ia64: on UP percpu variables are not small memory model
[wrt350n-kernel.git] / net / sunrpc / auth_gss / auth_gss.c
blob6dac387922888def8781b2f6d6d104acab9dc97c
1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
4 * RPCSEC_GSS client authentication.
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 * $Id$
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/slab.h>
45 #include <linux/sched.h>
46 #include <linux/pagemap.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/auth.h>
49 #include <linux/sunrpc/auth_gss.h>
50 #include <linux/sunrpc/svcauth_gss.h>
51 #include <linux/sunrpc/gss_err.h>
52 #include <linux/workqueue.h>
53 #include <linux/sunrpc/rpc_pipe_fs.h>
54 #include <linux/sunrpc/gss_api.h>
55 #include <asm/uaccess.h>
57 static const struct rpc_authops authgss_ops;
59 static const struct rpc_credops gss_credops;
60 static const struct rpc_credops gss_nullops;
62 #ifdef RPC_DEBUG
63 # define RPCDBG_FACILITY RPCDBG_AUTH
64 #endif
66 #define NFS_NGROUPS 16
68 #define GSS_CRED_SLACK 1024 /* XXX: unused */
69 /* length of a krb5 verifier (48), plus data added before arguments when
70 * using integrity (two 4-byte integers): */
71 #define GSS_VERF_SLACK 100
73 /* XXX this define must match the gssd define
74 * as it is passed to gssd to signal the use of
75 * machine creds should be part of the shared rpc interface */
77 #define CA_RUN_AS_MACHINE 0x00000200
79 /* dump the buffer in `emacs-hexl' style */
80 #define isprint(c) ((c > 0x1f) && (c < 0x7f))
82 struct gss_auth {
83 struct kref kref;
84 struct rpc_auth rpc_auth;
85 struct gss_api_mech *mech;
86 enum rpc_gss_svc service;
87 struct rpc_clnt *client;
88 struct dentry *dentry;
91 static void gss_free_ctx(struct gss_cl_ctx *);
92 static struct rpc_pipe_ops gss_upcall_ops;
94 static inline struct gss_cl_ctx *
95 gss_get_ctx(struct gss_cl_ctx *ctx)
97 atomic_inc(&ctx->count);
98 return ctx;
101 static inline void
102 gss_put_ctx(struct gss_cl_ctx *ctx)
104 if (atomic_dec_and_test(&ctx->count))
105 gss_free_ctx(ctx);
108 /* gss_cred_set_ctx:
109 * called by gss_upcall_callback and gss_create_upcall in order
110 * to set the gss context. The actual exchange of an old context
111 * and a new one is protected by the inode->i_lock.
113 static void
114 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
116 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
117 struct gss_cl_ctx *old;
119 old = gss_cred->gc_ctx;
120 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
121 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
122 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
123 if (old)
124 gss_put_ctx(old);
127 static int
128 gss_cred_is_uptodate_ctx(struct rpc_cred *cred)
130 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
131 int res = 0;
133 rcu_read_lock();
134 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) && gss_cred->gc_ctx)
135 res = 1;
136 rcu_read_unlock();
137 return res;
140 static const void *
141 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
143 const void *q = (const void *)((const char *)p + len);
144 if (unlikely(q > end || q < p))
145 return ERR_PTR(-EFAULT);
146 memcpy(res, p, len);
147 return q;
150 static inline const void *
151 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
153 const void *q;
154 unsigned int len;
156 p = simple_get_bytes(p, end, &len, sizeof(len));
157 if (IS_ERR(p))
158 return p;
159 q = (const void *)((const char *)p + len);
160 if (unlikely(q > end || q < p))
161 return ERR_PTR(-EFAULT);
162 dest->data = kmemdup(p, len, GFP_KERNEL);
163 if (unlikely(dest->data == NULL))
164 return ERR_PTR(-ENOMEM);
165 dest->len = len;
166 return q;
169 static struct gss_cl_ctx *
170 gss_cred_get_ctx(struct rpc_cred *cred)
172 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
173 struct gss_cl_ctx *ctx = NULL;
175 rcu_read_lock();
176 if (gss_cred->gc_ctx)
177 ctx = gss_get_ctx(gss_cred->gc_ctx);
178 rcu_read_unlock();
179 return ctx;
182 static struct gss_cl_ctx *
183 gss_alloc_context(void)
185 struct gss_cl_ctx *ctx;
187 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
188 if (ctx != NULL) {
189 ctx->gc_proc = RPC_GSS_PROC_DATA;
190 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
191 spin_lock_init(&ctx->gc_seq_lock);
192 atomic_set(&ctx->count,1);
194 return ctx;
197 #define GSSD_MIN_TIMEOUT (60 * 60)
198 static const void *
199 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
201 const void *q;
202 unsigned int seclen;
203 unsigned int timeout;
204 u32 window_size;
205 int ret;
207 /* First unsigned int gives the lifetime (in seconds) of the cred */
208 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
209 if (IS_ERR(p))
210 goto err;
211 if (timeout == 0)
212 timeout = GSSD_MIN_TIMEOUT;
213 ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
214 /* Sequence number window. Determines the maximum number of simultaneous requests */
215 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
216 if (IS_ERR(p))
217 goto err;
218 ctx->gc_win = window_size;
219 /* gssd signals an error by passing ctx->gc_win = 0: */
220 if (ctx->gc_win == 0) {
221 /* in which case, p points to an error code which we ignore */
222 p = ERR_PTR(-EACCES);
223 goto err;
225 /* copy the opaque wire context */
226 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
227 if (IS_ERR(p))
228 goto err;
229 /* import the opaque security context */
230 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
231 if (IS_ERR(p))
232 goto err;
233 q = (const void *)((const char *)p + seclen);
234 if (unlikely(q > end || q < p)) {
235 p = ERR_PTR(-EFAULT);
236 goto err;
238 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx);
239 if (ret < 0) {
240 p = ERR_PTR(ret);
241 goto err;
243 return q;
244 err:
245 dprintk("RPC: gss_fill_context returning %ld\n", -PTR_ERR(p));
246 return p;
250 struct gss_upcall_msg {
251 atomic_t count;
252 uid_t uid;
253 struct rpc_pipe_msg msg;
254 struct list_head list;
255 struct gss_auth *auth;
256 struct rpc_wait_queue rpc_waitqueue;
257 wait_queue_head_t waitqueue;
258 struct gss_cl_ctx *ctx;
261 static void
262 gss_release_msg(struct gss_upcall_msg *gss_msg)
264 if (!atomic_dec_and_test(&gss_msg->count))
265 return;
266 BUG_ON(!list_empty(&gss_msg->list));
267 if (gss_msg->ctx != NULL)
268 gss_put_ctx(gss_msg->ctx);
269 kfree(gss_msg);
272 static struct gss_upcall_msg *
273 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid)
275 struct gss_upcall_msg *pos;
276 list_for_each_entry(pos, &rpci->in_downcall, list) {
277 if (pos->uid != uid)
278 continue;
279 atomic_inc(&pos->count);
280 dprintk("RPC: gss_find_upcall found msg %p\n", pos);
281 return pos;
283 dprintk("RPC: gss_find_upcall found nothing\n");
284 return NULL;
287 /* Try to add a upcall to the pipefs queue.
288 * If an upcall owned by our uid already exists, then we return a reference
289 * to that upcall instead of adding the new upcall.
291 static inline struct gss_upcall_msg *
292 gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg)
294 struct inode *inode = gss_auth->dentry->d_inode;
295 struct rpc_inode *rpci = RPC_I(inode);
296 struct gss_upcall_msg *old;
298 spin_lock(&inode->i_lock);
299 old = __gss_find_upcall(rpci, gss_msg->uid);
300 if (old == NULL) {
301 atomic_inc(&gss_msg->count);
302 list_add(&gss_msg->list, &rpci->in_downcall);
303 } else
304 gss_msg = old;
305 spin_unlock(&inode->i_lock);
306 return gss_msg;
309 static void
310 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
312 list_del_init(&gss_msg->list);
313 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
314 wake_up_all(&gss_msg->waitqueue);
315 atomic_dec(&gss_msg->count);
318 static void
319 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
321 struct gss_auth *gss_auth = gss_msg->auth;
322 struct inode *inode = gss_auth->dentry->d_inode;
324 if (list_empty(&gss_msg->list))
325 return;
326 spin_lock(&inode->i_lock);
327 if (!list_empty(&gss_msg->list))
328 __gss_unhash_msg(gss_msg);
329 spin_unlock(&inode->i_lock);
332 static void
333 gss_upcall_callback(struct rpc_task *task)
335 struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred,
336 struct gss_cred, gc_base);
337 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
338 struct inode *inode = gss_msg->auth->dentry->d_inode;
340 spin_lock(&inode->i_lock);
341 if (gss_msg->ctx)
342 gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_get_ctx(gss_msg->ctx));
343 else
344 task->tk_status = gss_msg->msg.errno;
345 gss_cred->gc_upcall = NULL;
346 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
347 spin_unlock(&inode->i_lock);
348 gss_release_msg(gss_msg);
351 static inline struct gss_upcall_msg *
352 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid)
354 struct gss_upcall_msg *gss_msg;
356 gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL);
357 if (gss_msg != NULL) {
358 INIT_LIST_HEAD(&gss_msg->list);
359 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
360 init_waitqueue_head(&gss_msg->waitqueue);
361 atomic_set(&gss_msg->count, 1);
362 gss_msg->msg.data = &gss_msg->uid;
363 gss_msg->msg.len = sizeof(gss_msg->uid);
364 gss_msg->uid = uid;
365 gss_msg->auth = gss_auth;
367 return gss_msg;
370 static struct gss_upcall_msg *
371 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
373 struct gss_upcall_msg *gss_new, *gss_msg;
375 gss_new = gss_alloc_msg(gss_auth, cred->cr_uid);
376 if (gss_new == NULL)
377 return ERR_PTR(-ENOMEM);
378 gss_msg = gss_add_msg(gss_auth, gss_new);
379 if (gss_msg == gss_new) {
380 int res = rpc_queue_upcall(gss_auth->dentry->d_inode, &gss_new->msg);
381 if (res) {
382 gss_unhash_msg(gss_new);
383 gss_msg = ERR_PTR(res);
385 } else
386 gss_release_msg(gss_new);
387 return gss_msg;
390 static inline int
391 gss_refresh_upcall(struct rpc_task *task)
393 struct rpc_cred *cred = task->tk_msg.rpc_cred;
394 struct gss_auth *gss_auth = container_of(cred->cr_auth,
395 struct gss_auth, rpc_auth);
396 struct gss_cred *gss_cred = container_of(cred,
397 struct gss_cred, gc_base);
398 struct gss_upcall_msg *gss_msg;
399 struct inode *inode = gss_auth->dentry->d_inode;
400 int err = 0;
402 dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid,
403 cred->cr_uid);
404 gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
405 if (IS_ERR(gss_msg)) {
406 err = PTR_ERR(gss_msg);
407 goto out;
409 spin_lock(&inode->i_lock);
410 if (gss_cred->gc_upcall != NULL)
411 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL, NULL);
412 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
413 task->tk_timeout = 0;
414 gss_cred->gc_upcall = gss_msg;
415 /* gss_upcall_callback will release the reference to gss_upcall_msg */
416 atomic_inc(&gss_msg->count);
417 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback, NULL);
418 } else
419 err = gss_msg->msg.errno;
420 spin_unlock(&inode->i_lock);
421 gss_release_msg(gss_msg);
422 out:
423 dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n",
424 task->tk_pid, cred->cr_uid, err);
425 return err;
428 static inline int
429 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
431 struct inode *inode = gss_auth->dentry->d_inode;
432 struct rpc_cred *cred = &gss_cred->gc_base;
433 struct gss_upcall_msg *gss_msg;
434 DEFINE_WAIT(wait);
435 int err = 0;
437 dprintk("RPC: gss_upcall for uid %u\n", cred->cr_uid);
438 gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
439 if (IS_ERR(gss_msg)) {
440 err = PTR_ERR(gss_msg);
441 goto out;
443 for (;;) {
444 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE);
445 spin_lock(&inode->i_lock);
446 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
447 break;
449 spin_unlock(&inode->i_lock);
450 if (signalled()) {
451 err = -ERESTARTSYS;
452 goto out_intr;
454 schedule();
456 if (gss_msg->ctx)
457 gss_cred_set_ctx(cred, gss_get_ctx(gss_msg->ctx));
458 else
459 err = gss_msg->msg.errno;
460 spin_unlock(&inode->i_lock);
461 out_intr:
462 finish_wait(&gss_msg->waitqueue, &wait);
463 gss_release_msg(gss_msg);
464 out:
465 dprintk("RPC: gss_create_upcall for uid %u result %d\n",
466 cred->cr_uid, err);
467 return err;
470 static ssize_t
471 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg,
472 char __user *dst, size_t buflen)
474 char *data = (char *)msg->data + msg->copied;
475 size_t mlen = min(msg->len, buflen);
476 unsigned long left;
478 left = copy_to_user(dst, data, mlen);
479 if (left == mlen) {
480 msg->errno = -EFAULT;
481 return -EFAULT;
484 mlen -= left;
485 msg->copied += mlen;
486 msg->errno = 0;
487 return mlen;
490 #define MSG_BUF_MAXSIZE 1024
492 static ssize_t
493 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
495 const void *p, *end;
496 void *buf;
497 struct rpc_clnt *clnt;
498 struct gss_upcall_msg *gss_msg;
499 struct inode *inode = filp->f_path.dentry->d_inode;
500 struct gss_cl_ctx *ctx;
501 uid_t uid;
502 ssize_t err = -EFBIG;
504 if (mlen > MSG_BUF_MAXSIZE)
505 goto out;
506 err = -ENOMEM;
507 buf = kmalloc(mlen, GFP_KERNEL);
508 if (!buf)
509 goto out;
511 clnt = RPC_I(inode)->private;
512 err = -EFAULT;
513 if (copy_from_user(buf, src, mlen))
514 goto err;
516 end = (const void *)((char *)buf + mlen);
517 p = simple_get_bytes(buf, end, &uid, sizeof(uid));
518 if (IS_ERR(p)) {
519 err = PTR_ERR(p);
520 goto err;
523 err = -ENOMEM;
524 ctx = gss_alloc_context();
525 if (ctx == NULL)
526 goto err;
528 err = -ENOENT;
529 /* Find a matching upcall */
530 spin_lock(&inode->i_lock);
531 gss_msg = __gss_find_upcall(RPC_I(inode), uid);
532 if (gss_msg == NULL) {
533 spin_unlock(&inode->i_lock);
534 goto err_put_ctx;
536 list_del_init(&gss_msg->list);
537 spin_unlock(&inode->i_lock);
539 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
540 if (IS_ERR(p)) {
541 err = PTR_ERR(p);
542 gss_msg->msg.errno = (err == -EAGAIN) ? -EAGAIN : -EACCES;
543 goto err_release_msg;
545 gss_msg->ctx = gss_get_ctx(ctx);
546 err = mlen;
548 err_release_msg:
549 spin_lock(&inode->i_lock);
550 __gss_unhash_msg(gss_msg);
551 spin_unlock(&inode->i_lock);
552 gss_release_msg(gss_msg);
553 err_put_ctx:
554 gss_put_ctx(ctx);
555 err:
556 kfree(buf);
557 out:
558 dprintk("RPC: gss_pipe_downcall returning %Zd\n", err);
559 return err;
562 static void
563 gss_pipe_release(struct inode *inode)
565 struct rpc_inode *rpci = RPC_I(inode);
566 struct gss_upcall_msg *gss_msg;
568 spin_lock(&inode->i_lock);
569 while (!list_empty(&rpci->in_downcall)) {
571 gss_msg = list_entry(rpci->in_downcall.next,
572 struct gss_upcall_msg, list);
573 gss_msg->msg.errno = -EPIPE;
574 atomic_inc(&gss_msg->count);
575 __gss_unhash_msg(gss_msg);
576 spin_unlock(&inode->i_lock);
577 gss_release_msg(gss_msg);
578 spin_lock(&inode->i_lock);
580 spin_unlock(&inode->i_lock);
583 static void
584 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
586 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
587 static unsigned long ratelimit;
589 if (msg->errno < 0) {
590 dprintk("RPC: gss_pipe_destroy_msg releasing msg %p\n",
591 gss_msg);
592 atomic_inc(&gss_msg->count);
593 gss_unhash_msg(gss_msg);
594 if (msg->errno == -ETIMEDOUT) {
595 unsigned long now = jiffies;
596 if (time_after(now, ratelimit)) {
597 printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
598 "Please check user daemon is running!\n");
599 ratelimit = now + 15*HZ;
602 gss_release_msg(gss_msg);
607 * NOTE: we have the opportunity to use different
608 * parameters based on the input flavor (which must be a pseudoflavor)
610 static struct rpc_auth *
611 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
613 struct gss_auth *gss_auth;
614 struct rpc_auth * auth;
615 int err = -ENOMEM; /* XXX? */
617 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
619 if (!try_module_get(THIS_MODULE))
620 return ERR_PTR(err);
621 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
622 goto out_dec;
623 gss_auth->client = clnt;
624 err = -EINVAL;
625 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
626 if (!gss_auth->mech) {
627 printk(KERN_WARNING "%s: Pseudoflavor %d not found!\n",
628 __FUNCTION__, flavor);
629 goto err_free;
631 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
632 if (gss_auth->service == 0)
633 goto err_put_mech;
634 auth = &gss_auth->rpc_auth;
635 auth->au_cslack = GSS_CRED_SLACK >> 2;
636 auth->au_rslack = GSS_VERF_SLACK >> 2;
637 auth->au_ops = &authgss_ops;
638 auth->au_flavor = flavor;
639 atomic_set(&auth->au_count, 1);
640 kref_init(&gss_auth->kref);
642 gss_auth->dentry = rpc_mkpipe(clnt->cl_dentry, gss_auth->mech->gm_name,
643 clnt, &gss_upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
644 if (IS_ERR(gss_auth->dentry)) {
645 err = PTR_ERR(gss_auth->dentry);
646 goto err_put_mech;
649 err = rpcauth_init_credcache(auth);
650 if (err)
651 goto err_unlink_pipe;
653 return auth;
654 err_unlink_pipe:
655 rpc_unlink(gss_auth->dentry);
656 err_put_mech:
657 gss_mech_put(gss_auth->mech);
658 err_free:
659 kfree(gss_auth);
660 out_dec:
661 module_put(THIS_MODULE);
662 return ERR_PTR(err);
665 static void
666 gss_free(struct gss_auth *gss_auth)
668 rpc_unlink(gss_auth->dentry);
669 gss_auth->dentry = NULL;
670 gss_mech_put(gss_auth->mech);
672 kfree(gss_auth);
673 module_put(THIS_MODULE);
676 static void
677 gss_free_callback(struct kref *kref)
679 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
681 gss_free(gss_auth);
684 static void
685 gss_destroy(struct rpc_auth *auth)
687 struct gss_auth *gss_auth;
689 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
690 auth, auth->au_flavor);
692 rpcauth_destroy_credcache(auth);
694 gss_auth = container_of(auth, struct gss_auth, rpc_auth);
695 kref_put(&gss_auth->kref, gss_free_callback);
699 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
700 * to the server with the GSS control procedure field set to
701 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
702 * all RPCSEC_GSS state associated with that context.
704 static int
705 gss_destroying_context(struct rpc_cred *cred)
707 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
708 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
709 struct rpc_task *task;
711 if (gss_cred->gc_ctx == NULL ||
712 gss_cred->gc_ctx->gc_proc == RPC_GSS_PROC_DESTROY)
713 return 0;
715 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
716 cred->cr_ops = &gss_nullops;
718 /* Take a reference to ensure the cred will be destroyed either
719 * by the RPC call or by the put_rpccred() below */
720 get_rpccred(cred);
722 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC);
723 if (!IS_ERR(task))
724 rpc_put_task(task);
726 put_rpccred(cred);
727 return 1;
730 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
731 * to create a new cred or context, so they check that things have been
732 * allocated before freeing them. */
733 static void
734 gss_do_free_ctx(struct gss_cl_ctx *ctx)
736 dprintk("RPC: gss_free_ctx\n");
738 kfree(ctx->gc_wire_ctx.data);
739 kfree(ctx);
742 static void
743 gss_free_ctx_callback(struct rcu_head *head)
745 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
746 gss_do_free_ctx(ctx);
749 static void
750 gss_free_ctx(struct gss_cl_ctx *ctx)
752 struct gss_ctx *gc_gss_ctx;
754 gc_gss_ctx = rcu_dereference(ctx->gc_gss_ctx);
755 rcu_assign_pointer(ctx->gc_gss_ctx, NULL);
756 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
757 if (gc_gss_ctx)
758 gss_delete_sec_context(&gc_gss_ctx);
761 static void
762 gss_free_cred(struct gss_cred *gss_cred)
764 dprintk("RPC: gss_free_cred %p\n", gss_cred);
765 kfree(gss_cred);
768 static void
769 gss_free_cred_callback(struct rcu_head *head)
771 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
772 gss_free_cred(gss_cred);
775 static void
776 gss_destroy_cred(struct rpc_cred *cred)
778 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
779 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
780 struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
782 if (gss_destroying_context(cred))
783 return;
784 rcu_assign_pointer(gss_cred->gc_ctx, NULL);
785 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
786 if (ctx)
787 gss_put_ctx(ctx);
788 kref_put(&gss_auth->kref, gss_free_callback);
792 * Lookup RPCSEC_GSS cred for the current process
794 static struct rpc_cred *
795 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
797 return rpcauth_lookup_credcache(auth, acred, flags);
800 static struct rpc_cred *
801 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
803 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
804 struct gss_cred *cred = NULL;
805 int err = -ENOMEM;
807 dprintk("RPC: gss_create_cred for uid %d, flavor %d\n",
808 acred->uid, auth->au_flavor);
810 if (!(cred = kzalloc(sizeof(*cred), GFP_KERNEL)))
811 goto out_err;
813 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
815 * Note: in order to force a call to call_refresh(), we deliberately
816 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
818 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
819 cred->gc_service = gss_auth->service;
820 kref_get(&gss_auth->kref);
821 return &cred->gc_base;
823 out_err:
824 dprintk("RPC: gss_create_cred failed with error %d\n", err);
825 return ERR_PTR(err);
828 static int
829 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
831 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
832 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
833 int err;
835 do {
836 err = gss_create_upcall(gss_auth, gss_cred);
837 } while (err == -EAGAIN);
838 return err;
841 static int
842 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
844 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
847 * If the searchflags have set RPCAUTH_LOOKUP_NEW, then
848 * we don't really care if the credential has expired or not,
849 * since the caller should be prepared to reinitialise it.
851 if ((flags & RPCAUTH_LOOKUP_NEW) && test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
852 goto out;
853 /* Don't match with creds that have expired. */
854 if (gss_cred->gc_ctx && time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
855 return 0;
856 out:
857 return (rc->cr_uid == acred->uid);
861 * Marshal credentials.
862 * Maybe we should keep a cached credential for performance reasons.
864 static __be32 *
865 gss_marshal(struct rpc_task *task, __be32 *p)
867 struct rpc_cred *cred = task->tk_msg.rpc_cred;
868 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
869 gc_base);
870 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
871 __be32 *cred_len;
872 struct rpc_rqst *req = task->tk_rqstp;
873 u32 maj_stat = 0;
874 struct xdr_netobj mic;
875 struct kvec iov;
876 struct xdr_buf verf_buf;
878 dprintk("RPC: %5u gss_marshal\n", task->tk_pid);
880 *p++ = htonl(RPC_AUTH_GSS);
881 cred_len = p++;
883 spin_lock(&ctx->gc_seq_lock);
884 req->rq_seqno = ctx->gc_seq++;
885 spin_unlock(&ctx->gc_seq_lock);
887 *p++ = htonl((u32) RPC_GSS_VERSION);
888 *p++ = htonl((u32) ctx->gc_proc);
889 *p++ = htonl((u32) req->rq_seqno);
890 *p++ = htonl((u32) gss_cred->gc_service);
891 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
892 *cred_len = htonl((p - (cred_len + 1)) << 2);
894 /* We compute the checksum for the verifier over the xdr-encoded bytes
895 * starting with the xid and ending at the end of the credential: */
896 iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
897 req->rq_snd_buf.head[0].iov_base);
898 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
899 xdr_buf_from_iov(&iov, &verf_buf);
901 /* set verifier flavor*/
902 *p++ = htonl(RPC_AUTH_GSS);
904 mic.data = (u8 *)(p + 1);
905 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
906 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
907 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
908 } else if (maj_stat != 0) {
909 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
910 goto out_put_ctx;
912 p = xdr_encode_opaque(p, NULL, mic.len);
913 gss_put_ctx(ctx);
914 return p;
915 out_put_ctx:
916 gss_put_ctx(ctx);
917 return NULL;
921 * Refresh credentials. XXX - finish
923 static int
924 gss_refresh(struct rpc_task *task)
927 if (!gss_cred_is_uptodate_ctx(task->tk_msg.rpc_cred))
928 return gss_refresh_upcall(task);
929 return 0;
932 /* Dummy refresh routine: used only when destroying the context */
933 static int
934 gss_refresh_null(struct rpc_task *task)
936 return -EACCES;
939 static __be32 *
940 gss_validate(struct rpc_task *task, __be32 *p)
942 struct rpc_cred *cred = task->tk_msg.rpc_cred;
943 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
944 __be32 seq;
945 struct kvec iov;
946 struct xdr_buf verf_buf;
947 struct xdr_netobj mic;
948 u32 flav,len;
949 u32 maj_stat;
951 dprintk("RPC: %5u gss_validate\n", task->tk_pid);
953 flav = ntohl(*p++);
954 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
955 goto out_bad;
956 if (flav != RPC_AUTH_GSS)
957 goto out_bad;
958 seq = htonl(task->tk_rqstp->rq_seqno);
959 iov.iov_base = &seq;
960 iov.iov_len = sizeof(seq);
961 xdr_buf_from_iov(&iov, &verf_buf);
962 mic.data = (u8 *)p;
963 mic.len = len;
965 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
966 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
967 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
968 if (maj_stat) {
969 dprintk("RPC: %5u gss_validate: gss_verify_mic returned "
970 "error 0x%08x\n", task->tk_pid, maj_stat);
971 goto out_bad;
973 /* We leave it to unwrap to calculate au_rslack. For now we just
974 * calculate the length of the verifier: */
975 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
976 gss_put_ctx(ctx);
977 dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n",
978 task->tk_pid);
979 return p + XDR_QUADLEN(len);
980 out_bad:
981 gss_put_ctx(ctx);
982 dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid);
983 return NULL;
986 static inline int
987 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
988 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
990 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
991 struct xdr_buf integ_buf;
992 __be32 *integ_len = NULL;
993 struct xdr_netobj mic;
994 u32 offset;
995 __be32 *q;
996 struct kvec *iov;
997 u32 maj_stat = 0;
998 int status = -EIO;
1000 integ_len = p++;
1001 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1002 *p++ = htonl(rqstp->rq_seqno);
1004 status = rpc_call_xdrproc(encode, rqstp, p, obj);
1005 if (status)
1006 return status;
1008 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1009 offset, snd_buf->len - offset))
1010 return status;
1011 *integ_len = htonl(integ_buf.len);
1013 /* guess whether we're in the head or the tail: */
1014 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1015 iov = snd_buf->tail;
1016 else
1017 iov = snd_buf->head;
1018 p = iov->iov_base + iov->iov_len;
1019 mic.data = (u8 *)(p + 1);
1021 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1022 status = -EIO; /* XXX? */
1023 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1024 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1025 else if (maj_stat)
1026 return status;
1027 q = xdr_encode_opaque(p, NULL, mic.len);
1029 offset = (u8 *)q - (u8 *)p;
1030 iov->iov_len += offset;
1031 snd_buf->len += offset;
1032 return 0;
1035 static void
1036 priv_release_snd_buf(struct rpc_rqst *rqstp)
1038 int i;
1040 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1041 __free_page(rqstp->rq_enc_pages[i]);
1042 kfree(rqstp->rq_enc_pages);
1045 static int
1046 alloc_enc_pages(struct rpc_rqst *rqstp)
1048 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1049 int first, last, i;
1051 if (snd_buf->page_len == 0) {
1052 rqstp->rq_enc_pages_num = 0;
1053 return 0;
1056 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1057 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1058 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1059 rqstp->rq_enc_pages
1060 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1061 GFP_NOFS);
1062 if (!rqstp->rq_enc_pages)
1063 goto out;
1064 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1065 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1066 if (rqstp->rq_enc_pages[i] == NULL)
1067 goto out_free;
1069 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1070 return 0;
1071 out_free:
1072 for (i--; i >= 0; i--) {
1073 __free_page(rqstp->rq_enc_pages[i]);
1075 out:
1076 return -EAGAIN;
1079 static inline int
1080 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1081 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1083 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1084 u32 offset;
1085 u32 maj_stat;
1086 int status;
1087 __be32 *opaque_len;
1088 struct page **inpages;
1089 int first;
1090 int pad;
1091 struct kvec *iov;
1092 char *tmp;
1094 opaque_len = p++;
1095 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1096 *p++ = htonl(rqstp->rq_seqno);
1098 status = rpc_call_xdrproc(encode, rqstp, p, obj);
1099 if (status)
1100 return status;
1102 status = alloc_enc_pages(rqstp);
1103 if (status)
1104 return status;
1105 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1106 inpages = snd_buf->pages + first;
1107 snd_buf->pages = rqstp->rq_enc_pages;
1108 snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1109 /* Give the tail its own page, in case we need extra space in the
1110 * head when wrapping: */
1111 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1112 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1113 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1114 snd_buf->tail[0].iov_base = tmp;
1116 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1117 /* RPC_SLACK_SPACE should prevent this ever happening: */
1118 BUG_ON(snd_buf->len > snd_buf->buflen);
1119 status = -EIO;
1120 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1121 * done anyway, so it's safe to put the request on the wire: */
1122 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1123 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1124 else if (maj_stat)
1125 return status;
1127 *opaque_len = htonl(snd_buf->len - offset);
1128 /* guess whether we're in the head or the tail: */
1129 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1130 iov = snd_buf->tail;
1131 else
1132 iov = snd_buf->head;
1133 p = iov->iov_base + iov->iov_len;
1134 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1135 memset(p, 0, pad);
1136 iov->iov_len += pad;
1137 snd_buf->len += pad;
1139 return 0;
1142 static int
1143 gss_wrap_req(struct rpc_task *task,
1144 kxdrproc_t encode, void *rqstp, __be32 *p, void *obj)
1146 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1147 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1148 gc_base);
1149 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1150 int status = -EIO;
1152 dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid);
1153 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1154 /* The spec seems a little ambiguous here, but I think that not
1155 * wrapping context destruction requests makes the most sense.
1157 status = rpc_call_xdrproc(encode, rqstp, p, obj);
1158 goto out;
1160 switch (gss_cred->gc_service) {
1161 case RPC_GSS_SVC_NONE:
1162 status = rpc_call_xdrproc(encode, rqstp, p, obj);
1163 break;
1164 case RPC_GSS_SVC_INTEGRITY:
1165 status = gss_wrap_req_integ(cred, ctx, encode,
1166 rqstp, p, obj);
1167 break;
1168 case RPC_GSS_SVC_PRIVACY:
1169 status = gss_wrap_req_priv(cred, ctx, encode,
1170 rqstp, p, obj);
1171 break;
1173 out:
1174 gss_put_ctx(ctx);
1175 dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status);
1176 return status;
1179 static inline int
1180 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1181 struct rpc_rqst *rqstp, __be32 **p)
1183 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1184 struct xdr_buf integ_buf;
1185 struct xdr_netobj mic;
1186 u32 data_offset, mic_offset;
1187 u32 integ_len;
1188 u32 maj_stat;
1189 int status = -EIO;
1191 integ_len = ntohl(*(*p)++);
1192 if (integ_len & 3)
1193 return status;
1194 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1195 mic_offset = integ_len + data_offset;
1196 if (mic_offset > rcv_buf->len)
1197 return status;
1198 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1199 return status;
1201 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1202 mic_offset - data_offset))
1203 return status;
1205 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1206 return status;
1208 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1209 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1210 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1211 if (maj_stat != GSS_S_COMPLETE)
1212 return status;
1213 return 0;
1216 static inline int
1217 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1218 struct rpc_rqst *rqstp, __be32 **p)
1220 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1221 u32 offset;
1222 u32 opaque_len;
1223 u32 maj_stat;
1224 int status = -EIO;
1226 opaque_len = ntohl(*(*p)++);
1227 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1228 if (offset + opaque_len > rcv_buf->len)
1229 return status;
1230 /* remove padding: */
1231 rcv_buf->len = offset + opaque_len;
1233 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1234 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1235 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1236 if (maj_stat != GSS_S_COMPLETE)
1237 return status;
1238 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1239 return status;
1241 return 0;
1245 static int
1246 gss_unwrap_resp(struct rpc_task *task,
1247 kxdrproc_t decode, void *rqstp, __be32 *p, void *obj)
1249 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1250 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1251 gc_base);
1252 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1253 __be32 *savedp = p;
1254 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1255 int savedlen = head->iov_len;
1256 int status = -EIO;
1258 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1259 goto out_decode;
1260 switch (gss_cred->gc_service) {
1261 case RPC_GSS_SVC_NONE:
1262 break;
1263 case RPC_GSS_SVC_INTEGRITY:
1264 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1265 if (status)
1266 goto out;
1267 break;
1268 case RPC_GSS_SVC_PRIVACY:
1269 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1270 if (status)
1271 goto out;
1272 break;
1274 /* take into account extra slack for integrity and privacy cases: */
1275 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1276 + (savedlen - head->iov_len);
1277 out_decode:
1278 status = rpc_call_xdrproc(decode, rqstp, p, obj);
1279 out:
1280 gss_put_ctx(ctx);
1281 dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid,
1282 status);
1283 return status;
1286 static const struct rpc_authops authgss_ops = {
1287 .owner = THIS_MODULE,
1288 .au_flavor = RPC_AUTH_GSS,
1289 #ifdef RPC_DEBUG
1290 .au_name = "RPCSEC_GSS",
1291 #endif
1292 .create = gss_create,
1293 .destroy = gss_destroy,
1294 .lookup_cred = gss_lookup_cred,
1295 .crcreate = gss_create_cred
1298 static const struct rpc_credops gss_credops = {
1299 .cr_name = "AUTH_GSS",
1300 .crdestroy = gss_destroy_cred,
1301 .cr_init = gss_cred_init,
1302 .crmatch = gss_match,
1303 .crmarshal = gss_marshal,
1304 .crrefresh = gss_refresh,
1305 .crvalidate = gss_validate,
1306 .crwrap_req = gss_wrap_req,
1307 .crunwrap_resp = gss_unwrap_resp,
1310 static const struct rpc_credops gss_nullops = {
1311 .cr_name = "AUTH_GSS",
1312 .crdestroy = gss_destroy_cred,
1313 .crmatch = gss_match,
1314 .crmarshal = gss_marshal,
1315 .crrefresh = gss_refresh_null,
1316 .crvalidate = gss_validate,
1317 .crwrap_req = gss_wrap_req,
1318 .crunwrap_resp = gss_unwrap_resp,
1321 static struct rpc_pipe_ops gss_upcall_ops = {
1322 .upcall = gss_pipe_upcall,
1323 .downcall = gss_pipe_downcall,
1324 .destroy_msg = gss_pipe_destroy_msg,
1325 .release_pipe = gss_pipe_release,
1329 * Initialize RPCSEC_GSS module
1331 static int __init init_rpcsec_gss(void)
1333 int err = 0;
1335 err = rpcauth_register(&authgss_ops);
1336 if (err)
1337 goto out;
1338 err = gss_svc_init();
1339 if (err)
1340 goto out_unregister;
1341 return 0;
1342 out_unregister:
1343 rpcauth_unregister(&authgss_ops);
1344 out:
1345 return err;
1348 static void __exit exit_rpcsec_gss(void)
1350 gss_svc_shutdown();
1351 rpcauth_unregister(&authgss_ops);
1354 MODULE_LICENSE("GPL");
1355 module_init(init_rpcsec_gss)
1356 module_exit(exit_rpcsec_gss)