ia64: on UP percpu variables are not small memory model
[wrt350n-kernel.git] / net / ipv4 / fib_trie.c
blobf2f47033f31f3a211a1cba23438500c0a1076be9
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
28 * Code from fib_hash has been reused which includes the following header:
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
35 * IPv4 FIB: lookup engine and maintenance routines.
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
45 * Substantial contributions to this work comes from:
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
53 #define VERSION "0.408"
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <linux/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
85 #define MAX_STAT_DEPTH 32
87 #define KEYLENGTH (8*sizeof(t_key))
89 typedef unsigned int t_key;
91 #define T_TNODE 0
92 #define T_LEAF 1
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
99 struct node {
100 unsigned long parent;
101 t_key key;
104 struct leaf {
105 unsigned long parent;
106 t_key key;
107 struct hlist_head list;
108 struct rcu_head rcu;
111 struct leaf_info {
112 struct hlist_node hlist;
113 struct rcu_head rcu;
114 int plen;
115 struct list_head falh;
118 struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 struct rcu_head rcu;
126 struct node *child[0];
129 #ifdef CONFIG_IP_FIB_TRIE_STATS
130 struct trie_use_stats {
131 unsigned int gets;
132 unsigned int backtrack;
133 unsigned int semantic_match_passed;
134 unsigned int semantic_match_miss;
135 unsigned int null_node_hit;
136 unsigned int resize_node_skipped;
138 #endif
140 struct trie_stat {
141 unsigned int totdepth;
142 unsigned int maxdepth;
143 unsigned int tnodes;
144 unsigned int leaves;
145 unsigned int nullpointers;
146 unsigned int prefixes;
147 unsigned int nodesizes[MAX_STAT_DEPTH];
150 struct trie {
151 struct node *trie;
152 #ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154 #endif
157 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
158 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
159 int wasfull);
160 static struct node *resize(struct trie *t, struct tnode *tn);
161 static struct tnode *inflate(struct trie *t, struct tnode *tn);
162 static struct tnode *halve(struct trie *t, struct tnode *tn);
163 static void tnode_free(struct tnode *tn);
165 static struct kmem_cache *fn_alias_kmem __read_mostly;
166 static struct kmem_cache *trie_leaf_kmem __read_mostly;
168 static inline struct tnode *node_parent(struct node *node)
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
173 static inline struct tnode *node_parent_rcu(struct node *node)
175 struct tnode *ret = node_parent(node);
177 return rcu_dereference(ret);
180 static inline void node_set_parent(struct node *node, struct tnode *ptr)
182 rcu_assign_pointer(node->parent,
183 (unsigned long)ptr | NODE_TYPE(node));
186 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
188 BUG_ON(i >= 1U << tn->bits);
190 return tn->child[i];
193 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
195 struct node *ret = tnode_get_child(tn, i);
197 return rcu_dereference(ret);
200 static inline int tnode_child_length(const struct tnode *tn)
202 return 1 << tn->bits;
205 static inline t_key mask_pfx(t_key k, unsigned short l)
207 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
210 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
212 if (offset < KEYLENGTH)
213 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
214 else
215 return 0;
218 static inline int tkey_equals(t_key a, t_key b)
220 return a == b;
223 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
225 if (bits == 0 || offset >= KEYLENGTH)
226 return 1;
227 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
228 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
231 static inline int tkey_mismatch(t_key a, int offset, t_key b)
233 t_key diff = a ^ b;
234 int i = offset;
236 if (!diff)
237 return 0;
238 while ((diff << i) >> (KEYLENGTH-1) == 0)
239 i++;
240 return i;
244 To understand this stuff, an understanding of keys and all their bits is
245 necessary. Every node in the trie has a key associated with it, but not
246 all of the bits in that key are significant.
248 Consider a node 'n' and its parent 'tp'.
250 If n is a leaf, every bit in its key is significant. Its presence is
251 necessitated by path compression, since during a tree traversal (when
252 searching for a leaf - unless we are doing an insertion) we will completely
253 ignore all skipped bits we encounter. Thus we need to verify, at the end of
254 a potentially successful search, that we have indeed been walking the
255 correct key path.
257 Note that we can never "miss" the correct key in the tree if present by
258 following the wrong path. Path compression ensures that segments of the key
259 that are the same for all keys with a given prefix are skipped, but the
260 skipped part *is* identical for each node in the subtrie below the skipped
261 bit! trie_insert() in this implementation takes care of that - note the
262 call to tkey_sub_equals() in trie_insert().
264 if n is an internal node - a 'tnode' here, the various parts of its key
265 have many different meanings.
267 Example:
268 _________________________________________________________________
269 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
270 -----------------------------------------------------------------
271 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
273 _________________________________________________________________
274 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
275 -----------------------------------------------------------------
276 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
278 tp->pos = 7
279 tp->bits = 3
280 n->pos = 15
281 n->bits = 4
283 First, let's just ignore the bits that come before the parent tp, that is
284 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
285 not use them for anything.
287 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
288 index into the parent's child array. That is, they will be used to find
289 'n' among tp's children.
291 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
292 for the node n.
294 All the bits we have seen so far are significant to the node n. The rest
295 of the bits are really not needed or indeed known in n->key.
297 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
298 n's child array, and will of course be different for each child.
301 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
302 at this point.
306 static inline void check_tnode(const struct tnode *tn)
308 WARN_ON(tn && tn->pos+tn->bits > 32);
311 static const int halve_threshold = 25;
312 static const int inflate_threshold = 50;
313 static const int halve_threshold_root = 8;
314 static const int inflate_threshold_root = 15;
317 static void __alias_free_mem(struct rcu_head *head)
319 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
320 kmem_cache_free(fn_alias_kmem, fa);
323 static inline void alias_free_mem_rcu(struct fib_alias *fa)
325 call_rcu(&fa->rcu, __alias_free_mem);
328 static void __leaf_free_rcu(struct rcu_head *head)
330 struct leaf *l = container_of(head, struct leaf, rcu);
331 kmem_cache_free(trie_leaf_kmem, l);
334 static void __leaf_info_free_rcu(struct rcu_head *head)
336 kfree(container_of(head, struct leaf_info, rcu));
339 static inline void free_leaf_info(struct leaf_info *leaf)
341 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
344 static struct tnode *tnode_alloc(size_t size)
346 struct page *pages;
348 if (size <= PAGE_SIZE)
349 return kzalloc(size, GFP_KERNEL);
351 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
352 if (!pages)
353 return NULL;
355 return page_address(pages);
358 static void __tnode_free_rcu(struct rcu_head *head)
360 struct tnode *tn = container_of(head, struct tnode, rcu);
361 size_t size = sizeof(struct tnode) +
362 (sizeof(struct node *) << tn->bits);
364 if (size <= PAGE_SIZE)
365 kfree(tn);
366 else
367 free_pages((unsigned long)tn, get_order(size));
370 static inline void tnode_free(struct tnode *tn)
372 if (IS_LEAF(tn)) {
373 struct leaf *l = (struct leaf *) tn;
374 call_rcu_bh(&l->rcu, __leaf_free_rcu);
375 } else
376 call_rcu(&tn->rcu, __tnode_free_rcu);
379 static struct leaf *leaf_new(void)
381 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
382 if (l) {
383 l->parent = T_LEAF;
384 INIT_HLIST_HEAD(&l->list);
386 return l;
389 static struct leaf_info *leaf_info_new(int plen)
391 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
392 if (li) {
393 li->plen = plen;
394 INIT_LIST_HEAD(&li->falh);
396 return li;
399 static struct tnode *tnode_new(t_key key, int pos, int bits)
401 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
402 struct tnode *tn = tnode_alloc(sz);
404 if (tn) {
405 tn->parent = T_TNODE;
406 tn->pos = pos;
407 tn->bits = bits;
408 tn->key = key;
409 tn->full_children = 0;
410 tn->empty_children = 1<<bits;
413 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
414 (unsigned long) (sizeof(struct node) << bits));
415 return tn;
419 * Check whether a tnode 'n' is "full", i.e. it is an internal node
420 * and no bits are skipped. See discussion in dyntree paper p. 6
423 static inline int tnode_full(const struct tnode *tn, const struct node *n)
425 if (n == NULL || IS_LEAF(n))
426 return 0;
428 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
431 static inline void put_child(struct trie *t, struct tnode *tn, int i,
432 struct node *n)
434 tnode_put_child_reorg(tn, i, n, -1);
438 * Add a child at position i overwriting the old value.
439 * Update the value of full_children and empty_children.
442 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
443 int wasfull)
445 struct node *chi = tn->child[i];
446 int isfull;
448 BUG_ON(i >= 1<<tn->bits);
450 /* update emptyChildren */
451 if (n == NULL && chi != NULL)
452 tn->empty_children++;
453 else if (n != NULL && chi == NULL)
454 tn->empty_children--;
456 /* update fullChildren */
457 if (wasfull == -1)
458 wasfull = tnode_full(tn, chi);
460 isfull = tnode_full(tn, n);
461 if (wasfull && !isfull)
462 tn->full_children--;
463 else if (!wasfull && isfull)
464 tn->full_children++;
466 if (n)
467 node_set_parent(n, tn);
469 rcu_assign_pointer(tn->child[i], n);
472 static struct node *resize(struct trie *t, struct tnode *tn)
474 int i;
475 int err = 0;
476 struct tnode *old_tn;
477 int inflate_threshold_use;
478 int halve_threshold_use;
479 int max_resize;
481 if (!tn)
482 return NULL;
484 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
485 tn, inflate_threshold, halve_threshold);
487 /* No children */
488 if (tn->empty_children == tnode_child_length(tn)) {
489 tnode_free(tn);
490 return NULL;
492 /* One child */
493 if (tn->empty_children == tnode_child_length(tn) - 1)
494 for (i = 0; i < tnode_child_length(tn); i++) {
495 struct node *n;
497 n = tn->child[i];
498 if (!n)
499 continue;
501 /* compress one level */
502 node_set_parent(n, NULL);
503 tnode_free(tn);
504 return n;
507 * Double as long as the resulting node has a number of
508 * nonempty nodes that are above the threshold.
512 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
513 * the Helsinki University of Technology and Matti Tikkanen of Nokia
514 * Telecommunications, page 6:
515 * "A node is doubled if the ratio of non-empty children to all
516 * children in the *doubled* node is at least 'high'."
518 * 'high' in this instance is the variable 'inflate_threshold'. It
519 * is expressed as a percentage, so we multiply it with
520 * tnode_child_length() and instead of multiplying by 2 (since the
521 * child array will be doubled by inflate()) and multiplying
522 * the left-hand side by 100 (to handle the percentage thing) we
523 * multiply the left-hand side by 50.
525 * The left-hand side may look a bit weird: tnode_child_length(tn)
526 * - tn->empty_children is of course the number of non-null children
527 * in the current node. tn->full_children is the number of "full"
528 * children, that is non-null tnodes with a skip value of 0.
529 * All of those will be doubled in the resulting inflated tnode, so
530 * we just count them one extra time here.
532 * A clearer way to write this would be:
534 * to_be_doubled = tn->full_children;
535 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
536 * tn->full_children;
538 * new_child_length = tnode_child_length(tn) * 2;
540 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
541 * new_child_length;
542 * if (new_fill_factor >= inflate_threshold)
544 * ...and so on, tho it would mess up the while () loop.
546 * anyway,
547 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
548 * inflate_threshold
550 * avoid a division:
551 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
552 * inflate_threshold * new_child_length
554 * expand not_to_be_doubled and to_be_doubled, and shorten:
555 * 100 * (tnode_child_length(tn) - tn->empty_children +
556 * tn->full_children) >= inflate_threshold * new_child_length
558 * expand new_child_length:
559 * 100 * (tnode_child_length(tn) - tn->empty_children +
560 * tn->full_children) >=
561 * inflate_threshold * tnode_child_length(tn) * 2
563 * shorten again:
564 * 50 * (tn->full_children + tnode_child_length(tn) -
565 * tn->empty_children) >= inflate_threshold *
566 * tnode_child_length(tn)
570 check_tnode(tn);
572 /* Keep root node larger */
574 if (!tn->parent)
575 inflate_threshold_use = inflate_threshold_root;
576 else
577 inflate_threshold_use = inflate_threshold;
579 err = 0;
580 max_resize = 10;
581 while ((tn->full_children > 0 && max_resize-- &&
582 50 * (tn->full_children + tnode_child_length(tn)
583 - tn->empty_children)
584 >= inflate_threshold_use * tnode_child_length(tn))) {
586 old_tn = tn;
587 tn = inflate(t, tn);
589 if (IS_ERR(tn)) {
590 tn = old_tn;
591 #ifdef CONFIG_IP_FIB_TRIE_STATS
592 t->stats.resize_node_skipped++;
593 #endif
594 break;
598 if (max_resize < 0) {
599 if (!tn->parent)
600 pr_warning("Fix inflate_threshold_root."
601 " Now=%d size=%d bits\n",
602 inflate_threshold_root, tn->bits);
603 else
604 pr_warning("Fix inflate_threshold."
605 " Now=%d size=%d bits\n",
606 inflate_threshold, tn->bits);
609 check_tnode(tn);
612 * Halve as long as the number of empty children in this
613 * node is above threshold.
617 /* Keep root node larger */
619 if (!tn->parent)
620 halve_threshold_use = halve_threshold_root;
621 else
622 halve_threshold_use = halve_threshold;
624 err = 0;
625 max_resize = 10;
626 while (tn->bits > 1 && max_resize-- &&
627 100 * (tnode_child_length(tn) - tn->empty_children) <
628 halve_threshold_use * tnode_child_length(tn)) {
630 old_tn = tn;
631 tn = halve(t, tn);
632 if (IS_ERR(tn)) {
633 tn = old_tn;
634 #ifdef CONFIG_IP_FIB_TRIE_STATS
635 t->stats.resize_node_skipped++;
636 #endif
637 break;
641 if (max_resize < 0) {
642 if (!tn->parent)
643 pr_warning("Fix halve_threshold_root."
644 " Now=%d size=%d bits\n",
645 halve_threshold_root, tn->bits);
646 else
647 pr_warning("Fix halve_threshold."
648 " Now=%d size=%d bits\n",
649 halve_threshold, tn->bits);
652 /* Only one child remains */
653 if (tn->empty_children == tnode_child_length(tn) - 1)
654 for (i = 0; i < tnode_child_length(tn); i++) {
655 struct node *n;
657 n = tn->child[i];
658 if (!n)
659 continue;
661 /* compress one level */
663 node_set_parent(n, NULL);
664 tnode_free(tn);
665 return n;
668 return (struct node *) tn;
671 static struct tnode *inflate(struct trie *t, struct tnode *tn)
673 struct tnode *oldtnode = tn;
674 int olen = tnode_child_length(tn);
675 int i;
677 pr_debug("In inflate\n");
679 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
681 if (!tn)
682 return ERR_PTR(-ENOMEM);
685 * Preallocate and store tnodes before the actual work so we
686 * don't get into an inconsistent state if memory allocation
687 * fails. In case of failure we return the oldnode and inflate
688 * of tnode is ignored.
691 for (i = 0; i < olen; i++) {
692 struct tnode *inode;
694 inode = (struct tnode *) tnode_get_child(oldtnode, i);
695 if (inode &&
696 IS_TNODE(inode) &&
697 inode->pos == oldtnode->pos + oldtnode->bits &&
698 inode->bits > 1) {
699 struct tnode *left, *right;
700 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
702 left = tnode_new(inode->key&(~m), inode->pos + 1,
703 inode->bits - 1);
704 if (!left)
705 goto nomem;
707 right = tnode_new(inode->key|m, inode->pos + 1,
708 inode->bits - 1);
710 if (!right) {
711 tnode_free(left);
712 goto nomem;
715 put_child(t, tn, 2*i, (struct node *) left);
716 put_child(t, tn, 2*i+1, (struct node *) right);
720 for (i = 0; i < olen; i++) {
721 struct tnode *inode;
722 struct node *node = tnode_get_child(oldtnode, i);
723 struct tnode *left, *right;
724 int size, j;
726 /* An empty child */
727 if (node == NULL)
728 continue;
730 /* A leaf or an internal node with skipped bits */
732 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
733 tn->pos + tn->bits - 1) {
734 if (tkey_extract_bits(node->key,
735 oldtnode->pos + oldtnode->bits,
736 1) == 0)
737 put_child(t, tn, 2*i, node);
738 else
739 put_child(t, tn, 2*i+1, node);
740 continue;
743 /* An internal node with two children */
744 inode = (struct tnode *) node;
746 if (inode->bits == 1) {
747 put_child(t, tn, 2*i, inode->child[0]);
748 put_child(t, tn, 2*i+1, inode->child[1]);
750 tnode_free(inode);
751 continue;
754 /* An internal node with more than two children */
756 /* We will replace this node 'inode' with two new
757 * ones, 'left' and 'right', each with half of the
758 * original children. The two new nodes will have
759 * a position one bit further down the key and this
760 * means that the "significant" part of their keys
761 * (see the discussion near the top of this file)
762 * will differ by one bit, which will be "0" in
763 * left's key and "1" in right's key. Since we are
764 * moving the key position by one step, the bit that
765 * we are moving away from - the bit at position
766 * (inode->pos) - is the one that will differ between
767 * left and right. So... we synthesize that bit in the
768 * two new keys.
769 * The mask 'm' below will be a single "one" bit at
770 * the position (inode->pos)
773 /* Use the old key, but set the new significant
774 * bit to zero.
777 left = (struct tnode *) tnode_get_child(tn, 2*i);
778 put_child(t, tn, 2*i, NULL);
780 BUG_ON(!left);
782 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
783 put_child(t, tn, 2*i+1, NULL);
785 BUG_ON(!right);
787 size = tnode_child_length(left);
788 for (j = 0; j < size; j++) {
789 put_child(t, left, j, inode->child[j]);
790 put_child(t, right, j, inode->child[j + size]);
792 put_child(t, tn, 2*i, resize(t, left));
793 put_child(t, tn, 2*i+1, resize(t, right));
795 tnode_free(inode);
797 tnode_free(oldtnode);
798 return tn;
799 nomem:
801 int size = tnode_child_length(tn);
802 int j;
804 for (j = 0; j < size; j++)
805 if (tn->child[j])
806 tnode_free((struct tnode *)tn->child[j]);
808 tnode_free(tn);
810 return ERR_PTR(-ENOMEM);
814 static struct tnode *halve(struct trie *t, struct tnode *tn)
816 struct tnode *oldtnode = tn;
817 struct node *left, *right;
818 int i;
819 int olen = tnode_child_length(tn);
821 pr_debug("In halve\n");
823 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
825 if (!tn)
826 return ERR_PTR(-ENOMEM);
829 * Preallocate and store tnodes before the actual work so we
830 * don't get into an inconsistent state if memory allocation
831 * fails. In case of failure we return the oldnode and halve
832 * of tnode is ignored.
835 for (i = 0; i < olen; i += 2) {
836 left = tnode_get_child(oldtnode, i);
837 right = tnode_get_child(oldtnode, i+1);
839 /* Two nonempty children */
840 if (left && right) {
841 struct tnode *newn;
843 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
845 if (!newn)
846 goto nomem;
848 put_child(t, tn, i/2, (struct node *)newn);
853 for (i = 0; i < olen; i += 2) {
854 struct tnode *newBinNode;
856 left = tnode_get_child(oldtnode, i);
857 right = tnode_get_child(oldtnode, i+1);
859 /* At least one of the children is empty */
860 if (left == NULL) {
861 if (right == NULL) /* Both are empty */
862 continue;
863 put_child(t, tn, i/2, right);
864 continue;
867 if (right == NULL) {
868 put_child(t, tn, i/2, left);
869 continue;
872 /* Two nonempty children */
873 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
874 put_child(t, tn, i/2, NULL);
875 put_child(t, newBinNode, 0, left);
876 put_child(t, newBinNode, 1, right);
877 put_child(t, tn, i/2, resize(t, newBinNode));
879 tnode_free(oldtnode);
880 return tn;
881 nomem:
883 int size = tnode_child_length(tn);
884 int j;
886 for (j = 0; j < size; j++)
887 if (tn->child[j])
888 tnode_free((struct tnode *)tn->child[j]);
890 tnode_free(tn);
892 return ERR_PTR(-ENOMEM);
896 /* readside must use rcu_read_lock currently dump routines
897 via get_fa_head and dump */
899 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
901 struct hlist_head *head = &l->list;
902 struct hlist_node *node;
903 struct leaf_info *li;
905 hlist_for_each_entry_rcu(li, node, head, hlist)
906 if (li->plen == plen)
907 return li;
909 return NULL;
912 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
914 struct leaf_info *li = find_leaf_info(l, plen);
916 if (!li)
917 return NULL;
919 return &li->falh;
922 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
924 struct leaf_info *li = NULL, *last = NULL;
925 struct hlist_node *node;
927 if (hlist_empty(head)) {
928 hlist_add_head_rcu(&new->hlist, head);
929 } else {
930 hlist_for_each_entry(li, node, head, hlist) {
931 if (new->plen > li->plen)
932 break;
934 last = li;
936 if (last)
937 hlist_add_after_rcu(&last->hlist, &new->hlist);
938 else
939 hlist_add_before_rcu(&new->hlist, &li->hlist);
943 /* rcu_read_lock needs to be hold by caller from readside */
945 static struct leaf *
946 fib_find_node(struct trie *t, u32 key)
948 int pos;
949 struct tnode *tn;
950 struct node *n;
952 pos = 0;
953 n = rcu_dereference(t->trie);
955 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
956 tn = (struct tnode *) n;
958 check_tnode(tn);
960 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
961 pos = tn->pos + tn->bits;
962 n = tnode_get_child_rcu(tn,
963 tkey_extract_bits(key,
964 tn->pos,
965 tn->bits));
966 } else
967 break;
969 /* Case we have found a leaf. Compare prefixes */
971 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
972 return (struct leaf *)n;
974 return NULL;
977 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
979 int wasfull;
980 t_key cindex, key = tn->key;
981 struct tnode *tp;
983 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
984 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
985 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
986 tn = (struct tnode *) resize(t, (struct tnode *)tn);
988 tnode_put_child_reorg((struct tnode *)tp, cindex,
989 (struct node *)tn, wasfull);
991 tp = node_parent((struct node *) tn);
992 if (!tp)
993 break;
994 tn = tp;
997 /* Handle last (top) tnode */
998 if (IS_TNODE(tn))
999 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1001 return (struct node *)tn;
1004 /* only used from updater-side */
1006 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1008 int pos, newpos;
1009 struct tnode *tp = NULL, *tn = NULL;
1010 struct node *n;
1011 struct leaf *l;
1012 int missbit;
1013 struct list_head *fa_head = NULL;
1014 struct leaf_info *li;
1015 t_key cindex;
1017 pos = 0;
1018 n = t->trie;
1020 /* If we point to NULL, stop. Either the tree is empty and we should
1021 * just put a new leaf in if, or we have reached an empty child slot,
1022 * and we should just put our new leaf in that.
1023 * If we point to a T_TNODE, check if it matches our key. Note that
1024 * a T_TNODE might be skipping any number of bits - its 'pos' need
1025 * not be the parent's 'pos'+'bits'!
1027 * If it does match the current key, get pos/bits from it, extract
1028 * the index from our key, push the T_TNODE and walk the tree.
1030 * If it doesn't, we have to replace it with a new T_TNODE.
1032 * If we point to a T_LEAF, it might or might not have the same key
1033 * as we do. If it does, just change the value, update the T_LEAF's
1034 * value, and return it.
1035 * If it doesn't, we need to replace it with a T_TNODE.
1038 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1039 tn = (struct tnode *) n;
1041 check_tnode(tn);
1043 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1044 tp = tn;
1045 pos = tn->pos + tn->bits;
1046 n = tnode_get_child(tn,
1047 tkey_extract_bits(key,
1048 tn->pos,
1049 tn->bits));
1051 BUG_ON(n && node_parent(n) != tn);
1052 } else
1053 break;
1057 * n ----> NULL, LEAF or TNODE
1059 * tp is n's (parent) ----> NULL or TNODE
1062 BUG_ON(tp && IS_LEAF(tp));
1064 /* Case 1: n is a leaf. Compare prefixes */
1066 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1067 l = (struct leaf *) n;
1068 li = leaf_info_new(plen);
1070 if (!li)
1071 return NULL;
1073 fa_head = &li->falh;
1074 insert_leaf_info(&l->list, li);
1075 goto done;
1077 l = leaf_new();
1079 if (!l)
1080 return NULL;
1082 l->key = key;
1083 li = leaf_info_new(plen);
1085 if (!li) {
1086 tnode_free((struct tnode *) l);
1087 return NULL;
1090 fa_head = &li->falh;
1091 insert_leaf_info(&l->list, li);
1093 if (t->trie && n == NULL) {
1094 /* Case 2: n is NULL, and will just insert a new leaf */
1096 node_set_parent((struct node *)l, tp);
1098 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1099 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1100 } else {
1101 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1103 * Add a new tnode here
1104 * first tnode need some special handling
1107 if (tp)
1108 pos = tp->pos+tp->bits;
1109 else
1110 pos = 0;
1112 if (n) {
1113 newpos = tkey_mismatch(key, pos, n->key);
1114 tn = tnode_new(n->key, newpos, 1);
1115 } else {
1116 newpos = 0;
1117 tn = tnode_new(key, newpos, 1); /* First tnode */
1120 if (!tn) {
1121 free_leaf_info(li);
1122 tnode_free((struct tnode *) l);
1123 return NULL;
1126 node_set_parent((struct node *)tn, tp);
1128 missbit = tkey_extract_bits(key, newpos, 1);
1129 put_child(t, tn, missbit, (struct node *)l);
1130 put_child(t, tn, 1-missbit, n);
1132 if (tp) {
1133 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1134 put_child(t, (struct tnode *)tp, cindex,
1135 (struct node *)tn);
1136 } else {
1137 rcu_assign_pointer(t->trie, (struct node *)tn);
1138 tp = tn;
1142 if (tp && tp->pos + tp->bits > 32)
1143 pr_warning("fib_trie"
1144 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1145 tp, tp->pos, tp->bits, key, plen);
1147 /* Rebalance the trie */
1149 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1150 done:
1151 return fa_head;
1155 * Caller must hold RTNL.
1157 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1159 struct trie *t = (struct trie *) tb->tb_data;
1160 struct fib_alias *fa, *new_fa;
1161 struct list_head *fa_head = NULL;
1162 struct fib_info *fi;
1163 int plen = cfg->fc_dst_len;
1164 u8 tos = cfg->fc_tos;
1165 u32 key, mask;
1166 int err;
1167 struct leaf *l;
1169 if (plen > 32)
1170 return -EINVAL;
1172 key = ntohl(cfg->fc_dst);
1174 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1176 mask = ntohl(inet_make_mask(plen));
1178 if (key & ~mask)
1179 return -EINVAL;
1181 key = key & mask;
1183 fi = fib_create_info(cfg);
1184 if (IS_ERR(fi)) {
1185 err = PTR_ERR(fi);
1186 goto err;
1189 l = fib_find_node(t, key);
1190 fa = NULL;
1192 if (l) {
1193 fa_head = get_fa_head(l, plen);
1194 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1197 /* Now fa, if non-NULL, points to the first fib alias
1198 * with the same keys [prefix,tos,priority], if such key already
1199 * exists or to the node before which we will insert new one.
1201 * If fa is NULL, we will need to allocate a new one and
1202 * insert to the head of f.
1204 * If f is NULL, no fib node matched the destination key
1205 * and we need to allocate a new one of those as well.
1208 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1209 struct fib_alias *fa_orig;
1211 err = -EEXIST;
1212 if (cfg->fc_nlflags & NLM_F_EXCL)
1213 goto out;
1215 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1216 struct fib_info *fi_drop;
1217 u8 state;
1219 if (fi->fib_treeref > 1)
1220 goto out;
1222 err = -ENOBUFS;
1223 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1224 if (new_fa == NULL)
1225 goto out;
1227 fi_drop = fa->fa_info;
1228 new_fa->fa_tos = fa->fa_tos;
1229 new_fa->fa_info = fi;
1230 new_fa->fa_type = cfg->fc_type;
1231 new_fa->fa_scope = cfg->fc_scope;
1232 state = fa->fa_state;
1233 new_fa->fa_state &= ~FA_S_ACCESSED;
1235 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1236 alias_free_mem_rcu(fa);
1238 fib_release_info(fi_drop);
1239 if (state & FA_S_ACCESSED)
1240 rt_cache_flush(-1);
1241 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1242 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1244 goto succeeded;
1246 /* Error if we find a perfect match which
1247 * uses the same scope, type, and nexthop
1248 * information.
1250 fa_orig = fa;
1251 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1252 if (fa->fa_tos != tos)
1253 break;
1254 if (fa->fa_info->fib_priority != fi->fib_priority)
1255 break;
1256 if (fa->fa_type == cfg->fc_type &&
1257 fa->fa_scope == cfg->fc_scope &&
1258 fa->fa_info == fi)
1259 goto out;
1262 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1263 fa = fa_orig;
1265 err = -ENOENT;
1266 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1267 goto out;
1269 err = -ENOBUFS;
1270 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1271 if (new_fa == NULL)
1272 goto out;
1274 new_fa->fa_info = fi;
1275 new_fa->fa_tos = tos;
1276 new_fa->fa_type = cfg->fc_type;
1277 new_fa->fa_scope = cfg->fc_scope;
1278 new_fa->fa_state = 0;
1280 * Insert new entry to the list.
1283 if (!fa_head) {
1284 fa_head = fib_insert_node(t, key, plen);
1285 if (unlikely(!fa_head)) {
1286 err = -ENOMEM;
1287 goto out_free_new_fa;
1291 list_add_tail_rcu(&new_fa->fa_list,
1292 (fa ? &fa->fa_list : fa_head));
1294 rt_cache_flush(-1);
1295 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1296 &cfg->fc_nlinfo, 0);
1297 succeeded:
1298 return 0;
1300 out_free_new_fa:
1301 kmem_cache_free(fn_alias_kmem, new_fa);
1302 out:
1303 fib_release_info(fi);
1304 err:
1305 return err;
1308 /* should be called with rcu_read_lock */
1309 static int check_leaf(struct trie *t, struct leaf *l,
1310 t_key key, const struct flowi *flp,
1311 struct fib_result *res)
1313 struct leaf_info *li;
1314 struct hlist_head *hhead = &l->list;
1315 struct hlist_node *node;
1317 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1318 int err;
1319 int plen = li->plen;
1320 __be32 mask = inet_make_mask(plen);
1322 if (l->key != (key & ntohl(mask)))
1323 continue;
1325 err = fib_semantic_match(&li->falh, flp, res,
1326 htonl(l->key), mask, plen);
1328 #ifdef CONFIG_IP_FIB_TRIE_STATS
1329 if (err <= 0)
1330 t->stats.semantic_match_passed++;
1331 else
1332 t->stats.semantic_match_miss++;
1333 #endif
1334 if (err <= 0)
1335 return plen;
1338 return -1;
1341 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1342 struct fib_result *res)
1344 struct trie *t = (struct trie *) tb->tb_data;
1345 int plen, ret = 0;
1346 struct node *n;
1347 struct tnode *pn;
1348 int pos, bits;
1349 t_key key = ntohl(flp->fl4_dst);
1350 int chopped_off;
1351 t_key cindex = 0;
1352 int current_prefix_length = KEYLENGTH;
1353 struct tnode *cn;
1354 t_key node_prefix, key_prefix, pref_mismatch;
1355 int mp;
1357 rcu_read_lock();
1359 n = rcu_dereference(t->trie);
1360 if (!n)
1361 goto failed;
1363 #ifdef CONFIG_IP_FIB_TRIE_STATS
1364 t->stats.gets++;
1365 #endif
1367 /* Just a leaf? */
1368 if (IS_LEAF(n)) {
1369 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1370 if (plen < 0)
1371 goto failed;
1372 ret = 0;
1373 goto found;
1376 pn = (struct tnode *) n;
1377 chopped_off = 0;
1379 while (pn) {
1380 pos = pn->pos;
1381 bits = pn->bits;
1383 if (!chopped_off)
1384 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1385 pos, bits);
1387 n = tnode_get_child(pn, cindex);
1389 if (n == NULL) {
1390 #ifdef CONFIG_IP_FIB_TRIE_STATS
1391 t->stats.null_node_hit++;
1392 #endif
1393 goto backtrace;
1396 if (IS_LEAF(n)) {
1397 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1398 if (plen < 0)
1399 goto backtrace;
1401 ret = 0;
1402 goto found;
1405 cn = (struct tnode *)n;
1408 * It's a tnode, and we can do some extra checks here if we
1409 * like, to avoid descending into a dead-end branch.
1410 * This tnode is in the parent's child array at index
1411 * key[p_pos..p_pos+p_bits] but potentially with some bits
1412 * chopped off, so in reality the index may be just a
1413 * subprefix, padded with zero at the end.
1414 * We can also take a look at any skipped bits in this
1415 * tnode - everything up to p_pos is supposed to be ok,
1416 * and the non-chopped bits of the index (se previous
1417 * paragraph) are also guaranteed ok, but the rest is
1418 * considered unknown.
1420 * The skipped bits are key[pos+bits..cn->pos].
1423 /* If current_prefix_length < pos+bits, we are already doing
1424 * actual prefix matching, which means everything from
1425 * pos+(bits-chopped_off) onward must be zero along some
1426 * branch of this subtree - otherwise there is *no* valid
1427 * prefix present. Here we can only check the skipped
1428 * bits. Remember, since we have already indexed into the
1429 * parent's child array, we know that the bits we chopped of
1430 * *are* zero.
1433 /* NOTA BENE: Checking only skipped bits
1434 for the new node here */
1436 if (current_prefix_length < pos+bits) {
1437 if (tkey_extract_bits(cn->key, current_prefix_length,
1438 cn->pos - current_prefix_length)
1439 || !(cn->child[0]))
1440 goto backtrace;
1444 * If chopped_off=0, the index is fully validated and we
1445 * only need to look at the skipped bits for this, the new,
1446 * tnode. What we actually want to do is to find out if
1447 * these skipped bits match our key perfectly, or if we will
1448 * have to count on finding a matching prefix further down,
1449 * because if we do, we would like to have some way of
1450 * verifying the existence of such a prefix at this point.
1453 /* The only thing we can do at this point is to verify that
1454 * any such matching prefix can indeed be a prefix to our
1455 * key, and if the bits in the node we are inspecting that
1456 * do not match our key are not ZERO, this cannot be true.
1457 * Thus, find out where there is a mismatch (before cn->pos)
1458 * and verify that all the mismatching bits are zero in the
1459 * new tnode's key.
1463 * Note: We aren't very concerned about the piece of
1464 * the key that precede pn->pos+pn->bits, since these
1465 * have already been checked. The bits after cn->pos
1466 * aren't checked since these are by definition
1467 * "unknown" at this point. Thus, what we want to see
1468 * is if we are about to enter the "prefix matching"
1469 * state, and in that case verify that the skipped
1470 * bits that will prevail throughout this subtree are
1471 * zero, as they have to be if we are to find a
1472 * matching prefix.
1475 node_prefix = mask_pfx(cn->key, cn->pos);
1476 key_prefix = mask_pfx(key, cn->pos);
1477 pref_mismatch = key_prefix^node_prefix;
1478 mp = 0;
1481 * In short: If skipped bits in this node do not match
1482 * the search key, enter the "prefix matching"
1483 * state.directly.
1485 if (pref_mismatch) {
1486 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1487 mp++;
1488 pref_mismatch = pref_mismatch << 1;
1490 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1492 if (key_prefix != 0)
1493 goto backtrace;
1495 if (current_prefix_length >= cn->pos)
1496 current_prefix_length = mp;
1499 pn = (struct tnode *)n; /* Descend */
1500 chopped_off = 0;
1501 continue;
1503 backtrace:
1504 chopped_off++;
1506 /* As zero don't change the child key (cindex) */
1507 while ((chopped_off <= pn->bits)
1508 && !(cindex & (1<<(chopped_off-1))))
1509 chopped_off++;
1511 /* Decrease current_... with bits chopped off */
1512 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1513 current_prefix_length = pn->pos + pn->bits
1514 - chopped_off;
1517 * Either we do the actual chop off according or if we have
1518 * chopped off all bits in this tnode walk up to our parent.
1521 if (chopped_off <= pn->bits) {
1522 cindex &= ~(1 << (chopped_off-1));
1523 } else {
1524 struct tnode *parent = node_parent((struct node *) pn);
1525 if (!parent)
1526 goto failed;
1528 /* Get Child's index */
1529 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1530 pn = parent;
1531 chopped_off = 0;
1533 #ifdef CONFIG_IP_FIB_TRIE_STATS
1534 t->stats.backtrack++;
1535 #endif
1536 goto backtrace;
1539 failed:
1540 ret = 1;
1541 found:
1542 rcu_read_unlock();
1543 return ret;
1547 * Remove the leaf and return parent.
1549 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1551 struct tnode *tp = node_parent((struct node *) l);
1553 pr_debug("entering trie_leaf_remove(%p)\n", l);
1555 if (tp) {
1556 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1557 put_child(t, (struct tnode *)tp, cindex, NULL);
1558 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1559 } else
1560 rcu_assign_pointer(t->trie, NULL);
1562 tnode_free((struct tnode *) l);
1566 * Caller must hold RTNL.
1568 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1570 struct trie *t = (struct trie *) tb->tb_data;
1571 u32 key, mask;
1572 int plen = cfg->fc_dst_len;
1573 u8 tos = cfg->fc_tos;
1574 struct fib_alias *fa, *fa_to_delete;
1575 struct list_head *fa_head;
1576 struct leaf *l;
1577 struct leaf_info *li;
1579 if (plen > 32)
1580 return -EINVAL;
1582 key = ntohl(cfg->fc_dst);
1583 mask = ntohl(inet_make_mask(plen));
1585 if (key & ~mask)
1586 return -EINVAL;
1588 key = key & mask;
1589 l = fib_find_node(t, key);
1591 if (!l)
1592 return -ESRCH;
1594 fa_head = get_fa_head(l, plen);
1595 fa = fib_find_alias(fa_head, tos, 0);
1597 if (!fa)
1598 return -ESRCH;
1600 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1602 fa_to_delete = NULL;
1603 fa_head = fa->fa_list.prev;
1605 list_for_each_entry(fa, fa_head, fa_list) {
1606 struct fib_info *fi = fa->fa_info;
1608 if (fa->fa_tos != tos)
1609 break;
1611 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1612 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1613 fa->fa_scope == cfg->fc_scope) &&
1614 (!cfg->fc_protocol ||
1615 fi->fib_protocol == cfg->fc_protocol) &&
1616 fib_nh_match(cfg, fi) == 0) {
1617 fa_to_delete = fa;
1618 break;
1622 if (!fa_to_delete)
1623 return -ESRCH;
1625 fa = fa_to_delete;
1626 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1627 &cfg->fc_nlinfo, 0);
1629 l = fib_find_node(t, key);
1630 li = find_leaf_info(l, plen);
1632 list_del_rcu(&fa->fa_list);
1634 if (list_empty(fa_head)) {
1635 hlist_del_rcu(&li->hlist);
1636 free_leaf_info(li);
1639 if (hlist_empty(&l->list))
1640 trie_leaf_remove(t, l);
1642 if (fa->fa_state & FA_S_ACCESSED)
1643 rt_cache_flush(-1);
1645 fib_release_info(fa->fa_info);
1646 alias_free_mem_rcu(fa);
1647 return 0;
1650 static int trie_flush_list(struct trie *t, struct list_head *head)
1652 struct fib_alias *fa, *fa_node;
1653 int found = 0;
1655 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1656 struct fib_info *fi = fa->fa_info;
1658 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1659 list_del_rcu(&fa->fa_list);
1660 fib_release_info(fa->fa_info);
1661 alias_free_mem_rcu(fa);
1662 found++;
1665 return found;
1668 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1670 int found = 0;
1671 struct hlist_head *lih = &l->list;
1672 struct hlist_node *node, *tmp;
1673 struct leaf_info *li = NULL;
1675 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1676 found += trie_flush_list(t, &li->falh);
1678 if (list_empty(&li->falh)) {
1679 hlist_del_rcu(&li->hlist);
1680 free_leaf_info(li);
1683 return found;
1687 * Scan for the next right leaf starting at node p->child[idx]
1688 * Since we have back pointer, no recursion necessary.
1690 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1692 do {
1693 t_key idx;
1695 if (c)
1696 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1697 else
1698 idx = 0;
1700 while (idx < 1u << p->bits) {
1701 c = tnode_get_child_rcu(p, idx++);
1702 if (!c)
1703 continue;
1705 if (IS_LEAF(c)) {
1706 prefetch(p->child[idx]);
1707 return (struct leaf *) c;
1710 /* Rescan start scanning in new node */
1711 p = (struct tnode *) c;
1712 idx = 0;
1715 /* Node empty, walk back up to parent */
1716 c = (struct node *) p;
1717 } while ( (p = node_parent_rcu(c)) != NULL);
1719 return NULL; /* Root of trie */
1722 static struct leaf *trie_firstleaf(struct trie *t)
1724 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1726 if (!n)
1727 return NULL;
1729 if (IS_LEAF(n)) /* trie is just a leaf */
1730 return (struct leaf *) n;
1732 return leaf_walk_rcu(n, NULL);
1735 static struct leaf *trie_nextleaf(struct leaf *l)
1737 struct node *c = (struct node *) l;
1738 struct tnode *p = node_parent(c);
1740 if (!p)
1741 return NULL; /* trie with just one leaf */
1743 return leaf_walk_rcu(p, c);
1747 * Caller must hold RTNL.
1749 static int fn_trie_flush(struct fib_table *tb)
1751 struct trie *t = (struct trie *) tb->tb_data;
1752 struct leaf *l, *ll = NULL;
1753 int found = 0;
1755 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1756 found += trie_flush_leaf(t, l);
1758 if (ll && hlist_empty(&ll->list))
1759 trie_leaf_remove(t, ll);
1760 ll = l;
1763 if (ll && hlist_empty(&ll->list))
1764 trie_leaf_remove(t, ll);
1766 pr_debug("trie_flush found=%d\n", found);
1767 return found;
1770 static void fn_trie_select_default(struct fib_table *tb,
1771 const struct flowi *flp,
1772 struct fib_result *res)
1774 struct trie *t = (struct trie *) tb->tb_data;
1775 int order, last_idx;
1776 struct fib_info *fi = NULL;
1777 struct fib_info *last_resort;
1778 struct fib_alias *fa = NULL;
1779 struct list_head *fa_head;
1780 struct leaf *l;
1782 last_idx = -1;
1783 last_resort = NULL;
1784 order = -1;
1786 rcu_read_lock();
1788 l = fib_find_node(t, 0);
1789 if (!l)
1790 goto out;
1792 fa_head = get_fa_head(l, 0);
1793 if (!fa_head)
1794 goto out;
1796 if (list_empty(fa_head))
1797 goto out;
1799 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1800 struct fib_info *next_fi = fa->fa_info;
1802 if (fa->fa_scope != res->scope ||
1803 fa->fa_type != RTN_UNICAST)
1804 continue;
1806 if (next_fi->fib_priority > res->fi->fib_priority)
1807 break;
1808 if (!next_fi->fib_nh[0].nh_gw ||
1809 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1810 continue;
1811 fa->fa_state |= FA_S_ACCESSED;
1813 if (fi == NULL) {
1814 if (next_fi != res->fi)
1815 break;
1816 } else if (!fib_detect_death(fi, order, &last_resort,
1817 &last_idx, tb->tb_default)) {
1818 fib_result_assign(res, fi);
1819 tb->tb_default = order;
1820 goto out;
1822 fi = next_fi;
1823 order++;
1825 if (order <= 0 || fi == NULL) {
1826 tb->tb_default = -1;
1827 goto out;
1830 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1831 tb->tb_default)) {
1832 fib_result_assign(res, fi);
1833 tb->tb_default = order;
1834 goto out;
1836 if (last_idx >= 0)
1837 fib_result_assign(res, last_resort);
1838 tb->tb_default = last_idx;
1839 out:
1840 rcu_read_unlock();
1843 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1844 struct fib_table *tb,
1845 struct sk_buff *skb, struct netlink_callback *cb)
1847 int i, s_i;
1848 struct fib_alias *fa;
1849 __be32 xkey = htonl(key);
1851 s_i = cb->args[4];
1852 i = 0;
1854 /* rcu_read_lock is hold by caller */
1856 list_for_each_entry_rcu(fa, fah, fa_list) {
1857 if (i < s_i) {
1858 i++;
1859 continue;
1862 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1863 cb->nlh->nlmsg_seq,
1864 RTM_NEWROUTE,
1865 tb->tb_id,
1866 fa->fa_type,
1867 fa->fa_scope,
1868 xkey,
1869 plen,
1870 fa->fa_tos,
1871 fa->fa_info, NLM_F_MULTI) < 0) {
1872 cb->args[4] = i;
1873 return -1;
1875 i++;
1877 cb->args[4] = i;
1878 return skb->len;
1881 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1882 struct sk_buff *skb, struct netlink_callback *cb)
1884 struct leaf_info *li;
1885 struct hlist_node *node;
1886 int i, s_i;
1888 s_i = cb->args[3];
1889 i = 0;
1891 /* rcu_read_lock is hold by caller */
1892 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1893 if (i < s_i) {
1894 i++;
1895 continue;
1898 if (i > s_i)
1899 cb->args[4] = 0;
1901 if (list_empty(&li->falh))
1902 continue;
1904 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1905 cb->args[3] = i;
1906 return -1;
1908 i++;
1911 cb->args[3] = i;
1912 return skb->len;
1915 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1916 struct netlink_callback *cb)
1918 struct leaf *l;
1919 struct trie *t = (struct trie *) tb->tb_data;
1920 t_key key = cb->args[2];
1922 rcu_read_lock();
1923 /* Dump starting at last key.
1924 * Note: 0.0.0.0/0 (ie default) is first key.
1926 if (!key)
1927 l = trie_firstleaf(t);
1928 else {
1929 l = fib_find_node(t, key);
1930 if (!l) {
1931 /* The table changed during the dump, rather than
1932 * giving partial data, just make application retry.
1934 rcu_read_unlock();
1935 return -EBUSY;
1939 while (l) {
1940 cb->args[2] = l->key;
1941 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1942 rcu_read_unlock();
1943 return -1;
1946 l = trie_nextleaf(l);
1947 memset(&cb->args[3], 0,
1948 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1950 rcu_read_unlock();
1952 return skb->len;
1955 void __init fib_hash_init(void)
1957 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1958 sizeof(struct fib_alias),
1959 0, SLAB_PANIC, NULL);
1961 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1962 max(sizeof(struct leaf),
1963 sizeof(struct leaf_info)),
1964 0, SLAB_PANIC, NULL);
1968 /* Fix more generic FIB names for init later */
1969 struct fib_table *fib_hash_table(u32 id)
1971 struct fib_table *tb;
1972 struct trie *t;
1974 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1975 GFP_KERNEL);
1976 if (tb == NULL)
1977 return NULL;
1979 tb->tb_id = id;
1980 tb->tb_default = -1;
1981 tb->tb_lookup = fn_trie_lookup;
1982 tb->tb_insert = fn_trie_insert;
1983 tb->tb_delete = fn_trie_delete;
1984 tb->tb_flush = fn_trie_flush;
1985 tb->tb_select_default = fn_trie_select_default;
1986 tb->tb_dump = fn_trie_dump;
1988 t = (struct trie *) tb->tb_data;
1989 memset(t, 0, sizeof(*t));
1991 if (id == RT_TABLE_LOCAL)
1992 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1994 return tb;
1997 #ifdef CONFIG_PROC_FS
1998 /* Depth first Trie walk iterator */
1999 struct fib_trie_iter {
2000 struct seq_net_private p;
2001 struct trie *trie_local, *trie_main;
2002 struct tnode *tnode;
2003 struct trie *trie;
2004 unsigned index;
2005 unsigned depth;
2008 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2010 struct tnode *tn = iter->tnode;
2011 unsigned cindex = iter->index;
2012 struct tnode *p;
2014 /* A single entry routing table */
2015 if (!tn)
2016 return NULL;
2018 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2019 iter->tnode, iter->index, iter->depth);
2020 rescan:
2021 while (cindex < (1<<tn->bits)) {
2022 struct node *n = tnode_get_child_rcu(tn, cindex);
2024 if (n) {
2025 if (IS_LEAF(n)) {
2026 iter->tnode = tn;
2027 iter->index = cindex + 1;
2028 } else {
2029 /* push down one level */
2030 iter->tnode = (struct tnode *) n;
2031 iter->index = 0;
2032 ++iter->depth;
2034 return n;
2037 ++cindex;
2040 /* Current node exhausted, pop back up */
2041 p = node_parent_rcu((struct node *)tn);
2042 if (p) {
2043 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2044 tn = p;
2045 --iter->depth;
2046 goto rescan;
2049 /* got root? */
2050 return NULL;
2053 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2054 struct trie *t)
2056 struct node *n ;
2058 if (!t)
2059 return NULL;
2061 n = rcu_dereference(t->trie);
2063 if (!iter)
2064 return NULL;
2066 if (n) {
2067 if (IS_TNODE(n)) {
2068 iter->tnode = (struct tnode *) n;
2069 iter->trie = t;
2070 iter->index = 0;
2071 iter->depth = 1;
2072 } else {
2073 iter->tnode = NULL;
2074 iter->trie = t;
2075 iter->index = 0;
2076 iter->depth = 0;
2078 return n;
2080 return NULL;
2083 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2085 struct node *n;
2086 struct fib_trie_iter iter;
2088 memset(s, 0, sizeof(*s));
2090 rcu_read_lock();
2091 for (n = fib_trie_get_first(&iter, t); n;
2092 n = fib_trie_get_next(&iter)) {
2093 if (IS_LEAF(n)) {
2094 struct leaf *l = (struct leaf *)n;
2095 struct leaf_info *li;
2096 struct hlist_node *tmp;
2098 s->leaves++;
2099 s->totdepth += iter.depth;
2100 if (iter.depth > s->maxdepth)
2101 s->maxdepth = iter.depth;
2103 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2104 ++s->prefixes;
2105 } else {
2106 const struct tnode *tn = (const struct tnode *) n;
2107 int i;
2109 s->tnodes++;
2110 if (tn->bits < MAX_STAT_DEPTH)
2111 s->nodesizes[tn->bits]++;
2113 for (i = 0; i < (1<<tn->bits); i++)
2114 if (!tn->child[i])
2115 s->nullpointers++;
2118 rcu_read_unlock();
2122 * This outputs /proc/net/fib_triestats
2124 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2126 unsigned i, max, pointers, bytes, avdepth;
2128 if (stat->leaves)
2129 avdepth = stat->totdepth*100 / stat->leaves;
2130 else
2131 avdepth = 0;
2133 seq_printf(seq, "\tAver depth: %u.%02d\n",
2134 avdepth / 100, avdepth % 100);
2135 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2137 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2138 bytes = sizeof(struct leaf) * stat->leaves;
2140 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2141 bytes += sizeof(struct leaf_info) * stat->prefixes;
2143 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2144 bytes += sizeof(struct tnode) * stat->tnodes;
2146 max = MAX_STAT_DEPTH;
2147 while (max > 0 && stat->nodesizes[max-1] == 0)
2148 max--;
2150 pointers = 0;
2151 for (i = 1; i <= max; i++)
2152 if (stat->nodesizes[i] != 0) {
2153 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2154 pointers += (1<<i) * stat->nodesizes[i];
2156 seq_putc(seq, '\n');
2157 seq_printf(seq, "\tPointers: %u\n", pointers);
2159 bytes += sizeof(struct node *) * pointers;
2160 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2161 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2164 #ifdef CONFIG_IP_FIB_TRIE_STATS
2165 static void trie_show_usage(struct seq_file *seq,
2166 const struct trie_use_stats *stats)
2168 seq_printf(seq, "\nCounters:\n---------\n");
2169 seq_printf(seq, "gets = %u\n", stats->gets);
2170 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2171 seq_printf(seq, "semantic match passed = %u\n",
2172 stats->semantic_match_passed);
2173 seq_printf(seq, "semantic match miss = %u\n",
2174 stats->semantic_match_miss);
2175 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2176 seq_printf(seq, "skipped node resize = %u\n\n",
2177 stats->resize_node_skipped);
2179 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2181 static void fib_trie_show(struct seq_file *seq, const char *name,
2182 struct trie *trie)
2184 struct trie_stat stat;
2186 trie_collect_stats(trie, &stat);
2187 seq_printf(seq, "%s:\n", name);
2188 trie_show_stats(seq, &stat);
2189 #ifdef CONFIG_IP_FIB_TRIE_STATS
2190 trie_show_usage(seq, &trie->stats);
2191 #endif
2194 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2196 struct net *net = (struct net *)seq->private;
2197 struct fib_table *tb;
2199 seq_printf(seq,
2200 "Basic info: size of leaf:"
2201 " %Zd bytes, size of tnode: %Zd bytes.\n",
2202 sizeof(struct leaf), sizeof(struct tnode));
2204 tb = fib_get_table(net, RT_TABLE_LOCAL);
2205 if (tb)
2206 fib_trie_show(seq, "Local", (struct trie *) tb->tb_data);
2208 tb = fib_get_table(net, RT_TABLE_MAIN);
2209 if (tb)
2210 fib_trie_show(seq, "Main", (struct trie *) tb->tb_data);
2212 return 0;
2215 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2217 int err;
2218 struct net *net;
2220 net = get_proc_net(inode);
2221 if (net == NULL)
2222 return -ENXIO;
2223 err = single_open(file, fib_triestat_seq_show, net);
2224 if (err < 0) {
2225 put_net(net);
2226 return err;
2228 return 0;
2231 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2233 struct seq_file *seq = f->private_data;
2234 put_net(seq->private);
2235 return single_release(ino, f);
2238 static const struct file_operations fib_triestat_fops = {
2239 .owner = THIS_MODULE,
2240 .open = fib_triestat_seq_open,
2241 .read = seq_read,
2242 .llseek = seq_lseek,
2243 .release = fib_triestat_seq_release,
2246 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2247 loff_t pos)
2249 loff_t idx = 0;
2250 struct node *n;
2252 for (n = fib_trie_get_first(iter, iter->trie_local);
2253 n; ++idx, n = fib_trie_get_next(iter)) {
2254 if (pos == idx)
2255 return n;
2258 for (n = fib_trie_get_first(iter, iter->trie_main);
2259 n; ++idx, n = fib_trie_get_next(iter)) {
2260 if (pos == idx)
2261 return n;
2263 return NULL;
2266 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2267 __acquires(RCU)
2269 struct fib_trie_iter *iter = seq->private;
2270 struct fib_table *tb;
2272 if (!iter->trie_local) {
2273 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
2274 if (tb)
2275 iter->trie_local = (struct trie *) tb->tb_data;
2277 if (!iter->trie_main) {
2278 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
2279 if (tb)
2280 iter->trie_main = (struct trie *) tb->tb_data;
2282 rcu_read_lock();
2283 if (*pos == 0)
2284 return SEQ_START_TOKEN;
2285 return fib_trie_get_idx(iter, *pos - 1);
2288 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2290 struct fib_trie_iter *iter = seq->private;
2291 void *l = v;
2293 ++*pos;
2294 if (v == SEQ_START_TOKEN)
2295 return fib_trie_get_idx(iter, 0);
2297 v = fib_trie_get_next(iter);
2298 BUG_ON(v == l);
2299 if (v)
2300 return v;
2302 /* continue scan in next trie */
2303 if (iter->trie == iter->trie_local)
2304 return fib_trie_get_first(iter, iter->trie_main);
2306 return NULL;
2309 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2310 __releases(RCU)
2312 rcu_read_unlock();
2315 static void seq_indent(struct seq_file *seq, int n)
2317 while (n-- > 0) seq_puts(seq, " ");
2320 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2322 switch (s) {
2323 case RT_SCOPE_UNIVERSE: return "universe";
2324 case RT_SCOPE_SITE: return "site";
2325 case RT_SCOPE_LINK: return "link";
2326 case RT_SCOPE_HOST: return "host";
2327 case RT_SCOPE_NOWHERE: return "nowhere";
2328 default:
2329 snprintf(buf, len, "scope=%d", s);
2330 return buf;
2334 static const char *rtn_type_names[__RTN_MAX] = {
2335 [RTN_UNSPEC] = "UNSPEC",
2336 [RTN_UNICAST] = "UNICAST",
2337 [RTN_LOCAL] = "LOCAL",
2338 [RTN_BROADCAST] = "BROADCAST",
2339 [RTN_ANYCAST] = "ANYCAST",
2340 [RTN_MULTICAST] = "MULTICAST",
2341 [RTN_BLACKHOLE] = "BLACKHOLE",
2342 [RTN_UNREACHABLE] = "UNREACHABLE",
2343 [RTN_PROHIBIT] = "PROHIBIT",
2344 [RTN_THROW] = "THROW",
2345 [RTN_NAT] = "NAT",
2346 [RTN_XRESOLVE] = "XRESOLVE",
2349 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2351 if (t < __RTN_MAX && rtn_type_names[t])
2352 return rtn_type_names[t];
2353 snprintf(buf, len, "type %u", t);
2354 return buf;
2357 /* Pretty print the trie */
2358 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2360 const struct fib_trie_iter *iter = seq->private;
2361 struct node *n = v;
2363 if (v == SEQ_START_TOKEN)
2364 return 0;
2366 if (!node_parent_rcu(n)) {
2367 if (iter->trie == iter->trie_local)
2368 seq_puts(seq, "<local>:\n");
2369 else
2370 seq_puts(seq, "<main>:\n");
2373 if (IS_TNODE(n)) {
2374 struct tnode *tn = (struct tnode *) n;
2375 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2377 seq_indent(seq, iter->depth-1);
2378 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2379 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2380 tn->empty_children);
2382 } else {
2383 struct leaf *l = (struct leaf *) n;
2384 struct leaf_info *li;
2385 struct hlist_node *node;
2386 __be32 val = htonl(l->key);
2388 seq_indent(seq, iter->depth);
2389 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2391 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2392 struct fib_alias *fa;
2394 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2395 char buf1[32], buf2[32];
2397 seq_indent(seq, iter->depth+1);
2398 seq_printf(seq, " /%d %s %s", li->plen,
2399 rtn_scope(buf1, sizeof(buf1),
2400 fa->fa_scope),
2401 rtn_type(buf2, sizeof(buf2),
2402 fa->fa_type));
2403 if (fa->fa_tos)
2404 seq_printf(seq, "tos =%d\n",
2405 fa->fa_tos);
2406 seq_putc(seq, '\n');
2411 return 0;
2414 static const struct seq_operations fib_trie_seq_ops = {
2415 .start = fib_trie_seq_start,
2416 .next = fib_trie_seq_next,
2417 .stop = fib_trie_seq_stop,
2418 .show = fib_trie_seq_show,
2421 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2423 return seq_open_net(inode, file, &fib_trie_seq_ops,
2424 sizeof(struct fib_trie_iter));
2427 static const struct file_operations fib_trie_fops = {
2428 .owner = THIS_MODULE,
2429 .open = fib_trie_seq_open,
2430 .read = seq_read,
2431 .llseek = seq_lseek,
2432 .release = seq_release_net,
2435 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2437 static unsigned type2flags[RTN_MAX + 1] = {
2438 [7] = RTF_REJECT, [8] = RTF_REJECT,
2440 unsigned flags = type2flags[type];
2442 if (fi && fi->fib_nh->nh_gw)
2443 flags |= RTF_GATEWAY;
2444 if (mask == htonl(0xFFFFFFFF))
2445 flags |= RTF_HOST;
2446 flags |= RTF_UP;
2447 return flags;
2451 * This outputs /proc/net/route.
2452 * The format of the file is not supposed to be changed
2453 * and needs to be same as fib_hash output to avoid breaking
2454 * legacy utilities
2456 static int fib_route_seq_show(struct seq_file *seq, void *v)
2458 const struct fib_trie_iter *iter = seq->private;
2459 struct leaf *l = v;
2460 struct leaf_info *li;
2461 struct hlist_node *node;
2463 if (v == SEQ_START_TOKEN) {
2464 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2465 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2466 "\tWindow\tIRTT");
2467 return 0;
2470 if (iter->trie == iter->trie_local)
2471 return 0;
2473 if (IS_TNODE(l))
2474 return 0;
2476 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2477 struct fib_alias *fa;
2478 __be32 mask, prefix;
2480 mask = inet_make_mask(li->plen);
2481 prefix = htonl(l->key);
2483 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2484 const struct fib_info *fi = fa->fa_info;
2485 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2486 char bf[128];
2488 if (fa->fa_type == RTN_BROADCAST
2489 || fa->fa_type == RTN_MULTICAST)
2490 continue;
2492 if (fi)
2493 snprintf(bf, sizeof(bf),
2494 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2495 fi->fib_dev ? fi->fib_dev->name : "*",
2496 prefix,
2497 fi->fib_nh->nh_gw, flags, 0, 0,
2498 fi->fib_priority,
2499 mask,
2500 (fi->fib_advmss ?
2501 fi->fib_advmss + 40 : 0),
2502 fi->fib_window,
2503 fi->fib_rtt >> 3);
2504 else
2505 snprintf(bf, sizeof(bf),
2506 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2507 prefix, 0, flags, 0, 0, 0,
2508 mask, 0, 0, 0);
2510 seq_printf(seq, "%-127s\n", bf);
2514 return 0;
2517 static const struct seq_operations fib_route_seq_ops = {
2518 .start = fib_trie_seq_start,
2519 .next = fib_trie_seq_next,
2520 .stop = fib_trie_seq_stop,
2521 .show = fib_route_seq_show,
2524 static int fib_route_seq_open(struct inode *inode, struct file *file)
2526 return seq_open_net(inode, file, &fib_route_seq_ops,
2527 sizeof(struct fib_trie_iter));
2530 static const struct file_operations fib_route_fops = {
2531 .owner = THIS_MODULE,
2532 .open = fib_route_seq_open,
2533 .read = seq_read,
2534 .llseek = seq_lseek,
2535 .release = seq_release_net,
2538 int __net_init fib_proc_init(struct net *net)
2540 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2541 goto out1;
2543 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2544 &fib_triestat_fops))
2545 goto out2;
2547 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2548 goto out3;
2550 return 0;
2552 out3:
2553 proc_net_remove(net, "fib_triestat");
2554 out2:
2555 proc_net_remove(net, "fib_trie");
2556 out1:
2557 return -ENOMEM;
2560 void __net_exit fib_proc_exit(struct net *net)
2562 proc_net_remove(net, "fib_trie");
2563 proc_net_remove(net, "fib_triestat");
2564 proc_net_remove(net, "route");
2567 #endif /* CONFIG_PROC_FS */