);
792 drive
->id
->dma_ultra
&= ~0xFF00;
793 drive
->id
->dma_mword
&= ~0x0F00;
794 drive
->id
->dma_1word
&= ~0x0F00;
797 #ifdef CONFIG_BLK_DEV_IDEDMA
798 if ((speed
>= XFER_SW_DMA_0
|| (hwif
->host_flags
& IDE_HFLAG_VDMA
)) &&
800 hwif
->dma_host_set(drive
, 1);
801 else if (hwif
->dma_host_set
) /* check if host supports DMA */
802 ide_dma_off_quietly(drive
);
806 case XFER_UDMA_7
: drive
->id
->dma_ultra
|= 0x8080; break;
807 case XFER_UDMA_6
: drive
->id
->dma_ultra
|= 0x4040; break;
808 case XFER_UDMA_5
: drive
->id
->dma_ultra
|= 0x2020; break;
809 case XFER_UDMA_4
: drive
->id
->dma_ultra
|= 0x1010; break;
810 case XFER_UDMA_3
: drive
->id
->dma_ultra
|= 0x0808; break;
811 case XFER_UDMA_2
: drive
->id
->dma_ultra
|= 0x0404; break;
812 case XFER_UDMA_1
: drive
->id
->dma_ultra
|= 0x0202; break;
813 case XFER_UDMA_0
: drive
->id
->dma_ultra
|= 0x0101; break;
814 case XFER_MW_DMA_2
: drive
->id
->dma_mword
|= 0x0404; break;
815 case XFER_MW_DMA_1
: drive
->id
->dma_mword
|= 0x0202; break;
816 case XFER_MW_DMA_0
: drive
->id
->dma_mword
|= 0x0101; break;
817 case XFER_SW_DMA_2
: drive
->id
->dma_1word
|= 0x0404; break;
818 case XFER_SW_DMA_1
: drive
->id
->dma_1word
|= 0x0202; break;
819 case XFER_SW_DMA_0
: drive
->id
->dma_1word
|= 0x0101; break;
822 if (!drive
->init_speed
)
823 drive
->init_speed
= speed
;
824 drive
->current_speed
= speed
;
829 * This should get invoked any time we exit the driver to
830 * wait for an interrupt response from a drive. handler() points
831 * at the appropriate code to handle the next interrupt, and a
832 * timer is started to prevent us from waiting forever in case
833 * something goes wrong (see the ide_timer_expiry() handler later on).
835 * See also ide_execute_command
837 static void __ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
838 unsigned int timeout
, ide_expiry_t
*expiry
)
840 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
842 if (hwgroup
->handler
!= NULL
) {
843 printk(KERN_CRIT
"%s: ide_set_handler: handler not null; "
845 drive
->name
, hwgroup
->handler
, handler
);
847 hwgroup
->handler
= handler
;
848 hwgroup
->expiry
= expiry
;
849 hwgroup
->timer
.expires
= jiffies
+ timeout
;
850 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
851 add_timer(&hwgroup
->timer
);
854 void ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
855 unsigned int timeout
, ide_expiry_t
*expiry
)
858 spin_lock_irqsave(&ide_lock
, flags
);
859 __ide_set_handler(drive
, handler
, timeout
, expiry
);
860 spin_unlock_irqrestore(&ide_lock
, flags
);
863 EXPORT_SYMBOL(ide_set_handler
);
866 * ide_execute_command - execute an IDE command
867 * @drive: IDE drive to issue the command against
868 * @command: command byte to write
869 * @handler: handler for next phase
870 * @timeout: timeout for command
871 * @expiry: handler to run on timeout
873 * Helper function to issue an IDE command. This handles the
874 * atomicity requirements, command timing and ensures that the
875 * handler and IRQ setup do not race. All IDE command kick off
876 * should go via this function or do equivalent locking.
879 void ide_execute_command(ide_drive_t
*drive
, u8 cmd
, ide_handler_t
*handler
,
880 unsigned timeout
, ide_expiry_t
*expiry
)
883 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
884 ide_hwif_t
*hwif
= HWIF(drive
);
886 spin_lock_irqsave(&ide_lock
, flags
);
888 BUG_ON(hwgroup
->handler
);
889 hwgroup
->handler
= handler
;
890 hwgroup
->expiry
= expiry
;
891 hwgroup
->timer
.expires
= jiffies
+ timeout
;
892 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
893 add_timer(&hwgroup
->timer
);
894 hwif
->OUTBSYNC(drive
, cmd
, IDE_COMMAND_REG
);
895 /* Drive takes 400nS to respond, we must avoid the IRQ being
896 serviced before that.
898 FIXME: we could skip this delay with care on non shared
902 spin_unlock_irqrestore(&ide_lock
, flags
);
905 EXPORT_SYMBOL(ide_execute_command
);
909 static ide_startstop_t
do_reset1 (ide_drive_t
*, int);
912 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
913 * during an atapi drive reset operation. If the drive has not yet responded,
914 * and we have not yet hit our maximum waiting time, then the timer is restarted
917 static ide_startstop_t
atapi_reset_pollfunc (ide_drive_t
*drive
)
919 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
920 ide_hwif_t
*hwif
= HWIF(drive
);
926 if (OK_STAT(stat
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
927 printk("%s: ATAPI reset complete\n", drive
->name
);
929 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
930 BUG_ON(HWGROUP(drive
)->handler
!= NULL
);
931 ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
932 /* continue polling */
936 hwgroup
->polling
= 0;
937 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
939 /* do it the old fashioned way */
940 return do_reset1(drive
, 1);
943 hwgroup
->polling
= 0;
944 hwgroup
->resetting
= 0;
949 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
950 * during an ide reset operation. If the drives have not yet responded,
951 * and we have not yet hit our maximum waiting time, then the timer is restarted
954 static ide_startstop_t
reset_pollfunc (ide_drive_t
*drive
)
956 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
957 ide_hwif_t
*hwif
= HWIF(drive
);
960 if (hwif
->reset_poll
!= NULL
) {
961 if (hwif
->reset_poll(drive
)) {
962 printk(KERN_ERR
"%s: host reset_poll failure for %s.\n",
963 hwif
->name
, drive
->name
);
968 if (!OK_STAT(tmp
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
969 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
970 BUG_ON(HWGROUP(drive
)->handler
!= NULL
);
971 ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
972 /* continue polling */
975 printk("%s: reset timed-out, status=0x%02x\n", hwif
->name
, tmp
);
978 printk("%s: reset: ", hwif
->name
);
979 if ((tmp
= hwif
->INB(IDE_ERROR_REG
)) == 1) {
985 switch (tmp
& 0x7f) {
986 case 1: printk("passed");
988 case 2: printk("formatter device error");
990 case 3: printk("sector buffer error");
992 case 4: printk("ECC circuitry error");
994 case 5: printk("controlling MPU error");
996 default:printk("error (0x%02x?)", tmp
);
999 printk("; slave: failed");
1003 hwgroup
->polling
= 0; /* done polling */
1004 hwgroup
->resetting
= 0; /* done reset attempt */
1008 static void check_dma_crc(ide_drive_t
*drive
)
1010 #ifdef CONFIG_BLK_DEV_IDEDMA
1011 if (drive
->crc_count
) {
1012 ide_dma_off_quietly(drive
);
1013 ide_set_xfer_rate(drive
, ide_auto_reduce_xfer(drive
));
1014 if (drive
->current_speed
>= XFER_SW_DMA_0
)
1021 static void ide_disk_pre_reset(ide_drive_t
*drive
)
1023 int legacy
= (drive
->id
->cfs_enable_2
& 0x0400) ? 0 : 1;
1025 drive
->special
.all
= 0;
1026 drive
->special
.b
.set_geometry
= legacy
;
1027 drive
->special
.b
.recalibrate
= legacy
;
1028 drive
->mult_count
= 0;
1029 if (!drive
->keep_settings
&& !drive
->using_dma
)
1030 drive
->mult_req
= 0;
1031 if (drive
->mult_req
!= drive
->mult_count
)
1032 drive
->special
.b
.set_multmode
= 1;
1035 static void pre_reset(ide_drive_t
*drive
)
1037 if (drive
->media
== ide_disk
)
1038 ide_disk_pre_reset(drive
);
1040 drive
->post_reset
= 1;
1042 if (!drive
->keep_settings
) {
1043 if (drive
->using_dma
) {
1044 check_dma_crc(drive
);
1047 drive
->io_32bit
= 0;
1051 if (drive
->using_dma
)
1052 check_dma_crc(drive
);
1054 if (HWIF(drive
)->pre_reset
!= NULL
)
1055 HWIF(drive
)->pre_reset(drive
);
1057 if (drive
->current_speed
!= 0xff)
1058 drive
->desired_speed
= drive
->current_speed
;
1059 drive
->current_speed
= 0xff;
1063 * do_reset1() attempts to recover a confused drive by resetting it.
1064 * Unfortunately, resetting a disk drive actually resets all devices on
1065 * the same interface, so it can really be thought of as resetting the
1066 * interface rather than resetting the drive.
1068 * ATAPI devices have their own reset mechanism which allows them to be
1069 * individually reset without clobbering other devices on the same interface.
1071 * Unfortunately, the IDE interface does not generate an interrupt to let
1072 * us know when the reset operation has finished, so we must poll for this.
1073 * Equally poor, though, is the fact that this may a very long time to complete,
1074 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1075 * we set a timer to poll at 50ms intervals.
1077 static ide_startstop_t
do_reset1 (ide_drive_t
*drive
, int do_not_try_atapi
)
1080 unsigned long flags
;
1082 ide_hwgroup_t
*hwgroup
;
1084 spin_lock_irqsave(&ide_lock
, flags
);
1086 hwgroup
= HWGROUP(drive
);
1088 /* We must not reset with running handlers */
1089 BUG_ON(hwgroup
->handler
!= NULL
);
1091 /* For an ATAPI device, first try an ATAPI SRST. */
1092 if (drive
->media
!= ide_disk
&& !do_not_try_atapi
) {
1093 hwgroup
->resetting
= 1;
1095 SELECT_DRIVE(drive
);
1097 hwif
->OUTBSYNC(drive
, WIN_SRST
, IDE_COMMAND_REG
);
1099 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1100 hwgroup
->polling
= 1;
1101 __ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1102 spin_unlock_irqrestore(&ide_lock
, flags
);
1107 * First, reset any device state data we were maintaining
1108 * for any of the drives on this interface.
1110 for (unit
= 0; unit
< MAX_DRIVES
; ++unit
)
1111 pre_reset(&hwif
->drives
[unit
]);
1113 if (!IDE_CONTROL_REG
) {
1114 spin_unlock_irqrestore(&ide_lock
, flags
);
1118 hwgroup
->resetting
= 1;
1120 * Note that we also set nIEN while resetting the device,
1121 * to mask unwanted interrupts from the interface during the reset.
1122 * However, due to the design of PC hardware, this will cause an
1123 * immediate interrupt due to the edge transition it produces.
1124 * This single interrupt gives us a "fast poll" for drives that
1125 * recover from reset very quickly, saving us the first 50ms wait time.
1127 /* set SRST and nIEN */
1128 hwif
->OUTBSYNC(drive
, drive
->ctl
|6,IDE_CONTROL_REG
);
1129 /* more than enough time */
1131 if (drive
->quirk_list
== 2) {
1132 /* clear SRST and nIEN */
1133 hwif
->OUTBSYNC(drive
, drive
->ctl
, IDE_CONTROL_REG
);
1135 /* clear SRST, leave nIEN */
1136 hwif
->OUTBSYNC(drive
, drive
->ctl
|2, IDE_CONTROL_REG
);
1138 /* more than enough time */
1140 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1141 hwgroup
->polling
= 1;
1142 __ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1145 * Some weird controller like resetting themselves to a strange
1146 * state when the disks are reset this way. At least, the Winbond
1147 * 553 documentation says that
1149 if (hwif
->resetproc
)
1150 hwif
->resetproc(drive
);
1152 spin_unlock_irqrestore(&ide_lock
, flags
);
1157 * ide_do_reset() is the entry point to the drive/interface reset code.
1160 ide_startstop_t
ide_do_reset (ide_drive_t
*drive
)
1162 return do_reset1(drive
, 0);
1165 EXPORT_SYMBOL(ide_do_reset
);
1168 * ide_wait_not_busy() waits for the currently selected device on the hwif
1169 * to report a non-busy status, see comments in ide_probe_port().
1171 int ide_wait_not_busy(ide_hwif_t
*hwif
, unsigned long timeout
)
1177 * Turn this into a schedule() sleep once I'm sure
1178 * about locking issues (2.5 work ?).
1181 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1182 if ((stat
& BUSY_STAT
) == 0)
1185 * Assume a value of 0xff means nothing is connected to
1186 * the interface and it doesn't implement the pull-down
1191 touch_softlockup_watchdog();
1192 touch_nmi_watchdog();
1197 EXPORT_SYMBOL_GPL(ide_wait_not_busy
);