2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
24 * This unit is responsible for scanning the flash media, checking UBI
25 * headers and providing complete information about the UBI flash image.
27 * The scanning information is reoresented by a &struct ubi_scan_info' object.
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
43 #include <linux/err.h>
44 #include <linux/crc32.h>
47 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
48 static int paranoid_check_si(const struct ubi_device
*ubi
,
49 struct ubi_scan_info
*si
);
51 #define paranoid_check_si(ubi, si) 0
54 /* Temporary variables used during scanning */
55 static struct ubi_ec_hdr
*ech
;
56 static struct ubi_vid_hdr
*vidh
;
58 int ubi_scan_add_to_list(struct ubi_scan_info
*si
, int pnum
, int ec
,
59 struct list_head
*list
)
61 struct ubi_scan_leb
*seb
;
63 if (list
== &si
->free
)
64 dbg_bld("add to free: PEB %d, EC %d", pnum
, ec
);
65 else if (list
== &si
->erase
)
66 dbg_bld("add to erase: PEB %d, EC %d", pnum
, ec
);
67 else if (list
== &si
->corr
)
68 dbg_bld("add to corrupted: PEB %d, EC %d", pnum
, ec
);
69 else if (list
== &si
->alien
)
70 dbg_bld("add to alien: PEB %d, EC %d", pnum
, ec
);
74 seb
= kmalloc(sizeof(struct ubi_scan_leb
), GFP_KERNEL
);
80 list_add_tail(&seb
->u
.list
, list
);
85 * commit_to_mean_value - commit intermediate results to the final mean erase
87 * @si: scanning information
89 * This is a helper function which calculates partial mean erase counter mean
90 * value and adds it to the resulting mean value. As we can work only in
91 * integer arithmetic and we want to calculate the mean value of erase counter
92 * accurately, we first sum erase counter values in @si->ec_sum variable and
93 * count these components in @si->ec_count. If this temporary @si->ec_sum is
94 * going to overflow, we calculate the partial mean value
95 * (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec.
97 static void commit_to_mean_value(struct ubi_scan_info
*si
)
99 si
->ec_sum
/= si
->ec_count
;
100 if (si
->ec_sum
% si
->ec_count
>= si
->ec_count
/ 2)
102 si
->mean_ec
+= si
->ec_sum
;
106 * validate_vid_hdr - check that volume identifier header is correct and
108 * @vid_hdr: the volume identifier header to check
109 * @sv: information about the volume this logical eraseblock belongs to
110 * @pnum: physical eraseblock number the VID header came from
112 * This function checks that data stored in @vid_hdr is consistent. Returns
113 * non-zero if an inconsistency was found and zero if not.
115 * Note, UBI does sanity check of everything it reads from the flash media.
116 * Most of the checks are done in the I/O unit. Here we check that the
117 * information in the VID header is consistent to the information in other VID
118 * headers of the same volume.
120 static int validate_vid_hdr(const struct ubi_vid_hdr
*vid_hdr
,
121 const struct ubi_scan_volume
*sv
, int pnum
)
123 int vol_type
= vid_hdr
->vol_type
;
124 int vol_id
= ubi32_to_cpu(vid_hdr
->vol_id
);
125 int used_ebs
= ubi32_to_cpu(vid_hdr
->used_ebs
);
126 int data_pad
= ubi32_to_cpu(vid_hdr
->data_pad
);
128 if (sv
->leb_count
!= 0) {
132 * This is not the first logical eraseblock belonging to this
133 * volume. Ensure that the data in its VID header is consistent
134 * to the data in previous logical eraseblock headers.
137 if (vol_id
!= sv
->vol_id
) {
138 dbg_err("inconsistent vol_id");
142 if (sv
->vol_type
== UBI_STATIC_VOLUME
)
143 sv_vol_type
= UBI_VID_STATIC
;
145 sv_vol_type
= UBI_VID_DYNAMIC
;
147 if (vol_type
!= sv_vol_type
) {
148 dbg_err("inconsistent vol_type");
152 if (used_ebs
!= sv
->used_ebs
) {
153 dbg_err("inconsistent used_ebs");
157 if (data_pad
!= sv
->data_pad
) {
158 dbg_err("inconsistent data_pad");
166 ubi_err("inconsistent VID header at PEB %d", pnum
);
167 ubi_dbg_dump_vid_hdr(vid_hdr
);
173 * add_volume - add volume to the scanning information.
174 * @si: scanning information
175 * @vol_id: ID of the volume to add
176 * @pnum: physical eraseblock number
177 * @vid_hdr: volume identifier header
179 * If the volume corresponding to the @vid_hdr logical eraseblock is already
180 * present in the scanning information, this function does nothing. Otherwise
181 * it adds corresponding volume to the scanning information. Returns a pointer
182 * to the scanning volume object in case of success and a negative error code
183 * in case of failure.
185 static struct ubi_scan_volume
*add_volume(struct ubi_scan_info
*si
, int vol_id
,
187 const struct ubi_vid_hdr
*vid_hdr
)
189 struct ubi_scan_volume
*sv
;
190 struct rb_node
**p
= &si
->volumes
.rb_node
, *parent
= NULL
;
192 ubi_assert(vol_id
== ubi32_to_cpu(vid_hdr
->vol_id
));
194 /* Walk the volume RB-tree to look if this volume is already present */
197 sv
= rb_entry(parent
, struct ubi_scan_volume
, rb
);
199 if (vol_id
== sv
->vol_id
)
202 if (vol_id
> sv
->vol_id
)
208 /* The volume is absent - add it */
209 sv
= kmalloc(sizeof(struct ubi_scan_volume
), GFP_KERNEL
);
211 return ERR_PTR(-ENOMEM
);
213 sv
->highest_lnum
= sv
->leb_count
= 0;
217 sv
->used_ebs
= ubi32_to_cpu(vid_hdr
->used_ebs
);
218 sv
->data_pad
= ubi32_to_cpu(vid_hdr
->data_pad
);
219 sv
->compat
= vid_hdr
->compat
;
220 sv
->vol_type
= vid_hdr
->vol_type
== UBI_VID_DYNAMIC
? UBI_DYNAMIC_VOLUME
222 if (vol_id
> si
->highest_vol_id
)
223 si
->highest_vol_id
= vol_id
;
225 rb_link_node(&sv
->rb
, parent
, p
);
226 rb_insert_color(&sv
->rb
, &si
->volumes
);
228 dbg_bld("added volume %d", vol_id
);
233 * compare_lebs - find out which logical eraseblock is newer.
234 * @ubi: UBI device description object
235 * @seb: first logical eraseblock to compare
236 * @pnum: physical eraseblock number of the second logical eraseblock to
238 * @vid_hdr: volume identifier header of the second logical eraseblock
240 * This function compares 2 copies of a LEB and informs which one is newer. In
241 * case of success this function returns a positive value, in case of failure, a
242 * negative error code is returned. The success return codes use the following
244 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the
245 * second PEB (described by @pnum and @vid_hdr);
246 * o bit 0 is set: the second PEB is newer;
247 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
248 * o bit 1 is set: bit-flips were detected in the newer LEB;
249 * o bit 2 is cleared: the older LEB is not corrupted;
250 * o bit 2 is set: the older LEB is corrupted.
252 static int compare_lebs(const struct ubi_device
*ubi
,
253 const struct ubi_scan_leb
*seb
, int pnum
,
254 const struct ubi_vid_hdr
*vid_hdr
)
257 int len
, err
, second_is_newer
, bitflips
= 0, corrupted
= 0;
258 uint32_t data_crc
, crc
;
259 struct ubi_vid_hdr
*vidh
= NULL
;
260 unsigned long long sqnum2
= ubi64_to_cpu(vid_hdr
->sqnum
);
262 if (seb
->sqnum
== 0 && sqnum2
== 0) {
263 long long abs
, v1
= seb
->leb_ver
, v2
= ubi32_to_cpu(vid_hdr
->leb_ver
);
266 * UBI constantly increases the logical eraseblock version
267 * number and it can overflow. Thus, we have to bear in mind
268 * that versions that are close to %0xFFFFFFFF are less then
269 * versions that are close to %0.
271 * The UBI WL unit guarantees that the number of pending tasks
272 * is not greater then %0x7FFFFFFF. So, if the difference
273 * between any two versions is greater or equivalent to
274 * %0x7FFFFFFF, there was an overflow and the logical
275 * eraseblock with lower version is actually newer then the one
276 * with higher version.
278 * FIXME: but this is anyway obsolete and will be removed at
282 dbg_bld("using old crappy leb_ver stuff");
288 if (abs
< 0x7FFFFFFF)
289 /* Non-overflow situation */
290 second_is_newer
= (v2
> v1
);
292 second_is_newer
= (v2
< v1
);
294 /* Obviously the LEB with lower sequence counter is older */
295 second_is_newer
= sqnum2
> seb
->sqnum
;
298 * Now we know which copy is newer. If the copy flag of the PEB with
299 * newer version is not set, then we just return, otherwise we have to
300 * check data CRC. For the second PEB we already have the VID header,
301 * for the first one - we'll need to re-read it from flash.
303 * FIXME: this may be optimized so that we wouldn't read twice.
306 if (second_is_newer
) {
307 if (!vid_hdr
->copy_flag
) {
308 /* It is not a copy, so it is newer */
309 dbg_bld("second PEB %d is newer, copy_flag is unset",
316 vidh
= ubi_zalloc_vid_hdr(ubi
);
320 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidh
, 0);
322 if (err
== UBI_IO_BITFLIPS
)
325 dbg_err("VID of PEB %d header is bad, but it "
326 "was OK earlier", pnum
);
334 if (!vidh
->copy_flag
) {
335 /* It is not a copy, so it is newer */
336 dbg_bld("first PEB %d is newer, copy_flag is unset",
345 /* Read the data of the copy and check the CRC */
347 len
= ubi32_to_cpu(vid_hdr
->data_size
);
348 buf
= kmalloc(len
, GFP_KERNEL
);
354 err
= ubi_io_read_data(ubi
, buf
, pnum
, 0, len
);
355 if (err
&& err
!= UBI_IO_BITFLIPS
)
358 data_crc
= ubi32_to_cpu(vid_hdr
->data_crc
);
359 crc
= crc32(UBI_CRC32_INIT
, buf
, len
);
360 if (crc
!= data_crc
) {
361 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
362 pnum
, crc
, data_crc
);
365 second_is_newer
= !second_is_newer
;
367 dbg_bld("PEB %d CRC is OK", pnum
);
372 ubi_free_vid_hdr(ubi
, vidh
);
375 dbg_bld("second PEB %d is newer, copy_flag is set", pnum
);
377 dbg_bld("first PEB %d is newer, copy_flag is set", pnum
);
379 return second_is_newer
| (bitflips
<< 1) | (corrupted
<< 2);
384 ubi_free_vid_hdr(ubi
, vidh
);
390 * ubi_scan_add_used - add information about a physical eraseblock to the
391 * scanning information.
392 * @ubi: UBI device description object
393 * @si: scanning information
394 * @pnum: the physical eraseblock number
396 * @vid_hdr: the volume identifier header
397 * @bitflips: if bit-flips were detected when this physical eraseblock was read
399 * This function returns zero in case of success and a negative error code in
402 int ubi_scan_add_used(const struct ubi_device
*ubi
, struct ubi_scan_info
*si
,
403 int pnum
, int ec
, const struct ubi_vid_hdr
*vid_hdr
,
406 int err
, vol_id
, lnum
;
408 unsigned long long sqnum
;
409 struct ubi_scan_volume
*sv
;
410 struct ubi_scan_leb
*seb
;
411 struct rb_node
**p
, *parent
= NULL
;
413 vol_id
= ubi32_to_cpu(vid_hdr
->vol_id
);
414 lnum
= ubi32_to_cpu(vid_hdr
->lnum
);
415 sqnum
= ubi64_to_cpu(vid_hdr
->sqnum
);
416 leb_ver
= ubi32_to_cpu(vid_hdr
->leb_ver
);
418 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
419 pnum
, vol_id
, lnum
, ec
, sqnum
, leb_ver
, bitflips
);
421 sv
= add_volume(si
, vol_id
, pnum
, vid_hdr
);
426 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
427 * if this is the first instance of this logical eraseblock or not.
429 p
= &sv
->root
.rb_node
;
434 seb
= rb_entry(parent
, struct ubi_scan_leb
, u
.rb
);
435 if (lnum
!= seb
->lnum
) {
436 if (lnum
< seb
->lnum
)
444 * There is already a physical eraseblock describing the same
445 * logical eraseblock present.
448 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
449 "LEB ver %u, EC %d", seb
->pnum
, seb
->sqnum
,
450 seb
->leb_ver
, seb
->ec
);
453 * Make sure that the logical eraseblocks have different
454 * versions. Otherwise the image is bad.
456 if (seb
->leb_ver
== leb_ver
&& leb_ver
!= 0) {
457 ubi_err("two LEBs with same version %u", leb_ver
);
458 ubi_dbg_dump_seb(seb
, 0);
459 ubi_dbg_dump_vid_hdr(vid_hdr
);
464 * Make sure that the logical eraseblocks have different
465 * sequence numbers. Otherwise the image is bad.
467 * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
469 if (seb
->sqnum
== sqnum
&& sqnum
!= 0) {
470 ubi_err("two LEBs with same sequence number %llu",
472 ubi_dbg_dump_seb(seb
, 0);
473 ubi_dbg_dump_vid_hdr(vid_hdr
);
478 * Now we have to drop the older one and preserve the newer
481 cmp_res
= compare_lebs(ubi
, seb
, pnum
, vid_hdr
);
487 * This logical eraseblock is newer then the one
490 err
= validate_vid_hdr(vid_hdr
, sv
, pnum
);
495 err
= ubi_scan_add_to_list(si
, seb
->pnum
,
498 err
= ubi_scan_add_to_list(si
, seb
->pnum
,
499 seb
->ec
, &si
->erase
);
505 seb
->scrub
= ((cmp_res
& 2) || bitflips
);
507 seb
->leb_ver
= leb_ver
;
509 if (sv
->highest_lnum
== lnum
)
511 ubi32_to_cpu(vid_hdr
->data_size
);
516 * This logical eraseblock is older then the one found
520 return ubi_scan_add_to_list(si
, pnum
, ec
,
523 return ubi_scan_add_to_list(si
, pnum
, ec
,
529 * We've met this logical eraseblock for the first time, add it to the
530 * scanning information.
533 err
= validate_vid_hdr(vid_hdr
, sv
, pnum
);
537 seb
= kmalloc(sizeof(struct ubi_scan_leb
), GFP_KERNEL
);
545 seb
->scrub
= bitflips
;
546 seb
->leb_ver
= leb_ver
;
548 if (sv
->highest_lnum
<= lnum
) {
549 sv
->highest_lnum
= lnum
;
550 sv
->last_data_size
= ubi32_to_cpu(vid_hdr
->data_size
);
553 if (si
->max_sqnum
< sqnum
)
554 si
->max_sqnum
= sqnum
;
557 rb_link_node(&seb
->u
.rb
, parent
, p
);
558 rb_insert_color(&seb
->u
.rb
, &sv
->root
);
563 * ubi_scan_find_sv - find information about a particular volume in the
564 * scanning information.
565 * @si: scanning information
566 * @vol_id: the requested volume ID
568 * This function returns a pointer to the volume description or %NULL if there
569 * are no data about this volume in the scanning information.
571 struct ubi_scan_volume
*ubi_scan_find_sv(const struct ubi_scan_info
*si
,
574 struct ubi_scan_volume
*sv
;
575 struct rb_node
*p
= si
->volumes
.rb_node
;
578 sv
= rb_entry(p
, struct ubi_scan_volume
, rb
);
580 if (vol_id
== sv
->vol_id
)
583 if (vol_id
> sv
->vol_id
)
593 * ubi_scan_find_seb - find information about a particular logical
594 * eraseblock in the volume scanning information.
595 * @sv: a pointer to the volume scanning information
596 * @lnum: the requested logical eraseblock
598 * This function returns a pointer to the scanning logical eraseblock or %NULL
599 * if there are no data about it in the scanning volume information.
601 struct ubi_scan_leb
*ubi_scan_find_seb(const struct ubi_scan_volume
*sv
,
604 struct ubi_scan_leb
*seb
;
605 struct rb_node
*p
= sv
->root
.rb_node
;
608 seb
= rb_entry(p
, struct ubi_scan_leb
, u
.rb
);
610 if (lnum
== seb
->lnum
)
613 if (lnum
> seb
->lnum
)
623 * ubi_scan_rm_volume - delete scanning information about a volume.
624 * @si: scanning information
625 * @sv: the volume scanning information to delete
627 void ubi_scan_rm_volume(struct ubi_scan_info
*si
, struct ubi_scan_volume
*sv
)
630 struct ubi_scan_leb
*seb
;
632 dbg_bld("remove scanning information about volume %d", sv
->vol_id
);
634 while ((rb
= rb_first(&sv
->root
))) {
635 seb
= rb_entry(rb
, struct ubi_scan_leb
, u
.rb
);
636 rb_erase(&seb
->u
.rb
, &sv
->root
);
637 list_add_tail(&seb
->u
.list
, &si
->erase
);
640 rb_erase(&sv
->rb
, &si
->volumes
);
646 * ubi_scan_erase_peb - erase a physical eraseblock.
647 * @ubi: UBI device description object
648 * @si: scanning information
649 * @pnum: physical eraseblock number to erase;
650 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
652 * This function erases physical eraseblock 'pnum', and writes the erase
653 * counter header to it. This function should only be used on UBI device
654 * initialization stages, when the EBA unit had not been yet initialized. This
655 * function returns zero in case of success and a negative error code in case
658 int ubi_scan_erase_peb(const struct ubi_device
*ubi
,
659 const struct ubi_scan_info
*si
, int pnum
, int ec
)
662 struct ubi_ec_hdr
*ec_hdr
;
664 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
668 if ((long long)ec
>= UBI_MAX_ERASECOUNTER
) {
670 * Erase counter overflow. Upgrade UBI and use 64-bit
671 * erase counters internally.
673 ubi_err("erase counter overflow at PEB %d, EC %d", pnum
, ec
);
677 ec_hdr
->ec
= cpu_to_ubi64(ec
);
679 err
= ubi_io_sync_erase(ubi
, pnum
, 0);
683 err
= ubi_io_write_ec_hdr(ubi
, pnum
, ec_hdr
);
691 * ubi_scan_get_free_peb - get a free physical eraseblock.
692 * @ubi: UBI device description object
693 * @si: scanning information
695 * This function returns a free physical eraseblock. It is supposed to be
696 * called on the UBI initialization stages when the wear-leveling unit is not
697 * initialized yet. This function picks a physical eraseblocks from one of the
698 * lists, writes the EC header if it is needed, and removes it from the list.
700 * This function returns scanning physical eraseblock information in case of
701 * success and an error code in case of failure.
703 struct ubi_scan_leb
*ubi_scan_get_free_peb(const struct ubi_device
*ubi
,
704 struct ubi_scan_info
*si
)
707 struct ubi_scan_leb
*seb
;
709 if (!list_empty(&si
->free
)) {
710 seb
= list_entry(si
->free
.next
, struct ubi_scan_leb
, u
.list
);
711 list_del(&seb
->u
.list
);
712 dbg_bld("return free PEB %d, EC %d", seb
->pnum
, seb
->ec
);
716 for (i
= 0; i
< 2; i
++) {
717 struct list_head
*head
;
718 struct ubi_scan_leb
*tmp_seb
;
726 * We try to erase the first physical eraseblock from the @head
727 * list and pick it if we succeed, or try to erase the
728 * next one if not. And so forth. We don't want to take care
729 * about bad eraseblocks here - they'll be handled later.
731 list_for_each_entry_safe(seb
, tmp_seb
, head
, u
.list
) {
732 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
733 seb
->ec
= si
->mean_ec
;
735 err
= ubi_scan_erase_peb(ubi
, si
, seb
->pnum
, seb
->ec
+1);
740 list_del(&seb
->u
.list
);
741 dbg_bld("return PEB %d, EC %d", seb
->pnum
, seb
->ec
);
746 ubi_err("no eraseblocks found");
747 return ERR_PTR(-ENOSPC
);
751 * process_eb - read UBI headers, check them and add corresponding data
752 * to the scanning information.
753 * @ubi: UBI device description object
754 * @si: scanning information
755 * @pnum: the physical eraseblock number
757 * This function returns a zero if the physical eraseblock was succesfully
758 * handled and a negative error code in case of failure.
760 static int process_eb(struct ubi_device
*ubi
, struct ubi_scan_info
*si
, int pnum
)
763 int err
, bitflips
= 0, vol_id
, ec_corr
= 0;
765 dbg_bld("scan PEB %d", pnum
);
767 /* Skip bad physical eraseblocks */
768 err
= ubi_io_is_bad(ubi
, pnum
);
773 * FIXME: this is actually duty of the I/O unit to initialize
774 * this, but MTD does not provide enough information.
776 si
->bad_peb_count
+= 1;
780 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ech
, 0);
783 else if (err
== UBI_IO_BITFLIPS
)
785 else if (err
== UBI_IO_PEB_EMPTY
)
786 return ubi_scan_add_to_list(si
, pnum
, UBI_SCAN_UNKNOWN_EC
,
788 else if (err
== UBI_IO_BAD_EC_HDR
) {
790 * We have to also look at the VID header, possibly it is not
791 * corrupted. Set %bitflips flag in order to make this PEB be
792 * moved and EC be re-created.
795 ec
= UBI_SCAN_UNKNOWN_EC
;
802 /* Make sure UBI version is OK */
803 if (ech
->version
!= UBI_VERSION
) {
804 ubi_err("this UBI version is %d, image version is %d",
805 UBI_VERSION
, (int)ech
->version
);
809 ec
= ubi64_to_cpu(ech
->ec
);
810 if (ec
> UBI_MAX_ERASECOUNTER
) {
812 * Erase counter overflow. The EC headers have 64 bits
813 * reserved, but we anyway make use of only 31 bit
814 * values, as this seems to be enough for any existing
815 * flash. Upgrade UBI and use 64-bit erase counters
818 ubi_err("erase counter overflow, max is %d",
819 UBI_MAX_ERASECOUNTER
);
820 ubi_dbg_dump_ec_hdr(ech
);
825 /* OK, we've done with the EC header, let's look at the VID header */
827 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidh
, 0);
830 else if (err
== UBI_IO_BITFLIPS
)
832 else if (err
== UBI_IO_BAD_VID_HDR
||
833 (err
== UBI_IO_PEB_FREE
&& ec_corr
)) {
834 /* VID header is corrupted */
835 err
= ubi_scan_add_to_list(si
, pnum
, ec
, &si
->corr
);
839 } else if (err
== UBI_IO_PEB_FREE
) {
840 /* No VID header - the physical eraseblock is free */
841 err
= ubi_scan_add_to_list(si
, pnum
, ec
, &si
->free
);
847 vol_id
= ubi32_to_cpu(vidh
->vol_id
);
848 if (vol_id
> UBI_MAX_VOLUMES
&& vol_id
!= UBI_LAYOUT_VOL_ID
) {
849 int lnum
= ubi32_to_cpu(vidh
->lnum
);
851 /* Unsupported internal volume */
852 switch (vidh
->compat
) {
853 case UBI_COMPAT_DELETE
:
854 ubi_msg("\"delete\" compatible internal volume %d:%d"
855 " found, remove it", vol_id
, lnum
);
856 err
= ubi_scan_add_to_list(si
, pnum
, ec
, &si
->corr
);
862 ubi_msg("read-only compatible internal volume %d:%d"
863 " found, switch to read-only mode",
868 case UBI_COMPAT_PRESERVE
:
869 ubi_msg("\"preserve\" compatible internal volume %d:%d"
870 " found", vol_id
, lnum
);
871 err
= ubi_scan_add_to_list(si
, pnum
, ec
, &si
->alien
);
874 si
->alien_peb_count
+= 1;
877 case UBI_COMPAT_REJECT
:
878 ubi_err("incompatible internal volume %d:%d found",
884 /* Both UBI headers seem to be fine */
885 err
= ubi_scan_add_used(ubi
, si
, pnum
, ec
, vidh
, bitflips
);
891 if (si
->ec_sum
+ ec
< ec
) {
892 commit_to_mean_value(si
);
910 * ubi_scan - scan an MTD device.
911 * @ubi: UBI device description object
913 * This function does full scanning of an MTD device and returns complete
914 * information about it. In case of failure, an error code is returned.
916 struct ubi_scan_info
*ubi_scan(struct ubi_device
*ubi
)
919 struct rb_node
*rb1
, *rb2
;
920 struct ubi_scan_volume
*sv
;
921 struct ubi_scan_leb
*seb
;
922 struct ubi_scan_info
*si
;
924 si
= kzalloc(sizeof(struct ubi_scan_info
), GFP_KERNEL
);
926 return ERR_PTR(-ENOMEM
);
928 INIT_LIST_HEAD(&si
->corr
);
929 INIT_LIST_HEAD(&si
->free
);
930 INIT_LIST_HEAD(&si
->erase
);
931 INIT_LIST_HEAD(&si
->alien
);
932 si
->volumes
= RB_ROOT
;
936 ech
= kzalloc(ubi
->ec_hdr_alsize
, GFP_KERNEL
);
940 vidh
= ubi_zalloc_vid_hdr(ubi
);
944 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++) {
947 dbg_msg("process PEB %d", pnum
);
948 err
= process_eb(ubi
, si
, pnum
);
953 dbg_msg("scanning is finished");
955 /* Finish mean erase counter calculations */
957 commit_to_mean_value(si
);
960 ubi_msg("empty MTD device detected");
963 * In case of unknown erase counter we use the mean erase counter
966 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
967 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
)
968 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
969 seb
->ec
= si
->mean_ec
;
972 list_for_each_entry(seb
, &si
->free
, u
.list
) {
973 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
974 seb
->ec
= si
->mean_ec
;
977 list_for_each_entry(seb
, &si
->corr
, u
.list
)
978 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
979 seb
->ec
= si
->mean_ec
;
981 list_for_each_entry(seb
, &si
->erase
, u
.list
)
982 if (seb
->ec
== UBI_SCAN_UNKNOWN_EC
)
983 seb
->ec
= si
->mean_ec
;
985 err
= paranoid_check_si(ubi
, si
);
992 ubi_free_vid_hdr(ubi
, vidh
);
998 ubi_free_vid_hdr(ubi
, vidh
);
1002 ubi_scan_destroy_si(si
);
1003 return ERR_PTR(err
);
1007 * destroy_sv - free the scanning volume information
1008 * @sv: scanning volume information
1010 * This function destroys the volume RB-tree (@sv->root) and the scanning
1011 * volume information.
1013 static void destroy_sv(struct ubi_scan_volume
*sv
)
1015 struct ubi_scan_leb
*seb
;
1016 struct rb_node
*this = sv
->root
.rb_node
;
1020 this = this->rb_left
;
1021 else if (this->rb_right
)
1022 this = this->rb_right
;
1024 seb
= rb_entry(this, struct ubi_scan_leb
, u
.rb
);
1025 this = rb_parent(this);
1027 if (this->rb_left
== &seb
->u
.rb
)
1028 this->rb_left
= NULL
;
1030 this->rb_right
= NULL
;
1040 * ubi_scan_destroy_si - destroy scanning information.
1041 * @si: scanning information
1043 void ubi_scan_destroy_si(struct ubi_scan_info
*si
)
1045 struct ubi_scan_leb
*seb
, *seb_tmp
;
1046 struct ubi_scan_volume
*sv
;
1049 list_for_each_entry_safe(seb
, seb_tmp
, &si
->alien
, u
.list
) {
1050 list_del(&seb
->u
.list
);
1053 list_for_each_entry_safe(seb
, seb_tmp
, &si
->erase
, u
.list
) {
1054 list_del(&seb
->u
.list
);
1057 list_for_each_entry_safe(seb
, seb_tmp
, &si
->corr
, u
.list
) {
1058 list_del(&seb
->u
.list
);
1061 list_for_each_entry_safe(seb
, seb_tmp
, &si
->free
, u
.list
) {
1062 list_del(&seb
->u
.list
);
1066 /* Destroy the volume RB-tree */
1067 rb
= si
->volumes
.rb_node
;
1071 else if (rb
->rb_right
)
1074 sv
= rb_entry(rb
, struct ubi_scan_volume
, rb
);
1078 if (rb
->rb_left
== &sv
->rb
)
1081 rb
->rb_right
= NULL
;
1091 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1094 * paranoid_check_si - check if the scanning information is correct and
1096 * @ubi: UBI device description object
1097 * @si: scanning information
1099 * This function returns zero if the scanning information is all right, %1 if
1100 * not and a negative error code if an error occurred.
1102 static int paranoid_check_si(const struct ubi_device
*ubi
,
1103 struct ubi_scan_info
*si
)
1105 int pnum
, err
, vols_found
= 0;
1106 struct rb_node
*rb1
, *rb2
;
1107 struct ubi_scan_volume
*sv
;
1108 struct ubi_scan_leb
*seb
, *last_seb
;
1112 * At first, check that scanning information is ok.
1114 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
1122 ubi_err("bad is_empty flag");
1126 if (sv
->vol_id
< 0 || sv
->highest_lnum
< 0 ||
1127 sv
->leb_count
< 0 || sv
->vol_type
< 0 || sv
->used_ebs
< 0 ||
1128 sv
->data_pad
< 0 || sv
->last_data_size
< 0) {
1129 ubi_err("negative values");
1133 if (sv
->vol_id
>= UBI_MAX_VOLUMES
&&
1134 sv
->vol_id
< UBI_INTERNAL_VOL_START
) {
1135 ubi_err("bad vol_id");
1139 if (sv
->vol_id
> si
->highest_vol_id
) {
1140 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1141 si
->highest_vol_id
, sv
->vol_id
);
1145 if (sv
->vol_type
!= UBI_DYNAMIC_VOLUME
&&
1146 sv
->vol_type
!= UBI_STATIC_VOLUME
) {
1147 ubi_err("bad vol_type");
1151 if (sv
->data_pad
> ubi
->leb_size
/ 2) {
1152 ubi_err("bad data_pad");
1157 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
) {
1163 if (seb
->pnum
< 0 || seb
->ec
< 0) {
1164 ubi_err("negative values");
1168 if (seb
->ec
< si
->min_ec
) {
1169 ubi_err("bad si->min_ec (%d), %d found",
1170 si
->min_ec
, seb
->ec
);
1174 if (seb
->ec
> si
->max_ec
) {
1175 ubi_err("bad si->max_ec (%d), %d found",
1176 si
->max_ec
, seb
->ec
);
1180 if (seb
->pnum
>= ubi
->peb_count
) {
1181 ubi_err("too high PEB number %d, total PEBs %d",
1182 seb
->pnum
, ubi
->peb_count
);
1186 if (sv
->vol_type
== UBI_STATIC_VOLUME
) {
1187 if (seb
->lnum
>= sv
->used_ebs
) {
1188 ubi_err("bad lnum or used_ebs");
1192 if (sv
->used_ebs
!= 0) {
1193 ubi_err("non-zero used_ebs");
1198 if (seb
->lnum
> sv
->highest_lnum
) {
1199 ubi_err("incorrect highest_lnum or lnum");
1204 if (sv
->leb_count
!= leb_count
) {
1205 ubi_err("bad leb_count, %d objects in the tree",
1215 if (seb
->lnum
!= sv
->highest_lnum
) {
1216 ubi_err("bad highest_lnum");
1221 if (vols_found
!= si
->vols_found
) {
1222 ubi_err("bad si->vols_found %d, should be %d",
1223 si
->vols_found
, vols_found
);
1227 /* Check that scanning information is correct */
1228 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
1230 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
) {
1237 err
= ubi_io_read_vid_hdr(ubi
, seb
->pnum
, vidh
, 1);
1238 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1239 ubi_err("VID header is not OK (%d)", err
);
1245 vol_type
= vidh
->vol_type
== UBI_VID_DYNAMIC
?
1246 UBI_DYNAMIC_VOLUME
: UBI_STATIC_VOLUME
;
1247 if (sv
->vol_type
!= vol_type
) {
1248 ubi_err("bad vol_type");
1252 if (seb
->sqnum
!= ubi64_to_cpu(vidh
->sqnum
)) {
1253 ubi_err("bad sqnum %llu", seb
->sqnum
);
1257 if (sv
->vol_id
!= ubi32_to_cpu(vidh
->vol_id
)) {
1258 ubi_err("bad vol_id %d", sv
->vol_id
);
1262 if (sv
->compat
!= vidh
->compat
) {
1263 ubi_err("bad compat %d", vidh
->compat
);
1267 if (seb
->lnum
!= ubi32_to_cpu(vidh
->lnum
)) {
1268 ubi_err("bad lnum %d", seb
->lnum
);
1272 if (sv
->used_ebs
!= ubi32_to_cpu(vidh
->used_ebs
)) {
1273 ubi_err("bad used_ebs %d", sv
->used_ebs
);
1277 if (sv
->data_pad
!= ubi32_to_cpu(vidh
->data_pad
)) {
1278 ubi_err("bad data_pad %d", sv
->data_pad
);
1282 if (seb
->leb_ver
!= ubi32_to_cpu(vidh
->leb_ver
)) {
1283 ubi_err("bad leb_ver %u", seb
->leb_ver
);
1291 if (sv
->highest_lnum
!= ubi32_to_cpu(vidh
->lnum
)) {
1292 ubi_err("bad highest_lnum %d", sv
->highest_lnum
);
1296 if (sv
->last_data_size
!= ubi32_to_cpu(vidh
->data_size
)) {
1297 ubi_err("bad last_data_size %d", sv
->last_data_size
);
1303 * Make sure that all the physical eraseblocks are in one of the lists
1306 buf
= kmalloc(ubi
->peb_count
, GFP_KERNEL
);
1310 memset(buf
, 1, ubi
->peb_count
);
1311 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++) {
1312 err
= ubi_io_is_bad(ubi
, pnum
);
1319 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
)
1320 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
)
1323 list_for_each_entry(seb
, &si
->free
, u
.list
)
1326 list_for_each_entry(seb
, &si
->corr
, u
.list
)
1329 list_for_each_entry(seb
, &si
->erase
, u
.list
)
1332 list_for_each_entry(seb
, &si
->alien
, u
.list
)
1336 for (pnum
= 0; pnum
< ubi
->peb_count
; pnum
++)
1338 ubi_err("PEB %d is not referred", pnum
);
1348 ubi_err("bad scanning information about LEB %d", seb
->lnum
);
1349 ubi_dbg_dump_seb(seb
, 0);
1350 ubi_dbg_dump_sv(sv
);
1354 ubi_err("bad scanning information about volume %d", sv
->vol_id
);
1355 ubi_dbg_dump_sv(sv
);
1359 ubi_err("bad scanning information about volume %d", sv
->vol_id
);
1360 ubi_dbg_dump_sv(sv
);
1361 ubi_dbg_dump_vid_hdr(vidh
);
1364 ubi_dbg_dump_stack();
1368 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */