x86: fix bootup crash in native_read_tsc()
[wrt350n-kernel.git] / drivers / net / e100.c
blob51cf577035bed0c466a45a4470102c3db56ef6db
1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
42 * Theory of Operation
44 * I. General
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
73 * III. Transmit
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
97 * IV. Recieve
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * senario where all Rx resources have been indicated and none re-
124 * placed.
126 * V. Miscellaneous
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
139 * TODO:
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
143 * FIXES:
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
148 #include <linux/module.h>
149 #include <linux/moduleparam.h>
150 #include <linux/kernel.h>
151 #include <linux/types.h>
152 #include <linux/slab.h>
153 #include <linux/delay.h>
154 #include <linux/init.h>
155 #include <linux/pci.h>
156 #include <linux/dma-mapping.h>
157 #include <linux/netdevice.h>
158 #include <linux/etherdevice.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <linux/skbuff.h>
162 #include <linux/ethtool.h>
163 #include <linux/string.h>
164 #include <asm/unaligned.h>
167 #define DRV_NAME "e100"
168 #define DRV_EXT "-NAPI"
169 #define DRV_VERSION "3.5.23-k4"DRV_EXT
170 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
171 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
172 #define PFX DRV_NAME ": "
174 #define E100_WATCHDOG_PERIOD (2 * HZ)
175 #define E100_NAPI_WEIGHT 16
177 MODULE_DESCRIPTION(DRV_DESCRIPTION);
178 MODULE_AUTHOR(DRV_COPYRIGHT);
179 MODULE_LICENSE("GPL");
180 MODULE_VERSION(DRV_VERSION);
182 static int debug = 3;
183 static int eeprom_bad_csum_allow = 0;
184 static int use_io = 0;
185 module_param(debug, int, 0);
186 module_param(eeprom_bad_csum_allow, int, 0);
187 module_param(use_io, int, 0);
188 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
189 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
190 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
191 #define DPRINTK(nlevel, klevel, fmt, args...) \
192 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
193 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
194 __FUNCTION__ , ## args))
196 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
197 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
198 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
199 static struct pci_device_id e100_id_table[] = {
200 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
201 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
202 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
203 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
204 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
205 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
206 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
207 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
208 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
209 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
210 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
211 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
212 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
213 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
214 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
215 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
216 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
217 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
218 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
219 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
220 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
221 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
222 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
223 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
224 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
225 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
226 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
227 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
228 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
229 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
230 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
231 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
232 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
233 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
234 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
235 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
236 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
237 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
238 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
239 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
240 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
241 { 0, }
243 MODULE_DEVICE_TABLE(pci, e100_id_table);
245 enum mac {
246 mac_82557_D100_A = 0,
247 mac_82557_D100_B = 1,
248 mac_82557_D100_C = 2,
249 mac_82558_D101_A4 = 4,
250 mac_82558_D101_B0 = 5,
251 mac_82559_D101M = 8,
252 mac_82559_D101S = 9,
253 mac_82550_D102 = 12,
254 mac_82550_D102_C = 13,
255 mac_82551_E = 14,
256 mac_82551_F = 15,
257 mac_82551_10 = 16,
258 mac_unknown = 0xFF,
261 enum phy {
262 phy_100a = 0x000003E0,
263 phy_100c = 0x035002A8,
264 phy_82555_tx = 0x015002A8,
265 phy_nsc_tx = 0x5C002000,
266 phy_82562_et = 0x033002A8,
267 phy_82562_em = 0x032002A8,
268 phy_82562_ek = 0x031002A8,
269 phy_82562_eh = 0x017002A8,
270 phy_unknown = 0xFFFFFFFF,
273 /* CSR (Control/Status Registers) */
274 struct csr {
275 struct {
276 u8 status;
277 u8 stat_ack;
278 u8 cmd_lo;
279 u8 cmd_hi;
280 u32 gen_ptr;
281 } scb;
282 u32 port;
283 u16 flash_ctrl;
284 u8 eeprom_ctrl_lo;
285 u8 eeprom_ctrl_hi;
286 u32 mdi_ctrl;
287 u32 rx_dma_count;
290 enum scb_status {
291 rus_no_res = 0x08,
292 rus_ready = 0x10,
293 rus_mask = 0x3C,
296 enum ru_state {
297 RU_SUSPENDED = 0,
298 RU_RUNNING = 1,
299 RU_UNINITIALIZED = -1,
302 enum scb_stat_ack {
303 stat_ack_not_ours = 0x00,
304 stat_ack_sw_gen = 0x04,
305 stat_ack_rnr = 0x10,
306 stat_ack_cu_idle = 0x20,
307 stat_ack_frame_rx = 0x40,
308 stat_ack_cu_cmd_done = 0x80,
309 stat_ack_not_present = 0xFF,
310 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
311 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
314 enum scb_cmd_hi {
315 irq_mask_none = 0x00,
316 irq_mask_all = 0x01,
317 irq_sw_gen = 0x02,
320 enum scb_cmd_lo {
321 cuc_nop = 0x00,
322 ruc_start = 0x01,
323 ruc_load_base = 0x06,
324 cuc_start = 0x10,
325 cuc_resume = 0x20,
326 cuc_dump_addr = 0x40,
327 cuc_dump_stats = 0x50,
328 cuc_load_base = 0x60,
329 cuc_dump_reset = 0x70,
332 enum cuc_dump {
333 cuc_dump_complete = 0x0000A005,
334 cuc_dump_reset_complete = 0x0000A007,
337 enum port {
338 software_reset = 0x0000,
339 selftest = 0x0001,
340 selective_reset = 0x0002,
343 enum eeprom_ctrl_lo {
344 eesk = 0x01,
345 eecs = 0x02,
346 eedi = 0x04,
347 eedo = 0x08,
350 enum mdi_ctrl {
351 mdi_write = 0x04000000,
352 mdi_read = 0x08000000,
353 mdi_ready = 0x10000000,
356 enum eeprom_op {
357 op_write = 0x05,
358 op_read = 0x06,
359 op_ewds = 0x10,
360 op_ewen = 0x13,
363 enum eeprom_offsets {
364 eeprom_cnfg_mdix = 0x03,
365 eeprom_id = 0x0A,
366 eeprom_config_asf = 0x0D,
367 eeprom_smbus_addr = 0x90,
370 enum eeprom_cnfg_mdix {
371 eeprom_mdix_enabled = 0x0080,
374 enum eeprom_id {
375 eeprom_id_wol = 0x0020,
378 enum eeprom_config_asf {
379 eeprom_asf = 0x8000,
380 eeprom_gcl = 0x4000,
383 enum cb_status {
384 cb_complete = 0x8000,
385 cb_ok = 0x2000,
388 enum cb_command {
389 cb_nop = 0x0000,
390 cb_iaaddr = 0x0001,
391 cb_config = 0x0002,
392 cb_multi = 0x0003,
393 cb_tx = 0x0004,
394 cb_ucode = 0x0005,
395 cb_dump = 0x0006,
396 cb_tx_sf = 0x0008,
397 cb_cid = 0x1f00,
398 cb_i = 0x2000,
399 cb_s = 0x4000,
400 cb_el = 0x8000,
403 struct rfd {
404 __le16 status;
405 __le16 command;
406 __le32 link;
407 __le32 rbd;
408 __le16 actual_size;
409 __le16 size;
412 struct rx {
413 struct rx *next, *prev;
414 struct sk_buff *skb;
415 dma_addr_t dma_addr;
418 #if defined(__BIG_ENDIAN_BITFIELD)
419 #define X(a,b) b,a
420 #else
421 #define X(a,b) a,b
422 #endif
423 struct config {
424 /*0*/ u8 X(byte_count:6, pad0:2);
425 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
426 /*2*/ u8 adaptive_ifs;
427 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
428 term_write_cache_line:1), pad3:4);
429 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
430 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
431 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
432 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
433 rx_discard_overruns:1), rx_save_bad_frames:1);
434 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
435 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
436 tx_dynamic_tbd:1);
437 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
438 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
439 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
440 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
441 loopback:2);
442 /*11*/ u8 X(linear_priority:3, pad11:5);
443 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
444 /*13*/ u8 ip_addr_lo;
445 /*14*/ u8 ip_addr_hi;
446 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
447 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
448 pad15_2:1), crs_or_cdt:1);
449 /*16*/ u8 fc_delay_lo;
450 /*17*/ u8 fc_delay_hi;
451 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
452 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
453 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
454 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
455 full_duplex_force:1), full_duplex_pin:1);
456 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
457 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
458 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
459 u8 pad_d102[9];
462 #define E100_MAX_MULTICAST_ADDRS 64
463 struct multi {
464 __le16 count;
465 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
468 /* Important: keep total struct u32-aligned */
469 #define UCODE_SIZE 134
470 struct cb {
471 __le16 status;
472 __le16 command;
473 __le32 link;
474 union {
475 u8 iaaddr[ETH_ALEN];
476 __le32 ucode[UCODE_SIZE];
477 struct config config;
478 struct multi multi;
479 struct {
480 u32 tbd_array;
481 u16 tcb_byte_count;
482 u8 threshold;
483 u8 tbd_count;
484 struct {
485 __le32 buf_addr;
486 __le16 size;
487 u16 eol;
488 } tbd;
489 } tcb;
490 __le32 dump_buffer_addr;
491 } u;
492 struct cb *next, *prev;
493 dma_addr_t dma_addr;
494 struct sk_buff *skb;
497 enum loopback {
498 lb_none = 0, lb_mac = 1, lb_phy = 3,
501 struct stats {
502 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
503 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
504 tx_multiple_collisions, tx_total_collisions;
505 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
506 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
507 rx_short_frame_errors;
508 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
509 __le16 xmt_tco_frames, rcv_tco_frames;
510 __le32 complete;
513 struct mem {
514 struct {
515 u32 signature;
516 u32 result;
517 } selftest;
518 struct stats stats;
519 u8 dump_buf[596];
522 struct param_range {
523 u32 min;
524 u32 max;
525 u32 count;
528 struct params {
529 struct param_range rfds;
530 struct param_range cbs;
533 struct nic {
534 /* Begin: frequently used values: keep adjacent for cache effect */
535 u32 msg_enable ____cacheline_aligned;
536 struct net_device *netdev;
537 struct pci_dev *pdev;
539 struct rx *rxs ____cacheline_aligned;
540 struct rx *rx_to_use;
541 struct rx *rx_to_clean;
542 struct rfd blank_rfd;
543 enum ru_state ru_running;
545 spinlock_t cb_lock ____cacheline_aligned;
546 spinlock_t cmd_lock;
547 struct csr __iomem *csr;
548 enum scb_cmd_lo cuc_cmd;
549 unsigned int cbs_avail;
550 struct napi_struct napi;
551 struct cb *cbs;
552 struct cb *cb_to_use;
553 struct cb *cb_to_send;
554 struct cb *cb_to_clean;
555 __le16 tx_command;
556 /* End: frequently used values: keep adjacent for cache effect */
558 enum {
559 ich = (1 << 0),
560 promiscuous = (1 << 1),
561 multicast_all = (1 << 2),
562 wol_magic = (1 << 3),
563 ich_10h_workaround = (1 << 4),
564 } flags ____cacheline_aligned;
566 enum mac mac;
567 enum phy phy;
568 struct params params;
569 struct timer_list watchdog;
570 struct timer_list blink_timer;
571 struct mii_if_info mii;
572 struct work_struct tx_timeout_task;
573 enum loopback loopback;
575 struct mem *mem;
576 dma_addr_t dma_addr;
578 dma_addr_t cbs_dma_addr;
579 u8 adaptive_ifs;
580 u8 tx_threshold;
581 u32 tx_frames;
582 u32 tx_collisions;
583 u32 tx_deferred;
584 u32 tx_single_collisions;
585 u32 tx_multiple_collisions;
586 u32 tx_fc_pause;
587 u32 tx_tco_frames;
589 u32 rx_fc_pause;
590 u32 rx_fc_unsupported;
591 u32 rx_tco_frames;
592 u32 rx_over_length_errors;
594 u16 leds;
595 u16 eeprom_wc;
596 __le16 eeprom[256];
597 spinlock_t mdio_lock;
600 static inline void e100_write_flush(struct nic *nic)
602 /* Flush previous PCI writes through intermediate bridges
603 * by doing a benign read */
604 (void)ioread8(&nic->csr->scb.status);
607 static void e100_enable_irq(struct nic *nic)
609 unsigned long flags;
611 spin_lock_irqsave(&nic->cmd_lock, flags);
612 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
613 e100_write_flush(nic);
614 spin_unlock_irqrestore(&nic->cmd_lock, flags);
617 static void e100_disable_irq(struct nic *nic)
619 unsigned long flags;
621 spin_lock_irqsave(&nic->cmd_lock, flags);
622 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
623 e100_write_flush(nic);
624 spin_unlock_irqrestore(&nic->cmd_lock, flags);
627 static void e100_hw_reset(struct nic *nic)
629 /* Put CU and RU into idle with a selective reset to get
630 * device off of PCI bus */
631 iowrite32(selective_reset, &nic->csr->port);
632 e100_write_flush(nic); udelay(20);
634 /* Now fully reset device */
635 iowrite32(software_reset, &nic->csr->port);
636 e100_write_flush(nic); udelay(20);
638 /* Mask off our interrupt line - it's unmasked after reset */
639 e100_disable_irq(nic);
642 static int e100_self_test(struct nic *nic)
644 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
646 /* Passing the self-test is a pretty good indication
647 * that the device can DMA to/from host memory */
649 nic->mem->selftest.signature = 0;
650 nic->mem->selftest.result = 0xFFFFFFFF;
652 iowrite32(selftest | dma_addr, &nic->csr->port);
653 e100_write_flush(nic);
654 /* Wait 10 msec for self-test to complete */
655 msleep(10);
657 /* Interrupts are enabled after self-test */
658 e100_disable_irq(nic);
660 /* Check results of self-test */
661 if(nic->mem->selftest.result != 0) {
662 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
663 nic->mem->selftest.result);
664 return -ETIMEDOUT;
666 if(nic->mem->selftest.signature == 0) {
667 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
668 return -ETIMEDOUT;
671 return 0;
674 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
676 u32 cmd_addr_data[3];
677 u8 ctrl;
678 int i, j;
680 /* Three cmds: write/erase enable, write data, write/erase disable */
681 cmd_addr_data[0] = op_ewen << (addr_len - 2);
682 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
683 le16_to_cpu(data);
684 cmd_addr_data[2] = op_ewds << (addr_len - 2);
686 /* Bit-bang cmds to write word to eeprom */
687 for(j = 0; j < 3; j++) {
689 /* Chip select */
690 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
691 e100_write_flush(nic); udelay(4);
693 for(i = 31; i >= 0; i--) {
694 ctrl = (cmd_addr_data[j] & (1 << i)) ?
695 eecs | eedi : eecs;
696 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
697 e100_write_flush(nic); udelay(4);
699 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
700 e100_write_flush(nic); udelay(4);
702 /* Wait 10 msec for cmd to complete */
703 msleep(10);
705 /* Chip deselect */
706 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
707 e100_write_flush(nic); udelay(4);
711 /* General technique stolen from the eepro100 driver - very clever */
712 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
714 u32 cmd_addr_data;
715 u16 data = 0;
716 u8 ctrl;
717 int i;
719 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
721 /* Chip select */
722 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
723 e100_write_flush(nic); udelay(4);
725 /* Bit-bang to read word from eeprom */
726 for(i = 31; i >= 0; i--) {
727 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
728 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
729 e100_write_flush(nic); udelay(4);
731 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
732 e100_write_flush(nic); udelay(4);
734 /* Eeprom drives a dummy zero to EEDO after receiving
735 * complete address. Use this to adjust addr_len. */
736 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
737 if(!(ctrl & eedo) && i > 16) {
738 *addr_len -= (i - 16);
739 i = 17;
742 data = (data << 1) | (ctrl & eedo ? 1 : 0);
745 /* Chip deselect */
746 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
747 e100_write_flush(nic); udelay(4);
749 return cpu_to_le16(data);
752 /* Load entire EEPROM image into driver cache and validate checksum */
753 static int e100_eeprom_load(struct nic *nic)
755 u16 addr, addr_len = 8, checksum = 0;
757 /* Try reading with an 8-bit addr len to discover actual addr len */
758 e100_eeprom_read(nic, &addr_len, 0);
759 nic->eeprom_wc = 1 << addr_len;
761 for(addr = 0; addr < nic->eeprom_wc; addr++) {
762 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
763 if(addr < nic->eeprom_wc - 1)
764 checksum += le16_to_cpu(nic->eeprom[addr]);
767 /* The checksum, stored in the last word, is calculated such that
768 * the sum of words should be 0xBABA */
769 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
770 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
771 if (!eeprom_bad_csum_allow)
772 return -EAGAIN;
775 return 0;
778 /* Save (portion of) driver EEPROM cache to device and update checksum */
779 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
781 u16 addr, addr_len = 8, checksum = 0;
783 /* Try reading with an 8-bit addr len to discover actual addr len */
784 e100_eeprom_read(nic, &addr_len, 0);
785 nic->eeprom_wc = 1 << addr_len;
787 if(start + count >= nic->eeprom_wc)
788 return -EINVAL;
790 for(addr = start; addr < start + count; addr++)
791 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
793 /* The checksum, stored in the last word, is calculated such that
794 * the sum of words should be 0xBABA */
795 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
796 checksum += le16_to_cpu(nic->eeprom[addr]);
797 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
798 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
799 nic->eeprom[nic->eeprom_wc - 1]);
801 return 0;
804 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
805 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
806 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
808 unsigned long flags;
809 unsigned int i;
810 int err = 0;
812 spin_lock_irqsave(&nic->cmd_lock, flags);
814 /* Previous command is accepted when SCB clears */
815 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
816 if(likely(!ioread8(&nic->csr->scb.cmd_lo)))
817 break;
818 cpu_relax();
819 if(unlikely(i > E100_WAIT_SCB_FAST))
820 udelay(5);
822 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
823 err = -EAGAIN;
824 goto err_unlock;
827 if(unlikely(cmd != cuc_resume))
828 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
829 iowrite8(cmd, &nic->csr->scb.cmd_lo);
831 err_unlock:
832 spin_unlock_irqrestore(&nic->cmd_lock, flags);
834 return err;
837 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
838 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
840 struct cb *cb;
841 unsigned long flags;
842 int err = 0;
844 spin_lock_irqsave(&nic->cb_lock, flags);
846 if(unlikely(!nic->cbs_avail)) {
847 err = -ENOMEM;
848 goto err_unlock;
851 cb = nic->cb_to_use;
852 nic->cb_to_use = cb->next;
853 nic->cbs_avail--;
854 cb->skb = skb;
856 if(unlikely(!nic->cbs_avail))
857 err = -ENOSPC;
859 cb_prepare(nic, cb, skb);
861 /* Order is important otherwise we'll be in a race with h/w:
862 * set S-bit in current first, then clear S-bit in previous. */
863 cb->command |= cpu_to_le16(cb_s);
864 wmb();
865 cb->prev->command &= cpu_to_le16(~cb_s);
867 while(nic->cb_to_send != nic->cb_to_use) {
868 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
869 nic->cb_to_send->dma_addr))) {
870 /* Ok, here's where things get sticky. It's
871 * possible that we can't schedule the command
872 * because the controller is too busy, so
873 * let's just queue the command and try again
874 * when another command is scheduled. */
875 if(err == -ENOSPC) {
876 //request a reset
877 schedule_work(&nic->tx_timeout_task);
879 break;
880 } else {
881 nic->cuc_cmd = cuc_resume;
882 nic->cb_to_send = nic->cb_to_send->next;
886 err_unlock:
887 spin_unlock_irqrestore(&nic->cb_lock, flags);
889 return err;
892 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
894 u32 data_out = 0;
895 unsigned int i;
896 unsigned long flags;
900 * Stratus87247: we shouldn't be writing the MDI control
901 * register until the Ready bit shows True. Also, since
902 * manipulation of the MDI control registers is a multi-step
903 * procedure it should be done under lock.
905 spin_lock_irqsave(&nic->mdio_lock, flags);
906 for (i = 100; i; --i) {
907 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
908 break;
909 udelay(20);
911 if (unlikely(!i)) {
912 printk("e100.mdio_ctrl(%s) won't go Ready\n",
913 nic->netdev->name );
914 spin_unlock_irqrestore(&nic->mdio_lock, flags);
915 return 0; /* No way to indicate timeout error */
917 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
919 for (i = 0; i < 100; i++) {
920 udelay(20);
921 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
922 break;
924 spin_unlock_irqrestore(&nic->mdio_lock, flags);
925 DPRINTK(HW, DEBUG,
926 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
927 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
928 return (u16)data_out;
931 static int mdio_read(struct net_device *netdev, int addr, int reg)
933 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
936 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
938 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
941 static void e100_get_defaults(struct nic *nic)
943 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
944 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
946 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
947 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
948 if(nic->mac == mac_unknown)
949 nic->mac = mac_82557_D100_A;
951 nic->params.rfds = rfds;
952 nic->params.cbs = cbs;
954 /* Quadwords to DMA into FIFO before starting frame transmit */
955 nic->tx_threshold = 0xE0;
957 /* no interrupt for every tx completion, delay = 256us if not 557*/
958 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
959 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
961 /* Template for a freshly allocated RFD */
962 nic->blank_rfd.command = 0;
963 nic->blank_rfd.rbd = 0xFFFFFFFF;
964 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
966 /* MII setup */
967 nic->mii.phy_id_mask = 0x1F;
968 nic->mii.reg_num_mask = 0x1F;
969 nic->mii.dev = nic->netdev;
970 nic->mii.mdio_read = mdio_read;
971 nic->mii.mdio_write = mdio_write;
974 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
976 struct config *config = &cb->u.config;
977 u8 *c = (u8 *)config;
979 cb->command = cpu_to_le16(cb_config);
981 memset(config, 0, sizeof(struct config));
983 config->byte_count = 0x16; /* bytes in this struct */
984 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
985 config->direct_rx_dma = 0x1; /* reserved */
986 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
987 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
988 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
989 config->tx_underrun_retry = 0x3; /* # of underrun retries */
990 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
991 config->pad10 = 0x6;
992 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
993 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
994 config->ifs = 0x6; /* x16 = inter frame spacing */
995 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
996 config->pad15_1 = 0x1;
997 config->pad15_2 = 0x1;
998 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
999 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1000 config->tx_padding = 0x1; /* 1=pad short frames */
1001 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1002 config->pad18 = 0x1;
1003 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1004 config->pad20_1 = 0x1F;
1005 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1006 config->pad21_1 = 0x5;
1008 config->adaptive_ifs = nic->adaptive_ifs;
1009 config->loopback = nic->loopback;
1011 if(nic->mii.force_media && nic->mii.full_duplex)
1012 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1014 if(nic->flags & promiscuous || nic->loopback) {
1015 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1016 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1017 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1020 if(nic->flags & multicast_all)
1021 config->multicast_all = 0x1; /* 1=accept, 0=no */
1023 /* disable WoL when up */
1024 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
1025 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1027 if(nic->mac >= mac_82558_D101_A4) {
1028 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1029 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1030 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1031 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1032 if (nic->mac >= mac_82559_D101M) {
1033 config->tno_intr = 0x1; /* TCO stats enable */
1034 /* Enable TCO in extended config */
1035 if (nic->mac >= mac_82551_10) {
1036 config->byte_count = 0x20; /* extended bytes */
1037 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1039 } else {
1040 config->standard_stat_counter = 0x0;
1044 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1045 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1046 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1047 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1048 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1049 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1052 /********************************************************/
1053 /* Micro code for 8086:1229 Rev 8 */
1054 /********************************************************/
1056 /* Parameter values for the D101M B-step */
1057 #define D101M_CPUSAVER_TIMER_DWORD 78
1058 #define D101M_CPUSAVER_BUNDLE_DWORD 65
1059 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1061 #define D101M_B_RCVBUNDLE_UCODE \
1063 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
1064 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
1065 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
1066 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
1067 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
1068 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
1069 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1070 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1071 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
1072 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
1073 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1074 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
1075 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
1076 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
1077 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
1078 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
1079 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
1080 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1081 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1082 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1083 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
1084 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
1085 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
1086 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
1087 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
1088 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
1089 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
1090 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
1091 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
1092 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1093 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
1094 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
1095 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1098 /********************************************************/
1099 /* Micro code for 8086:1229 Rev 9 */
1100 /********************************************************/
1102 /* Parameter values for the D101S */
1103 #define D101S_CPUSAVER_TIMER_DWORD 78
1104 #define D101S_CPUSAVER_BUNDLE_DWORD 67
1105 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1107 #define D101S_RCVBUNDLE_UCODE \
1109 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
1110 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
1111 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
1112 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
1113 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
1114 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
1115 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1116 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1117 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
1118 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
1119 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1120 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
1121 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
1122 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
1123 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
1124 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
1125 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
1126 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
1127 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1128 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1129 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
1130 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
1131 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
1132 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
1133 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
1134 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
1135 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
1136 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
1137 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
1138 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1139 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
1140 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
1141 0x00041000, 0x00010004, 0x00380700 \
1144 /********************************************************/
1145 /* Micro code for the 8086:1229 Rev F/10 */
1146 /********************************************************/
1148 /* Parameter values for the D102 E-step */
1149 #define D102_E_CPUSAVER_TIMER_DWORD 42
1150 #define D102_E_CPUSAVER_BUNDLE_DWORD 54
1151 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1153 #define D102_E_RCVBUNDLE_UCODE \
1155 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
1156 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
1157 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
1158 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
1159 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1160 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
1161 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1162 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1163 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1164 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
1165 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
1166 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
1167 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
1168 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
1169 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1170 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1171 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1172 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
1173 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
1174 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1175 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1176 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1177 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1178 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1179 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1180 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1181 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1182 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1183 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1184 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1185 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1186 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1187 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1190 static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1192 /* *INDENT-OFF* */
1193 static struct {
1194 u32 ucode[UCODE_SIZE + 1];
1195 u8 mac;
1196 u8 timer_dword;
1197 u8 bundle_dword;
1198 u8 min_size_dword;
1199 } ucode_opts[] = {
1200 { D101M_B_RCVBUNDLE_UCODE,
1201 mac_82559_D101M,
1202 D101M_CPUSAVER_TIMER_DWORD,
1203 D101M_CPUSAVER_BUNDLE_DWORD,
1204 D101M_CPUSAVER_MIN_SIZE_DWORD },
1205 { D101S_RCVBUNDLE_UCODE,
1206 mac_82559_D101S,
1207 D101S_CPUSAVER_TIMER_DWORD,
1208 D101S_CPUSAVER_BUNDLE_DWORD,
1209 D101S_CPUSAVER_MIN_SIZE_DWORD },
1210 { D102_E_RCVBUNDLE_UCODE,
1211 mac_82551_F,
1212 D102_E_CPUSAVER_TIMER_DWORD,
1213 D102_E_CPUSAVER_BUNDLE_DWORD,
1214 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1215 { D102_E_RCVBUNDLE_UCODE,
1216 mac_82551_10,
1217 D102_E_CPUSAVER_TIMER_DWORD,
1218 D102_E_CPUSAVER_BUNDLE_DWORD,
1219 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1220 { {0}, 0, 0, 0, 0}
1221 }, *opts;
1222 /* *INDENT-ON* */
1224 /*************************************************************************
1225 * CPUSaver parameters
1227 * All CPUSaver parameters are 16-bit literals that are part of a
1228 * "move immediate value" instruction. By changing the value of
1229 * the literal in the instruction before the code is loaded, the
1230 * driver can change the algorithm.
1232 * INTDELAY - This loads the dead-man timer with its initial value.
1233 * When this timer expires the interrupt is asserted, and the
1234 * timer is reset each time a new packet is received. (see
1235 * BUNDLEMAX below to set the limit on number of chained packets)
1236 * The current default is 0x600 or 1536. Experiments show that
1237 * the value should probably stay within the 0x200 - 0x1000.
1239 * BUNDLEMAX -
1240 * This sets the maximum number of frames that will be bundled. In
1241 * some situations, such as the TCP windowing algorithm, it may be
1242 * better to limit the growth of the bundle size than let it go as
1243 * high as it can, because that could cause too much added latency.
1244 * The default is six, because this is the number of packets in the
1245 * default TCP window size. A value of 1 would make CPUSaver indicate
1246 * an interrupt for every frame received. If you do not want to put
1247 * a limit on the bundle size, set this value to xFFFF.
1249 * BUNDLESMALL -
1250 * This contains a bit-mask describing the minimum size frame that
1251 * will be bundled. The default masks the lower 7 bits, which means
1252 * that any frame less than 128 bytes in length will not be bundled,
1253 * but will instead immediately generate an interrupt. This does
1254 * not affect the current bundle in any way. Any frame that is 128
1255 * bytes or large will be bundled normally. This feature is meant
1256 * to provide immediate indication of ACK frames in a TCP environment.
1257 * Customers were seeing poor performance when a machine with CPUSaver
1258 * enabled was sending but not receiving. The delay introduced when
1259 * the ACKs were received was enough to reduce total throughput, because
1260 * the sender would sit idle until the ACK was finally seen.
1262 * The current default is 0xFF80, which masks out the lower 7 bits.
1263 * This means that any frame which is x7F (127) bytes or smaller
1264 * will cause an immediate interrupt. Because this value must be a
1265 * bit mask, there are only a few valid values that can be used. To
1266 * turn this feature off, the driver can write the value xFFFF to the
1267 * lower word of this instruction (in the same way that the other
1268 * parameters are used). Likewise, a value of 0xF800 (2047) would
1269 * cause an interrupt to be generated for every frame, because all
1270 * standard Ethernet frames are <= 2047 bytes in length.
1271 *************************************************************************/
1273 /* if you wish to disable the ucode functionality, while maintaining the
1274 * workarounds it provides, set the following defines to:
1275 * BUNDLESMALL 0
1276 * BUNDLEMAX 1
1277 * INTDELAY 1
1279 #define BUNDLESMALL 1
1280 #define BUNDLEMAX (u16)6
1281 #define INTDELAY (u16)1536 /* 0x600 */
1283 /* do not load u-code for ICH devices */
1284 if (nic->flags & ich)
1285 goto noloaducode;
1287 /* Search for ucode match against h/w revision */
1288 for (opts = ucode_opts; opts->mac; opts++) {
1289 int i;
1290 u32 *ucode = opts->ucode;
1291 if (nic->mac != opts->mac)
1292 continue;
1294 /* Insert user-tunable settings */
1295 ucode[opts->timer_dword] &= 0xFFFF0000;
1296 ucode[opts->timer_dword] |= INTDELAY;
1297 ucode[opts->bundle_dword] &= 0xFFFF0000;
1298 ucode[opts->bundle_dword] |= BUNDLEMAX;
1299 ucode[opts->min_size_dword] &= 0xFFFF0000;
1300 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1302 for (i = 0; i < UCODE_SIZE; i++)
1303 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1304 cb->command = cpu_to_le16(cb_ucode | cb_el);
1305 return;
1308 noloaducode:
1309 cb->command = cpu_to_le16(cb_nop | cb_el);
1312 static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
1313 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
1315 int err = 0, counter = 50;
1316 struct cb *cb = nic->cb_to_clean;
1318 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
1319 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1321 /* must restart cuc */
1322 nic->cuc_cmd = cuc_start;
1324 /* wait for completion */
1325 e100_write_flush(nic);
1326 udelay(10);
1328 /* wait for possibly (ouch) 500ms */
1329 while (!(cb->status & cpu_to_le16(cb_complete))) {
1330 msleep(10);
1331 if (!--counter) break;
1334 /* ack any interrupts, something could have been set */
1335 iowrite8(~0, &nic->csr->scb.stat_ack);
1337 /* if the command failed, or is not OK, notify and return */
1338 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1339 DPRINTK(PROBE,ERR, "ucode load failed\n");
1340 err = -EPERM;
1343 return err;
1346 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1347 struct sk_buff *skb)
1349 cb->command = cpu_to_le16(cb_iaaddr);
1350 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1353 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1355 cb->command = cpu_to_le16(cb_dump);
1356 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1357 offsetof(struct mem, dump_buf));
1360 #define NCONFIG_AUTO_SWITCH 0x0080
1361 #define MII_NSC_CONG MII_RESV1
1362 #define NSC_CONG_ENABLE 0x0100
1363 #define NSC_CONG_TXREADY 0x0400
1364 #define ADVERTISE_FC_SUPPORTED 0x0400
1365 static int e100_phy_init(struct nic *nic)
1367 struct net_device *netdev = nic->netdev;
1368 u32 addr;
1369 u16 bmcr, stat, id_lo, id_hi, cong;
1371 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1372 for(addr = 0; addr < 32; addr++) {
1373 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1374 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1375 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1376 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1377 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1378 break;
1380 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1381 if(addr == 32)
1382 return -EAGAIN;
1384 /* Selected the phy and isolate the rest */
1385 for(addr = 0; addr < 32; addr++) {
1386 if(addr != nic->mii.phy_id) {
1387 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1388 } else {
1389 bmcr = mdio_read(netdev, addr, MII_BMCR);
1390 mdio_write(netdev, addr, MII_BMCR,
1391 bmcr & ~BMCR_ISOLATE);
1395 /* Get phy ID */
1396 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1397 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1398 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1399 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1401 /* Handle National tx phys */
1402 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1403 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1404 /* Disable congestion control */
1405 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1406 cong |= NSC_CONG_TXREADY;
1407 cong &= ~NSC_CONG_ENABLE;
1408 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1411 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1412 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1413 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1414 /* enable/disable MDI/MDI-X auto-switching. */
1415 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1416 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1419 return 0;
1422 static int e100_hw_init(struct nic *nic)
1424 int err;
1426 e100_hw_reset(nic);
1428 DPRINTK(HW, ERR, "e100_hw_init\n");
1429 if(!in_interrupt() && (err = e100_self_test(nic)))
1430 return err;
1432 if((err = e100_phy_init(nic)))
1433 return err;
1434 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1435 return err;
1436 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1437 return err;
1438 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
1439 return err;
1440 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1441 return err;
1442 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1443 return err;
1444 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1445 nic->dma_addr + offsetof(struct mem, stats))))
1446 return err;
1447 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1448 return err;
1450 e100_disable_irq(nic);
1452 return 0;
1455 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1457 struct net_device *netdev = nic->netdev;
1458 struct dev_mc_list *list = netdev->mc_list;
1459 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1461 cb->command = cpu_to_le16(cb_multi);
1462 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1463 for(i = 0; list && i < count; i++, list = list->next)
1464 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1465 ETH_ALEN);
1468 static void e100_set_multicast_list(struct net_device *netdev)
1470 struct nic *nic = netdev_priv(netdev);
1472 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1473 netdev->mc_count, netdev->flags);
1475 if(netdev->flags & IFF_PROMISC)
1476 nic->flags |= promiscuous;
1477 else
1478 nic->flags &= ~promiscuous;
1480 if(netdev->flags & IFF_ALLMULTI ||
1481 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1482 nic->flags |= multicast_all;
1483 else
1484 nic->flags &= ~multicast_all;
1486 e100_exec_cb(nic, NULL, e100_configure);
1487 e100_exec_cb(nic, NULL, e100_multi);
1490 static void e100_update_stats(struct nic *nic)
1492 struct net_device *dev = nic->netdev;
1493 struct net_device_stats *ns = &dev->stats;
1494 struct stats *s = &nic->mem->stats;
1495 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1496 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1497 &s->complete;
1499 /* Device's stats reporting may take several microseconds to
1500 * complete, so where always waiting for results of the
1501 * previous command. */
1503 if(*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1504 *complete = 0;
1505 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1506 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1507 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1508 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1509 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1510 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1511 ns->collisions += nic->tx_collisions;
1512 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1513 le32_to_cpu(s->tx_lost_crs);
1514 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1515 nic->rx_over_length_errors;
1516 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1517 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1518 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1519 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1520 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1521 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1522 le32_to_cpu(s->rx_alignment_errors) +
1523 le32_to_cpu(s->rx_short_frame_errors) +
1524 le32_to_cpu(s->rx_cdt_errors);
1525 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1526 nic->tx_single_collisions +=
1527 le32_to_cpu(s->tx_single_collisions);
1528 nic->tx_multiple_collisions +=
1529 le32_to_cpu(s->tx_multiple_collisions);
1530 if(nic->mac >= mac_82558_D101_A4) {
1531 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1532 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1533 nic->rx_fc_unsupported +=
1534 le32_to_cpu(s->fc_rcv_unsupported);
1535 if(nic->mac >= mac_82559_D101M) {
1536 nic->tx_tco_frames +=
1537 le16_to_cpu(s->xmt_tco_frames);
1538 nic->rx_tco_frames +=
1539 le16_to_cpu(s->rcv_tco_frames);
1545 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1546 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1549 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1551 /* Adjust inter-frame-spacing (IFS) between two transmits if
1552 * we're getting collisions on a half-duplex connection. */
1554 if(duplex == DUPLEX_HALF) {
1555 u32 prev = nic->adaptive_ifs;
1556 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1558 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1559 (nic->tx_frames > min_frames)) {
1560 if(nic->adaptive_ifs < 60)
1561 nic->adaptive_ifs += 5;
1562 } else if (nic->tx_frames < min_frames) {
1563 if(nic->adaptive_ifs >= 5)
1564 nic->adaptive_ifs -= 5;
1566 if(nic->adaptive_ifs != prev)
1567 e100_exec_cb(nic, NULL, e100_configure);
1571 static void e100_watchdog(unsigned long data)
1573 struct nic *nic = (struct nic *)data;
1574 struct ethtool_cmd cmd;
1576 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1578 /* mii library handles link maintenance tasks */
1580 mii_ethtool_gset(&nic->mii, &cmd);
1582 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1583 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1584 cmd.speed == SPEED_100 ? "100" : "10",
1585 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1586 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1587 DPRINTK(LINK, INFO, "link down\n");
1590 mii_check_link(&nic->mii);
1592 /* Software generated interrupt to recover from (rare) Rx
1593 * allocation failure.
1594 * Unfortunately have to use a spinlock to not re-enable interrupts
1595 * accidentally, due to hardware that shares a register between the
1596 * interrupt mask bit and the SW Interrupt generation bit */
1597 spin_lock_irq(&nic->cmd_lock);
1598 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1599 e100_write_flush(nic);
1600 spin_unlock_irq(&nic->cmd_lock);
1602 e100_update_stats(nic);
1603 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1605 if(nic->mac <= mac_82557_D100_C)
1606 /* Issue a multicast command to workaround a 557 lock up */
1607 e100_set_multicast_list(nic->netdev);
1609 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1610 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1611 nic->flags |= ich_10h_workaround;
1612 else
1613 nic->flags &= ~ich_10h_workaround;
1615 mod_timer(&nic->watchdog,
1616 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1619 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1620 struct sk_buff *skb)
1622 cb->command = nic->tx_command;
1623 /* interrupt every 16 packets regardless of delay */
1624 if((nic->cbs_avail & ~15) == nic->cbs_avail)
1625 cb->command |= cpu_to_le16(cb_i);
1626 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1627 cb->u.tcb.tcb_byte_count = 0;
1628 cb->u.tcb.threshold = nic->tx_threshold;
1629 cb->u.tcb.tbd_count = 1;
1630 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1631 skb->data, skb->len, PCI_DMA_TODEVICE));
1632 /* check for mapping failure? */
1633 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1636 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1638 struct nic *nic = netdev_priv(netdev);
1639 int err;
1641 if(nic->flags & ich_10h_workaround) {
1642 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1643 Issue a NOP command followed by a 1us delay before
1644 issuing the Tx command. */
1645 if(e100_exec_cmd(nic, cuc_nop, 0))
1646 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1647 udelay(1);
1650 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1652 switch(err) {
1653 case -ENOSPC:
1654 /* We queued the skb, but now we're out of space. */
1655 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1656 netif_stop_queue(netdev);
1657 break;
1658 case -ENOMEM:
1659 /* This is a hard error - log it. */
1660 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1661 netif_stop_queue(netdev);
1662 return 1;
1665 netdev->trans_start = jiffies;
1666 return 0;
1669 static int e100_tx_clean(struct nic *nic)
1671 struct net_device *dev = nic->netdev;
1672 struct cb *cb;
1673 int tx_cleaned = 0;
1675 spin_lock(&nic->cb_lock);
1677 /* Clean CBs marked complete */
1678 for(cb = nic->cb_to_clean;
1679 cb->status & cpu_to_le16(cb_complete);
1680 cb = nic->cb_to_clean = cb->next) {
1681 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1682 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1683 cb->status);
1685 if(likely(cb->skb != NULL)) {
1686 dev->stats.tx_packets++;
1687 dev->stats.tx_bytes += cb->skb->len;
1689 pci_unmap_single(nic->pdev,
1690 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1691 le16_to_cpu(cb->u.tcb.tbd.size),
1692 PCI_DMA_TODEVICE);
1693 dev_kfree_skb_any(cb->skb);
1694 cb->skb = NULL;
1695 tx_cleaned = 1;
1697 cb->status = 0;
1698 nic->cbs_avail++;
1701 spin_unlock(&nic->cb_lock);
1703 /* Recover from running out of Tx resources in xmit_frame */
1704 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1705 netif_wake_queue(nic->netdev);
1707 return tx_cleaned;
1710 static void e100_clean_cbs(struct nic *nic)
1712 if(nic->cbs) {
1713 while(nic->cbs_avail != nic->params.cbs.count) {
1714 struct cb *cb = nic->cb_to_clean;
1715 if(cb->skb) {
1716 pci_unmap_single(nic->pdev,
1717 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1718 le16_to_cpu(cb->u.tcb.tbd.size),
1719 PCI_DMA_TODEVICE);
1720 dev_kfree_skb(cb->skb);
1722 nic->cb_to_clean = nic->cb_to_clean->next;
1723 nic->cbs_avail++;
1725 pci_free_consistent(nic->pdev,
1726 sizeof(struct cb) * nic->params.cbs.count,
1727 nic->cbs, nic->cbs_dma_addr);
1728 nic->cbs = NULL;
1729 nic->cbs_avail = 0;
1731 nic->cuc_cmd = cuc_start;
1732 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1733 nic->cbs;
1736 static int e100_alloc_cbs(struct nic *nic)
1738 struct cb *cb;
1739 unsigned int i, count = nic->params.cbs.count;
1741 nic->cuc_cmd = cuc_start;
1742 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1743 nic->cbs_avail = 0;
1745 nic->cbs = pci_alloc_consistent(nic->pdev,
1746 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1747 if(!nic->cbs)
1748 return -ENOMEM;
1750 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1751 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1752 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1754 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1755 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1756 ((i+1) % count) * sizeof(struct cb));
1757 cb->skb = NULL;
1760 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1761 nic->cbs_avail = count;
1763 return 0;
1766 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1768 if(!nic->rxs) return;
1769 if(RU_SUSPENDED != nic->ru_running) return;
1771 /* handle init time starts */
1772 if(!rx) rx = nic->rxs;
1774 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1775 if(rx->skb) {
1776 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1777 nic->ru_running = RU_RUNNING;
1781 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1782 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1784 if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1785 return -ENOMEM;
1787 /* Align, init, and map the RFD. */
1788 skb_reserve(rx->skb, NET_IP_ALIGN);
1789 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1790 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1791 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1793 if (pci_dma_mapping_error(rx->dma_addr)) {
1794 dev_kfree_skb_any(rx->skb);
1795 rx->skb = NULL;
1796 rx->dma_addr = 0;
1797 return -ENOMEM;
1800 /* Link the RFD to end of RFA by linking previous RFD to
1801 * this one. We are safe to touch the previous RFD because
1802 * it is protected by the before last buffer's el bit being set */
1803 if (rx->prev->skb) {
1804 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1805 put_unaligned(cpu_to_le32(rx->dma_addr), &prev_rfd->link);
1808 return 0;
1811 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1812 unsigned int *work_done, unsigned int work_to_do)
1814 struct net_device *dev = nic->netdev;
1815 struct sk_buff *skb = rx->skb;
1816 struct rfd *rfd = (struct rfd *)skb->data;
1817 u16 rfd_status, actual_size;
1819 if(unlikely(work_done && *work_done >= work_to_do))
1820 return -EAGAIN;
1822 /* Need to sync before taking a peek at cb_complete bit */
1823 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1824 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1825 rfd_status = le16_to_cpu(rfd->status);
1827 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1829 /* If data isn't ready, nothing to indicate */
1830 if (unlikely(!(rfd_status & cb_complete))) {
1831 /* If the next buffer has the el bit, but we think the receiver
1832 * is still running, check to see if it really stopped while
1833 * we had interrupts off.
1834 * This allows for a fast restart without re-enabling
1835 * interrupts */
1836 if ((le16_to_cpu(rfd->command) & cb_el) &&
1837 (RU_RUNNING == nic->ru_running))
1839 if (readb(&nic->csr->scb.status) & rus_no_res)
1840 nic->ru_running = RU_SUSPENDED;
1841 return -ENODATA;
1844 /* Get actual data size */
1845 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1846 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1847 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1849 /* Get data */
1850 pci_unmap_single(nic->pdev, rx->dma_addr,
1851 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1853 /* If this buffer has the el bit, but we think the receiver
1854 * is still running, check to see if it really stopped while
1855 * we had interrupts off.
1856 * This allows for a fast restart without re-enabling interrupts.
1857 * This can happen when the RU sees the size change but also sees
1858 * the el bit set. */
1859 if ((le16_to_cpu(rfd->command) & cb_el) &&
1860 (RU_RUNNING == nic->ru_running)) {
1862 if (readb(&nic->csr->scb.status) & rus_no_res)
1863 nic->ru_running = RU_SUSPENDED;
1866 /* Pull off the RFD and put the actual data (minus eth hdr) */
1867 skb_reserve(skb, sizeof(struct rfd));
1868 skb_put(skb, actual_size);
1869 skb->protocol = eth_type_trans(skb, nic->netdev);
1871 if(unlikely(!(rfd_status & cb_ok))) {
1872 /* Don't indicate if hardware indicates errors */
1873 dev_kfree_skb_any(skb);
1874 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1875 /* Don't indicate oversized frames */
1876 nic->rx_over_length_errors++;
1877 dev_kfree_skb_any(skb);
1878 } else {
1879 dev->stats.rx_packets++;
1880 dev->stats.rx_bytes += actual_size;
1881 nic->netdev->last_rx = jiffies;
1882 netif_receive_skb(skb);
1883 if(work_done)
1884 (*work_done)++;
1887 rx->skb = NULL;
1889 return 0;
1892 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1893 unsigned int work_to_do)
1895 struct rx *rx;
1896 int restart_required = 0, err = 0;
1897 struct rx *old_before_last_rx, *new_before_last_rx;
1898 struct rfd *old_before_last_rfd, *new_before_last_rfd;
1900 /* Indicate newly arrived packets */
1901 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1902 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1903 /* Hit quota or no more to clean */
1904 if (-EAGAIN == err || -ENODATA == err)
1905 break;
1909 /* On EAGAIN, hit quota so have more work to do, restart once
1910 * cleanup is complete.
1911 * Else, are we already rnr? then pay attention!!! this ensures that
1912 * the state machine progression never allows a start with a
1913 * partially cleaned list, avoiding a race between hardware
1914 * and rx_to_clean when in NAPI mode */
1915 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
1916 restart_required = 1;
1918 old_before_last_rx = nic->rx_to_use->prev->prev;
1919 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
1921 /* Alloc new skbs to refill list */
1922 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1923 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1924 break; /* Better luck next time (see watchdog) */
1927 new_before_last_rx = nic->rx_to_use->prev->prev;
1928 if (new_before_last_rx != old_before_last_rx) {
1929 /* Set the el-bit on the buffer that is before the last buffer.
1930 * This lets us update the next pointer on the last buffer
1931 * without worrying about hardware touching it.
1932 * We set the size to 0 to prevent hardware from touching this
1933 * buffer.
1934 * When the hardware hits the before last buffer with el-bit
1935 * and size of 0, it will RNR interrupt, the RUS will go into
1936 * the No Resources state. It will not complete nor write to
1937 * this buffer. */
1938 new_before_last_rfd =
1939 (struct rfd *)new_before_last_rx->skb->data;
1940 new_before_last_rfd->size = 0;
1941 new_before_last_rfd->command |= cpu_to_le16(cb_el);
1942 pci_dma_sync_single_for_device(nic->pdev,
1943 new_before_last_rx->dma_addr, sizeof(struct rfd),
1944 PCI_DMA_TODEVICE);
1946 /* Now that we have a new stopping point, we can clear the old
1947 * stopping point. We must sync twice to get the proper
1948 * ordering on the hardware side of things. */
1949 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
1950 pci_dma_sync_single_for_device(nic->pdev,
1951 old_before_last_rx->dma_addr, sizeof(struct rfd),
1952 PCI_DMA_TODEVICE);
1953 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1954 pci_dma_sync_single_for_device(nic->pdev,
1955 old_before_last_rx->dma_addr, sizeof(struct rfd),
1956 PCI_DMA_TODEVICE);
1959 if(restart_required) {
1960 // ack the rnr?
1961 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1962 e100_start_receiver(nic, nic->rx_to_clean);
1963 if(work_done)
1964 (*work_done)++;
1968 static void e100_rx_clean_list(struct nic *nic)
1970 struct rx *rx;
1971 unsigned int i, count = nic->params.rfds.count;
1973 nic->ru_running = RU_UNINITIALIZED;
1975 if(nic->rxs) {
1976 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1977 if(rx->skb) {
1978 pci_unmap_single(nic->pdev, rx->dma_addr,
1979 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1980 dev_kfree_skb(rx->skb);
1983 kfree(nic->rxs);
1984 nic->rxs = NULL;
1987 nic->rx_to_use = nic->rx_to_clean = NULL;
1990 static int e100_rx_alloc_list(struct nic *nic)
1992 struct rx *rx;
1993 unsigned int i, count = nic->params.rfds.count;
1994 struct rfd *before_last;
1996 nic->rx_to_use = nic->rx_to_clean = NULL;
1997 nic->ru_running = RU_UNINITIALIZED;
1999 if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2000 return -ENOMEM;
2002 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
2003 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2004 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2005 if(e100_rx_alloc_skb(nic, rx)) {
2006 e100_rx_clean_list(nic);
2007 return -ENOMEM;
2010 /* Set the el-bit on the buffer that is before the last buffer.
2011 * This lets us update the next pointer on the last buffer without
2012 * worrying about hardware touching it.
2013 * We set the size to 0 to prevent hardware from touching this buffer.
2014 * When the hardware hits the before last buffer with el-bit and size
2015 * of 0, it will RNR interrupt, the RU will go into the No Resources
2016 * state. It will not complete nor write to this buffer. */
2017 rx = nic->rxs->prev->prev;
2018 before_last = (struct rfd *)rx->skb->data;
2019 before_last->command |= cpu_to_le16(cb_el);
2020 before_last->size = 0;
2021 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2022 sizeof(struct rfd), PCI_DMA_TODEVICE);
2024 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2025 nic->ru_running = RU_SUSPENDED;
2027 return 0;
2030 static irqreturn_t e100_intr(int irq, void *dev_id)
2032 struct net_device *netdev = dev_id;
2033 struct nic *nic = netdev_priv(netdev);
2034 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2036 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
2038 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
2039 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2040 return IRQ_NONE;
2042 /* Ack interrupt(s) */
2043 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2045 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2046 if(stat_ack & stat_ack_rnr)
2047 nic->ru_running = RU_SUSPENDED;
2049 if(likely(netif_rx_schedule_prep(netdev, &nic->napi))) {
2050 e100_disable_irq(nic);
2051 __netif_rx_schedule(netdev, &nic->napi);
2054 return IRQ_HANDLED;
2057 static int e100_poll(struct napi_struct *napi, int budget)
2059 struct nic *nic = container_of(napi, struct nic, napi);
2060 struct net_device *netdev = nic->netdev;
2061 unsigned int work_done = 0;
2063 e100_rx_clean(nic, &work_done, budget);
2064 e100_tx_clean(nic);
2066 /* If budget not fully consumed, exit the polling mode */
2067 if (work_done < budget) {
2068 netif_rx_complete(netdev, napi);
2069 e100_enable_irq(nic);
2072 return work_done;
2075 #ifdef CONFIG_NET_POLL_CONTROLLER
2076 static void e100_netpoll(struct net_device *netdev)
2078 struct nic *nic = netdev_priv(netdev);
2080 e100_disable_irq(nic);
2081 e100_intr(nic->pdev->irq, netdev);
2082 e100_tx_clean(nic);
2083 e100_enable_irq(nic);
2085 #endif
2087 static int e100_set_mac_address(struct net_device *netdev, void *p)
2089 struct nic *nic = netdev_priv(netdev);
2090 struct sockaddr *addr = p;
2092 if (!is_valid_ether_addr(addr->sa_data))
2093 return -EADDRNOTAVAIL;
2095 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2096 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2098 return 0;
2101 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2103 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2104 return -EINVAL;
2105 netdev->mtu = new_mtu;
2106 return 0;
2109 static int e100_asf(struct nic *nic)
2111 /* ASF can be enabled from eeprom */
2112 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2113 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2114 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2115 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2118 static int e100_up(struct nic *nic)
2120 int err;
2122 if((err = e100_rx_alloc_list(nic)))
2123 return err;
2124 if((err = e100_alloc_cbs(nic)))
2125 goto err_rx_clean_list;
2126 if((err = e100_hw_init(nic)))
2127 goto err_clean_cbs;
2128 e100_set_multicast_list(nic->netdev);
2129 e100_start_receiver(nic, NULL);
2130 mod_timer(&nic->watchdog, jiffies);
2131 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2132 nic->netdev->name, nic->netdev)))
2133 goto err_no_irq;
2134 netif_wake_queue(nic->netdev);
2135 napi_enable(&nic->napi);
2136 /* enable ints _after_ enabling poll, preventing a race between
2137 * disable ints+schedule */
2138 e100_enable_irq(nic);
2139 return 0;
2141 err_no_irq:
2142 del_timer_sync(&nic->watchdog);
2143 err_clean_cbs:
2144 e100_clean_cbs(nic);
2145 err_rx_clean_list:
2146 e100_rx_clean_list(nic);
2147 return err;
2150 static void e100_down(struct nic *nic)
2152 /* wait here for poll to complete */
2153 napi_disable(&nic->napi);
2154 netif_stop_queue(nic->netdev);
2155 e100_hw_reset(nic);
2156 free_irq(nic->pdev->irq, nic->netdev);
2157 del_timer_sync(&nic->watchdog);
2158 netif_carrier_off(nic->netdev);
2159 e100_clean_cbs(nic);
2160 e100_rx_clean_list(nic);
2163 static void e100_tx_timeout(struct net_device *netdev)
2165 struct nic *nic = netdev_priv(netdev);
2167 /* Reset outside of interrupt context, to avoid request_irq
2168 * in interrupt context */
2169 schedule_work(&nic->tx_timeout_task);
2172 static void e100_tx_timeout_task(struct work_struct *work)
2174 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2175 struct net_device *netdev = nic->netdev;
2177 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2178 ioread8(&nic->csr->scb.status));
2179 e100_down(netdev_priv(netdev));
2180 e100_up(netdev_priv(netdev));
2183 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2185 int err;
2186 struct sk_buff *skb;
2188 /* Use driver resources to perform internal MAC or PHY
2189 * loopback test. A single packet is prepared and transmitted
2190 * in loopback mode, and the test passes if the received
2191 * packet compares byte-for-byte to the transmitted packet. */
2193 if((err = e100_rx_alloc_list(nic)))
2194 return err;
2195 if((err = e100_alloc_cbs(nic)))
2196 goto err_clean_rx;
2198 /* ICH PHY loopback is broken so do MAC loopback instead */
2199 if(nic->flags & ich && loopback_mode == lb_phy)
2200 loopback_mode = lb_mac;
2202 nic->loopback = loopback_mode;
2203 if((err = e100_hw_init(nic)))
2204 goto err_loopback_none;
2206 if(loopback_mode == lb_phy)
2207 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2208 BMCR_LOOPBACK);
2210 e100_start_receiver(nic, NULL);
2212 if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2213 err = -ENOMEM;
2214 goto err_loopback_none;
2216 skb_put(skb, ETH_DATA_LEN);
2217 memset(skb->data, 0xFF, ETH_DATA_LEN);
2218 e100_xmit_frame(skb, nic->netdev);
2220 msleep(10);
2222 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2223 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
2225 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2226 skb->data, ETH_DATA_LEN))
2227 err = -EAGAIN;
2229 err_loopback_none:
2230 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2231 nic->loopback = lb_none;
2232 e100_clean_cbs(nic);
2233 e100_hw_reset(nic);
2234 err_clean_rx:
2235 e100_rx_clean_list(nic);
2236 return err;
2239 #define MII_LED_CONTROL 0x1B
2240 static void e100_blink_led(unsigned long data)
2242 struct nic *nic = (struct nic *)data;
2243 enum led_state {
2244 led_on = 0x01,
2245 led_off = 0x04,
2246 led_on_559 = 0x05,
2247 led_on_557 = 0x07,
2250 nic->leds = (nic->leds & led_on) ? led_off :
2251 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2252 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2253 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2256 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2258 struct nic *nic = netdev_priv(netdev);
2259 return mii_ethtool_gset(&nic->mii, cmd);
2262 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2264 struct nic *nic = netdev_priv(netdev);
2265 int err;
2267 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2268 err = mii_ethtool_sset(&nic->mii, cmd);
2269 e100_exec_cb(nic, NULL, e100_configure);
2271 return err;
2274 static void e100_get_drvinfo(struct net_device *netdev,
2275 struct ethtool_drvinfo *info)
2277 struct nic *nic = netdev_priv(netdev);
2278 strcpy(info->driver, DRV_NAME);
2279 strcpy(info->version, DRV_VERSION);
2280 strcpy(info->fw_version, "N/A");
2281 strcpy(info->bus_info, pci_name(nic->pdev));
2284 #define E100_PHY_REGS 0x1C
2285 static int e100_get_regs_len(struct net_device *netdev)
2287 struct nic *nic = netdev_priv(netdev);
2288 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2291 static void e100_get_regs(struct net_device *netdev,
2292 struct ethtool_regs *regs, void *p)
2294 struct nic *nic = netdev_priv(netdev);
2295 u32 *buff = p;
2296 int i;
2298 regs->version = (1 << 24) | nic->pdev->revision;
2299 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2300 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2301 ioread16(&nic->csr->scb.status);
2302 for(i = E100_PHY_REGS; i >= 0; i--)
2303 buff[1 + E100_PHY_REGS - i] =
2304 mdio_read(netdev, nic->mii.phy_id, i);
2305 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2306 e100_exec_cb(nic, NULL, e100_dump);
2307 msleep(10);
2308 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2309 sizeof(nic->mem->dump_buf));
2312 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2314 struct nic *nic = netdev_priv(netdev);
2315 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2316 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2319 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2321 struct nic *nic = netdev_priv(netdev);
2323 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
2324 return -EOPNOTSUPP;
2326 if(wol->wolopts)
2327 nic->flags |= wol_magic;
2328 else
2329 nic->flags &= ~wol_magic;
2331 e100_exec_cb(nic, NULL, e100_configure);
2333 return 0;
2336 static u32 e100_get_msglevel(struct net_device *netdev)
2338 struct nic *nic = netdev_priv(netdev);
2339 return nic->msg_enable;
2342 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2344 struct nic *nic = netdev_priv(netdev);
2345 nic->msg_enable = value;
2348 static int e100_nway_reset(struct net_device *netdev)
2350 struct nic *nic = netdev_priv(netdev);
2351 return mii_nway_restart(&nic->mii);
2354 static u32 e100_get_link(struct net_device *netdev)
2356 struct nic *nic = netdev_priv(netdev);
2357 return mii_link_ok(&nic->mii);
2360 static int e100_get_eeprom_len(struct net_device *netdev)
2362 struct nic *nic = netdev_priv(netdev);
2363 return nic->eeprom_wc << 1;
2366 #define E100_EEPROM_MAGIC 0x1234
2367 static int e100_get_eeprom(struct net_device *netdev,
2368 struct ethtool_eeprom *eeprom, u8 *bytes)
2370 struct nic *nic = netdev_priv(netdev);
2372 eeprom->magic = E100_EEPROM_MAGIC;
2373 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2375 return 0;
2378 static int e100_set_eeprom(struct net_device *netdev,
2379 struct ethtool_eeprom *eeprom, u8 *bytes)
2381 struct nic *nic = netdev_priv(netdev);
2383 if(eeprom->magic != E100_EEPROM_MAGIC)
2384 return -EINVAL;
2386 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2388 return e100_eeprom_save(nic, eeprom->offset >> 1,
2389 (eeprom->len >> 1) + 1);
2392 static void e100_get_ringparam(struct net_device *netdev,
2393 struct ethtool_ringparam *ring)
2395 struct nic *nic = netdev_priv(netdev);
2396 struct param_range *rfds = &nic->params.rfds;
2397 struct param_range *cbs = &nic->params.cbs;
2399 ring->rx_max_pending = rfds->max;
2400 ring->tx_max_pending = cbs->max;
2401 ring->rx_mini_max_pending = 0;
2402 ring->rx_jumbo_max_pending = 0;
2403 ring->rx_pending = rfds->count;
2404 ring->tx_pending = cbs->count;
2405 ring->rx_mini_pending = 0;
2406 ring->rx_jumbo_pending = 0;
2409 static int e100_set_ringparam(struct net_device *netdev,
2410 struct ethtool_ringparam *ring)
2412 struct nic *nic = netdev_priv(netdev);
2413 struct param_range *rfds = &nic->params.rfds;
2414 struct param_range *cbs = &nic->params.cbs;
2416 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2417 return -EINVAL;
2419 if(netif_running(netdev))
2420 e100_down(nic);
2421 rfds->count = max(ring->rx_pending, rfds->min);
2422 rfds->count = min(rfds->count, rfds->max);
2423 cbs->count = max(ring->tx_pending, cbs->min);
2424 cbs->count = min(cbs->count, cbs->max);
2425 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2426 rfds->count, cbs->count);
2427 if(netif_running(netdev))
2428 e100_up(nic);
2430 return 0;
2433 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2434 "Link test (on/offline)",
2435 "Eeprom test (on/offline)",
2436 "Self test (offline)",
2437 "Mac loopback (offline)",
2438 "Phy loopback (offline)",
2440 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2442 static void e100_diag_test(struct net_device *netdev,
2443 struct ethtool_test *test, u64 *data)
2445 struct ethtool_cmd cmd;
2446 struct nic *nic = netdev_priv(netdev);
2447 int i, err;
2449 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2450 data[0] = !mii_link_ok(&nic->mii);
2451 data[1] = e100_eeprom_load(nic);
2452 if(test->flags & ETH_TEST_FL_OFFLINE) {
2454 /* save speed, duplex & autoneg settings */
2455 err = mii_ethtool_gset(&nic->mii, &cmd);
2457 if(netif_running(netdev))
2458 e100_down(nic);
2459 data[2] = e100_self_test(nic);
2460 data[3] = e100_loopback_test(nic, lb_mac);
2461 data[4] = e100_loopback_test(nic, lb_phy);
2463 /* restore speed, duplex & autoneg settings */
2464 err = mii_ethtool_sset(&nic->mii, &cmd);
2466 if(netif_running(netdev))
2467 e100_up(nic);
2469 for(i = 0; i < E100_TEST_LEN; i++)
2470 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2472 msleep_interruptible(4 * 1000);
2475 static int e100_phys_id(struct net_device *netdev, u32 data)
2477 struct nic *nic = netdev_priv(netdev);
2479 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2480 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2481 mod_timer(&nic->blink_timer, jiffies);
2482 msleep_interruptible(data * 1000);
2483 del_timer_sync(&nic->blink_timer);
2484 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2486 return 0;
2489 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2490 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2491 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2492 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2493 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2494 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2495 "tx_heartbeat_errors", "tx_window_errors",
2496 /* device-specific stats */
2497 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2498 "tx_flow_control_pause", "rx_flow_control_pause",
2499 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2501 #define E100_NET_STATS_LEN 21
2502 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2504 static int e100_get_sset_count(struct net_device *netdev, int sset)
2506 switch (sset) {
2507 case ETH_SS_TEST:
2508 return E100_TEST_LEN;
2509 case ETH_SS_STATS:
2510 return E100_STATS_LEN;
2511 default:
2512 return -EOPNOTSUPP;
2516 static void e100_get_ethtool_stats(struct net_device *netdev,
2517 struct ethtool_stats *stats, u64 *data)
2519 struct nic *nic = netdev_priv(netdev);
2520 int i;
2522 for(i = 0; i < E100_NET_STATS_LEN; i++)
2523 data[i] = ((unsigned long *)&netdev->stats)[i];
2525 data[i++] = nic->tx_deferred;
2526 data[i++] = nic->tx_single_collisions;
2527 data[i++] = nic->tx_multiple_collisions;
2528 data[i++] = nic->tx_fc_pause;
2529 data[i++] = nic->rx_fc_pause;
2530 data[i++] = nic->rx_fc_unsupported;
2531 data[i++] = nic->tx_tco_frames;
2532 data[i++] = nic->rx_tco_frames;
2535 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2537 switch(stringset) {
2538 case ETH_SS_TEST:
2539 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2540 break;
2541 case ETH_SS_STATS:
2542 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2543 break;
2547 static const struct ethtool_ops e100_ethtool_ops = {
2548 .get_settings = e100_get_settings,
2549 .set_settings = e100_set_settings,
2550 .get_drvinfo = e100_get_drvinfo,
2551 .get_regs_len = e100_get_regs_len,
2552 .get_regs = e100_get_regs,
2553 .get_wol = e100_get_wol,
2554 .set_wol = e100_set_wol,
2555 .get_msglevel = e100_get_msglevel,
2556 .set_msglevel = e100_set_msglevel,
2557 .nway_reset = e100_nway_reset,
2558 .get_link = e100_get_link,
2559 .get_eeprom_len = e100_get_eeprom_len,
2560 .get_eeprom = e100_get_eeprom,
2561 .set_eeprom = e100_set_eeprom,
2562 .get_ringparam = e100_get_ringparam,
2563 .set_ringparam = e100_set_ringparam,
2564 .self_test = e100_diag_test,
2565 .get_strings = e100_get_strings,
2566 .phys_id = e100_phys_id,
2567 .get_ethtool_stats = e100_get_ethtool_stats,
2568 .get_sset_count = e100_get_sset_count,
2571 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2573 struct nic *nic = netdev_priv(netdev);
2575 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2578 static int e100_alloc(struct nic *nic)
2580 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2581 &nic->dma_addr);
2582 return nic->mem ? 0 : -ENOMEM;
2585 static void e100_free(struct nic *nic)
2587 if(nic->mem) {
2588 pci_free_consistent(nic->pdev, sizeof(struct mem),
2589 nic->mem, nic->dma_addr);
2590 nic->mem = NULL;
2594 static int e100_open(struct net_device *netdev)
2596 struct nic *nic = netdev_priv(netdev);
2597 int err = 0;
2599 netif_carrier_off(netdev);
2600 if((err = e100_up(nic)))
2601 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2602 return err;
2605 static int e100_close(struct net_device *netdev)
2607 e100_down(netdev_priv(netdev));
2608 return 0;
2611 static int __devinit e100_probe(struct pci_dev *pdev,
2612 const struct pci_device_id *ent)
2614 struct net_device *netdev;
2615 struct nic *nic;
2616 int err;
2617 DECLARE_MAC_BUF(mac);
2619 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2620 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2621 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2622 return -ENOMEM;
2625 netdev->open = e100_open;
2626 netdev->stop = e100_close;
2627 netdev->hard_start_xmit = e100_xmit_frame;
2628 netdev->set_multicast_list = e100_set_multicast_list;
2629 netdev->set_mac_address = e100_set_mac_address;
2630 netdev->change_mtu = e100_change_mtu;
2631 netdev->do_ioctl = e100_do_ioctl;
2632 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2633 netdev->tx_timeout = e100_tx_timeout;
2634 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2635 #ifdef CONFIG_NET_POLL_CONTROLLER
2636 netdev->poll_controller = e100_netpoll;
2637 #endif
2638 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2640 nic = netdev_priv(netdev);
2641 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2642 nic->netdev = netdev;
2643 nic->pdev = pdev;
2644 nic->msg_enable = (1 << debug) - 1;
2645 pci_set_drvdata(pdev, netdev);
2647 if((err = pci_enable_device(pdev))) {
2648 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2649 goto err_out_free_dev;
2652 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2653 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2654 "base address, aborting.\n");
2655 err = -ENODEV;
2656 goto err_out_disable_pdev;
2659 if((err = pci_request_regions(pdev, DRV_NAME))) {
2660 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2661 goto err_out_disable_pdev;
2664 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2665 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2666 goto err_out_free_res;
2669 SET_NETDEV_DEV(netdev, &pdev->dev);
2671 if (use_io)
2672 DPRINTK(PROBE, INFO, "using i/o access mode\n");
2674 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2675 if(!nic->csr) {
2676 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2677 err = -ENOMEM;
2678 goto err_out_free_res;
2681 if(ent->driver_data)
2682 nic->flags |= ich;
2683 else
2684 nic->flags &= ~ich;
2686 e100_get_defaults(nic);
2688 /* locks must be initialized before calling hw_reset */
2689 spin_lock_init(&nic->cb_lock);
2690 spin_lock_init(&nic->cmd_lock);
2691 spin_lock_init(&nic->mdio_lock);
2693 /* Reset the device before pci_set_master() in case device is in some
2694 * funky state and has an interrupt pending - hint: we don't have the
2695 * interrupt handler registered yet. */
2696 e100_hw_reset(nic);
2698 pci_set_master(pdev);
2700 init_timer(&nic->watchdog);
2701 nic->watchdog.function = e100_watchdog;
2702 nic->watchdog.data = (unsigned long)nic;
2703 init_timer(&nic->blink_timer);
2704 nic->blink_timer.function = e100_blink_led;
2705 nic->blink_timer.data = (unsigned long)nic;
2707 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2709 if((err = e100_alloc(nic))) {
2710 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2711 goto err_out_iounmap;
2714 if((err = e100_eeprom_load(nic)))
2715 goto err_out_free;
2717 e100_phy_init(nic);
2719 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2720 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2721 if (!is_valid_ether_addr(netdev->perm_addr)) {
2722 if (!eeprom_bad_csum_allow) {
2723 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2724 "EEPROM, aborting.\n");
2725 err = -EAGAIN;
2726 goto err_out_free;
2727 } else {
2728 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2729 "you MUST configure one.\n");
2733 /* Wol magic packet can be enabled from eeprom */
2734 if((nic->mac >= mac_82558_D101_A4) &&
2735 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2736 nic->flags |= wol_magic;
2738 /* ack any pending wake events, disable PME */
2739 err = pci_enable_wake(pdev, 0, 0);
2740 if (err)
2741 DPRINTK(PROBE, ERR, "Error clearing wake event\n");
2743 strcpy(netdev->name, "eth%d");
2744 if((err = register_netdev(netdev))) {
2745 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2746 goto err_out_free;
2749 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %s\n",
2750 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2751 pdev->irq, print_mac(mac, netdev->dev_addr));
2753 return 0;
2755 err_out_free:
2756 e100_free(nic);
2757 err_out_iounmap:
2758 pci_iounmap(pdev, nic->csr);
2759 err_out_free_res:
2760 pci_release_regions(pdev);
2761 err_out_disable_pdev:
2762 pci_disable_device(pdev);
2763 err_out_free_dev:
2764 pci_set_drvdata(pdev, NULL);
2765 free_netdev(netdev);
2766 return err;
2769 static void __devexit e100_remove(struct pci_dev *pdev)
2771 struct net_device *netdev = pci_get_drvdata(pdev);
2773 if(netdev) {
2774 struct nic *nic = netdev_priv(netdev);
2775 unregister_netdev(netdev);
2776 e100_free(nic);
2777 iounmap(nic->csr);
2778 free_netdev(netdev);
2779 pci_release_regions(pdev);
2780 pci_disable_device(pdev);
2781 pci_set_drvdata(pdev, NULL);
2785 #ifdef CONFIG_PM
2786 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2788 struct net_device *netdev = pci_get_drvdata(pdev);
2789 struct nic *nic = netdev_priv(netdev);
2791 if (netif_running(netdev))
2792 napi_disable(&nic->napi);
2793 del_timer_sync(&nic->watchdog);
2794 netif_carrier_off(nic->netdev);
2795 netif_device_detach(netdev);
2797 pci_save_state(pdev);
2799 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2800 pci_enable_wake(pdev, PCI_D3hot, 1);
2801 pci_enable_wake(pdev, PCI_D3cold, 1);
2802 } else {
2803 pci_enable_wake(pdev, PCI_D3hot, 0);
2804 pci_enable_wake(pdev, PCI_D3cold, 0);
2807 free_irq(pdev->irq, netdev);
2809 pci_disable_device(pdev);
2810 pci_set_power_state(pdev, PCI_D3hot);
2812 return 0;
2815 static int e100_resume(struct pci_dev *pdev)
2817 struct net_device *netdev = pci_get_drvdata(pdev);
2818 struct nic *nic = netdev_priv(netdev);
2820 pci_set_power_state(pdev, PCI_D0);
2821 pci_restore_state(pdev);
2822 /* ack any pending wake events, disable PME */
2823 pci_enable_wake(pdev, 0, 0);
2825 netif_device_attach(netdev);
2826 if (netif_running(netdev))
2827 e100_up(nic);
2829 return 0;
2831 #endif /* CONFIG_PM */
2833 static void e100_shutdown(struct pci_dev *pdev)
2835 struct net_device *netdev = pci_get_drvdata(pdev);
2836 struct nic *nic = netdev_priv(netdev);
2838 if (netif_running(netdev))
2839 napi_disable(&nic->napi);
2840 del_timer_sync(&nic->watchdog);
2841 netif_carrier_off(nic->netdev);
2843 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2844 pci_enable_wake(pdev, PCI_D3hot, 1);
2845 pci_enable_wake(pdev, PCI_D3cold, 1);
2846 } else {
2847 pci_enable_wake(pdev, PCI_D3hot, 0);
2848 pci_enable_wake(pdev, PCI_D3cold, 0);
2851 free_irq(pdev->irq, netdev);
2853 pci_disable_device(pdev);
2854 pci_set_power_state(pdev, PCI_D3hot);
2857 /* ------------------ PCI Error Recovery infrastructure -------------- */
2859 * e100_io_error_detected - called when PCI error is detected.
2860 * @pdev: Pointer to PCI device
2861 * @state: The current pci conneection state
2863 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2865 struct net_device *netdev = pci_get_drvdata(pdev);
2866 struct nic *nic = netdev_priv(netdev);
2868 /* Similar to calling e100_down(), but avoids adpater I/O. */
2869 netdev->stop(netdev);
2871 /* Detach; put netif into state similar to hotplug unplug. */
2872 napi_enable(&nic->napi);
2873 netif_device_detach(netdev);
2874 pci_disable_device(pdev);
2876 /* Request a slot reset. */
2877 return PCI_ERS_RESULT_NEED_RESET;
2881 * e100_io_slot_reset - called after the pci bus has been reset.
2882 * @pdev: Pointer to PCI device
2884 * Restart the card from scratch.
2886 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2888 struct net_device *netdev = pci_get_drvdata(pdev);
2889 struct nic *nic = netdev_priv(netdev);
2891 if (pci_enable_device(pdev)) {
2892 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2893 return PCI_ERS_RESULT_DISCONNECT;
2895 pci_set_master(pdev);
2897 /* Only one device per card can do a reset */
2898 if (0 != PCI_FUNC(pdev->devfn))
2899 return PCI_ERS_RESULT_RECOVERED;
2900 e100_hw_reset(nic);
2901 e100_phy_init(nic);
2903 return PCI_ERS_RESULT_RECOVERED;
2907 * e100_io_resume - resume normal operations
2908 * @pdev: Pointer to PCI device
2910 * Resume normal operations after an error recovery
2911 * sequence has been completed.
2913 static void e100_io_resume(struct pci_dev *pdev)
2915 struct net_device *netdev = pci_get_drvdata(pdev);
2916 struct nic *nic = netdev_priv(netdev);
2918 /* ack any pending wake events, disable PME */
2919 pci_enable_wake(pdev, 0, 0);
2921 netif_device_attach(netdev);
2922 if (netif_running(netdev)) {
2923 e100_open(netdev);
2924 mod_timer(&nic->watchdog, jiffies);
2928 static struct pci_error_handlers e100_err_handler = {
2929 .error_detected = e100_io_error_detected,
2930 .slot_reset = e100_io_slot_reset,
2931 .resume = e100_io_resume,
2934 static struct pci_driver e100_driver = {
2935 .name = DRV_NAME,
2936 .id_table = e100_id_table,
2937 .probe = e100_probe,
2938 .remove = __devexit_p(e100_remove),
2939 #ifdef CONFIG_PM
2940 /* Power Management hooks */
2941 .suspend = e100_suspend,
2942 .resume = e100_resume,
2943 #endif
2944 .shutdown = e100_shutdown,
2945 .err_handler = &e100_err_handler,
2948 static int __init e100_init_module(void)
2950 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2951 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2952 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2954 return pci_register_driver(&e100_driver);
2957 static void __exit e100_cleanup_module(void)
2959 pci_unregister_driver(&e100_driver);
2962 module_init(e100_init_module);
2963 module_exit(e100_cleanup_module);