x86: fix bootup crash in native_read_tsc()
[wrt350n-kernel.git] / drivers / ide / ide-iops.c
blob16b1f6e12781a7c53a1e5ea1cb3b8bc786b971df
1 /*
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
5 */
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
32 * Conventional PIO operations for ATA devices
35 static u8 ide_inb (unsigned long port)
37 return (u8) inb(port);
40 static u16 ide_inw (unsigned long port)
42 return (u16) inw(port);
45 static void ide_insw (unsigned long port, void *addr, u32 count)
47 insw(port, addr, count);
50 static void ide_insl (unsigned long port, void *addr, u32 count)
52 insl(port, addr, count);
55 static void ide_outb (u8 val, unsigned long port)
57 outb(val, port);
60 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
62 outb(addr, port);
65 static void ide_outw (u16 val, unsigned long port)
67 outw(val, port);
70 static void ide_outsw (unsigned long port, void *addr, u32 count)
72 outsw(port, addr, count);
75 static void ide_outsl (unsigned long port, void *addr, u32 count)
77 outsl(port, addr, count);
80 void default_hwif_iops (ide_hwif_t *hwif)
82 hwif->OUTB = ide_outb;
83 hwif->OUTBSYNC = ide_outbsync;
84 hwif->OUTW = ide_outw;
85 hwif->OUTSW = ide_outsw;
86 hwif->OUTSL = ide_outsl;
87 hwif->INB = ide_inb;
88 hwif->INW = ide_inw;
89 hwif->INSW = ide_insw;
90 hwif->INSL = ide_insl;
94 * MMIO operations, typically used for SATA controllers
97 static u8 ide_mm_inb (unsigned long port)
99 return (u8) readb((void __iomem *) port);
102 static u16 ide_mm_inw (unsigned long port)
104 return (u16) readw((void __iomem *) port);
107 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
109 __ide_mm_insw((void __iomem *) port, addr, count);
112 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
114 __ide_mm_insl((void __iomem *) port, addr, count);
117 static void ide_mm_outb (u8 value, unsigned long port)
119 writeb(value, (void __iomem *) port);
122 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
124 writeb(value, (void __iomem *) port);
127 static void ide_mm_outw (u16 value, unsigned long port)
129 writew(value, (void __iomem *) port);
132 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
134 __ide_mm_outsw((void __iomem *) port, addr, count);
137 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
139 __ide_mm_outsl((void __iomem *) port, addr, count);
142 void default_hwif_mmiops (ide_hwif_t *hwif)
144 hwif->OUTB = ide_mm_outb;
145 /* Most systems will need to override OUTBSYNC, alas however
146 this one is controller specific! */
147 hwif->OUTBSYNC = ide_mm_outbsync;
148 hwif->OUTW = ide_mm_outw;
149 hwif->OUTSW = ide_mm_outsw;
150 hwif->OUTSL = ide_mm_outsl;
151 hwif->INB = ide_mm_inb;
152 hwif->INW = ide_mm_inw;
153 hwif->INSW = ide_mm_insw;
154 hwif->INSL = ide_mm_insl;
157 EXPORT_SYMBOL(default_hwif_mmiops);
159 void SELECT_DRIVE (ide_drive_t *drive)
161 if (HWIF(drive)->selectproc)
162 HWIF(drive)->selectproc(drive);
163 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
166 EXPORT_SYMBOL(SELECT_DRIVE);
168 void SELECT_MASK (ide_drive_t *drive, int mask)
170 if (HWIF(drive)->maskproc)
171 HWIF(drive)->maskproc(drive, mask);
175 * Some localbus EIDE interfaces require a special access sequence
176 * when using 32-bit I/O instructions to transfer data. We call this
177 * the "vlb_sync" sequence, which consists of three successive reads
178 * of the sector count register location, with interrupts disabled
179 * to ensure that the reads all happen together.
181 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
183 (void) HWIF(drive)->INB(port);
184 (void) HWIF(drive)->INB(port);
185 (void) HWIF(drive)->INB(port);
189 * This is used for most PIO data transfers *from* the IDE interface
191 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
193 ide_hwif_t *hwif = HWIF(drive);
194 u8 io_32bit = drive->io_32bit;
196 if (io_32bit) {
197 if (io_32bit & 2) {
198 unsigned long flags;
199 local_irq_save(flags);
200 ata_vlb_sync(drive, IDE_NSECTOR_REG);
201 hwif->INSL(IDE_DATA_REG, buffer, wcount);
202 local_irq_restore(flags);
203 } else
204 hwif->INSL(IDE_DATA_REG, buffer, wcount);
205 } else {
206 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
211 * This is used for most PIO data transfers *to* the IDE interface
213 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
215 ide_hwif_t *hwif = HWIF(drive);
216 u8 io_32bit = drive->io_32bit;
218 if (io_32bit) {
219 if (io_32bit & 2) {
220 unsigned long flags;
221 local_irq_save(flags);
222 ata_vlb_sync(drive, IDE_NSECTOR_REG);
223 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
224 local_irq_restore(flags);
225 } else
226 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
227 } else {
228 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
233 * The following routines are mainly used by the ATAPI drivers.
235 * These routines will round up any request for an odd number of bytes,
236 * so if an odd bytecount is specified, be sure that there's at least one
237 * extra byte allocated for the buffer.
240 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
242 ide_hwif_t *hwif = HWIF(drive);
244 ++bytecount;
245 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
246 if (MACH_IS_ATARI || MACH_IS_Q40) {
247 /* Atari has a byte-swapped IDE interface */
248 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
249 return;
251 #endif /* CONFIG_ATARI || CONFIG_Q40 */
252 hwif->ata_input_data(drive, buffer, bytecount / 4);
253 if ((bytecount & 0x03) >= 2)
254 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
257 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
259 ide_hwif_t *hwif = HWIF(drive);
261 ++bytecount;
262 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
263 if (MACH_IS_ATARI || MACH_IS_Q40) {
264 /* Atari has a byte-swapped IDE interface */
265 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
266 return;
268 #endif /* CONFIG_ATARI || CONFIG_Q40 */
269 hwif->ata_output_data(drive, buffer, bytecount / 4);
270 if ((bytecount & 0x03) >= 2)
271 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
274 void default_hwif_transport(ide_hwif_t *hwif)
276 hwif->ata_input_data = ata_input_data;
277 hwif->ata_output_data = ata_output_data;
278 hwif->atapi_input_bytes = atapi_input_bytes;
279 hwif->atapi_output_bytes = atapi_output_bytes;
282 void ide_fix_driveid (struct hd_driveid *id)
284 #ifndef __LITTLE_ENDIAN
285 # ifdef __BIG_ENDIAN
286 int i;
287 u16 *stringcast;
289 id->config = __le16_to_cpu(id->config);
290 id->cyls = __le16_to_cpu(id->cyls);
291 id->reserved2 = __le16_to_cpu(id->reserved2);
292 id->heads = __le16_to_cpu(id->heads);
293 id->track_bytes = __le16_to_cpu(id->track_bytes);
294 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
295 id->sectors = __le16_to_cpu(id->sectors);
296 id->vendor0 = __le16_to_cpu(id->vendor0);
297 id->vendor1 = __le16_to_cpu(id->vendor1);
298 id->vendor2 = __le16_to_cpu(id->vendor2);
299 stringcast = (u16 *)&id->serial_no[0];
300 for (i = 0; i < (20/2); i++)
301 stringcast[i] = __le16_to_cpu(stringcast[i]);
302 id->buf_type = __le16_to_cpu(id->buf_type);
303 id->buf_size = __le16_to_cpu(id->buf_size);
304 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
305 stringcast = (u16 *)&id->fw_rev[0];
306 for (i = 0; i < (8/2); i++)
307 stringcast[i] = __le16_to_cpu(stringcast[i]);
308 stringcast = (u16 *)&id->model[0];
309 for (i = 0; i < (40/2); i++)
310 stringcast[i] = __le16_to_cpu(stringcast[i]);
311 id->dword_io = __le16_to_cpu(id->dword_io);
312 id->reserved50 = __le16_to_cpu(id->reserved50);
313 id->field_valid = __le16_to_cpu(id->field_valid);
314 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
315 id->cur_heads = __le16_to_cpu(id->cur_heads);
316 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
317 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
318 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
319 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
320 id->dma_1word = __le16_to_cpu(id->dma_1word);
321 id->dma_mword = __le16_to_cpu(id->dma_mword);
322 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
323 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
324 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
325 id->eide_pio = __le16_to_cpu(id->eide_pio);
326 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
327 for (i = 0; i < 2; ++i)
328 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
329 for (i = 0; i < 4; ++i)
330 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
331 id->queue_depth = __le16_to_cpu(id->queue_depth);
332 for (i = 0; i < 4; ++i)
333 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
334 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
335 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
336 id->command_set_1 = __le16_to_cpu(id->command_set_1);
337 id->command_set_2 = __le16_to_cpu(id->command_set_2);
338 id->cfsse = __le16_to_cpu(id->cfsse);
339 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
340 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
341 id->csf_default = __le16_to_cpu(id->csf_default);
342 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
343 id->trseuc = __le16_to_cpu(id->trseuc);
344 id->trsEuc = __le16_to_cpu(id->trsEuc);
345 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
346 id->mprc = __le16_to_cpu(id->mprc);
347 id->hw_config = __le16_to_cpu(id->hw_config);
348 id->acoustic = __le16_to_cpu(id->acoustic);
349 id->msrqs = __le16_to_cpu(id->msrqs);
350 id->sxfert = __le16_to_cpu(id->sxfert);
351 id->sal = __le16_to_cpu(id->sal);
352 id->spg = __le32_to_cpu(id->spg);
353 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
354 for (i = 0; i < 22; i++)
355 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
356 id->last_lun = __le16_to_cpu(id->last_lun);
357 id->word127 = __le16_to_cpu(id->word127);
358 id->dlf = __le16_to_cpu(id->dlf);
359 id->csfo = __le16_to_cpu(id->csfo);
360 for (i = 0; i < 26; i++)
361 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
362 id->word156 = __le16_to_cpu(id->word156);
363 for (i = 0; i < 3; i++)
364 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
365 id->cfa_power = __le16_to_cpu(id->cfa_power);
366 for (i = 0; i < 14; i++)
367 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
368 for (i = 0; i < 31; i++)
369 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
370 for (i = 0; i < 48; i++)
371 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
372 id->integrity_word = __le16_to_cpu(id->integrity_word);
373 # else
374 # error "Please fix <asm/byteorder.h>"
375 # endif
376 #endif
380 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
381 * removing leading/trailing blanks and compressing internal blanks.
382 * It is primarily used to tidy up the model name/number fields as
383 * returned by the WIN_[P]IDENTIFY commands.
386 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
388 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
390 if (byteswap) {
391 /* convert from big-endian to host byte order */
392 for (p = end ; p != s;) {
393 unsigned short *pp = (unsigned short *) (p -= 2);
394 *pp = ntohs(*pp);
397 /* strip leading blanks */
398 while (s != end && *s == ' ')
399 ++s;
400 /* compress internal blanks and strip trailing blanks */
401 while (s != end && *s) {
402 if (*s++ != ' ' || (s != end && *s && *s != ' '))
403 *p++ = *(s-1);
405 /* wipe out trailing garbage */
406 while (p != end)
407 *p++ = '\0';
410 EXPORT_SYMBOL(ide_fixstring);
413 * Needed for PCI irq sharing
415 int drive_is_ready (ide_drive_t *drive)
417 ide_hwif_t *hwif = HWIF(drive);
418 u8 stat = 0;
420 if (drive->waiting_for_dma)
421 return hwif->ide_dma_test_irq(drive);
423 #if 0
424 /* need to guarantee 400ns since last command was issued */
425 udelay(1);
426 #endif
429 * We do a passive status test under shared PCI interrupts on
430 * cards that truly share the ATA side interrupt, but may also share
431 * an interrupt with another pci card/device. We make no assumptions
432 * about possible isa-pnp and pci-pnp issues yet.
434 if (IDE_CONTROL_REG)
435 stat = hwif->INB(IDE_ALTSTATUS_REG);
436 else
437 /* Note: this may clear a pending IRQ!! */
438 stat = hwif->INB(IDE_STATUS_REG);
440 if (stat & BUSY_STAT)
441 /* drive busy: definitely not interrupting */
442 return 0;
444 /* drive ready: *might* be interrupting */
445 return 1;
448 EXPORT_SYMBOL(drive_is_ready);
451 * This routine busy-waits for the drive status to be not "busy".
452 * It then checks the status for all of the "good" bits and none
453 * of the "bad" bits, and if all is okay it returns 0. All other
454 * cases return error -- caller may then invoke ide_error().
456 * This routine should get fixed to not hog the cpu during extra long waits..
457 * That could be done by busy-waiting for the first jiffy or two, and then
458 * setting a timer to wake up at half second intervals thereafter,
459 * until timeout is achieved, before timing out.
461 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
463 ide_hwif_t *hwif = drive->hwif;
464 unsigned long flags;
465 int i;
466 u8 stat;
468 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
469 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
470 local_irq_set(flags);
471 timeout += jiffies;
472 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
473 if (time_after(jiffies, timeout)) {
475 * One last read after the timeout in case
476 * heavy interrupt load made us not make any
477 * progress during the timeout..
479 stat = hwif->INB(IDE_STATUS_REG);
480 if (!(stat & BUSY_STAT))
481 break;
483 local_irq_restore(flags);
484 *rstat = stat;
485 return -EBUSY;
488 local_irq_restore(flags);
491 * Allow status to settle, then read it again.
492 * A few rare drives vastly violate the 400ns spec here,
493 * so we'll wait up to 10usec for a "good" status
494 * rather than expensively fail things immediately.
495 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
497 for (i = 0; i < 10; i++) {
498 udelay(1);
499 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
500 *rstat = stat;
501 return 0;
504 *rstat = stat;
505 return -EFAULT;
509 * In case of error returns error value after doing "*startstop = ide_error()".
510 * The caller should return the updated value of "startstop" in this case,
511 * "startstop" is unchanged when the function returns 0.
513 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
515 int err;
516 u8 stat;
518 /* bail early if we've exceeded max_failures */
519 if (drive->max_failures && (drive->failures > drive->max_failures)) {
520 *startstop = ide_stopped;
521 return 1;
524 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
526 if (err) {
527 char *s = (err == -EBUSY) ? "status timeout" : "status error";
528 *startstop = ide_error(drive, s, stat);
531 return err;
534 EXPORT_SYMBOL(ide_wait_stat);
537 * ide_in_drive_list - look for drive in black/white list
538 * @id: drive identifier
539 * @drive_table: list to inspect
541 * Look for a drive in the blacklist and the whitelist tables
542 * Returns 1 if the drive is found in the table.
545 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
547 for ( ; drive_table->id_model; drive_table++)
548 if ((!strcmp(drive_table->id_model, id->model)) &&
549 (!drive_table->id_firmware ||
550 strstr(id->fw_rev, drive_table->id_firmware)))
551 return 1;
552 return 0;
555 EXPORT_SYMBOL_GPL(ide_in_drive_list);
558 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
559 * We list them here and depend on the device side cable detection for them.
561 * Some optical devices with the buggy firmwares have the same problem.
563 static const struct drive_list_entry ivb_list[] = {
564 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
565 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
566 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
567 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
568 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
569 { NULL , NULL }
573 * All hosts that use the 80c ribbon must use!
574 * The name is derived from upper byte of word 93 and the 80c ribbon.
576 u8 eighty_ninty_three (ide_drive_t *drive)
578 ide_hwif_t *hwif = drive->hwif;
579 struct hd_driveid *id = drive->id;
580 int ivb = ide_in_drive_list(id, ivb_list);
582 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
583 return 1;
585 if (ivb)
586 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
587 drive->name);
589 if (ide_dev_is_sata(id) && !ivb)
590 return 1;
592 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
593 goto no_80w;
596 * FIXME:
597 * - force bit13 (80c cable present) check also for !ivb devices
598 * (unless the slave device is pre-ATA3)
600 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
601 return 1;
603 no_80w:
604 if (drive->udma33_warned == 1)
605 return 0;
607 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
608 "limiting max speed to UDMA33\n",
609 drive->name,
610 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
612 drive->udma33_warned = 1;
614 return 0;
617 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
619 if (args->tf.command == WIN_SETFEATURES &&
620 args->tf.nsect > XFER_UDMA_2 &&
621 args->tf.feature == SETFEATURES_XFER) {
622 if (eighty_ninty_three(drive) == 0) {
623 printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
624 "be set\n", drive->name);
625 return 1;
629 return 0;
633 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
634 * 1 : Safe to update drive->id DMA registers.
635 * 0 : OOPs not allowed.
637 int set_transfer (ide_drive_t *drive, ide_task_t *args)
639 if (args->tf.command == WIN_SETFEATURES &&
640 args->tf.nsect >= XFER_SW_DMA_0 &&
641 args->tf.feature == SETFEATURES_XFER &&
642 (drive->id->dma_ultra ||
643 drive->id->dma_mword ||
644 drive->id->dma_1word))
645 return 1;
647 return 0;
650 #ifdef CONFIG_BLK_DEV_IDEDMA
651 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
653 if (!drive->crc_count)
654 return drive->current_speed;
655 drive->crc_count = 0;
657 switch(drive->current_speed) {
658 case XFER_UDMA_7: return XFER_UDMA_6;
659 case XFER_UDMA_6: return XFER_UDMA_5;
660 case XFER_UDMA_5: return XFER_UDMA_4;
661 case XFER_UDMA_4: return XFER_UDMA_3;
662 case XFER_UDMA_3: return XFER_UDMA_2;
663 case XFER_UDMA_2: return XFER_UDMA_1;
664 case XFER_UDMA_1: return XFER_UDMA_0;
666 * OOPS we do not goto non Ultra DMA modes
667 * without iCRC's available we force
668 * the system to PIO and make the user
669 * invoke the ATA-1 ATA-2 DMA modes.
671 case XFER_UDMA_0:
672 default: return XFER_PIO_4;
675 #endif /* CONFIG_BLK_DEV_IDEDMA */
677 int ide_driveid_update(ide_drive_t *drive)
679 ide_hwif_t *hwif = drive->hwif;
680 struct hd_driveid *id;
681 unsigned long timeout, flags;
684 * Re-read drive->id for possible DMA mode
685 * change (copied from ide-probe.c)
688 SELECT_MASK(drive, 1);
689 ide_set_irq(drive, 1);
690 msleep(50);
691 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
692 timeout = jiffies + WAIT_WORSTCASE;
693 do {
694 if (time_after(jiffies, timeout)) {
695 SELECT_MASK(drive, 0);
696 return 0; /* drive timed-out */
698 msleep(50); /* give drive a breather */
699 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
700 msleep(50); /* wait for IRQ and DRQ_STAT */
701 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
702 SELECT_MASK(drive, 0);
703 printk("%s: CHECK for good STATUS\n", drive->name);
704 return 0;
706 local_irq_save(flags);
707 SELECT_MASK(drive, 0);
708 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
709 if (!id) {
710 local_irq_restore(flags);
711 return 0;
713 ata_input_data(drive, id, SECTOR_WORDS);
714 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
715 local_irq_enable();
716 local_irq_restore(flags);
717 ide_fix_driveid(id);
718 if (id) {
719 drive->id->dma_ultra = id->dma_ultra;
720 drive->id->dma_mword = id->dma_mword;
721 drive->id->dma_1word = id->dma_1word;
722 /* anything more ? */
723 kfree(id);
725 if (drive->using_dma && ide_id_dma_bug(drive))
726 ide_dma_off(drive);
729 return 1;
732 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
734 ide_hwif_t *hwif = drive->hwif;
735 int error = 0;
736 u8 stat;
738 // while (HWGROUP(drive)->busy)
739 // msleep(50);
741 #ifdef CONFIG_BLK_DEV_IDEDMA
742 if (hwif->dma_host_set) /* check if host supports DMA */
743 hwif->dma_host_set(drive, 0);
744 #endif
746 /* Skip setting PIO flow-control modes on pre-EIDE drives */
747 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
748 goto skip;
751 * Don't use ide_wait_cmd here - it will
752 * attempt to set_geometry and recalibrate,
753 * but for some reason these don't work at
754 * this point (lost interrupt).
757 * Select the drive, and issue the SETFEATURES command
759 disable_irq_nosync(hwif->irq);
762 * FIXME: we race against the running IRQ here if
763 * this is called from non IRQ context. If we use
764 * disable_irq() we hang on the error path. Work
765 * is needed.
768 udelay(1);
769 SELECT_DRIVE(drive);
770 SELECT_MASK(drive, 0);
771 udelay(1);
772 ide_set_irq(drive, 0);
773 hwif->OUTB(speed, IDE_NSECTOR_REG);
774 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
775 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
776 if (drive->quirk_list == 2)
777 ide_set_irq(drive, 1);
779 error = __ide_wait_stat(drive, drive->ready_stat,
780 BUSY_STAT|DRQ_STAT|ERR_STAT,
781 WAIT_CMD, &stat);
783 SELECT_MASK(drive, 0);
785 enable_irq(hwif->irq);
787 if (error) {
788 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
789 return error;
792 drive->id->dma_ultra &= ~0xFF00;
793 drive->id->dma_mword &= ~0x0F00;
794 drive->id->dma_1word &= ~0x0F00;
796 skip:
797 #ifdef CONFIG_BLK_DEV_IDEDMA
798 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
799 drive->using_dma)
800 hwif->dma_host_set(drive, 1);
801 else if (hwif->dma_host_set) /* check if host supports DMA */
802 ide_dma_off_quietly(drive);
803 #endif
805 switch(speed) {
806 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
807 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
808 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
809 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
810 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
811 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
812 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
813 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
814 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
815 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
816 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
817 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
818 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
819 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
820 default: break;
822 if (!drive->init_speed)
823 drive->init_speed = speed;
824 drive->current_speed = speed;
825 return error;
829 * This should get invoked any time we exit the driver to
830 * wait for an interrupt response from a drive. handler() points
831 * at the appropriate code to handle the next interrupt, and a
832 * timer is started to prevent us from waiting forever in case
833 * something goes wrong (see the ide_timer_expiry() handler later on).
835 * See also ide_execute_command
837 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
838 unsigned int timeout, ide_expiry_t *expiry)
840 ide_hwgroup_t *hwgroup = HWGROUP(drive);
842 if (hwgroup->handler != NULL) {
843 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
844 "old=%p, new=%p\n",
845 drive->name, hwgroup->handler, handler);
847 hwgroup->handler = handler;
848 hwgroup->expiry = expiry;
849 hwgroup->timer.expires = jiffies + timeout;
850 hwgroup->req_gen_timer = hwgroup->req_gen;
851 add_timer(&hwgroup->timer);
854 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
855 unsigned int timeout, ide_expiry_t *expiry)
857 unsigned long flags;
858 spin_lock_irqsave(&ide_lock, flags);
859 __ide_set_handler(drive, handler, timeout, expiry);
860 spin_unlock_irqrestore(&ide_lock, flags);
863 EXPORT_SYMBOL(ide_set_handler);
866 * ide_execute_command - execute an IDE command
867 * @drive: IDE drive to issue the command against
868 * @command: command byte to write
869 * @handler: handler for next phase
870 * @timeout: timeout for command
871 * @expiry: handler to run on timeout
873 * Helper function to issue an IDE command. This handles the
874 * atomicity requirements, command timing and ensures that the
875 * handler and IRQ setup do not race. All IDE command kick off
876 * should go via this function or do equivalent locking.
879 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
880 unsigned timeout, ide_expiry_t *expiry)
882 unsigned long flags;
883 ide_hwgroup_t *hwgroup = HWGROUP(drive);
884 ide_hwif_t *hwif = HWIF(drive);
886 spin_lock_irqsave(&ide_lock, flags);
888 BUG_ON(hwgroup->handler);
889 hwgroup->handler = handler;
890 hwgroup->expiry = expiry;
891 hwgroup->timer.expires = jiffies + timeout;
892 hwgroup->req_gen_timer = hwgroup->req_gen;
893 add_timer(&hwgroup->timer);
894 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
895 /* Drive takes 400nS to respond, we must avoid the IRQ being
896 serviced before that.
898 FIXME: we could skip this delay with care on non shared
899 devices
901 ndelay(400);
902 spin_unlock_irqrestore(&ide_lock, flags);
905 EXPORT_SYMBOL(ide_execute_command);
908 /* needed below */
909 static ide_startstop_t do_reset1 (ide_drive_t *, int);
912 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
913 * during an atapi drive reset operation. If the drive has not yet responded,
914 * and we have not yet hit our maximum waiting time, then the timer is restarted
915 * for another 50ms.
917 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
919 ide_hwgroup_t *hwgroup = HWGROUP(drive);
920 ide_hwif_t *hwif = HWIF(drive);
921 u8 stat;
923 SELECT_DRIVE(drive);
924 udelay (10);
926 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
927 printk("%s: ATAPI reset complete\n", drive->name);
928 } else {
929 if (time_before(jiffies, hwgroup->poll_timeout)) {
930 BUG_ON(HWGROUP(drive)->handler != NULL);
931 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
932 /* continue polling */
933 return ide_started;
935 /* end of polling */
936 hwgroup->polling = 0;
937 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
938 drive->name, stat);
939 /* do it the old fashioned way */
940 return do_reset1(drive, 1);
942 /* done polling */
943 hwgroup->polling = 0;
944 hwgroup->resetting = 0;
945 return ide_stopped;
949 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
950 * during an ide reset operation. If the drives have not yet responded,
951 * and we have not yet hit our maximum waiting time, then the timer is restarted
952 * for another 50ms.
954 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
956 ide_hwgroup_t *hwgroup = HWGROUP(drive);
957 ide_hwif_t *hwif = HWIF(drive);
958 u8 tmp;
960 if (hwif->reset_poll != NULL) {
961 if (hwif->reset_poll(drive)) {
962 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
963 hwif->name, drive->name);
964 return ide_stopped;
968 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
969 if (time_before(jiffies, hwgroup->poll_timeout)) {
970 BUG_ON(HWGROUP(drive)->handler != NULL);
971 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
972 /* continue polling */
973 return ide_started;
975 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
976 drive->failures++;
977 } else {
978 printk("%s: reset: ", hwif->name);
979 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
980 printk("success\n");
981 drive->failures = 0;
982 } else {
983 drive->failures++;
984 printk("master: ");
985 switch (tmp & 0x7f) {
986 case 1: printk("passed");
987 break;
988 case 2: printk("formatter device error");
989 break;
990 case 3: printk("sector buffer error");
991 break;
992 case 4: printk("ECC circuitry error");
993 break;
994 case 5: printk("controlling MPU error");
995 break;
996 default:printk("error (0x%02x?)", tmp);
998 if (tmp & 0x80)
999 printk("; slave: failed");
1000 printk("\n");
1003 hwgroup->polling = 0; /* done polling */
1004 hwgroup->resetting = 0; /* done reset attempt */
1005 return ide_stopped;
1008 static void check_dma_crc(ide_drive_t *drive)
1010 #ifdef CONFIG_BLK_DEV_IDEDMA
1011 if (drive->crc_count) {
1012 ide_dma_off_quietly(drive);
1013 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1014 if (drive->current_speed >= XFER_SW_DMA_0)
1015 ide_dma_on(drive);
1016 } else
1017 ide_dma_off(drive);
1018 #endif
1021 static void ide_disk_pre_reset(ide_drive_t *drive)
1023 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1025 drive->special.all = 0;
1026 drive->special.b.set_geometry = legacy;
1027 drive->special.b.recalibrate = legacy;
1028 drive->mult_count = 0;
1029 if (!drive->keep_settings && !drive->using_dma)
1030 drive->mult_req = 0;
1031 if (drive->mult_req != drive->mult_count)
1032 drive->special.b.set_multmode = 1;
1035 static void pre_reset(ide_drive_t *drive)
1037 if (drive->media == ide_disk)
1038 ide_disk_pre_reset(drive);
1039 else
1040 drive->post_reset = 1;
1042 if (!drive->keep_settings) {
1043 if (drive->using_dma) {
1044 check_dma_crc(drive);
1045 } else {
1046 drive->unmask = 0;
1047 drive->io_32bit = 0;
1049 return;
1051 if (drive->using_dma)
1052 check_dma_crc(drive);
1054 if (HWIF(drive)->pre_reset != NULL)
1055 HWIF(drive)->pre_reset(drive);
1057 if (drive->current_speed != 0xff)
1058 drive->desired_speed = drive->current_speed;
1059 drive->current_speed = 0xff;
1063 * do_reset1() attempts to recover a confused drive by resetting it.
1064 * Unfortunately, resetting a disk drive actually resets all devices on
1065 * the same interface, so it can really be thought of as resetting the
1066 * interface rather than resetting the drive.
1068 * ATAPI devices have their own reset mechanism which allows them to be
1069 * individually reset without clobbering other devices on the same interface.
1071 * Unfortunately, the IDE interface does not generate an interrupt to let
1072 * us know when the reset operation has finished, so we must poll for this.
1073 * Equally poor, though, is the fact that this may a very long time to complete,
1074 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1075 * we set a timer to poll at 50ms intervals.
1077 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1079 unsigned int unit;
1080 unsigned long flags;
1081 ide_hwif_t *hwif;
1082 ide_hwgroup_t *hwgroup;
1084 spin_lock_irqsave(&ide_lock, flags);
1085 hwif = HWIF(drive);
1086 hwgroup = HWGROUP(drive);
1088 /* We must not reset with running handlers */
1089 BUG_ON(hwgroup->handler != NULL);
1091 /* For an ATAPI device, first try an ATAPI SRST. */
1092 if (drive->media != ide_disk && !do_not_try_atapi) {
1093 hwgroup->resetting = 1;
1094 pre_reset(drive);
1095 SELECT_DRIVE(drive);
1096 udelay (20);
1097 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1098 ndelay(400);
1099 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1100 hwgroup->polling = 1;
1101 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1102 spin_unlock_irqrestore(&ide_lock, flags);
1103 return ide_started;
1107 * First, reset any device state data we were maintaining
1108 * for any of the drives on this interface.
1110 for (unit = 0; unit < MAX_DRIVES; ++unit)
1111 pre_reset(&hwif->drives[unit]);
1113 if (!IDE_CONTROL_REG) {
1114 spin_unlock_irqrestore(&ide_lock, flags);
1115 return ide_stopped;
1118 hwgroup->resetting = 1;
1120 * Note that we also set nIEN while resetting the device,
1121 * to mask unwanted interrupts from the interface during the reset.
1122 * However, due to the design of PC hardware, this will cause an
1123 * immediate interrupt due to the edge transition it produces.
1124 * This single interrupt gives us a "fast poll" for drives that
1125 * recover from reset very quickly, saving us the first 50ms wait time.
1127 /* set SRST and nIEN */
1128 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1129 /* more than enough time */
1130 udelay(10);
1131 if (drive->quirk_list == 2) {
1132 /* clear SRST and nIEN */
1133 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1134 } else {
1135 /* clear SRST, leave nIEN */
1136 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1138 /* more than enough time */
1139 udelay(10);
1140 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1141 hwgroup->polling = 1;
1142 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1145 * Some weird controller like resetting themselves to a strange
1146 * state when the disks are reset this way. At least, the Winbond
1147 * 553 documentation says that
1149 if (hwif->resetproc)
1150 hwif->resetproc(drive);
1152 spin_unlock_irqrestore(&ide_lock, flags);
1153 return ide_started;
1157 * ide_do_reset() is the entry point to the drive/interface reset code.
1160 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1162 return do_reset1(drive, 0);
1165 EXPORT_SYMBOL(ide_do_reset);
1168 * ide_wait_not_busy() waits for the currently selected device on the hwif
1169 * to report a non-busy status, see comments in ide_probe_port().
1171 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1173 u8 stat = 0;
1175 while(timeout--) {
1177 * Turn this into a schedule() sleep once I'm sure
1178 * about locking issues (2.5 work ?).
1180 mdelay(1);
1181 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1182 if ((stat & BUSY_STAT) == 0)
1183 return 0;
1185 * Assume a value of 0xff means nothing is connected to
1186 * the interface and it doesn't implement the pull-down
1187 * resistor on D7.
1189 if (stat == 0xff)
1190 return -ENODEV;
1191 touch_softlockup_watchdog();
1192 touch_nmi_watchdog();
1194 return -EBUSY;
1197 EXPORT_SYMBOL_GPL(ide_wait_not_busy);