x86: rodata config hookup
[wrt350n-kernel.git] / fs / ext4 / inode.c
blobbb717cbb749c822265bccdd8159de7af456ad745
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
43 * Test whether an inode is a fast symlink.
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0;
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
65 int err;
67 might_sleep();
69 BUFFER_TRACE(bh, "enter");
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
83 if (bh) {
84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle, bh);
87 return 0;
91 * data!=journal && (is_metadata || should_journal_data(inode))
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
95 if (err)
96 ext4_abort(inode->i_sb, __FUNCTION__,
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
106 static unsigned long blocks_for_truncate(struct inode *inode)
108 ext4_lblk_t needed;
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
139 static handle_t *start_transaction(struct inode *inode)
141 handle_t *result;
143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 if (!IS_ERR(result))
145 return result;
147 ext4_std_error(inode->i_sb, PTR_ERR(result));
148 return result;
152 * Try to extend this transaction for the purposes of truncation.
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 return 0;
161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 return 0;
163 return 1;
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
173 jbd_debug(2, "restarting handle %p\n", handle);
174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
178 * Called at the last iput() if i_nlink is zero.
180 void ext4_delete_inode (struct inode * inode)
182 handle_t *handle;
184 truncate_inode_pages(&inode->i_data, 0);
186 if (is_bad_inode(inode))
187 goto no_delete;
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
196 ext4_orphan_del(NULL, inode);
197 goto no_delete;
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
204 ext4_truncate(inode);
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
223 if (ext4_mark_inode_dirty(handle, inode))
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
229 return;
230 no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
234 typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238 } Indirect;
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
242 p->key = *(p->p = v);
243 p->bh = bh;
247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
277 static int ext4_block_to_path(struct inode *inode,
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
289 if (i_block < 0) {
290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 offsets[n++] = EXT4_IND_BLOCK;
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
299 offsets[n++] = EXT4_DIND_BLOCK;
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 offsets[n++] = EXT4_TIND_BLOCK;
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
310 ext4_warning(inode->i_sb, "ext4_block_to_path",
311 "block %lu > max",
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem)
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
352 Indirect chain[4], int *err)
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
358 *err = 0;
359 /* i_data is not going away, no lock needed */
360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
372 return NULL;
374 failure:
375 *err = -EIO;
376 no_block:
377 return p;
381 * ext4_find_near - find a place for allocation with sufficient locality
382 * @inode: owner
383 * @ind: descriptor of indirect block.
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
398 * Caller must make sure that @ind is valid and will stay that way.
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
402 struct ext4_inode_info *ei = EXT4_I(inode);
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
405 ext4_fsblk_t bg_start;
406 ext4_grpblk_t colour;
408 /* Try to find previous block */
409 for (p = ind->p - 1; p >= start; p--) {
410 if (*p)
411 return le32_to_cpu(*p);
414 /* No such thing, so let's try location of indirect block */
415 if (ind->bh)
416 return ind->bh->b_blocknr;
419 * It is going to be referred to from the inode itself? OK, just put it
420 * into the same cylinder group then.
422 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423 colour = (current->pid % 16) *
424 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425 return bg_start + colour;
429 * ext4_find_goal - find a prefered place for allocation.
430 * @inode: owner
431 * @block: block we want
432 * @chain: chain of indirect blocks
433 * @partial: pointer to the last triple within a chain
434 * @goal: place to store the result.
436 * Normally this function find the prefered place for block allocation,
437 * stores it in *@goal and returns zero.
440 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
441 Indirect chain[4], Indirect *partial)
443 struct ext4_block_alloc_info *block_i;
445 block_i = EXT4_I(inode)->i_block_alloc_info;
448 * try the heuristic for sequential allocation,
449 * failing that at least try to get decent locality.
451 if (block_i && (block == block_i->last_alloc_logical_block + 1)
452 && (block_i->last_alloc_physical_block != 0)) {
453 return block_i->last_alloc_physical_block + 1;
456 return ext4_find_near(inode, partial);
460 * ext4_blks_to_allocate: Look up the block map and count the number
461 * of direct blocks need to be allocated for the given branch.
463 * @branch: chain of indirect blocks
464 * @k: number of blocks need for indirect blocks
465 * @blks: number of data blocks to be mapped.
466 * @blocks_to_boundary: the offset in the indirect block
468 * return the total number of blocks to be allocate, including the
469 * direct and indirect blocks.
471 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
472 int blocks_to_boundary)
474 unsigned long count = 0;
477 * Simple case, [t,d]Indirect block(s) has not allocated yet
478 * then it's clear blocks on that path have not allocated
480 if (k > 0) {
481 /* right now we don't handle cross boundary allocation */
482 if (blks < blocks_to_boundary + 1)
483 count += blks;
484 else
485 count += blocks_to_boundary + 1;
486 return count;
489 count++;
490 while (count < blks && count <= blocks_to_boundary &&
491 le32_to_cpu(*(branch[0].p + count)) == 0) {
492 count++;
494 return count;
498 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
499 * @indirect_blks: the number of blocks need to allocate for indirect
500 * blocks
502 * @new_blocks: on return it will store the new block numbers for
503 * the indirect blocks(if needed) and the first direct block,
504 * @blks: on return it will store the total number of allocated
505 * direct blocks
507 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
508 ext4_fsblk_t goal, int indirect_blks, int blks,
509 ext4_fsblk_t new_blocks[4], int *err)
511 int target, i;
512 unsigned long count = 0;
513 int index = 0;
514 ext4_fsblk_t current_block = 0;
515 int ret = 0;
518 * Here we try to allocate the requested multiple blocks at once,
519 * on a best-effort basis.
520 * To build a branch, we should allocate blocks for
521 * the indirect blocks(if not allocated yet), and at least
522 * the first direct block of this branch. That's the
523 * minimum number of blocks need to allocate(required)
525 target = blks + indirect_blks;
527 while (1) {
528 count = target;
529 /* allocating blocks for indirect blocks and direct blocks */
530 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
531 if (*err)
532 goto failed_out;
534 target -= count;
535 /* allocate blocks for indirect blocks */
536 while (index < indirect_blks && count) {
537 new_blocks[index++] = current_block++;
538 count--;
541 if (count > 0)
542 break;
545 /* save the new block number for the first direct block */
546 new_blocks[index] = current_block;
548 /* total number of blocks allocated for direct blocks */
549 ret = count;
550 *err = 0;
551 return ret;
552 failed_out:
553 for (i = 0; i <index; i++)
554 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
555 return ret;
559 * ext4_alloc_branch - allocate and set up a chain of blocks.
560 * @inode: owner
561 * @indirect_blks: number of allocated indirect blocks
562 * @blks: number of allocated direct blocks
563 * @offsets: offsets (in the blocks) to store the pointers to next.
564 * @branch: place to store the chain in.
566 * This function allocates blocks, zeroes out all but the last one,
567 * links them into chain and (if we are synchronous) writes them to disk.
568 * In other words, it prepares a branch that can be spliced onto the
569 * inode. It stores the information about that chain in the branch[], in
570 * the same format as ext4_get_branch() would do. We are calling it after
571 * we had read the existing part of chain and partial points to the last
572 * triple of that (one with zero ->key). Upon the exit we have the same
573 * picture as after the successful ext4_get_block(), except that in one
574 * place chain is disconnected - *branch->p is still zero (we did not
575 * set the last link), but branch->key contains the number that should
576 * be placed into *branch->p to fill that gap.
578 * If allocation fails we free all blocks we've allocated (and forget
579 * their buffer_heads) and return the error value the from failed
580 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
581 * as described above and return 0.
583 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
584 int indirect_blks, int *blks, ext4_fsblk_t goal,
585 ext4_lblk_t *offsets, Indirect *branch)
587 int blocksize = inode->i_sb->s_blocksize;
588 int i, n = 0;
589 int err = 0;
590 struct buffer_head *bh;
591 int num;
592 ext4_fsblk_t new_blocks[4];
593 ext4_fsblk_t current_block;
595 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
596 *blks, new_blocks, &err);
597 if (err)
598 return err;
600 branch[0].key = cpu_to_le32(new_blocks[0]);
602 * metadata blocks and data blocks are allocated.
604 for (n = 1; n <= indirect_blks; n++) {
606 * Get buffer_head for parent block, zero it out
607 * and set the pointer to new one, then send
608 * parent to disk.
610 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
611 branch[n].bh = bh;
612 lock_buffer(bh);
613 BUFFER_TRACE(bh, "call get_create_access");
614 err = ext4_journal_get_create_access(handle, bh);
615 if (err) {
616 unlock_buffer(bh);
617 brelse(bh);
618 goto failed;
621 memset(bh->b_data, 0, blocksize);
622 branch[n].p = (__le32 *) bh->b_data + offsets[n];
623 branch[n].key = cpu_to_le32(new_blocks[n]);
624 *branch[n].p = branch[n].key;
625 if ( n == indirect_blks) {
626 current_block = new_blocks[n];
628 * End of chain, update the last new metablock of
629 * the chain to point to the new allocated
630 * data blocks numbers
632 for (i=1; i < num; i++)
633 *(branch[n].p + i) = cpu_to_le32(++current_block);
635 BUFFER_TRACE(bh, "marking uptodate");
636 set_buffer_uptodate(bh);
637 unlock_buffer(bh);
639 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
640 err = ext4_journal_dirty_metadata(handle, bh);
641 if (err)
642 goto failed;
644 *blks = num;
645 return err;
646 failed:
647 /* Allocation failed, free what we already allocated */
648 for (i = 1; i <= n ; i++) {
649 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
650 ext4_journal_forget(handle, branch[i].bh);
652 for (i = 0; i <indirect_blks; i++)
653 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
655 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
657 return err;
661 * ext4_splice_branch - splice the allocated branch onto inode.
662 * @inode: owner
663 * @block: (logical) number of block we are adding
664 * @chain: chain of indirect blocks (with a missing link - see
665 * ext4_alloc_branch)
666 * @where: location of missing link
667 * @num: number of indirect blocks we are adding
668 * @blks: number of direct blocks we are adding
670 * This function fills the missing link and does all housekeeping needed in
671 * inode (->i_blocks, etc.). In case of success we end up with the full
672 * chain to new block and return 0.
674 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
675 ext4_lblk_t block, Indirect *where, int num, int blks)
677 int i;
678 int err = 0;
679 struct ext4_block_alloc_info *block_i;
680 ext4_fsblk_t current_block;
682 block_i = EXT4_I(inode)->i_block_alloc_info;
684 * If we're splicing into a [td]indirect block (as opposed to the
685 * inode) then we need to get write access to the [td]indirect block
686 * before the splice.
688 if (where->bh) {
689 BUFFER_TRACE(where->bh, "get_write_access");
690 err = ext4_journal_get_write_access(handle, where->bh);
691 if (err)
692 goto err_out;
694 /* That's it */
696 *where->p = where->key;
699 * Update the host buffer_head or inode to point to more just allocated
700 * direct blocks blocks
702 if (num == 0 && blks > 1) {
703 current_block = le32_to_cpu(where->key) + 1;
704 for (i = 1; i < blks; i++)
705 *(where->p + i ) = cpu_to_le32(current_block++);
709 * update the most recently allocated logical & physical block
710 * in i_block_alloc_info, to assist find the proper goal block for next
711 * allocation
713 if (block_i) {
714 block_i->last_alloc_logical_block = block + blks - 1;
715 block_i->last_alloc_physical_block =
716 le32_to_cpu(where[num].key) + blks - 1;
719 /* We are done with atomic stuff, now do the rest of housekeeping */
721 inode->i_ctime = ext4_current_time(inode);
722 ext4_mark_inode_dirty(handle, inode);
724 /* had we spliced it onto indirect block? */
725 if (where->bh) {
727 * If we spliced it onto an indirect block, we haven't
728 * altered the inode. Note however that if it is being spliced
729 * onto an indirect block at the very end of the file (the
730 * file is growing) then we *will* alter the inode to reflect
731 * the new i_size. But that is not done here - it is done in
732 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
734 jbd_debug(5, "splicing indirect only\n");
735 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
736 err = ext4_journal_dirty_metadata(handle, where->bh);
737 if (err)
738 goto err_out;
739 } else {
741 * OK, we spliced it into the inode itself on a direct block.
742 * Inode was dirtied above.
744 jbd_debug(5, "splicing direct\n");
746 return err;
748 err_out:
749 for (i = 1; i <= num; i++) {
750 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
751 ext4_journal_forget(handle, where[i].bh);
752 ext4_free_blocks(handle, inode,
753 le32_to_cpu(where[i-1].key), 1, 0);
755 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
757 return err;
761 * Allocation strategy is simple: if we have to allocate something, we will
762 * have to go the whole way to leaf. So let's do it before attaching anything
763 * to tree, set linkage between the newborn blocks, write them if sync is
764 * required, recheck the path, free and repeat if check fails, otherwise
765 * set the last missing link (that will protect us from any truncate-generated
766 * removals - all blocks on the path are immune now) and possibly force the
767 * write on the parent block.
768 * That has a nice additional property: no special recovery from the failed
769 * allocations is needed - we simply release blocks and do not touch anything
770 * reachable from inode.
772 * `handle' can be NULL if create == 0.
774 * The BKL may not be held on entry here. Be sure to take it early.
775 * return > 0, # of blocks mapped or allocated.
776 * return = 0, if plain lookup failed.
777 * return < 0, error case.
780 * Need to be called with
781 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
782 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
784 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
785 ext4_lblk_t iblock, unsigned long maxblocks,
786 struct buffer_head *bh_result,
787 int create, int extend_disksize)
789 int err = -EIO;
790 ext4_lblk_t offsets[4];
791 Indirect chain[4];
792 Indirect *partial;
793 ext4_fsblk_t goal;
794 int indirect_blks;
795 int blocks_to_boundary = 0;
796 int depth;
797 struct ext4_inode_info *ei = EXT4_I(inode);
798 int count = 0;
799 ext4_fsblk_t first_block = 0;
802 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
803 J_ASSERT(handle != NULL || create == 0);
804 depth = ext4_block_to_path(inode, iblock, offsets,
805 &blocks_to_boundary);
807 if (depth == 0)
808 goto out;
810 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
812 /* Simplest case - block found, no allocation needed */
813 if (!partial) {
814 first_block = le32_to_cpu(chain[depth - 1].key);
815 clear_buffer_new(bh_result);
816 count++;
817 /*map more blocks*/
818 while (count < maxblocks && count <= blocks_to_boundary) {
819 ext4_fsblk_t blk;
821 blk = le32_to_cpu(*(chain[depth-1].p + count));
823 if (blk == first_block + count)
824 count++;
825 else
826 break;
828 goto got_it;
831 /* Next simple case - plain lookup or failed read of indirect block */
832 if (!create || err == -EIO)
833 goto cleanup;
836 * Okay, we need to do block allocation. Lazily initialize the block
837 * allocation info here if necessary
839 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
840 ext4_init_block_alloc_info(inode);
842 goal = ext4_find_goal(inode, iblock, chain, partial);
844 /* the number of blocks need to allocate for [d,t]indirect blocks */
845 indirect_blks = (chain + depth) - partial - 1;
848 * Next look up the indirect map to count the totoal number of
849 * direct blocks to allocate for this branch.
851 count = ext4_blks_to_allocate(partial, indirect_blks,
852 maxblocks, blocks_to_boundary);
854 * Block out ext4_truncate while we alter the tree
856 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
857 offsets + (partial - chain), partial);
860 * The ext4_splice_branch call will free and forget any buffers
861 * on the new chain if there is a failure, but that risks using
862 * up transaction credits, especially for bitmaps where the
863 * credits cannot be returned. Can we handle this somehow? We
864 * may need to return -EAGAIN upwards in the worst case. --sct
866 if (!err)
867 err = ext4_splice_branch(handle, inode, iblock,
868 partial, indirect_blks, count);
870 * i_disksize growing is protected by i_data_sem. Don't forget to
871 * protect it if you're about to implement concurrent
872 * ext4_get_block() -bzzz
874 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
875 ei->i_disksize = inode->i_size;
876 if (err)
877 goto cleanup;
879 set_buffer_new(bh_result);
880 got_it:
881 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
882 if (count > blocks_to_boundary)
883 set_buffer_boundary(bh_result);
884 err = count;
885 /* Clean up and exit */
886 partial = chain + depth - 1; /* the whole chain */
887 cleanup:
888 while (partial > chain) {
889 BUFFER_TRACE(partial->bh, "call brelse");
890 brelse(partial->bh);
891 partial--;
893 BUFFER_TRACE(bh_result, "returned");
894 out:
895 return err;
898 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
900 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
901 unsigned long max_blocks, struct buffer_head *bh,
902 int create, int extend_disksize)
904 int retval;
906 * Try to see if we can get the block without requesting
907 * for new file system block.
909 down_read((&EXT4_I(inode)->i_data_sem));
910 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
911 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
912 bh, 0, 0);
913 } else {
914 retval = ext4_get_blocks_handle(handle,
915 inode, block, max_blocks, bh, 0, 0);
917 up_read((&EXT4_I(inode)->i_data_sem));
918 if (!create || (retval > 0))
919 return retval;
922 * We need to allocate new blocks which will result
923 * in i_data update
925 down_write((&EXT4_I(inode)->i_data_sem));
927 * We need to check for EXT4 here because migrate
928 * could have changed the inode type in between
930 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
931 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
932 bh, create, extend_disksize);
933 } else {
934 retval = ext4_get_blocks_handle(handle, inode, block,
935 max_blocks, bh, create, extend_disksize);
937 up_write((&EXT4_I(inode)->i_data_sem));
938 return retval;
941 static int ext4_get_block(struct inode *inode, sector_t iblock,
942 struct buffer_head *bh_result, int create)
944 handle_t *handle = ext4_journal_current_handle();
945 int ret = 0;
946 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
948 if (!create)
949 goto get_block; /* A read */
951 if (max_blocks == 1)
952 goto get_block; /* A single block get */
954 if (handle->h_transaction->t_state == T_LOCKED) {
956 * Huge direct-io writes can hold off commits for long
957 * periods of time. Let this commit run.
959 ext4_journal_stop(handle);
960 handle = ext4_journal_start(inode, DIO_CREDITS);
961 if (IS_ERR(handle))
962 ret = PTR_ERR(handle);
963 goto get_block;
966 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
968 * Getting low on buffer credits...
970 ret = ext4_journal_extend(handle, DIO_CREDITS);
971 if (ret > 0) {
973 * Couldn't extend the transaction. Start a new one.
975 ret = ext4_journal_restart(handle, DIO_CREDITS);
979 get_block:
980 if (ret == 0) {
981 ret = ext4_get_blocks_wrap(handle, inode, iblock,
982 max_blocks, bh_result, create, 0);
983 if (ret > 0) {
984 bh_result->b_size = (ret << inode->i_blkbits);
985 ret = 0;
988 return ret;
992 * `handle' can be NULL if create is zero
994 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
995 ext4_lblk_t block, int create, int *errp)
997 struct buffer_head dummy;
998 int fatal = 0, err;
1000 J_ASSERT(handle != NULL || create == 0);
1002 dummy.b_state = 0;
1003 dummy.b_blocknr = -1000;
1004 buffer_trace_init(&dummy.b_history);
1005 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1006 &dummy, create, 1);
1008 * ext4_get_blocks_handle() returns number of blocks
1009 * mapped. 0 in case of a HOLE.
1011 if (err > 0) {
1012 if (err > 1)
1013 WARN_ON(1);
1014 err = 0;
1016 *errp = err;
1017 if (!err && buffer_mapped(&dummy)) {
1018 struct buffer_head *bh;
1019 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1020 if (!bh) {
1021 *errp = -EIO;
1022 goto err;
1024 if (buffer_new(&dummy)) {
1025 J_ASSERT(create != 0);
1026 J_ASSERT(handle != NULL);
1029 * Now that we do not always journal data, we should
1030 * keep in mind whether this should always journal the
1031 * new buffer as metadata. For now, regular file
1032 * writes use ext4_get_block instead, so it's not a
1033 * problem.
1035 lock_buffer(bh);
1036 BUFFER_TRACE(bh, "call get_create_access");
1037 fatal = ext4_journal_get_create_access(handle, bh);
1038 if (!fatal && !buffer_uptodate(bh)) {
1039 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1040 set_buffer_uptodate(bh);
1042 unlock_buffer(bh);
1043 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1044 err = ext4_journal_dirty_metadata(handle, bh);
1045 if (!fatal)
1046 fatal = err;
1047 } else {
1048 BUFFER_TRACE(bh, "not a new buffer");
1050 if (fatal) {
1051 *errp = fatal;
1052 brelse(bh);
1053 bh = NULL;
1055 return bh;
1057 err:
1058 return NULL;
1061 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1062 ext4_lblk_t block, int create, int *err)
1064 struct buffer_head * bh;
1066 bh = ext4_getblk(handle, inode, block, create, err);
1067 if (!bh)
1068 return bh;
1069 if (buffer_uptodate(bh))
1070 return bh;
1071 ll_rw_block(READ_META, 1, &bh);
1072 wait_on_buffer(bh);
1073 if (buffer_uptodate(bh))
1074 return bh;
1075 put_bh(bh);
1076 *err = -EIO;
1077 return NULL;
1080 static int walk_page_buffers( handle_t *handle,
1081 struct buffer_head *head,
1082 unsigned from,
1083 unsigned to,
1084 int *partial,
1085 int (*fn)( handle_t *handle,
1086 struct buffer_head *bh))
1088 struct buffer_head *bh;
1089 unsigned block_start, block_end;
1090 unsigned blocksize = head->b_size;
1091 int err, ret = 0;
1092 struct buffer_head *next;
1094 for ( bh = head, block_start = 0;
1095 ret == 0 && (bh != head || !block_start);
1096 block_start = block_end, bh = next)
1098 next = bh->b_this_page;
1099 block_end = block_start + blocksize;
1100 if (block_end <= from || block_start >= to) {
1101 if (partial && !buffer_uptodate(bh))
1102 *partial = 1;
1103 continue;
1105 err = (*fn)(handle, bh);
1106 if (!ret)
1107 ret = err;
1109 return ret;
1113 * To preserve ordering, it is essential that the hole instantiation and
1114 * the data write be encapsulated in a single transaction. We cannot
1115 * close off a transaction and start a new one between the ext4_get_block()
1116 * and the commit_write(). So doing the jbd2_journal_start at the start of
1117 * prepare_write() is the right place.
1119 * Also, this function can nest inside ext4_writepage() ->
1120 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1121 * has generated enough buffer credits to do the whole page. So we won't
1122 * block on the journal in that case, which is good, because the caller may
1123 * be PF_MEMALLOC.
1125 * By accident, ext4 can be reentered when a transaction is open via
1126 * quota file writes. If we were to commit the transaction while thus
1127 * reentered, there can be a deadlock - we would be holding a quota
1128 * lock, and the commit would never complete if another thread had a
1129 * transaction open and was blocking on the quota lock - a ranking
1130 * violation.
1132 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1133 * will _not_ run commit under these circumstances because handle->h_ref
1134 * is elevated. We'll still have enough credits for the tiny quotafile
1135 * write.
1137 static int do_journal_get_write_access(handle_t *handle,
1138 struct buffer_head *bh)
1140 if (!buffer_mapped(bh) || buffer_freed(bh))
1141 return 0;
1142 return ext4_journal_get_write_access(handle, bh);
1145 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1146 loff_t pos, unsigned len, unsigned flags,
1147 struct page **pagep, void **fsdata)
1149 struct inode *inode = mapping->host;
1150 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1151 handle_t *handle;
1152 int retries = 0;
1153 struct page *page;
1154 pgoff_t index;
1155 unsigned from, to;
1157 index = pos >> PAGE_CACHE_SHIFT;
1158 from = pos & (PAGE_CACHE_SIZE - 1);
1159 to = from + len;
1161 retry:
1162 page = __grab_cache_page(mapping, index);
1163 if (!page)
1164 return -ENOMEM;
1165 *pagep = page;
1167 handle = ext4_journal_start(inode, needed_blocks);
1168 if (IS_ERR(handle)) {
1169 unlock_page(page);
1170 page_cache_release(page);
1171 ret = PTR_ERR(handle);
1172 goto out;
1175 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1176 ext4_get_block);
1178 if (!ret && ext4_should_journal_data(inode)) {
1179 ret = walk_page_buffers(handle, page_buffers(page),
1180 from, to, NULL, do_journal_get_write_access);
1183 if (ret) {
1184 ext4_journal_stop(handle);
1185 unlock_page(page);
1186 page_cache_release(page);
1189 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1190 goto retry;
1191 out:
1192 return ret;
1195 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1197 int err = jbd2_journal_dirty_data(handle, bh);
1198 if (err)
1199 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1200 bh, handle, err);
1201 return err;
1204 /* For write_end() in data=journal mode */
1205 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1207 if (!buffer_mapped(bh) || buffer_freed(bh))
1208 return 0;
1209 set_buffer_uptodate(bh);
1210 return ext4_journal_dirty_metadata(handle, bh);
1214 * Generic write_end handler for ordered and writeback ext4 journal modes.
1215 * We can't use generic_write_end, because that unlocks the page and we need to
1216 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1217 * after block_write_end.
1219 static int ext4_generic_write_end(struct file *file,
1220 struct address_space *mapping,
1221 loff_t pos, unsigned len, unsigned copied,
1222 struct page *page, void *fsdata)
1224 struct inode *inode = file->f_mapping->host;
1226 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1228 if (pos+copied > inode->i_size) {
1229 i_size_write(inode, pos+copied);
1230 mark_inode_dirty(inode);
1233 return copied;
1237 * We need to pick up the new inode size which generic_commit_write gave us
1238 * `file' can be NULL - eg, when called from page_symlink().
1240 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1241 * buffers are managed internally.
1243 static int ext4_ordered_write_end(struct file *file,
1244 struct address_space *mapping,
1245 loff_t pos, unsigned len, unsigned copied,
1246 struct page *page, void *fsdata)
1248 handle_t *handle = ext4_journal_current_handle();
1249 struct inode *inode = file->f_mapping->host;
1250 unsigned from, to;
1251 int ret = 0, ret2;
1253 from = pos & (PAGE_CACHE_SIZE - 1);
1254 to = from + len;
1256 ret = walk_page_buffers(handle, page_buffers(page),
1257 from, to, NULL, ext4_journal_dirty_data);
1259 if (ret == 0) {
1261 * generic_write_end() will run mark_inode_dirty() if i_size
1262 * changes. So let's piggyback the i_disksize mark_inode_dirty
1263 * into that.
1265 loff_t new_i_size;
1267 new_i_size = pos + copied;
1268 if (new_i_size > EXT4_I(inode)->i_disksize)
1269 EXT4_I(inode)->i_disksize = new_i_size;
1270 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1271 page, fsdata);
1272 if (copied < 0)
1273 ret = copied;
1275 ret2 = ext4_journal_stop(handle);
1276 if (!ret)
1277 ret = ret2;
1278 unlock_page(page);
1279 page_cache_release(page);
1281 return ret ? ret : copied;
1284 static int ext4_writeback_write_end(struct file *file,
1285 struct address_space *mapping,
1286 loff_t pos, unsigned len, unsigned copied,
1287 struct page *page, void *fsdata)
1289 handle_t *handle = ext4_journal_current_handle();
1290 struct inode *inode = file->f_mapping->host;
1291 int ret = 0, ret2;
1292 loff_t new_i_size;
1294 new_i_size = pos + copied;
1295 if (new_i_size > EXT4_I(inode)->i_disksize)
1296 EXT4_I(inode)->i_disksize = new_i_size;
1298 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1299 page, fsdata);
1300 if (copied < 0)
1301 ret = copied;
1303 ret2 = ext4_journal_stop(handle);
1304 if (!ret)
1305 ret = ret2;
1306 unlock_page(page);
1307 page_cache_release(page);
1309 return ret ? ret : copied;
1312 static int ext4_journalled_write_end(struct file *file,
1313 struct address_space *mapping,
1314 loff_t pos, unsigned len, unsigned copied,
1315 struct page *page, void *fsdata)
1317 handle_t *handle = ext4_journal_current_handle();
1318 struct inode *inode = mapping->host;
1319 int ret = 0, ret2;
1320 int partial = 0;
1321 unsigned from, to;
1323 from = pos & (PAGE_CACHE_SIZE - 1);
1324 to = from + len;
1326 if (copied < len) {
1327 if (!PageUptodate(page))
1328 copied = 0;
1329 page_zero_new_buffers(page, from+copied, to);
1332 ret = walk_page_buffers(handle, page_buffers(page), from,
1333 to, &partial, write_end_fn);
1334 if (!partial)
1335 SetPageUptodate(page);
1336 if (pos+copied > inode->i_size)
1337 i_size_write(inode, pos+copied);
1338 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1339 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1340 EXT4_I(inode)->i_disksize = inode->i_size;
1341 ret2 = ext4_mark_inode_dirty(handle, inode);
1342 if (!ret)
1343 ret = ret2;
1346 ret2 = ext4_journal_stop(handle);
1347 if (!ret)
1348 ret = ret2;
1349 unlock_page(page);
1350 page_cache_release(page);
1352 return ret ? ret : copied;
1356 * bmap() is special. It gets used by applications such as lilo and by
1357 * the swapper to find the on-disk block of a specific piece of data.
1359 * Naturally, this is dangerous if the block concerned is still in the
1360 * journal. If somebody makes a swapfile on an ext4 data-journaling
1361 * filesystem and enables swap, then they may get a nasty shock when the
1362 * data getting swapped to that swapfile suddenly gets overwritten by
1363 * the original zero's written out previously to the journal and
1364 * awaiting writeback in the kernel's buffer cache.
1366 * So, if we see any bmap calls here on a modified, data-journaled file,
1367 * take extra steps to flush any blocks which might be in the cache.
1369 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1371 struct inode *inode = mapping->host;
1372 journal_t *journal;
1373 int err;
1375 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1377 * This is a REALLY heavyweight approach, but the use of
1378 * bmap on dirty files is expected to be extremely rare:
1379 * only if we run lilo or swapon on a freshly made file
1380 * do we expect this to happen.
1382 * (bmap requires CAP_SYS_RAWIO so this does not
1383 * represent an unprivileged user DOS attack --- we'd be
1384 * in trouble if mortal users could trigger this path at
1385 * will.)
1387 * NB. EXT4_STATE_JDATA is not set on files other than
1388 * regular files. If somebody wants to bmap a directory
1389 * or symlink and gets confused because the buffer
1390 * hasn't yet been flushed to disk, they deserve
1391 * everything they get.
1394 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1395 journal = EXT4_JOURNAL(inode);
1396 jbd2_journal_lock_updates(journal);
1397 err = jbd2_journal_flush(journal);
1398 jbd2_journal_unlock_updates(journal);
1400 if (err)
1401 return 0;
1404 return generic_block_bmap(mapping,block,ext4_get_block);
1407 static int bget_one(handle_t *handle, struct buffer_head *bh)
1409 get_bh(bh);
1410 return 0;
1413 static int bput_one(handle_t *handle, struct buffer_head *bh)
1415 put_bh(bh);
1416 return 0;
1419 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1421 if (buffer_mapped(bh))
1422 return ext4_journal_dirty_data(handle, bh);
1423 return 0;
1427 * Note that we always start a transaction even if we're not journalling
1428 * data. This is to preserve ordering: any hole instantiation within
1429 * __block_write_full_page -> ext4_get_block() should be journalled
1430 * along with the data so we don't crash and then get metadata which
1431 * refers to old data.
1433 * In all journalling modes block_write_full_page() will start the I/O.
1435 * Problem:
1437 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1438 * ext4_writepage()
1440 * Similar for:
1442 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1444 * Same applies to ext4_get_block(). We will deadlock on various things like
1445 * lock_journal and i_data_sem
1447 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1448 * allocations fail.
1450 * 16May01: If we're reentered then journal_current_handle() will be
1451 * non-zero. We simply *return*.
1453 * 1 July 2001: @@@ FIXME:
1454 * In journalled data mode, a data buffer may be metadata against the
1455 * current transaction. But the same file is part of a shared mapping
1456 * and someone does a writepage() on it.
1458 * We will move the buffer onto the async_data list, but *after* it has
1459 * been dirtied. So there's a small window where we have dirty data on
1460 * BJ_Metadata.
1462 * Note that this only applies to the last partial page in the file. The
1463 * bit which block_write_full_page() uses prepare/commit for. (That's
1464 * broken code anyway: it's wrong for msync()).
1466 * It's a rare case: affects the final partial page, for journalled data
1467 * where the file is subject to bith write() and writepage() in the same
1468 * transction. To fix it we'll need a custom block_write_full_page().
1469 * We'll probably need that anyway for journalling writepage() output.
1471 * We don't honour synchronous mounts for writepage(). That would be
1472 * disastrous. Any write() or metadata operation will sync the fs for
1473 * us.
1475 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1476 * we don't need to open a transaction here.
1478 static int ext4_ordered_writepage(struct page *page,
1479 struct writeback_control *wbc)
1481 struct inode *inode = page->mapping->host;
1482 struct buffer_head *page_bufs;
1483 handle_t *handle = NULL;
1484 int ret = 0;
1485 int err;
1487 J_ASSERT(PageLocked(page));
1490 * We give up here if we're reentered, because it might be for a
1491 * different filesystem.
1493 if (ext4_journal_current_handle())
1494 goto out_fail;
1496 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1498 if (IS_ERR(handle)) {
1499 ret = PTR_ERR(handle);
1500 goto out_fail;
1503 if (!page_has_buffers(page)) {
1504 create_empty_buffers(page, inode->i_sb->s_blocksize,
1505 (1 << BH_Dirty)|(1 << BH_Uptodate));
1507 page_bufs = page_buffers(page);
1508 walk_page_buffers(handle, page_bufs, 0,
1509 PAGE_CACHE_SIZE, NULL, bget_one);
1511 ret = block_write_full_page(page, ext4_get_block, wbc);
1514 * The page can become unlocked at any point now, and
1515 * truncate can then come in and change things. So we
1516 * can't touch *page from now on. But *page_bufs is
1517 * safe due to elevated refcount.
1521 * And attach them to the current transaction. But only if
1522 * block_write_full_page() succeeded. Otherwise they are unmapped,
1523 * and generally junk.
1525 if (ret == 0) {
1526 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1527 NULL, jbd2_journal_dirty_data_fn);
1528 if (!ret)
1529 ret = err;
1531 walk_page_buffers(handle, page_bufs, 0,
1532 PAGE_CACHE_SIZE, NULL, bput_one);
1533 err = ext4_journal_stop(handle);
1534 if (!ret)
1535 ret = err;
1536 return ret;
1538 out_fail:
1539 redirty_page_for_writepage(wbc, page);
1540 unlock_page(page);
1541 return ret;
1544 static int ext4_writeback_writepage(struct page *page,
1545 struct writeback_control *wbc)
1547 struct inode *inode = page->mapping->host;
1548 handle_t *handle = NULL;
1549 int ret = 0;
1550 int err;
1552 if (ext4_journal_current_handle())
1553 goto out_fail;
1555 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1556 if (IS_ERR(handle)) {
1557 ret = PTR_ERR(handle);
1558 goto out_fail;
1561 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1562 ret = nobh_writepage(page, ext4_get_block, wbc);
1563 else
1564 ret = block_write_full_page(page, ext4_get_block, wbc);
1566 err = ext4_journal_stop(handle);
1567 if (!ret)
1568 ret = err;
1569 return ret;
1571 out_fail:
1572 redirty_page_for_writepage(wbc, page);
1573 unlock_page(page);
1574 return ret;
1577 static int ext4_journalled_writepage(struct page *page,
1578 struct writeback_control *wbc)
1580 struct inode *inode = page->mapping->host;
1581 handle_t *handle = NULL;
1582 int ret = 0;
1583 int err;
1585 if (ext4_journal_current_handle())
1586 goto no_write;
1588 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1589 if (IS_ERR(handle)) {
1590 ret = PTR_ERR(handle);
1591 goto no_write;
1594 if (!page_has_buffers(page) || PageChecked(page)) {
1596 * It's mmapped pagecache. Add buffers and journal it. There
1597 * doesn't seem much point in redirtying the page here.
1599 ClearPageChecked(page);
1600 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1601 ext4_get_block);
1602 if (ret != 0) {
1603 ext4_journal_stop(handle);
1604 goto out_unlock;
1606 ret = walk_page_buffers(handle, page_buffers(page), 0,
1607 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1609 err = walk_page_buffers(handle, page_buffers(page), 0,
1610 PAGE_CACHE_SIZE, NULL, write_end_fn);
1611 if (ret == 0)
1612 ret = err;
1613 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1614 unlock_page(page);
1615 } else {
1617 * It may be a page full of checkpoint-mode buffers. We don't
1618 * really know unless we go poke around in the buffer_heads.
1619 * But block_write_full_page will do the right thing.
1621 ret = block_write_full_page(page, ext4_get_block, wbc);
1623 err = ext4_journal_stop(handle);
1624 if (!ret)
1625 ret = err;
1626 out:
1627 return ret;
1629 no_write:
1630 redirty_page_for_writepage(wbc, page);
1631 out_unlock:
1632 unlock_page(page);
1633 goto out;
1636 static int ext4_readpage(struct file *file, struct page *page)
1638 return mpage_readpage(page, ext4_get_block);
1641 static int
1642 ext4_readpages(struct file *file, struct address_space *mapping,
1643 struct list_head *pages, unsigned nr_pages)
1645 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1648 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1650 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1653 * If it's a full truncate we just forget about the pending dirtying
1655 if (offset == 0)
1656 ClearPageChecked(page);
1658 jbd2_journal_invalidatepage(journal, page, offset);
1661 static int ext4_releasepage(struct page *page, gfp_t wait)
1663 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1665 WARN_ON(PageChecked(page));
1666 if (!page_has_buffers(page))
1667 return 0;
1668 return jbd2_journal_try_to_free_buffers(journal, page, wait);
1672 * If the O_DIRECT write will extend the file then add this inode to the
1673 * orphan list. So recovery will truncate it back to the original size
1674 * if the machine crashes during the write.
1676 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1677 * crashes then stale disk data _may_ be exposed inside the file.
1679 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1680 const struct iovec *iov, loff_t offset,
1681 unsigned long nr_segs)
1683 struct file *file = iocb->ki_filp;
1684 struct inode *inode = file->f_mapping->host;
1685 struct ext4_inode_info *ei = EXT4_I(inode);
1686 handle_t *handle = NULL;
1687 ssize_t ret;
1688 int orphan = 0;
1689 size_t count = iov_length(iov, nr_segs);
1691 if (rw == WRITE) {
1692 loff_t final_size = offset + count;
1694 handle = ext4_journal_start(inode, DIO_CREDITS);
1695 if (IS_ERR(handle)) {
1696 ret = PTR_ERR(handle);
1697 goto out;
1699 if (final_size > inode->i_size) {
1700 ret = ext4_orphan_add(handle, inode);
1701 if (ret)
1702 goto out_stop;
1703 orphan = 1;
1704 ei->i_disksize = inode->i_size;
1708 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1709 offset, nr_segs,
1710 ext4_get_block, NULL);
1713 * Reacquire the handle: ext4_get_block() can restart the transaction
1715 handle = ext4_journal_current_handle();
1717 out_stop:
1718 if (handle) {
1719 int err;
1721 if (orphan && inode->i_nlink)
1722 ext4_orphan_del(handle, inode);
1723 if (orphan && ret > 0) {
1724 loff_t end = offset + ret;
1725 if (end > inode->i_size) {
1726 ei->i_disksize = end;
1727 i_size_write(inode, end);
1729 * We're going to return a positive `ret'
1730 * here due to non-zero-length I/O, so there's
1731 * no way of reporting error returns from
1732 * ext4_mark_inode_dirty() to userspace. So
1733 * ignore it.
1735 ext4_mark_inode_dirty(handle, inode);
1738 err = ext4_journal_stop(handle);
1739 if (ret == 0)
1740 ret = err;
1742 out:
1743 return ret;
1747 * Pages can be marked dirty completely asynchronously from ext4's journalling
1748 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1749 * much here because ->set_page_dirty is called under VFS locks. The page is
1750 * not necessarily locked.
1752 * We cannot just dirty the page and leave attached buffers clean, because the
1753 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1754 * or jbddirty because all the journalling code will explode.
1756 * So what we do is to mark the page "pending dirty" and next time writepage
1757 * is called, propagate that into the buffers appropriately.
1759 static int ext4_journalled_set_page_dirty(struct page *page)
1761 SetPageChecked(page);
1762 return __set_page_dirty_nobuffers(page);
1765 static const struct address_space_operations ext4_ordered_aops = {
1766 .readpage = ext4_readpage,
1767 .readpages = ext4_readpages,
1768 .writepage = ext4_ordered_writepage,
1769 .sync_page = block_sync_page,
1770 .write_begin = ext4_write_begin,
1771 .write_end = ext4_ordered_write_end,
1772 .bmap = ext4_bmap,
1773 .invalidatepage = ext4_invalidatepage,
1774 .releasepage = ext4_releasepage,
1775 .direct_IO = ext4_direct_IO,
1776 .migratepage = buffer_migrate_page,
1779 static const struct address_space_operations ext4_writeback_aops = {
1780 .readpage = ext4_readpage,
1781 .readpages = ext4_readpages,
1782 .writepage = ext4_writeback_writepage,
1783 .sync_page = block_sync_page,
1784 .write_begin = ext4_write_begin,
1785 .write_end = ext4_writeback_write_end,
1786 .bmap = ext4_bmap,
1787 .invalidatepage = ext4_invalidatepage,
1788 .releasepage = ext4_releasepage,
1789 .direct_IO = ext4_direct_IO,
1790 .migratepage = buffer_migrate_page,
1793 static const struct address_space_operations ext4_journalled_aops = {
1794 .readpage = ext4_readpage,
1795 .readpages = ext4_readpages,
1796 .writepage = ext4_journalled_writepage,
1797 .sync_page = block_sync_page,
1798 .write_begin = ext4_write_begin,
1799 .write_end = ext4_journalled_write_end,
1800 .set_page_dirty = ext4_journalled_set_page_dirty,
1801 .bmap = ext4_bmap,
1802 .invalidatepage = ext4_invalidatepage,
1803 .releasepage = ext4_releasepage,
1806 void ext4_set_aops(struct inode *inode)
1808 if (ext4_should_order_data(inode))
1809 inode->i_mapping->a_ops = &ext4_ordered_aops;
1810 else if (ext4_should_writeback_data(inode))
1811 inode->i_mapping->a_ops = &ext4_writeback_aops;
1812 else
1813 inode->i_mapping->a_ops = &ext4_journalled_aops;
1817 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1818 * up to the end of the block which corresponds to `from'.
1819 * This required during truncate. We need to physically zero the tail end
1820 * of that block so it doesn't yield old data if the file is later grown.
1822 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1823 struct address_space *mapping, loff_t from)
1825 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1826 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1827 unsigned blocksize, length, pos;
1828 ext4_lblk_t iblock;
1829 struct inode *inode = mapping->host;
1830 struct buffer_head *bh;
1831 int err = 0;
1833 blocksize = inode->i_sb->s_blocksize;
1834 length = blocksize - (offset & (blocksize - 1));
1835 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1838 * For "nobh" option, we can only work if we don't need to
1839 * read-in the page - otherwise we create buffers to do the IO.
1841 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1842 ext4_should_writeback_data(inode) && PageUptodate(page)) {
1843 zero_user_page(page, offset, length, KM_USER0);
1844 set_page_dirty(page);
1845 goto unlock;
1848 if (!page_has_buffers(page))
1849 create_empty_buffers(page, blocksize, 0);
1851 /* Find the buffer that contains "offset" */
1852 bh = page_buffers(page);
1853 pos = blocksize;
1854 while (offset >= pos) {
1855 bh = bh->b_this_page;
1856 iblock++;
1857 pos += blocksize;
1860 err = 0;
1861 if (buffer_freed(bh)) {
1862 BUFFER_TRACE(bh, "freed: skip");
1863 goto unlock;
1866 if (!buffer_mapped(bh)) {
1867 BUFFER_TRACE(bh, "unmapped");
1868 ext4_get_block(inode, iblock, bh, 0);
1869 /* unmapped? It's a hole - nothing to do */
1870 if (!buffer_mapped(bh)) {
1871 BUFFER_TRACE(bh, "still unmapped");
1872 goto unlock;
1876 /* Ok, it's mapped. Make sure it's up-to-date */
1877 if (PageUptodate(page))
1878 set_buffer_uptodate(bh);
1880 if (!buffer_uptodate(bh)) {
1881 err = -EIO;
1882 ll_rw_block(READ, 1, &bh);
1883 wait_on_buffer(bh);
1884 /* Uhhuh. Read error. Complain and punt. */
1885 if (!buffer_uptodate(bh))
1886 goto unlock;
1889 if (ext4_should_journal_data(inode)) {
1890 BUFFER_TRACE(bh, "get write access");
1891 err = ext4_journal_get_write_access(handle, bh);
1892 if (err)
1893 goto unlock;
1896 zero_user_page(page, offset, length, KM_USER0);
1898 BUFFER_TRACE(bh, "zeroed end of block");
1900 err = 0;
1901 if (ext4_should_journal_data(inode)) {
1902 err = ext4_journal_dirty_metadata(handle, bh);
1903 } else {
1904 if (ext4_should_order_data(inode))
1905 err = ext4_journal_dirty_data(handle, bh);
1906 mark_buffer_dirty(bh);
1909 unlock:
1910 unlock_page(page);
1911 page_cache_release(page);
1912 return err;
1916 * Probably it should be a library function... search for first non-zero word
1917 * or memcmp with zero_page, whatever is better for particular architecture.
1918 * Linus?
1920 static inline int all_zeroes(__le32 *p, __le32 *q)
1922 while (p < q)
1923 if (*p++)
1924 return 0;
1925 return 1;
1929 * ext4_find_shared - find the indirect blocks for partial truncation.
1930 * @inode: inode in question
1931 * @depth: depth of the affected branch
1932 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1933 * @chain: place to store the pointers to partial indirect blocks
1934 * @top: place to the (detached) top of branch
1936 * This is a helper function used by ext4_truncate().
1938 * When we do truncate() we may have to clean the ends of several
1939 * indirect blocks but leave the blocks themselves alive. Block is
1940 * partially truncated if some data below the new i_size is refered
1941 * from it (and it is on the path to the first completely truncated
1942 * data block, indeed). We have to free the top of that path along
1943 * with everything to the right of the path. Since no allocation
1944 * past the truncation point is possible until ext4_truncate()
1945 * finishes, we may safely do the latter, but top of branch may
1946 * require special attention - pageout below the truncation point
1947 * might try to populate it.
1949 * We atomically detach the top of branch from the tree, store the
1950 * block number of its root in *@top, pointers to buffer_heads of
1951 * partially truncated blocks - in @chain[].bh and pointers to
1952 * their last elements that should not be removed - in
1953 * @chain[].p. Return value is the pointer to last filled element
1954 * of @chain.
1956 * The work left to caller to do the actual freeing of subtrees:
1957 * a) free the subtree starting from *@top
1958 * b) free the subtrees whose roots are stored in
1959 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1960 * c) free the subtrees growing from the inode past the @chain[0].
1961 * (no partially truncated stuff there). */
1963 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1964 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1966 Indirect *partial, *p;
1967 int k, err;
1969 *top = 0;
1970 /* Make k index the deepest non-null offest + 1 */
1971 for (k = depth; k > 1 && !offsets[k-1]; k--)
1973 partial = ext4_get_branch(inode, k, offsets, chain, &err);
1974 /* Writer: pointers */
1975 if (!partial)
1976 partial = chain + k-1;
1978 * If the branch acquired continuation since we've looked at it -
1979 * fine, it should all survive and (new) top doesn't belong to us.
1981 if (!partial->key && *partial->p)
1982 /* Writer: end */
1983 goto no_top;
1984 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1987 * OK, we've found the last block that must survive. The rest of our
1988 * branch should be detached before unlocking. However, if that rest
1989 * of branch is all ours and does not grow immediately from the inode
1990 * it's easier to cheat and just decrement partial->p.
1992 if (p == chain + k - 1 && p > chain) {
1993 p->p--;
1994 } else {
1995 *top = *p->p;
1996 /* Nope, don't do this in ext4. Must leave the tree intact */
1997 #if 0
1998 *p->p = 0;
1999 #endif
2001 /* Writer: end */
2003 while(partial > p) {
2004 brelse(partial->bh);
2005 partial--;
2007 no_top:
2008 return partial;
2012 * Zero a number of block pointers in either an inode or an indirect block.
2013 * If we restart the transaction we must again get write access to the
2014 * indirect block for further modification.
2016 * We release `count' blocks on disk, but (last - first) may be greater
2017 * than `count' because there can be holes in there.
2019 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2020 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2021 unsigned long count, __le32 *first, __le32 *last)
2023 __le32 *p;
2024 if (try_to_extend_transaction(handle, inode)) {
2025 if (bh) {
2026 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2027 ext4_journal_dirty_metadata(handle, bh);
2029 ext4_mark_inode_dirty(handle, inode);
2030 ext4_journal_test_restart(handle, inode);
2031 if (bh) {
2032 BUFFER_TRACE(bh, "retaking write access");
2033 ext4_journal_get_write_access(handle, bh);
2038 * Any buffers which are on the journal will be in memory. We find
2039 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2040 * on them. We've already detached each block from the file, so
2041 * bforget() in jbd2_journal_forget() should be safe.
2043 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2045 for (p = first; p < last; p++) {
2046 u32 nr = le32_to_cpu(*p);
2047 if (nr) {
2048 struct buffer_head *tbh;
2050 *p = 0;
2051 tbh = sb_find_get_block(inode->i_sb, nr);
2052 ext4_forget(handle, 0, inode, tbh, nr);
2056 ext4_free_blocks(handle, inode, block_to_free, count, 0);
2060 * ext4_free_data - free a list of data blocks
2061 * @handle: handle for this transaction
2062 * @inode: inode we are dealing with
2063 * @this_bh: indirect buffer_head which contains *@first and *@last
2064 * @first: array of block numbers
2065 * @last: points immediately past the end of array
2067 * We are freeing all blocks refered from that array (numbers are stored as
2068 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2070 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2071 * blocks are contiguous then releasing them at one time will only affect one
2072 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2073 * actually use a lot of journal space.
2075 * @this_bh will be %NULL if @first and @last point into the inode's direct
2076 * block pointers.
2078 static void ext4_free_data(handle_t *handle, struct inode *inode,
2079 struct buffer_head *this_bh,
2080 __le32 *first, __le32 *last)
2082 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2083 unsigned long count = 0; /* Number of blocks in the run */
2084 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2085 corresponding to
2086 block_to_free */
2087 ext4_fsblk_t nr; /* Current block # */
2088 __le32 *p; /* Pointer into inode/ind
2089 for current block */
2090 int err;
2092 if (this_bh) { /* For indirect block */
2093 BUFFER_TRACE(this_bh, "get_write_access");
2094 err = ext4_journal_get_write_access(handle, this_bh);
2095 /* Important: if we can't update the indirect pointers
2096 * to the blocks, we can't free them. */
2097 if (err)
2098 return;
2101 for (p = first; p < last; p++) {
2102 nr = le32_to_cpu(*p);
2103 if (nr) {
2104 /* accumulate blocks to free if they're contiguous */
2105 if (count == 0) {
2106 block_to_free = nr;
2107 block_to_free_p = p;
2108 count = 1;
2109 } else if (nr == block_to_free + count) {
2110 count++;
2111 } else {
2112 ext4_clear_blocks(handle, inode, this_bh,
2113 block_to_free,
2114 count, block_to_free_p, p);
2115 block_to_free = nr;
2116 block_to_free_p = p;
2117 count = 1;
2122 if (count > 0)
2123 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2124 count, block_to_free_p, p);
2126 if (this_bh) {
2127 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2128 ext4_journal_dirty_metadata(handle, this_bh);
2133 * ext4_free_branches - free an array of branches
2134 * @handle: JBD handle for this transaction
2135 * @inode: inode we are dealing with
2136 * @parent_bh: the buffer_head which contains *@first and *@last
2137 * @first: array of block numbers
2138 * @last: pointer immediately past the end of array
2139 * @depth: depth of the branches to free
2141 * We are freeing all blocks refered from these branches (numbers are
2142 * stored as little-endian 32-bit) and updating @inode->i_blocks
2143 * appropriately.
2145 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2146 struct buffer_head *parent_bh,
2147 __le32 *first, __le32 *last, int depth)
2149 ext4_fsblk_t nr;
2150 __le32 *p;
2152 if (is_handle_aborted(handle))
2153 return;
2155 if (depth--) {
2156 struct buffer_head *bh;
2157 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2158 p = last;
2159 while (--p >= first) {
2160 nr = le32_to_cpu(*p);
2161 if (!nr)
2162 continue; /* A hole */
2164 /* Go read the buffer for the next level down */
2165 bh = sb_bread(inode->i_sb, nr);
2168 * A read failure? Report error and clear slot
2169 * (should be rare).
2171 if (!bh) {
2172 ext4_error(inode->i_sb, "ext4_free_branches",
2173 "Read failure, inode=%lu, block=%llu",
2174 inode->i_ino, nr);
2175 continue;
2178 /* This zaps the entire block. Bottom up. */
2179 BUFFER_TRACE(bh, "free child branches");
2180 ext4_free_branches(handle, inode, bh,
2181 (__le32*)bh->b_data,
2182 (__le32*)bh->b_data + addr_per_block,
2183 depth);
2186 * We've probably journalled the indirect block several
2187 * times during the truncate. But it's no longer
2188 * needed and we now drop it from the transaction via
2189 * jbd2_journal_revoke().
2191 * That's easy if it's exclusively part of this
2192 * transaction. But if it's part of the committing
2193 * transaction then jbd2_journal_forget() will simply
2194 * brelse() it. That means that if the underlying
2195 * block is reallocated in ext4_get_block(),
2196 * unmap_underlying_metadata() will find this block
2197 * and will try to get rid of it. damn, damn.
2199 * If this block has already been committed to the
2200 * journal, a revoke record will be written. And
2201 * revoke records must be emitted *before* clearing
2202 * this block's bit in the bitmaps.
2204 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2207 * Everything below this this pointer has been
2208 * released. Now let this top-of-subtree go.
2210 * We want the freeing of this indirect block to be
2211 * atomic in the journal with the updating of the
2212 * bitmap block which owns it. So make some room in
2213 * the journal.
2215 * We zero the parent pointer *after* freeing its
2216 * pointee in the bitmaps, so if extend_transaction()
2217 * for some reason fails to put the bitmap changes and
2218 * the release into the same transaction, recovery
2219 * will merely complain about releasing a free block,
2220 * rather than leaking blocks.
2222 if (is_handle_aborted(handle))
2223 return;
2224 if (try_to_extend_transaction(handle, inode)) {
2225 ext4_mark_inode_dirty(handle, inode);
2226 ext4_journal_test_restart(handle, inode);
2229 ext4_free_blocks(handle, inode, nr, 1, 1);
2231 if (parent_bh) {
2233 * The block which we have just freed is
2234 * pointed to by an indirect block: journal it
2236 BUFFER_TRACE(parent_bh, "get_write_access");
2237 if (!ext4_journal_get_write_access(handle,
2238 parent_bh)){
2239 *p = 0;
2240 BUFFER_TRACE(parent_bh,
2241 "call ext4_journal_dirty_metadata");
2242 ext4_journal_dirty_metadata(handle,
2243 parent_bh);
2247 } else {
2248 /* We have reached the bottom of the tree. */
2249 BUFFER_TRACE(parent_bh, "free data blocks");
2250 ext4_free_data(handle, inode, parent_bh, first, last);
2255 * ext4_truncate()
2257 * We block out ext4_get_block() block instantiations across the entire
2258 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2259 * simultaneously on behalf of the same inode.
2261 * As we work through the truncate and commmit bits of it to the journal there
2262 * is one core, guiding principle: the file's tree must always be consistent on
2263 * disk. We must be able to restart the truncate after a crash.
2265 * The file's tree may be transiently inconsistent in memory (although it
2266 * probably isn't), but whenever we close off and commit a journal transaction,
2267 * the contents of (the filesystem + the journal) must be consistent and
2268 * restartable. It's pretty simple, really: bottom up, right to left (although
2269 * left-to-right works OK too).
2271 * Note that at recovery time, journal replay occurs *before* the restart of
2272 * truncate against the orphan inode list.
2274 * The committed inode has the new, desired i_size (which is the same as
2275 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2276 * that this inode's truncate did not complete and it will again call
2277 * ext4_truncate() to have another go. So there will be instantiated blocks
2278 * to the right of the truncation point in a crashed ext4 filesystem. But
2279 * that's fine - as long as they are linked from the inode, the post-crash
2280 * ext4_truncate() run will find them and release them.
2282 void ext4_truncate(struct inode *inode)
2284 handle_t *handle;
2285 struct ext4_inode_info *ei = EXT4_I(inode);
2286 __le32 *i_data = ei->i_data;
2287 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2288 struct address_space *mapping = inode->i_mapping;
2289 ext4_lblk_t offsets[4];
2290 Indirect chain[4];
2291 Indirect *partial;
2292 __le32 nr = 0;
2293 int n;
2294 ext4_lblk_t last_block;
2295 unsigned blocksize = inode->i_sb->s_blocksize;
2296 struct page *page;
2298 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2299 S_ISLNK(inode->i_mode)))
2300 return;
2301 if (ext4_inode_is_fast_symlink(inode))
2302 return;
2303 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2304 return;
2307 * We have to lock the EOF page here, because lock_page() nests
2308 * outside jbd2_journal_start().
2310 if ((inode->i_size & (blocksize - 1)) == 0) {
2311 /* Block boundary? Nothing to do */
2312 page = NULL;
2313 } else {
2314 page = grab_cache_page(mapping,
2315 inode->i_size >> PAGE_CACHE_SHIFT);
2316 if (!page)
2317 return;
2320 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2321 ext4_ext_truncate(inode, page);
2322 return;
2325 handle = start_transaction(inode);
2326 if (IS_ERR(handle)) {
2327 if (page) {
2328 clear_highpage(page);
2329 flush_dcache_page(page);
2330 unlock_page(page);
2331 page_cache_release(page);
2333 return; /* AKPM: return what? */
2336 last_block = (inode->i_size + blocksize-1)
2337 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2339 if (page)
2340 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2342 n = ext4_block_to_path(inode, last_block, offsets, NULL);
2343 if (n == 0)
2344 goto out_stop; /* error */
2347 * OK. This truncate is going to happen. We add the inode to the
2348 * orphan list, so that if this truncate spans multiple transactions,
2349 * and we crash, we will resume the truncate when the filesystem
2350 * recovers. It also marks the inode dirty, to catch the new size.
2352 * Implication: the file must always be in a sane, consistent
2353 * truncatable state while each transaction commits.
2355 if (ext4_orphan_add(handle, inode))
2356 goto out_stop;
2359 * The orphan list entry will now protect us from any crash which
2360 * occurs before the truncate completes, so it is now safe to propagate
2361 * the new, shorter inode size (held for now in i_size) into the
2362 * on-disk inode. We do this via i_disksize, which is the value which
2363 * ext4 *really* writes onto the disk inode.
2365 ei->i_disksize = inode->i_size;
2368 * From here we block out all ext4_get_block() callers who want to
2369 * modify the block allocation tree.
2371 down_write(&ei->i_data_sem);
2373 if (n == 1) { /* direct blocks */
2374 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2375 i_data + EXT4_NDIR_BLOCKS);
2376 goto do_indirects;
2379 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2380 /* Kill the top of shared branch (not detached) */
2381 if (nr) {
2382 if (partial == chain) {
2383 /* Shared branch grows from the inode */
2384 ext4_free_branches(handle, inode, NULL,
2385 &nr, &nr+1, (chain+n-1) - partial);
2386 *partial->p = 0;
2388 * We mark the inode dirty prior to restart,
2389 * and prior to stop. No need for it here.
2391 } else {
2392 /* Shared branch grows from an indirect block */
2393 BUFFER_TRACE(partial->bh, "get_write_access");
2394 ext4_free_branches(handle, inode, partial->bh,
2395 partial->p,
2396 partial->p+1, (chain+n-1) - partial);
2399 /* Clear the ends of indirect blocks on the shared branch */
2400 while (partial > chain) {
2401 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2402 (__le32*)partial->bh->b_data+addr_per_block,
2403 (chain+n-1) - partial);
2404 BUFFER_TRACE(partial->bh, "call brelse");
2405 brelse (partial->bh);
2406 partial--;
2408 do_indirects:
2409 /* Kill the remaining (whole) subtrees */
2410 switch (offsets[0]) {
2411 default:
2412 nr = i_data[EXT4_IND_BLOCK];
2413 if (nr) {
2414 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2415 i_data[EXT4_IND_BLOCK] = 0;
2417 case EXT4_IND_BLOCK:
2418 nr = i_data[EXT4_DIND_BLOCK];
2419 if (nr) {
2420 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2421 i_data[EXT4_DIND_BLOCK] = 0;
2423 case EXT4_DIND_BLOCK:
2424 nr = i_data[EXT4_TIND_BLOCK];
2425 if (nr) {
2426 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2427 i_data[EXT4_TIND_BLOCK] = 0;
2429 case EXT4_TIND_BLOCK:
2433 ext4_discard_reservation(inode);
2435 up_write(&ei->i_data_sem);
2436 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2437 ext4_mark_inode_dirty(handle, inode);
2440 * In a multi-transaction truncate, we only make the final transaction
2441 * synchronous
2443 if (IS_SYNC(inode))
2444 handle->h_sync = 1;
2445 out_stop:
2447 * If this was a simple ftruncate(), and the file will remain alive
2448 * then we need to clear up the orphan record which we created above.
2449 * However, if this was a real unlink then we were called by
2450 * ext4_delete_inode(), and we allow that function to clean up the
2451 * orphan info for us.
2453 if (inode->i_nlink)
2454 ext4_orphan_del(handle, inode);
2456 ext4_journal_stop(handle);
2459 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2460 unsigned long ino, struct ext4_iloc *iloc)
2462 unsigned long desc, group_desc;
2463 ext4_group_t block_group;
2464 unsigned long offset;
2465 ext4_fsblk_t block;
2466 struct buffer_head *bh;
2467 struct ext4_group_desc * gdp;
2469 if (!ext4_valid_inum(sb, ino)) {
2471 * This error is already checked for in namei.c unless we are
2472 * looking at an NFS filehandle, in which case no error
2473 * report is needed
2475 return 0;
2478 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2479 if (block_group >= EXT4_SB(sb)->s_groups_count) {
2480 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2481 return 0;
2483 smp_rmb();
2484 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2485 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2486 bh = EXT4_SB(sb)->s_group_desc[group_desc];
2487 if (!bh) {
2488 ext4_error (sb, "ext4_get_inode_block",
2489 "Descriptor not loaded");
2490 return 0;
2493 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2494 desc * EXT4_DESC_SIZE(sb));
2496 * Figure out the offset within the block group inode table
2498 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2499 EXT4_INODE_SIZE(sb);
2500 block = ext4_inode_table(sb, gdp) +
2501 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2503 iloc->block_group = block_group;
2504 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2505 return block;
2509 * ext4_get_inode_loc returns with an extra refcount against the inode's
2510 * underlying buffer_head on success. If 'in_mem' is true, we have all
2511 * data in memory that is needed to recreate the on-disk version of this
2512 * inode.
2514 static int __ext4_get_inode_loc(struct inode *inode,
2515 struct ext4_iloc *iloc, int in_mem)
2517 ext4_fsblk_t block;
2518 struct buffer_head *bh;
2520 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2521 if (!block)
2522 return -EIO;
2524 bh = sb_getblk(inode->i_sb, block);
2525 if (!bh) {
2526 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2527 "unable to read inode block - "
2528 "inode=%lu, block=%llu",
2529 inode->i_ino, block);
2530 return -EIO;
2532 if (!buffer_uptodate(bh)) {
2533 lock_buffer(bh);
2534 if (buffer_uptodate(bh)) {
2535 /* someone brought it uptodate while we waited */
2536 unlock_buffer(bh);
2537 goto has_buffer;
2541 * If we have all information of the inode in memory and this
2542 * is the only valid inode in the block, we need not read the
2543 * block.
2545 if (in_mem) {
2546 struct buffer_head *bitmap_bh;
2547 struct ext4_group_desc *desc;
2548 int inodes_per_buffer;
2549 int inode_offset, i;
2550 ext4_group_t block_group;
2551 int start;
2553 block_group = (inode->i_ino - 1) /
2554 EXT4_INODES_PER_GROUP(inode->i_sb);
2555 inodes_per_buffer = bh->b_size /
2556 EXT4_INODE_SIZE(inode->i_sb);
2557 inode_offset = ((inode->i_ino - 1) %
2558 EXT4_INODES_PER_GROUP(inode->i_sb));
2559 start = inode_offset & ~(inodes_per_buffer - 1);
2561 /* Is the inode bitmap in cache? */
2562 desc = ext4_get_group_desc(inode->i_sb,
2563 block_group, NULL);
2564 if (!desc)
2565 goto make_io;
2567 bitmap_bh = sb_getblk(inode->i_sb,
2568 ext4_inode_bitmap(inode->i_sb, desc));
2569 if (!bitmap_bh)
2570 goto make_io;
2573 * If the inode bitmap isn't in cache then the
2574 * optimisation may end up performing two reads instead
2575 * of one, so skip it.
2577 if (!buffer_uptodate(bitmap_bh)) {
2578 brelse(bitmap_bh);
2579 goto make_io;
2581 for (i = start; i < start + inodes_per_buffer; i++) {
2582 if (i == inode_offset)
2583 continue;
2584 if (ext4_test_bit(i, bitmap_bh->b_data))
2585 break;
2587 brelse(bitmap_bh);
2588 if (i == start + inodes_per_buffer) {
2589 /* all other inodes are free, so skip I/O */
2590 memset(bh->b_data, 0, bh->b_size);
2591 set_buffer_uptodate(bh);
2592 unlock_buffer(bh);
2593 goto has_buffer;
2597 make_io:
2599 * There are other valid inodes in the buffer, this inode
2600 * has in-inode xattrs, or we don't have this inode in memory.
2601 * Read the block from disk.
2603 get_bh(bh);
2604 bh->b_end_io = end_buffer_read_sync;
2605 submit_bh(READ_META, bh);
2606 wait_on_buffer(bh);
2607 if (!buffer_uptodate(bh)) {
2608 ext4_error(inode->i_sb, "ext4_get_inode_loc",
2609 "unable to read inode block - "
2610 "inode=%lu, block=%llu",
2611 inode->i_ino, block);
2612 brelse(bh);
2613 return -EIO;
2616 has_buffer:
2617 iloc->bh = bh;
2618 return 0;
2621 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2623 /* We have all inode data except xattrs in memory here. */
2624 return __ext4_get_inode_loc(inode, iloc,
2625 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2628 void ext4_set_inode_flags(struct inode *inode)
2630 unsigned int flags = EXT4_I(inode)->i_flags;
2632 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2633 if (flags & EXT4_SYNC_FL)
2634 inode->i_flags |= S_SYNC;
2635 if (flags & EXT4_APPEND_FL)
2636 inode->i_flags |= S_APPEND;
2637 if (flags & EXT4_IMMUTABLE_FL)
2638 inode->i_flags |= S_IMMUTABLE;
2639 if (flags & EXT4_NOATIME_FL)
2640 inode->i_flags |= S_NOATIME;
2641 if (flags & EXT4_DIRSYNC_FL)
2642 inode->i_flags |= S_DIRSYNC;
2645 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2646 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2648 unsigned int flags = ei->vfs_inode.i_flags;
2650 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2651 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2652 if (flags & S_SYNC)
2653 ei->i_flags |= EXT4_SYNC_FL;
2654 if (flags & S_APPEND)
2655 ei->i_flags |= EXT4_APPEND_FL;
2656 if (flags & S_IMMUTABLE)
2657 ei->i_flags |= EXT4_IMMUTABLE_FL;
2658 if (flags & S_NOATIME)
2659 ei->i_flags |= EXT4_NOATIME_FL;
2660 if (flags & S_DIRSYNC)
2661 ei->i_flags |= EXT4_DIRSYNC_FL;
2663 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2664 struct ext4_inode_info *ei)
2666 blkcnt_t i_blocks ;
2667 struct inode *inode = &(ei->vfs_inode);
2668 struct super_block *sb = inode->i_sb;
2670 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2671 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2672 /* we are using combined 48 bit field */
2673 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2674 le32_to_cpu(raw_inode->i_blocks_lo);
2675 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2676 /* i_blocks represent file system block size */
2677 return i_blocks << (inode->i_blkbits - 9);
2678 } else {
2679 return i_blocks;
2681 } else {
2682 return le32_to_cpu(raw_inode->i_blocks_lo);
2686 void ext4_read_inode(struct inode * inode)
2688 struct ext4_iloc iloc;
2689 struct ext4_inode *raw_inode;
2690 struct ext4_inode_info *ei = EXT4_I(inode);
2691 struct buffer_head *bh;
2692 int block;
2694 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2695 ei->i_acl = EXT4_ACL_NOT_CACHED;
2696 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2697 #endif
2698 ei->i_block_alloc_info = NULL;
2700 if (__ext4_get_inode_loc(inode, &iloc, 0))
2701 goto bad_inode;
2702 bh = iloc.bh;
2703 raw_inode = ext4_raw_inode(&iloc);
2704 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2705 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2706 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2707 if(!(test_opt (inode->i_sb, NO_UID32))) {
2708 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2709 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2711 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2713 ei->i_state = 0;
2714 ei->i_dir_start_lookup = 0;
2715 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2716 /* We now have enough fields to check if the inode was active or not.
2717 * This is needed because nfsd might try to access dead inodes
2718 * the test is that same one that e2fsck uses
2719 * NeilBrown 1999oct15
2721 if (inode->i_nlink == 0) {
2722 if (inode->i_mode == 0 ||
2723 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2724 /* this inode is deleted */
2725 brelse (bh);
2726 goto bad_inode;
2728 /* The only unlinked inodes we let through here have
2729 * valid i_mode and are being read by the orphan
2730 * recovery code: that's fine, we're about to complete
2731 * the process of deleting those. */
2733 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2734 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2735 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2736 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2737 cpu_to_le32(EXT4_OS_HURD)) {
2738 ei->i_file_acl |=
2739 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2741 inode->i_size = ext4_isize(raw_inode);
2742 ei->i_disksize = inode->i_size;
2743 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2744 ei->i_block_group = iloc.block_group;
2746 * NOTE! The in-memory inode i_data array is in little-endian order
2747 * even on big-endian machines: we do NOT byteswap the block numbers!
2749 for (block = 0; block < EXT4_N_BLOCKS; block++)
2750 ei->i_data[block] = raw_inode->i_block[block];
2751 INIT_LIST_HEAD(&ei->i_orphan);
2753 if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2754 EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2756 * When mke2fs creates big inodes it does not zero out
2757 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2758 * so ignore those first few inodes.
2760 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2761 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2762 EXT4_INODE_SIZE(inode->i_sb)) {
2763 brelse (bh);
2764 goto bad_inode;
2766 if (ei->i_extra_isize == 0) {
2767 /* The extra space is currently unused. Use it. */
2768 ei->i_extra_isize = sizeof(struct ext4_inode) -
2769 EXT4_GOOD_OLD_INODE_SIZE;
2770 } else {
2771 __le32 *magic = (void *)raw_inode +
2772 EXT4_GOOD_OLD_INODE_SIZE +
2773 ei->i_extra_isize;
2774 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2775 ei->i_state |= EXT4_STATE_XATTR;
2777 } else
2778 ei->i_extra_isize = 0;
2780 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2781 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2782 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2783 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2785 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2786 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2787 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2788 inode->i_version |=
2789 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2792 if (S_ISREG(inode->i_mode)) {
2793 inode->i_op = &ext4_file_inode_operations;
2794 inode->i_fop = &ext4_file_operations;
2795 ext4_set_aops(inode);
2796 } else if (S_ISDIR(inode->i_mode)) {
2797 inode->i_op = &ext4_dir_inode_operations;
2798 inode->i_fop = &ext4_dir_operations;
2799 } else if (S_ISLNK(inode->i_mode)) {
2800 if (ext4_inode_is_fast_symlink(inode))
2801 inode->i_op = &ext4_fast_symlink_inode_operations;
2802 else {
2803 inode->i_op = &ext4_symlink_inode_operations;
2804 ext4_set_aops(inode);
2806 } else {
2807 inode->i_op = &ext4_special_inode_operations;
2808 if (raw_inode->i_block[0])
2809 init_special_inode(inode, inode->i_mode,
2810 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2811 else
2812 init_special_inode(inode, inode->i_mode,
2813 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2815 brelse (iloc.bh);
2816 ext4_set_inode_flags(inode);
2817 return;
2819 bad_inode:
2820 make_bad_inode(inode);
2821 return;
2824 static int ext4_inode_blocks_set(handle_t *handle,
2825 struct ext4_inode *raw_inode,
2826 struct ext4_inode_info *ei)
2828 struct inode *inode = &(ei->vfs_inode);
2829 u64 i_blocks = inode->i_blocks;
2830 struct super_block *sb = inode->i_sb;
2831 int err = 0;
2833 if (i_blocks <= ~0U) {
2835 * i_blocks can be represnted in a 32 bit variable
2836 * as multiple of 512 bytes
2838 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2839 raw_inode->i_blocks_high = 0;
2840 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2841 } else if (i_blocks <= 0xffffffffffffULL) {
2843 * i_blocks can be represented in a 48 bit variable
2844 * as multiple of 512 bytes
2846 err = ext4_update_rocompat_feature(handle, sb,
2847 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2848 if (err)
2849 goto err_out;
2850 /* i_block is stored in the split 48 bit fields */
2851 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2852 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2853 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2854 } else {
2856 * i_blocks should be represented in a 48 bit variable
2857 * as multiple of file system block size
2859 err = ext4_update_rocompat_feature(handle, sb,
2860 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2861 if (err)
2862 goto err_out;
2863 ei->i_flags |= EXT4_HUGE_FILE_FL;
2864 /* i_block is stored in file system block size */
2865 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2866 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2867 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2869 err_out:
2870 return err;
2874 * Post the struct inode info into an on-disk inode location in the
2875 * buffer-cache. This gobbles the caller's reference to the
2876 * buffer_head in the inode location struct.
2878 * The caller must have write access to iloc->bh.
2880 static int ext4_do_update_inode(handle_t *handle,
2881 struct inode *inode,
2882 struct ext4_iloc *iloc)
2884 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2885 struct ext4_inode_info *ei = EXT4_I(inode);
2886 struct buffer_head *bh = iloc->bh;
2887 int err = 0, rc, block;
2889 /* For fields not not tracking in the in-memory inode,
2890 * initialise them to zero for new inodes. */
2891 if (ei->i_state & EXT4_STATE_NEW)
2892 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2894 ext4_get_inode_flags(ei);
2895 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2896 if(!(test_opt(inode->i_sb, NO_UID32))) {
2897 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2898 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2900 * Fix up interoperability with old kernels. Otherwise, old inodes get
2901 * re-used with the upper 16 bits of the uid/gid intact
2903 if(!ei->i_dtime) {
2904 raw_inode->i_uid_high =
2905 cpu_to_le16(high_16_bits(inode->i_uid));
2906 raw_inode->i_gid_high =
2907 cpu_to_le16(high_16_bits(inode->i_gid));
2908 } else {
2909 raw_inode->i_uid_high = 0;
2910 raw_inode->i_gid_high = 0;
2912 } else {
2913 raw_inode->i_uid_low =
2914 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2915 raw_inode->i_gid_low =
2916 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2917 raw_inode->i_uid_high = 0;
2918 raw_inode->i_gid_high = 0;
2920 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2922 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2923 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2924 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2925 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2927 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2928 goto out_brelse;
2929 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2930 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2931 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2932 cpu_to_le32(EXT4_OS_HURD))
2933 raw_inode->i_file_acl_high =
2934 cpu_to_le16(ei->i_file_acl >> 32);
2935 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2936 ext4_isize_set(raw_inode, ei->i_disksize);
2937 if (ei->i_disksize > 0x7fffffffULL) {
2938 struct super_block *sb = inode->i_sb;
2939 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2940 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2941 EXT4_SB(sb)->s_es->s_rev_level ==
2942 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2943 /* If this is the first large file
2944 * created, add a flag to the superblock.
2946 err = ext4_journal_get_write_access(handle,
2947 EXT4_SB(sb)->s_sbh);
2948 if (err)
2949 goto out_brelse;
2950 ext4_update_dynamic_rev(sb);
2951 EXT4_SET_RO_COMPAT_FEATURE(sb,
2952 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2953 sb->s_dirt = 1;
2954 handle->h_sync = 1;
2955 err = ext4_journal_dirty_metadata(handle,
2956 EXT4_SB(sb)->s_sbh);
2959 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2960 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2961 if (old_valid_dev(inode->i_rdev)) {
2962 raw_inode->i_block[0] =
2963 cpu_to_le32(old_encode_dev(inode->i_rdev));
2964 raw_inode->i_block[1] = 0;
2965 } else {
2966 raw_inode->i_block[0] = 0;
2967 raw_inode->i_block[1] =
2968 cpu_to_le32(new_encode_dev(inode->i_rdev));
2969 raw_inode->i_block[2] = 0;
2971 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2972 raw_inode->i_block[block] = ei->i_data[block];
2974 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2975 if (ei->i_extra_isize) {
2976 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2977 raw_inode->i_version_hi =
2978 cpu_to_le32(inode->i_version >> 32);
2979 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2983 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2984 rc = ext4_journal_dirty_metadata(handle, bh);
2985 if (!err)
2986 err = rc;
2987 ei->i_state &= ~EXT4_STATE_NEW;
2989 out_brelse:
2990 brelse (bh);
2991 ext4_std_error(inode->i_sb, err);
2992 return err;
2996 * ext4_write_inode()
2998 * We are called from a few places:
3000 * - Within generic_file_write() for O_SYNC files.
3001 * Here, there will be no transaction running. We wait for any running
3002 * trasnaction to commit.
3004 * - Within sys_sync(), kupdate and such.
3005 * We wait on commit, if tol to.
3007 * - Within prune_icache() (PF_MEMALLOC == true)
3008 * Here we simply return. We can't afford to block kswapd on the
3009 * journal commit.
3011 * In all cases it is actually safe for us to return without doing anything,
3012 * because the inode has been copied into a raw inode buffer in
3013 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3014 * knfsd.
3016 * Note that we are absolutely dependent upon all inode dirtiers doing the
3017 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3018 * which we are interested.
3020 * It would be a bug for them to not do this. The code:
3022 * mark_inode_dirty(inode)
3023 * stuff();
3024 * inode->i_size = expr;
3026 * is in error because a kswapd-driven write_inode() could occur while
3027 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3028 * will no longer be on the superblock's dirty inode list.
3030 int ext4_write_inode(struct inode *inode, int wait)
3032 if (current->flags & PF_MEMALLOC)
3033 return 0;
3035 if (ext4_journal_current_handle()) {
3036 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3037 dump_stack();
3038 return -EIO;
3041 if (!wait)
3042 return 0;
3044 return ext4_force_commit(inode->i_sb);
3048 * ext4_setattr()
3050 * Called from notify_change.
3052 * We want to trap VFS attempts to truncate the file as soon as
3053 * possible. In particular, we want to make sure that when the VFS
3054 * shrinks i_size, we put the inode on the orphan list and modify
3055 * i_disksize immediately, so that during the subsequent flushing of
3056 * dirty pages and freeing of disk blocks, we can guarantee that any
3057 * commit will leave the blocks being flushed in an unused state on
3058 * disk. (On recovery, the inode will get truncated and the blocks will
3059 * be freed, so we have a strong guarantee that no future commit will
3060 * leave these blocks visible to the user.)
3062 * Called with inode->sem down.
3064 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3066 struct inode *inode = dentry->d_inode;
3067 int error, rc = 0;
3068 const unsigned int ia_valid = attr->ia_valid;
3070 error = inode_change_ok(inode, attr);
3071 if (error)
3072 return error;
3074 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3075 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3076 handle_t *handle;
3078 /* (user+group)*(old+new) structure, inode write (sb,
3079 * inode block, ? - but truncate inode update has it) */
3080 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3081 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3082 if (IS_ERR(handle)) {
3083 error = PTR_ERR(handle);
3084 goto err_out;
3086 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3087 if (error) {
3088 ext4_journal_stop(handle);
3089 return error;
3091 /* Update corresponding info in inode so that everything is in
3092 * one transaction */
3093 if (attr->ia_valid & ATTR_UID)
3094 inode->i_uid = attr->ia_uid;
3095 if (attr->ia_valid & ATTR_GID)
3096 inode->i_gid = attr->ia_gid;
3097 error = ext4_mark_inode_dirty(handle, inode);
3098 ext4_journal_stop(handle);
3101 if (attr->ia_valid & ATTR_SIZE) {
3102 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3103 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3105 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3106 error = -EFBIG;
3107 goto err_out;
3112 if (S_ISREG(inode->i_mode) &&
3113 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3114 handle_t *handle;
3116 handle = ext4_journal_start(inode, 3);
3117 if (IS_ERR(handle)) {
3118 error = PTR_ERR(handle);
3119 goto err_out;
3122 error = ext4_orphan_add(handle, inode);
3123 EXT4_I(inode)->i_disksize = attr->ia_size;
3124 rc = ext4_mark_inode_dirty(handle, inode);
3125 if (!error)
3126 error = rc;
3127 ext4_journal_stop(handle);
3130 rc = inode_setattr(inode, attr);
3132 /* If inode_setattr's call to ext4_truncate failed to get a
3133 * transaction handle at all, we need to clean up the in-core
3134 * orphan list manually. */
3135 if (inode->i_nlink)
3136 ext4_orphan_del(NULL, inode);
3138 if (!rc && (ia_valid & ATTR_MODE))
3139 rc = ext4_acl_chmod(inode);
3141 err_out:
3142 ext4_std_error(inode->i_sb, error);
3143 if (!error)
3144 error = rc;
3145 return error;
3150 * How many blocks doth make a writepage()?
3152 * With N blocks per page, it may be:
3153 * N data blocks
3154 * 2 indirect block
3155 * 2 dindirect
3156 * 1 tindirect
3157 * N+5 bitmap blocks (from the above)
3158 * N+5 group descriptor summary blocks
3159 * 1 inode block
3160 * 1 superblock.
3161 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3163 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3165 * With ordered or writeback data it's the same, less the N data blocks.
3167 * If the inode's direct blocks can hold an integral number of pages then a
3168 * page cannot straddle two indirect blocks, and we can only touch one indirect
3169 * and dindirect block, and the "5" above becomes "3".
3171 * This still overestimates under most circumstances. If we were to pass the
3172 * start and end offsets in here as well we could do block_to_path() on each
3173 * block and work out the exact number of indirects which are touched. Pah.
3176 int ext4_writepage_trans_blocks(struct inode *inode)
3178 int bpp = ext4_journal_blocks_per_page(inode);
3179 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3180 int ret;
3182 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3183 return ext4_ext_writepage_trans_blocks(inode, bpp);
3185 if (ext4_should_journal_data(inode))
3186 ret = 3 * (bpp + indirects) + 2;
3187 else
3188 ret = 2 * (bpp + indirects) + 2;
3190 #ifdef CONFIG_QUOTA
3191 /* We know that structure was already allocated during DQUOT_INIT so
3192 * we will be updating only the data blocks + inodes */
3193 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3194 #endif
3196 return ret;
3200 * The caller must have previously called ext4_reserve_inode_write().
3201 * Give this, we know that the caller already has write access to iloc->bh.
3203 int ext4_mark_iloc_dirty(handle_t *handle,
3204 struct inode *inode, struct ext4_iloc *iloc)
3206 int err = 0;
3208 if (test_opt(inode->i_sb, I_VERSION))
3209 inode_inc_iversion(inode);
3211 /* the do_update_inode consumes one bh->b_count */
3212 get_bh(iloc->bh);
3214 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3215 err = ext4_do_update_inode(handle, inode, iloc);
3216 put_bh(iloc->bh);
3217 return err;
3221 * On success, We end up with an outstanding reference count against
3222 * iloc->bh. This _must_ be cleaned up later.
3226 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3227 struct ext4_iloc *iloc)
3229 int err = 0;
3230 if (handle) {
3231 err = ext4_get_inode_loc(inode, iloc);
3232 if (!err) {
3233 BUFFER_TRACE(iloc->bh, "get_write_access");
3234 err = ext4_journal_get_write_access(handle, iloc->bh);
3235 if (err) {
3236 brelse(iloc->bh);
3237 iloc->bh = NULL;
3241 ext4_std_error(inode->i_sb, err);
3242 return err;
3246 * Expand an inode by new_extra_isize bytes.
3247 * Returns 0 on success or negative error number on failure.
3249 static int ext4_expand_extra_isize(struct inode *inode,
3250 unsigned int new_extra_isize,
3251 struct ext4_iloc iloc,
3252 handle_t *handle)
3254 struct ext4_inode *raw_inode;
3255 struct ext4_xattr_ibody_header *header;
3256 struct ext4_xattr_entry *entry;
3258 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3259 return 0;
3261 raw_inode = ext4_raw_inode(&iloc);
3263 header = IHDR(inode, raw_inode);
3264 entry = IFIRST(header);
3266 /* No extended attributes present */
3267 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3268 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3269 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3270 new_extra_isize);
3271 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3272 return 0;
3275 /* try to expand with EAs present */
3276 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3277 raw_inode, handle);
3281 * What we do here is to mark the in-core inode as clean with respect to inode
3282 * dirtiness (it may still be data-dirty).
3283 * This means that the in-core inode may be reaped by prune_icache
3284 * without having to perform any I/O. This is a very good thing,
3285 * because *any* task may call prune_icache - even ones which
3286 * have a transaction open against a different journal.
3288 * Is this cheating? Not really. Sure, we haven't written the
3289 * inode out, but prune_icache isn't a user-visible syncing function.
3290 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3291 * we start and wait on commits.
3293 * Is this efficient/effective? Well, we're being nice to the system
3294 * by cleaning up our inodes proactively so they can be reaped
3295 * without I/O. But we are potentially leaving up to five seconds'
3296 * worth of inodes floating about which prune_icache wants us to
3297 * write out. One way to fix that would be to get prune_icache()
3298 * to do a write_super() to free up some memory. It has the desired
3299 * effect.
3301 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3303 struct ext4_iloc iloc;
3304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3305 static unsigned int mnt_count;
3306 int err, ret;
3308 might_sleep();
3309 err = ext4_reserve_inode_write(handle, inode, &iloc);
3310 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3311 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3313 * We need extra buffer credits since we may write into EA block
3314 * with this same handle. If journal_extend fails, then it will
3315 * only result in a minor loss of functionality for that inode.
3316 * If this is felt to be critical, then e2fsck should be run to
3317 * force a large enough s_min_extra_isize.
3319 if ((jbd2_journal_extend(handle,
3320 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3321 ret = ext4_expand_extra_isize(inode,
3322 sbi->s_want_extra_isize,
3323 iloc, handle);
3324 if (ret) {
3325 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3326 if (mnt_count !=
3327 le16_to_cpu(sbi->s_es->s_mnt_count)) {
3328 ext4_warning(inode->i_sb, __FUNCTION__,
3329 "Unable to expand inode %lu. Delete"
3330 " some EAs or run e2fsck.",
3331 inode->i_ino);
3332 mnt_count =
3333 le16_to_cpu(sbi->s_es->s_mnt_count);
3338 if (!err)
3339 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3340 return err;
3344 * ext4_dirty_inode() is called from __mark_inode_dirty()
3346 * We're really interested in the case where a file is being extended.
3347 * i_size has been changed by generic_commit_write() and we thus need
3348 * to include the updated inode in the current transaction.
3350 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3351 * are allocated to the file.
3353 * If the inode is marked synchronous, we don't honour that here - doing
3354 * so would cause a commit on atime updates, which we don't bother doing.
3355 * We handle synchronous inodes at the highest possible level.
3357 void ext4_dirty_inode(struct inode *inode)
3359 handle_t *current_handle = ext4_journal_current_handle();
3360 handle_t *handle;
3362 handle = ext4_journal_start(inode, 2);
3363 if (IS_ERR(handle))
3364 goto out;
3365 if (current_handle &&
3366 current_handle->h_transaction != handle->h_transaction) {
3367 /* This task has a transaction open against a different fs */
3368 printk(KERN_EMERG "%s: transactions do not match!\n",
3369 __FUNCTION__);
3370 } else {
3371 jbd_debug(5, "marking dirty. outer handle=%p\n",
3372 current_handle);
3373 ext4_mark_inode_dirty(handle, inode);
3375 ext4_journal_stop(handle);
3376 out:
3377 return;
3380 #if 0
3382 * Bind an inode's backing buffer_head into this transaction, to prevent
3383 * it from being flushed to disk early. Unlike
3384 * ext4_reserve_inode_write, this leaves behind no bh reference and
3385 * returns no iloc structure, so the caller needs to repeat the iloc
3386 * lookup to mark the inode dirty later.
3388 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3390 struct ext4_iloc iloc;
3392 int err = 0;
3393 if (handle) {
3394 err = ext4_get_inode_loc(inode, &iloc);
3395 if (!err) {
3396 BUFFER_TRACE(iloc.bh, "get_write_access");
3397 err = jbd2_journal_get_write_access(handle, iloc.bh);
3398 if (!err)
3399 err = ext4_journal_dirty_metadata(handle,
3400 iloc.bh);
3401 brelse(iloc.bh);
3404 ext4_std_error(inode->i_sb, err);
3405 return err;
3407 #endif
3409 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3411 journal_t *journal;
3412 handle_t *handle;
3413 int err;
3416 * We have to be very careful here: changing a data block's
3417 * journaling status dynamically is dangerous. If we write a
3418 * data block to the journal, change the status and then delete
3419 * that block, we risk forgetting to revoke the old log record
3420 * from the journal and so a subsequent replay can corrupt data.
3421 * So, first we make sure that the journal is empty and that
3422 * nobody is changing anything.
3425 journal = EXT4_JOURNAL(inode);
3426 if (is_journal_aborted(journal))
3427 return -EROFS;
3429 jbd2_journal_lock_updates(journal);
3430 jbd2_journal_flush(journal);
3433 * OK, there are no updates running now, and all cached data is
3434 * synced to disk. We are now in a completely consistent state
3435 * which doesn't have anything in the journal, and we know that
3436 * no filesystem updates are running, so it is safe to modify
3437 * the inode's in-core data-journaling state flag now.
3440 if (val)
3441 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3442 else
3443 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3444 ext4_set_aops(inode);
3446 jbd2_journal_unlock_updates(journal);
3448 /* Finally we can mark the inode as dirty. */
3450 handle = ext4_journal_start(inode, 1);
3451 if (IS_ERR(handle))
3452 return PTR_ERR(handle);
3454 err = ext4_mark_inode_dirty(handle, inode);
3455 handle->h_sync = 1;
3456 ext4_journal_stop(handle);
3457 ext4_std_error(inode->i_sb, err);
3459 return err;