mm/slab.c: proper prototypes
[wrt350n-kernel.git] / drivers / net / acenic.c
blob7122b7ba8d61f098e22bfb2fab4e6e527c1de629
1 /*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/version.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/mm.h>
68 #include <linux/highmem.h>
69 #include <linux/sockios.h>
71 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 #include <linux/if_vlan.h>
73 #endif
75 #ifdef SIOCETHTOOL
76 #include <linux/ethtool.h>
77 #endif
79 #include <net/sock.h>
80 #include <net/ip.h>
82 #include <asm/system.h>
83 #include <asm/io.h>
84 #include <asm/irq.h>
85 #include <asm/byteorder.h>
86 #include <asm/uaccess.h>
89 #define DRV_NAME "acenic"
91 #undef INDEX_DEBUG
93 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
94 #define ACE_IS_TIGON_I(ap) 0
95 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
96 #else
97 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
98 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
99 #endif
101 #ifndef PCI_VENDOR_ID_ALTEON
102 #define PCI_VENDOR_ID_ALTEON 0x12ae
103 #endif
104 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
107 #endif
108 #ifndef PCI_DEVICE_ID_3COM_3C985
109 #define PCI_DEVICE_ID_3COM_3C985 0x0001
110 #endif
111 #ifndef PCI_VENDOR_ID_NETGEAR
112 #define PCI_VENDOR_ID_NETGEAR 0x1385
113 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
114 #endif
115 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
117 #endif
121 * Farallon used the DEC vendor ID by mistake and they seem not
122 * to care - stinky!
124 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
126 #endif
127 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
129 #endif
130 #ifndef PCI_VENDOR_ID_SGI
131 #define PCI_VENDOR_ID_SGI 0x10a9
132 #endif
133 #ifndef PCI_DEVICE_ID_SGI_ACENIC
134 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
135 #endif
137 static struct pci_device_id acenic_pci_tbl[] = {
138 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
139 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
141 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
143 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
145 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
147 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
152 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
153 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
155 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
157 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
160 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
162 #ifndef SET_NETDEV_DEV
163 #define SET_NETDEV_DEV(net, pdev) do{} while(0)
164 #endif
166 #define ace_sync_irq(irq) synchronize_irq(irq)
168 #ifndef offset_in_page
169 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
170 #endif
172 #define ACE_MAX_MOD_PARMS 8
173 #define BOARD_IDX_STATIC 0
174 #define BOARD_IDX_OVERFLOW -1
176 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
177 defined(NETIF_F_HW_VLAN_RX)
178 #define ACENIC_DO_VLAN 1
179 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
180 #else
181 #define ACENIC_DO_VLAN 0
182 #define ACE_RCB_VLAN_FLAG 0
183 #endif
185 #include "acenic.h"
188 * These must be defined before the firmware is included.
190 #define MAX_TEXT_LEN 96*1024
191 #define MAX_RODATA_LEN 8*1024
192 #define MAX_DATA_LEN 2*1024
194 #include "acenic_firmware.h"
196 #ifndef tigon2FwReleaseLocal
197 #define tigon2FwReleaseLocal 0
198 #endif
201 * This driver currently supports Tigon I and Tigon II based cards
202 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
203 * GA620. The driver should also work on the SGI, DEC and Farallon
204 * versions of the card, however I have not been able to test that
205 * myself.
207 * This card is really neat, it supports receive hardware checksumming
208 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
209 * firmware. Also the programming interface is quite neat, except for
210 * the parts dealing with the i2c eeprom on the card ;-)
212 * Using jumbo frames:
214 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
215 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
216 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
217 * interface number and <MTU> being the MTU value.
219 * Module parameters:
221 * When compiled as a loadable module, the driver allows for a number
222 * of module parameters to be specified. The driver supports the
223 * following module parameters:
225 * trace=<val> - Firmware trace level. This requires special traced
226 * firmware to replace the firmware supplied with
227 * the driver - for debugging purposes only.
229 * link=<val> - Link state. Normally you want to use the default link
230 * parameters set by the driver. This can be used to
231 * override these in case your switch doesn't negotiate
232 * the link properly. Valid values are:
233 * 0x0001 - Force half duplex link.
234 * 0x0002 - Do not negotiate line speed with the other end.
235 * 0x0010 - 10Mbit/sec link.
236 * 0x0020 - 100Mbit/sec link.
237 * 0x0040 - 1000Mbit/sec link.
238 * 0x0100 - Do not negotiate flow control.
239 * 0x0200 - Enable RX flow control Y
240 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
241 * Default value is 0x0270, ie. enable link+flow
242 * control negotiation. Negotiating the highest
243 * possible link speed with RX flow control enabled.
245 * When disabling link speed negotiation, only one link
246 * speed is allowed to be specified!
248 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
249 * to wait for more packets to arive before
250 * interrupting the host, from the time the first
251 * packet arrives.
253 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
254 * to wait for more packets to arive in the transmit ring,
255 * before interrupting the host, after transmitting the
256 * first packet in the ring.
258 * max_tx_desc=<val> - maximum number of transmit descriptors
259 * (packets) transmitted before interrupting the host.
261 * max_rx_desc=<val> - maximum number of receive descriptors
262 * (packets) received before interrupting the host.
264 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
265 * increments of the NIC's on board memory to be used for
266 * transmit and receive buffers. For the 1MB NIC app. 800KB
267 * is available, on the 1/2MB NIC app. 300KB is available.
268 * 68KB will always be available as a minimum for both
269 * directions. The default value is a 50/50 split.
270 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
271 * operations, default (1) is to always disable this as
272 * that is what Alteon does on NT. I have not been able
273 * to measure any real performance differences with
274 * this on my systems. Set <val>=0 if you want to
275 * enable these operations.
277 * If you use more than one NIC, specify the parameters for the
278 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
279 * run tracing on NIC #2 but not on NIC #1 and #3.
281 * TODO:
283 * - Proper multicast support.
284 * - NIC dump support.
285 * - More tuning parameters.
287 * The mini ring is not used under Linux and I am not sure it makes sense
288 * to actually use it.
290 * New interrupt handler strategy:
292 * The old interrupt handler worked using the traditional method of
293 * replacing an skbuff with a new one when a packet arrives. However
294 * the rx rings do not need to contain a static number of buffer
295 * descriptors, thus it makes sense to move the memory allocation out
296 * of the main interrupt handler and do it in a bottom half handler
297 * and only allocate new buffers when the number of buffers in the
298 * ring is below a certain threshold. In order to avoid starving the
299 * NIC under heavy load it is however necessary to force allocation
300 * when hitting a minimum threshold. The strategy for alloction is as
301 * follows:
303 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
304 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
305 * the buffers in the interrupt handler
306 * RX_RING_THRES - maximum number of buffers in the rx ring
307 * RX_MINI_THRES - maximum number of buffers in the mini ring
308 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
310 * One advantagous side effect of this allocation approach is that the
311 * entire rx processing can be done without holding any spin lock
312 * since the rx rings and registers are totally independent of the tx
313 * ring and its registers. This of course includes the kmalloc's of
314 * new skb's. Thus start_xmit can run in parallel with rx processing
315 * and the memory allocation on SMP systems.
317 * Note that running the skb reallocation in a bottom half opens up
318 * another can of races which needs to be handled properly. In
319 * particular it can happen that the interrupt handler tries to run
320 * the reallocation while the bottom half is either running on another
321 * CPU or was interrupted on the same CPU. To get around this the
322 * driver uses bitops to prevent the reallocation routines from being
323 * reentered.
325 * TX handling can also be done without holding any spin lock, wheee
326 * this is fun! since tx_ret_csm is only written to by the interrupt
327 * handler. The case to be aware of is when shutting down the device
328 * and cleaning up where it is necessary to make sure that
329 * start_xmit() is not running while this is happening. Well DaveM
330 * informs me that this case is already protected against ... bye bye
331 * Mr. Spin Lock, it was nice to know you.
333 * TX interrupts are now partly disabled so the NIC will only generate
334 * TX interrupts for the number of coal ticks, not for the number of
335 * TX packets in the queue. This should reduce the number of TX only,
336 * ie. when no RX processing is done, interrupts seen.
340 * Threshold values for RX buffer allocation - the low water marks for
341 * when to start refilling the rings are set to 75% of the ring
342 * sizes. It seems to make sense to refill the rings entirely from the
343 * intrrupt handler once it gets below the panic threshold, that way
344 * we don't risk that the refilling is moved to another CPU when the
345 * one running the interrupt handler just got the slab code hot in its
346 * cache.
348 #define RX_RING_SIZE 72
349 #define RX_MINI_SIZE 64
350 #define RX_JUMBO_SIZE 48
352 #define RX_PANIC_STD_THRES 16
353 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
354 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
355 #define RX_PANIC_MINI_THRES 12
356 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
357 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
358 #define RX_PANIC_JUMBO_THRES 6
359 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
360 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
364 * Size of the mini ring entries, basically these just should be big
365 * enough to take TCP ACKs
367 #define ACE_MINI_SIZE 100
369 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
370 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
371 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
374 * There seems to be a magic difference in the effect between 995 and 996
375 * but little difference between 900 and 995 ... no idea why.
377 * There is now a default set of tuning parameters which is set, depending
378 * on whether or not the user enables Jumbo frames. It's assumed that if
379 * Jumbo frames are enabled, the user wants optimal tuning for that case.
381 #define DEF_TX_COAL 400 /* 996 */
382 #define DEF_TX_MAX_DESC 60 /* was 40 */
383 #define DEF_RX_COAL 120 /* 1000 */
384 #define DEF_RX_MAX_DESC 25
385 #define DEF_TX_RATIO 21 /* 24 */
387 #define DEF_JUMBO_TX_COAL 20
388 #define DEF_JUMBO_TX_MAX_DESC 60
389 #define DEF_JUMBO_RX_COAL 30
390 #define DEF_JUMBO_RX_MAX_DESC 6
391 #define DEF_JUMBO_TX_RATIO 21
393 #if tigon2FwReleaseLocal < 20001118
395 * Standard firmware and early modifications duplicate
396 * IRQ load without this flag (coal timer is never reset).
397 * Note that with this flag tx_coal should be less than
398 * time to xmit full tx ring.
399 * 400usec is not so bad for tx ring size of 128.
401 #define TX_COAL_INTS_ONLY 1 /* worth it */
402 #else
404 * With modified firmware, this is not necessary, but still useful.
406 #define TX_COAL_INTS_ONLY 1
407 #endif
409 #define DEF_TRACE 0
410 #define DEF_STAT (2 * TICKS_PER_SEC)
413 static int link[ACE_MAX_MOD_PARMS];
414 static int trace[ACE_MAX_MOD_PARMS];
415 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
416 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
417 static int max_tx_desc[ACE_MAX_MOD_PARMS];
418 static int max_rx_desc[ACE_MAX_MOD_PARMS];
419 static int tx_ratio[ACE_MAX_MOD_PARMS];
420 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
422 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
423 MODULE_LICENSE("GPL");
424 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
426 module_param_array(link, int, NULL, 0);
427 module_param_array(trace, int, NULL, 0);
428 module_param_array(tx_coal_tick, int, NULL, 0);
429 module_param_array(max_tx_desc, int, NULL, 0);
430 module_param_array(rx_coal_tick, int, NULL, 0);
431 module_param_array(max_rx_desc, int, NULL, 0);
432 module_param_array(tx_ratio, int, NULL, 0);
433 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
434 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
435 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
436 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
437 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
438 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
439 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
442 static char version[] __devinitdata =
443 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
444 " http://home.cern.ch/~jes/gige/acenic.html\n";
446 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
447 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
448 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
450 static const struct ethtool_ops ace_ethtool_ops = {
451 .get_settings = ace_get_settings,
452 .set_settings = ace_set_settings,
453 .get_drvinfo = ace_get_drvinfo,
456 static void ace_watchdog(struct net_device *dev);
458 static int __devinit acenic_probe_one(struct pci_dev *pdev,
459 const struct pci_device_id *id)
461 struct net_device *dev;
462 struct ace_private *ap;
463 static int boards_found;
465 dev = alloc_etherdev(sizeof(struct ace_private));
466 if (dev == NULL) {
467 printk(KERN_ERR "acenic: Unable to allocate "
468 "net_device structure!\n");
469 return -ENOMEM;
472 SET_MODULE_OWNER(dev);
473 SET_NETDEV_DEV(dev, &pdev->dev);
475 ap = dev->priv;
476 ap->pdev = pdev;
477 ap->name = pci_name(pdev);
479 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
480 #if ACENIC_DO_VLAN
481 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
482 dev->vlan_rx_register = ace_vlan_rx_register;
483 dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid;
484 #endif
485 if (1) {
486 dev->tx_timeout = &ace_watchdog;
487 dev->watchdog_timeo = 5*HZ;
490 dev->open = &ace_open;
491 dev->stop = &ace_close;
492 dev->hard_start_xmit = &ace_start_xmit;
493 dev->get_stats = &ace_get_stats;
494 dev->set_multicast_list = &ace_set_multicast_list;
495 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
496 dev->set_mac_address = &ace_set_mac_addr;
497 dev->change_mtu = &ace_change_mtu;
499 /* we only display this string ONCE */
500 if (!boards_found)
501 printk(version);
503 if (pci_enable_device(pdev))
504 goto fail_free_netdev;
507 * Enable master mode before we start playing with the
508 * pci_command word since pci_set_master() will modify
509 * it.
511 pci_set_master(pdev);
513 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
515 /* OpenFirmware on Mac's does not set this - DOH.. */
516 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
517 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
518 "access - was not enabled by BIOS/Firmware\n",
519 ap->name);
520 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
521 pci_write_config_word(ap->pdev, PCI_COMMAND,
522 ap->pci_command);
523 wmb();
526 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
527 if (ap->pci_latency <= 0x40) {
528 ap->pci_latency = 0x40;
529 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
533 * Remap the regs into kernel space - this is abuse of
534 * dev->base_addr since it was means for I/O port
535 * addresses but who gives a damn.
537 dev->base_addr = pci_resource_start(pdev, 0);
538 ap->regs = ioremap(dev->base_addr, 0x4000);
539 if (!ap->regs) {
540 printk(KERN_ERR "%s: Unable to map I/O register, "
541 "AceNIC %i will be disabled.\n",
542 ap->name, boards_found);
543 goto fail_free_netdev;
546 switch(pdev->vendor) {
547 case PCI_VENDOR_ID_ALTEON:
548 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
549 printk(KERN_INFO "%s: Farallon PN9100-T ",
550 ap->name);
551 } else {
552 printk(KERN_INFO "%s: Alteon AceNIC ",
553 ap->name);
555 break;
556 case PCI_VENDOR_ID_3COM:
557 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
558 break;
559 case PCI_VENDOR_ID_NETGEAR:
560 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
561 break;
562 case PCI_VENDOR_ID_DEC:
563 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
564 printk(KERN_INFO "%s: Farallon PN9000-SX ",
565 ap->name);
566 break;
568 case PCI_VENDOR_ID_SGI:
569 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
570 break;
571 default:
572 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
573 break;
576 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
577 printk("irq %d\n", pdev->irq);
579 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
580 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
581 printk(KERN_ERR "%s: Driver compiled without Tigon I"
582 " support - NIC disabled\n", dev->name);
583 goto fail_uninit;
585 #endif
587 if (ace_allocate_descriptors(dev))
588 goto fail_free_netdev;
590 #ifdef MODULE
591 if (boards_found >= ACE_MAX_MOD_PARMS)
592 ap->board_idx = BOARD_IDX_OVERFLOW;
593 else
594 ap->board_idx = boards_found;
595 #else
596 ap->board_idx = BOARD_IDX_STATIC;
597 #endif
599 if (ace_init(dev))
600 goto fail_free_netdev;
602 if (register_netdev(dev)) {
603 printk(KERN_ERR "acenic: device registration failed\n");
604 goto fail_uninit;
606 ap->name = dev->name;
608 if (ap->pci_using_dac)
609 dev->features |= NETIF_F_HIGHDMA;
611 pci_set_drvdata(pdev, dev);
613 boards_found++;
614 return 0;
616 fail_uninit:
617 ace_init_cleanup(dev);
618 fail_free_netdev:
619 free_netdev(dev);
620 return -ENODEV;
623 static void __devexit acenic_remove_one(struct pci_dev *pdev)
625 struct net_device *dev = pci_get_drvdata(pdev);
626 struct ace_private *ap = netdev_priv(dev);
627 struct ace_regs __iomem *regs = ap->regs;
628 short i;
630 unregister_netdev(dev);
632 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
633 if (ap->version >= 2)
634 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
637 * This clears any pending interrupts
639 writel(1, &regs->Mb0Lo);
640 readl(&regs->CpuCtrl); /* flush */
643 * Make sure no other CPUs are processing interrupts
644 * on the card before the buffers are being released.
645 * Otherwise one might experience some `interesting'
646 * effects.
648 * Then release the RX buffers - jumbo buffers were
649 * already released in ace_close().
651 ace_sync_irq(dev->irq);
653 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
654 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
656 if (skb) {
657 struct ring_info *ringp;
658 dma_addr_t mapping;
660 ringp = &ap->skb->rx_std_skbuff[i];
661 mapping = pci_unmap_addr(ringp, mapping);
662 pci_unmap_page(ap->pdev, mapping,
663 ACE_STD_BUFSIZE,
664 PCI_DMA_FROMDEVICE);
666 ap->rx_std_ring[i].size = 0;
667 ap->skb->rx_std_skbuff[i].skb = NULL;
668 dev_kfree_skb(skb);
672 if (ap->version >= 2) {
673 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
674 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
676 if (skb) {
677 struct ring_info *ringp;
678 dma_addr_t mapping;
680 ringp = &ap->skb->rx_mini_skbuff[i];
681 mapping = pci_unmap_addr(ringp,mapping);
682 pci_unmap_page(ap->pdev, mapping,
683 ACE_MINI_BUFSIZE,
684 PCI_DMA_FROMDEVICE);
686 ap->rx_mini_ring[i].size = 0;
687 ap->skb->rx_mini_skbuff[i].skb = NULL;
688 dev_kfree_skb(skb);
693 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
694 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
695 if (skb) {
696 struct ring_info *ringp;
697 dma_addr_t mapping;
699 ringp = &ap->skb->rx_jumbo_skbuff[i];
700 mapping = pci_unmap_addr(ringp, mapping);
701 pci_unmap_page(ap->pdev, mapping,
702 ACE_JUMBO_BUFSIZE,
703 PCI_DMA_FROMDEVICE);
705 ap->rx_jumbo_ring[i].size = 0;
706 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
707 dev_kfree_skb(skb);
711 ace_init_cleanup(dev);
712 free_netdev(dev);
715 static struct pci_driver acenic_pci_driver = {
716 .name = "acenic",
717 .id_table = acenic_pci_tbl,
718 .probe = acenic_probe_one,
719 .remove = __devexit_p(acenic_remove_one),
722 static int __init acenic_init(void)
724 return pci_register_driver(&acenic_pci_driver);
727 static void __exit acenic_exit(void)
729 pci_unregister_driver(&acenic_pci_driver);
732 module_init(acenic_init);
733 module_exit(acenic_exit);
735 static void ace_free_descriptors(struct net_device *dev)
737 struct ace_private *ap = netdev_priv(dev);
738 int size;
740 if (ap->rx_std_ring != NULL) {
741 size = (sizeof(struct rx_desc) *
742 (RX_STD_RING_ENTRIES +
743 RX_JUMBO_RING_ENTRIES +
744 RX_MINI_RING_ENTRIES +
745 RX_RETURN_RING_ENTRIES));
746 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
747 ap->rx_ring_base_dma);
748 ap->rx_std_ring = NULL;
749 ap->rx_jumbo_ring = NULL;
750 ap->rx_mini_ring = NULL;
751 ap->rx_return_ring = NULL;
753 if (ap->evt_ring != NULL) {
754 size = (sizeof(struct event) * EVT_RING_ENTRIES);
755 pci_free_consistent(ap->pdev, size, ap->evt_ring,
756 ap->evt_ring_dma);
757 ap->evt_ring = NULL;
759 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
760 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
761 pci_free_consistent(ap->pdev, size, ap->tx_ring,
762 ap->tx_ring_dma);
764 ap->tx_ring = NULL;
766 if (ap->evt_prd != NULL) {
767 pci_free_consistent(ap->pdev, sizeof(u32),
768 (void *)ap->evt_prd, ap->evt_prd_dma);
769 ap->evt_prd = NULL;
771 if (ap->rx_ret_prd != NULL) {
772 pci_free_consistent(ap->pdev, sizeof(u32),
773 (void *)ap->rx_ret_prd,
774 ap->rx_ret_prd_dma);
775 ap->rx_ret_prd = NULL;
777 if (ap->tx_csm != NULL) {
778 pci_free_consistent(ap->pdev, sizeof(u32),
779 (void *)ap->tx_csm, ap->tx_csm_dma);
780 ap->tx_csm = NULL;
785 static int ace_allocate_descriptors(struct net_device *dev)
787 struct ace_private *ap = netdev_priv(dev);
788 int size;
790 size = (sizeof(struct rx_desc) *
791 (RX_STD_RING_ENTRIES +
792 RX_JUMBO_RING_ENTRIES +
793 RX_MINI_RING_ENTRIES +
794 RX_RETURN_RING_ENTRIES));
796 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
797 &ap->rx_ring_base_dma);
798 if (ap->rx_std_ring == NULL)
799 goto fail;
801 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
802 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
803 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
805 size = (sizeof(struct event) * EVT_RING_ENTRIES);
807 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
809 if (ap->evt_ring == NULL)
810 goto fail;
813 * Only allocate a host TX ring for the Tigon II, the Tigon I
814 * has to use PCI registers for this ;-(
816 if (!ACE_IS_TIGON_I(ap)) {
817 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
819 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
820 &ap->tx_ring_dma);
822 if (ap->tx_ring == NULL)
823 goto fail;
826 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
827 &ap->evt_prd_dma);
828 if (ap->evt_prd == NULL)
829 goto fail;
831 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
832 &ap->rx_ret_prd_dma);
833 if (ap->rx_ret_prd == NULL)
834 goto fail;
836 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
837 &ap->tx_csm_dma);
838 if (ap->tx_csm == NULL)
839 goto fail;
841 return 0;
843 fail:
844 /* Clean up. */
845 ace_init_cleanup(dev);
846 return 1;
851 * Generic cleanup handling data allocated during init. Used when the
852 * module is unloaded or if an error occurs during initialization
854 static void ace_init_cleanup(struct net_device *dev)
856 struct ace_private *ap;
858 ap = netdev_priv(dev);
860 ace_free_descriptors(dev);
862 if (ap->info)
863 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
864 ap->info, ap->info_dma);
865 kfree(ap->skb);
866 kfree(ap->trace_buf);
868 if (dev->irq)
869 free_irq(dev->irq, dev);
871 iounmap(ap->regs);
876 * Commands are considered to be slow.
878 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
880 u32 idx;
882 idx = readl(&regs->CmdPrd);
884 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
885 idx = (idx + 1) % CMD_RING_ENTRIES;
887 writel(idx, &regs->CmdPrd);
891 static int __devinit ace_init(struct net_device *dev)
893 struct ace_private *ap;
894 struct ace_regs __iomem *regs;
895 struct ace_info *info = NULL;
896 struct pci_dev *pdev;
897 unsigned long myjif;
898 u64 tmp_ptr;
899 u32 tig_ver, mac1, mac2, tmp, pci_state;
900 int board_idx, ecode = 0;
901 short i;
902 unsigned char cache_size;
904 ap = netdev_priv(dev);
905 regs = ap->regs;
907 board_idx = ap->board_idx;
910 * aman@sgi.com - its useful to do a NIC reset here to
911 * address the `Firmware not running' problem subsequent
912 * to any crashes involving the NIC
914 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
915 readl(&regs->HostCtrl); /* PCI write posting */
916 udelay(5);
919 * Don't access any other registers before this point!
921 #ifdef __BIG_ENDIAN
923 * This will most likely need BYTE_SWAP once we switch
924 * to using __raw_writel()
926 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
927 &regs->HostCtrl);
928 #else
929 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
930 &regs->HostCtrl);
931 #endif
932 readl(&regs->HostCtrl); /* PCI write posting */
935 * Stop the NIC CPU and clear pending interrupts
937 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
938 readl(&regs->CpuCtrl); /* PCI write posting */
939 writel(0, &regs->Mb0Lo);
941 tig_ver = readl(&regs->HostCtrl) >> 28;
943 switch(tig_ver){
944 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
945 case 4:
946 case 5:
947 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
948 tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
949 tigonFwReleaseFix);
950 writel(0, &regs->LocalCtrl);
951 ap->version = 1;
952 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
953 break;
954 #endif
955 case 6:
956 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
957 tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
958 tigon2FwReleaseFix);
959 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
960 readl(&regs->CpuBCtrl); /* PCI write posting */
962 * The SRAM bank size does _not_ indicate the amount
963 * of memory on the card, it controls the _bank_ size!
964 * Ie. a 1MB AceNIC will have two banks of 512KB.
966 writel(SRAM_BANK_512K, &regs->LocalCtrl);
967 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
968 ap->version = 2;
969 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
970 break;
971 default:
972 printk(KERN_WARNING " Unsupported Tigon version detected "
973 "(%i)\n", tig_ver);
974 ecode = -ENODEV;
975 goto init_error;
979 * ModeStat _must_ be set after the SRAM settings as this change
980 * seems to corrupt the ModeStat and possible other registers.
981 * The SRAM settings survive resets and setting it to the same
982 * value a second time works as well. This is what caused the
983 * `Firmware not running' problem on the Tigon II.
985 #ifdef __BIG_ENDIAN
986 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
987 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
988 #else
989 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
990 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
991 #endif
992 readl(&regs->ModeStat); /* PCI write posting */
994 mac1 = 0;
995 for(i = 0; i < 4; i++) {
996 int tmp;
998 mac1 = mac1 << 8;
999 tmp = read_eeprom_byte(dev, 0x8c+i);
1000 if (tmp < 0) {
1001 ecode = -EIO;
1002 goto init_error;
1003 } else
1004 mac1 |= (tmp & 0xff);
1006 mac2 = 0;
1007 for(i = 4; i < 8; i++) {
1008 int tmp;
1010 mac2 = mac2 << 8;
1011 tmp = read_eeprom_byte(dev, 0x8c+i);
1012 if (tmp < 0) {
1013 ecode = -EIO;
1014 goto init_error;
1015 } else
1016 mac2 |= (tmp & 0xff);
1019 writel(mac1, &regs->MacAddrHi);
1020 writel(mac2, &regs->MacAddrLo);
1022 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1023 (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff,
1024 (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff);
1026 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1027 dev->dev_addr[1] = mac1 & 0xff;
1028 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1029 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1030 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1031 dev->dev_addr[5] = mac2 & 0xff;
1034 * Looks like this is necessary to deal with on all architectures,
1035 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1036 * Ie. having two NICs in the machine, one will have the cache
1037 * line set at boot time, the other will not.
1039 pdev = ap->pdev;
1040 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1041 cache_size <<= 2;
1042 if (cache_size != SMP_CACHE_BYTES) {
1043 printk(KERN_INFO " PCI cache line size set incorrectly "
1044 "(%i bytes) by BIOS/FW, ", cache_size);
1045 if (cache_size > SMP_CACHE_BYTES)
1046 printk("expecting %i\n", SMP_CACHE_BYTES);
1047 else {
1048 printk("correcting to %i\n", SMP_CACHE_BYTES);
1049 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1050 SMP_CACHE_BYTES >> 2);
1054 pci_state = readl(&regs->PciState);
1055 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1056 "latency: %i clks\n",
1057 (pci_state & PCI_32BIT) ? 32 : 64,
1058 (pci_state & PCI_66MHZ) ? 66 : 33,
1059 ap->pci_latency);
1062 * Set the max DMA transfer size. Seems that for most systems
1063 * the performance is better when no MAX parameter is
1064 * set. However for systems enabling PCI write and invalidate,
1065 * DMA writes must be set to the L1 cache line size to get
1066 * optimal performance.
1068 * The default is now to turn the PCI write and invalidate off
1069 * - that is what Alteon does for NT.
1071 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1072 if (ap->version >= 2) {
1073 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1075 * Tuning parameters only supported for 8 cards
1077 if (board_idx == BOARD_IDX_OVERFLOW ||
1078 dis_pci_mem_inval[board_idx]) {
1079 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1080 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1081 pci_write_config_word(pdev, PCI_COMMAND,
1082 ap->pci_command);
1083 printk(KERN_INFO " Disabling PCI memory "
1084 "write and invalidate\n");
1086 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1087 printk(KERN_INFO " PCI memory write & invalidate "
1088 "enabled by BIOS, enabling counter measures\n");
1090 switch(SMP_CACHE_BYTES) {
1091 case 16:
1092 tmp |= DMA_WRITE_MAX_16;
1093 break;
1094 case 32:
1095 tmp |= DMA_WRITE_MAX_32;
1096 break;
1097 case 64:
1098 tmp |= DMA_WRITE_MAX_64;
1099 break;
1100 case 128:
1101 tmp |= DMA_WRITE_MAX_128;
1102 break;
1103 default:
1104 printk(KERN_INFO " Cache line size %i not "
1105 "supported, PCI write and invalidate "
1106 "disabled\n", SMP_CACHE_BYTES);
1107 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1108 pci_write_config_word(pdev, PCI_COMMAND,
1109 ap->pci_command);
1114 #ifdef __sparc__
1116 * On this platform, we know what the best dma settings
1117 * are. We use 64-byte maximum bursts, because if we
1118 * burst larger than the cache line size (or even cross
1119 * a 64byte boundary in a single burst) the UltraSparc
1120 * PCI controller will disconnect at 64-byte multiples.
1122 * Read-multiple will be properly enabled above, and when
1123 * set will give the PCI controller proper hints about
1124 * prefetching.
1126 tmp &= ~DMA_READ_WRITE_MASK;
1127 tmp |= DMA_READ_MAX_64;
1128 tmp |= DMA_WRITE_MAX_64;
1129 #endif
1130 #ifdef __alpha__
1131 tmp &= ~DMA_READ_WRITE_MASK;
1132 tmp |= DMA_READ_MAX_128;
1134 * All the docs say MUST NOT. Well, I did.
1135 * Nothing terrible happens, if we load wrong size.
1136 * Bit w&i still works better!
1138 tmp |= DMA_WRITE_MAX_128;
1139 #endif
1140 writel(tmp, &regs->PciState);
1142 #if 0
1144 * The Host PCI bus controller driver has to set FBB.
1145 * If all devices on that PCI bus support FBB, then the controller
1146 * can enable FBB support in the Host PCI Bus controller (or on
1147 * the PCI-PCI bridge if that applies).
1148 * -ggg
1151 * I have received reports from people having problems when this
1152 * bit is enabled.
1154 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1155 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1156 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1157 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1159 #endif
1162 * Configure DMA attributes.
1164 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1165 ap->pci_using_dac = 1;
1166 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1167 ap->pci_using_dac = 0;
1168 } else {
1169 ecode = -ENODEV;
1170 goto init_error;
1174 * Initialize the generic info block and the command+event rings
1175 * and the control blocks for the transmit and receive rings
1176 * as they need to be setup once and for all.
1178 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1179 &ap->info_dma))) {
1180 ecode = -EAGAIN;
1181 goto init_error;
1183 ap->info = info;
1186 * Get the memory for the skb rings.
1188 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1189 ecode = -EAGAIN;
1190 goto init_error;
1193 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1194 DRV_NAME, dev);
1195 if (ecode) {
1196 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1197 DRV_NAME, pdev->irq);
1198 goto init_error;
1199 } else
1200 dev->irq = pdev->irq;
1202 #ifdef INDEX_DEBUG
1203 spin_lock_init(&ap->debug_lock);
1204 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1205 ap->last_std_rx = 0;
1206 ap->last_mini_rx = 0;
1207 #endif
1209 memset(ap->info, 0, sizeof(struct ace_info));
1210 memset(ap->skb, 0, sizeof(struct ace_skb));
1212 ace_load_firmware(dev);
1213 ap->fw_running = 0;
1215 tmp_ptr = ap->info_dma;
1216 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1217 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1219 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1221 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1222 info->evt_ctrl.flags = 0;
1224 *(ap->evt_prd) = 0;
1225 wmb();
1226 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1227 writel(0, &regs->EvtCsm);
1229 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1230 info->cmd_ctrl.flags = 0;
1231 info->cmd_ctrl.max_len = 0;
1233 for (i = 0; i < CMD_RING_ENTRIES; i++)
1234 writel(0, &regs->CmdRng[i]);
1236 writel(0, &regs->CmdPrd);
1237 writel(0, &regs->CmdCsm);
1239 tmp_ptr = ap->info_dma;
1240 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1241 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1243 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1244 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1245 info->rx_std_ctrl.flags =
1246 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1248 memset(ap->rx_std_ring, 0,
1249 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1251 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1252 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1254 ap->rx_std_skbprd = 0;
1255 atomic_set(&ap->cur_rx_bufs, 0);
1257 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1258 (ap->rx_ring_base_dma +
1259 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1260 info->rx_jumbo_ctrl.max_len = 0;
1261 info->rx_jumbo_ctrl.flags =
1262 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1264 memset(ap->rx_jumbo_ring, 0,
1265 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1267 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1268 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1270 ap->rx_jumbo_skbprd = 0;
1271 atomic_set(&ap->cur_jumbo_bufs, 0);
1273 memset(ap->rx_mini_ring, 0,
1274 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1276 if (ap->version >= 2) {
1277 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1278 (ap->rx_ring_base_dma +
1279 (sizeof(struct rx_desc) *
1280 (RX_STD_RING_ENTRIES +
1281 RX_JUMBO_RING_ENTRIES))));
1282 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1283 info->rx_mini_ctrl.flags =
1284 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1286 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1287 ap->rx_mini_ring[i].flags =
1288 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1289 } else {
1290 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1291 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1292 info->rx_mini_ctrl.max_len = 0;
1295 ap->rx_mini_skbprd = 0;
1296 atomic_set(&ap->cur_mini_bufs, 0);
1298 set_aceaddr(&info->rx_return_ctrl.rngptr,
1299 (ap->rx_ring_base_dma +
1300 (sizeof(struct rx_desc) *
1301 (RX_STD_RING_ENTRIES +
1302 RX_JUMBO_RING_ENTRIES +
1303 RX_MINI_RING_ENTRIES))));
1304 info->rx_return_ctrl.flags = 0;
1305 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1307 memset(ap->rx_return_ring, 0,
1308 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1310 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1311 *(ap->rx_ret_prd) = 0;
1313 writel(TX_RING_BASE, &regs->WinBase);
1315 if (ACE_IS_TIGON_I(ap)) {
1316 ap->tx_ring = (struct tx_desc *) regs->Window;
1317 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1318 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1319 writel(0, (void __iomem *)ap->tx_ring + i * 4);
1321 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1322 } else {
1323 memset(ap->tx_ring, 0,
1324 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1326 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1329 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1330 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1333 * The Tigon I does not like having the TX ring in host memory ;-(
1335 if (!ACE_IS_TIGON_I(ap))
1336 tmp |= RCB_FLG_TX_HOST_RING;
1337 #if TX_COAL_INTS_ONLY
1338 tmp |= RCB_FLG_COAL_INT_ONLY;
1339 #endif
1340 info->tx_ctrl.flags = tmp;
1342 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1345 * Potential item for tuning parameter
1347 #if 0 /* NO */
1348 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1349 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1350 #else
1351 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1352 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1353 #endif
1355 writel(0, &regs->MaskInt);
1356 writel(1, &regs->IfIdx);
1357 #if 0
1359 * McKinley boxes do not like us fiddling with AssistState
1360 * this early
1362 writel(1, &regs->AssistState);
1363 #endif
1365 writel(DEF_STAT, &regs->TuneStatTicks);
1366 writel(DEF_TRACE, &regs->TuneTrace);
1368 ace_set_rxtx_parms(dev, 0);
1370 if (board_idx == BOARD_IDX_OVERFLOW) {
1371 printk(KERN_WARNING "%s: more than %i NICs detected, "
1372 "ignoring module parameters!\n",
1373 ap->name, ACE_MAX_MOD_PARMS);
1374 } else if (board_idx >= 0) {
1375 if (tx_coal_tick[board_idx])
1376 writel(tx_coal_tick[board_idx],
1377 &regs->TuneTxCoalTicks);
1378 if (max_tx_desc[board_idx])
1379 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1381 if (rx_coal_tick[board_idx])
1382 writel(rx_coal_tick[board_idx],
1383 &regs->TuneRxCoalTicks);
1384 if (max_rx_desc[board_idx])
1385 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1387 if (trace[board_idx])
1388 writel(trace[board_idx], &regs->TuneTrace);
1390 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1391 writel(tx_ratio[board_idx], &regs->TxBufRat);
1395 * Default link parameters
1397 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1398 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1399 if(ap->version >= 2)
1400 tmp |= LNK_TX_FLOW_CTL_Y;
1403 * Override link default parameters
1405 if ((board_idx >= 0) && link[board_idx]) {
1406 int option = link[board_idx];
1408 tmp = LNK_ENABLE;
1410 if (option & 0x01) {
1411 printk(KERN_INFO "%s: Setting half duplex link\n",
1412 ap->name);
1413 tmp &= ~LNK_FULL_DUPLEX;
1415 if (option & 0x02)
1416 tmp &= ~LNK_NEGOTIATE;
1417 if (option & 0x10)
1418 tmp |= LNK_10MB;
1419 if (option & 0x20)
1420 tmp |= LNK_100MB;
1421 if (option & 0x40)
1422 tmp |= LNK_1000MB;
1423 if ((option & 0x70) == 0) {
1424 printk(KERN_WARNING "%s: No media speed specified, "
1425 "forcing auto negotiation\n", ap->name);
1426 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1427 LNK_100MB | LNK_10MB;
1429 if ((option & 0x100) == 0)
1430 tmp |= LNK_NEG_FCTL;
1431 else
1432 printk(KERN_INFO "%s: Disabling flow control "
1433 "negotiation\n", ap->name);
1434 if (option & 0x200)
1435 tmp |= LNK_RX_FLOW_CTL_Y;
1436 if ((option & 0x400) && (ap->version >= 2)) {
1437 printk(KERN_INFO "%s: Enabling TX flow control\n",
1438 ap->name);
1439 tmp |= LNK_TX_FLOW_CTL_Y;
1443 ap->link = tmp;
1444 writel(tmp, &regs->TuneLink);
1445 if (ap->version >= 2)
1446 writel(tmp, &regs->TuneFastLink);
1448 if (ACE_IS_TIGON_I(ap))
1449 writel(tigonFwStartAddr, &regs->Pc);
1450 if (ap->version == 2)
1451 writel(tigon2FwStartAddr, &regs->Pc);
1453 writel(0, &regs->Mb0Lo);
1456 * Set tx_csm before we start receiving interrupts, otherwise
1457 * the interrupt handler might think it is supposed to process
1458 * tx ints before we are up and running, which may cause a null
1459 * pointer access in the int handler.
1461 ap->cur_rx = 0;
1462 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1464 wmb();
1465 ace_set_txprd(regs, ap, 0);
1466 writel(0, &regs->RxRetCsm);
1469 * Zero the stats before starting the interface
1471 memset(&ap->stats, 0, sizeof(ap->stats));
1474 * Enable DMA engine now.
1475 * If we do this sooner, Mckinley box pukes.
1476 * I assume it's because Tigon II DMA engine wants to check
1477 * *something* even before the CPU is started.
1479 writel(1, &regs->AssistState); /* enable DMA */
1482 * Start the NIC CPU
1484 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1485 readl(&regs->CpuCtrl);
1488 * Wait for the firmware to spin up - max 3 seconds.
1490 myjif = jiffies + 3 * HZ;
1491 while (time_before(jiffies, myjif) && !ap->fw_running)
1492 cpu_relax();
1494 if (!ap->fw_running) {
1495 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1497 ace_dump_trace(ap);
1498 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1499 readl(&regs->CpuCtrl);
1501 /* aman@sgi.com - account for badly behaving firmware/NIC:
1502 * - have observed that the NIC may continue to generate
1503 * interrupts for some reason; attempt to stop it - halt
1504 * second CPU for Tigon II cards, and also clear Mb0
1505 * - if we're a module, we'll fail to load if this was
1506 * the only GbE card in the system => if the kernel does
1507 * see an interrupt from the NIC, code to handle it is
1508 * gone and OOps! - so free_irq also
1510 if (ap->version >= 2)
1511 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1512 &regs->CpuBCtrl);
1513 writel(0, &regs->Mb0Lo);
1514 readl(&regs->Mb0Lo);
1516 ecode = -EBUSY;
1517 goto init_error;
1521 * We load the ring here as there seem to be no way to tell the
1522 * firmware to wipe the ring without re-initializing it.
1524 if (!test_and_set_bit(0, &ap->std_refill_busy))
1525 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1526 else
1527 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1528 ap->name);
1529 if (ap->version >= 2) {
1530 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1531 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1532 else
1533 printk(KERN_ERR "%s: Someone is busy refilling "
1534 "the RX mini ring\n", ap->name);
1536 return 0;
1538 init_error:
1539 ace_init_cleanup(dev);
1540 return ecode;
1544 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1546 struct ace_private *ap = netdev_priv(dev);
1547 struct ace_regs __iomem *regs = ap->regs;
1548 int board_idx = ap->board_idx;
1550 if (board_idx >= 0) {
1551 if (!jumbo) {
1552 if (!tx_coal_tick[board_idx])
1553 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1554 if (!max_tx_desc[board_idx])
1555 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1556 if (!rx_coal_tick[board_idx])
1557 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1558 if (!max_rx_desc[board_idx])
1559 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1560 if (!tx_ratio[board_idx])
1561 writel(DEF_TX_RATIO, &regs->TxBufRat);
1562 } else {
1563 if (!tx_coal_tick[board_idx])
1564 writel(DEF_JUMBO_TX_COAL,
1565 &regs->TuneTxCoalTicks);
1566 if (!max_tx_desc[board_idx])
1567 writel(DEF_JUMBO_TX_MAX_DESC,
1568 &regs->TuneMaxTxDesc);
1569 if (!rx_coal_tick[board_idx])
1570 writel(DEF_JUMBO_RX_COAL,
1571 &regs->TuneRxCoalTicks);
1572 if (!max_rx_desc[board_idx])
1573 writel(DEF_JUMBO_RX_MAX_DESC,
1574 &regs->TuneMaxRxDesc);
1575 if (!tx_ratio[board_idx])
1576 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1582 static void ace_watchdog(struct net_device *data)
1584 struct net_device *dev = data;
1585 struct ace_private *ap = netdev_priv(dev);
1586 struct ace_regs __iomem *regs = ap->regs;
1589 * We haven't received a stats update event for more than 2.5
1590 * seconds and there is data in the transmit queue, thus we
1591 * asume the card is stuck.
1593 if (*ap->tx_csm != ap->tx_ret_csm) {
1594 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1595 dev->name, (unsigned int)readl(&regs->HostCtrl));
1596 /* This can happen due to ieee flow control. */
1597 } else {
1598 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1599 dev->name);
1600 #if 0
1601 netif_wake_queue(dev);
1602 #endif
1607 static void ace_tasklet(unsigned long dev)
1609 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1610 int cur_size;
1612 cur_size = atomic_read(&ap->cur_rx_bufs);
1613 if ((cur_size < RX_LOW_STD_THRES) &&
1614 !test_and_set_bit(0, &ap->std_refill_busy)) {
1615 #ifdef DEBUG
1616 printk("refilling buffers (current %i)\n", cur_size);
1617 #endif
1618 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1621 if (ap->version >= 2) {
1622 cur_size = atomic_read(&ap->cur_mini_bufs);
1623 if ((cur_size < RX_LOW_MINI_THRES) &&
1624 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1625 #ifdef DEBUG
1626 printk("refilling mini buffers (current %i)\n",
1627 cur_size);
1628 #endif
1629 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1633 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1634 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1635 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1636 #ifdef DEBUG
1637 printk("refilling jumbo buffers (current %i)\n", cur_size);
1638 #endif
1639 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1641 ap->tasklet_pending = 0;
1646 * Copy the contents of the NIC's trace buffer to kernel memory.
1648 static void ace_dump_trace(struct ace_private *ap)
1650 #if 0
1651 if (!ap->trace_buf)
1652 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1653 return;
1654 #endif
1659 * Load the standard rx ring.
1661 * Loading rings is safe without holding the spin lock since this is
1662 * done only before the device is enabled, thus no interrupts are
1663 * generated and by the interrupt handler/tasklet handler.
1665 static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1667 struct ace_regs __iomem *regs = ap->regs;
1668 short i, idx;
1671 prefetchw(&ap->cur_rx_bufs);
1673 idx = ap->rx_std_skbprd;
1675 for (i = 0; i < nr_bufs; i++) {
1676 struct sk_buff *skb;
1677 struct rx_desc *rd;
1678 dma_addr_t mapping;
1680 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1681 if (!skb)
1682 break;
1684 skb_reserve(skb, NET_IP_ALIGN);
1685 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1686 offset_in_page(skb->data),
1687 ACE_STD_BUFSIZE,
1688 PCI_DMA_FROMDEVICE);
1689 ap->skb->rx_std_skbuff[idx].skb = skb;
1690 pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1691 mapping, mapping);
1693 rd = &ap->rx_std_ring[idx];
1694 set_aceaddr(&rd->addr, mapping);
1695 rd->size = ACE_STD_BUFSIZE;
1696 rd->idx = idx;
1697 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1700 if (!i)
1701 goto error_out;
1703 atomic_add(i, &ap->cur_rx_bufs);
1704 ap->rx_std_skbprd = idx;
1706 if (ACE_IS_TIGON_I(ap)) {
1707 struct cmd cmd;
1708 cmd.evt = C_SET_RX_PRD_IDX;
1709 cmd.code = 0;
1710 cmd.idx = ap->rx_std_skbprd;
1711 ace_issue_cmd(regs, &cmd);
1712 } else {
1713 writel(idx, &regs->RxStdPrd);
1714 wmb();
1717 out:
1718 clear_bit(0, &ap->std_refill_busy);
1719 return;
1721 error_out:
1722 printk(KERN_INFO "Out of memory when allocating "
1723 "standard receive buffers\n");
1724 goto out;
1728 static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1730 struct ace_regs __iomem *regs = ap->regs;
1731 short i, idx;
1733 prefetchw(&ap->cur_mini_bufs);
1735 idx = ap->rx_mini_skbprd;
1736 for (i = 0; i < nr_bufs; i++) {
1737 struct sk_buff *skb;
1738 struct rx_desc *rd;
1739 dma_addr_t mapping;
1741 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1742 if (!skb)
1743 break;
1745 skb_reserve(skb, NET_IP_ALIGN);
1746 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1747 offset_in_page(skb->data),
1748 ACE_MINI_BUFSIZE,
1749 PCI_DMA_FROMDEVICE);
1750 ap->skb->rx_mini_skbuff[idx].skb = skb;
1751 pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1752 mapping, mapping);
1754 rd = &ap->rx_mini_ring[idx];
1755 set_aceaddr(&rd->addr, mapping);
1756 rd->size = ACE_MINI_BUFSIZE;
1757 rd->idx = idx;
1758 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1761 if (!i)
1762 goto error_out;
1764 atomic_add(i, &ap->cur_mini_bufs);
1766 ap->rx_mini_skbprd = idx;
1768 writel(idx, &regs->RxMiniPrd);
1769 wmb();
1771 out:
1772 clear_bit(0, &ap->mini_refill_busy);
1773 return;
1774 error_out:
1775 printk(KERN_INFO "Out of memory when allocating "
1776 "mini receive buffers\n");
1777 goto out;
1782 * Load the jumbo rx ring, this may happen at any time if the MTU
1783 * is changed to a value > 1500.
1785 static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1787 struct ace_regs __iomem *regs = ap->regs;
1788 short i, idx;
1790 idx = ap->rx_jumbo_skbprd;
1792 for (i = 0; i < nr_bufs; i++) {
1793 struct sk_buff *skb;
1794 struct rx_desc *rd;
1795 dma_addr_t mapping;
1797 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1798 if (!skb)
1799 break;
1801 skb_reserve(skb, NET_IP_ALIGN);
1802 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1803 offset_in_page(skb->data),
1804 ACE_JUMBO_BUFSIZE,
1805 PCI_DMA_FROMDEVICE);
1806 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1807 pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1808 mapping, mapping);
1810 rd = &ap->rx_jumbo_ring[idx];
1811 set_aceaddr(&rd->addr, mapping);
1812 rd->size = ACE_JUMBO_BUFSIZE;
1813 rd->idx = idx;
1814 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1817 if (!i)
1818 goto error_out;
1820 atomic_add(i, &ap->cur_jumbo_bufs);
1821 ap->rx_jumbo_skbprd = idx;
1823 if (ACE_IS_TIGON_I(ap)) {
1824 struct cmd cmd;
1825 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1826 cmd.code = 0;
1827 cmd.idx = ap->rx_jumbo_skbprd;
1828 ace_issue_cmd(regs, &cmd);
1829 } else {
1830 writel(idx, &regs->RxJumboPrd);
1831 wmb();
1834 out:
1835 clear_bit(0, &ap->jumbo_refill_busy);
1836 return;
1837 error_out:
1838 if (net_ratelimit())
1839 printk(KERN_INFO "Out of memory when allocating "
1840 "jumbo receive buffers\n");
1841 goto out;
1846 * All events are considered to be slow (RX/TX ints do not generate
1847 * events) and are handled here, outside the main interrupt handler,
1848 * to reduce the size of the handler.
1850 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1852 struct ace_private *ap;
1854 ap = netdev_priv(dev);
1856 while (evtcsm != evtprd) {
1857 switch (ap->evt_ring[evtcsm].evt) {
1858 case E_FW_RUNNING:
1859 printk(KERN_INFO "%s: Firmware up and running\n",
1860 ap->name);
1861 ap->fw_running = 1;
1862 wmb();
1863 break;
1864 case E_STATS_UPDATED:
1865 break;
1866 case E_LNK_STATE:
1868 u16 code = ap->evt_ring[evtcsm].code;
1869 switch (code) {
1870 case E_C_LINK_UP:
1872 u32 state = readl(&ap->regs->GigLnkState);
1873 printk(KERN_WARNING "%s: Optical link UP "
1874 "(%s Duplex, Flow Control: %s%s)\n",
1875 ap->name,
1876 state & LNK_FULL_DUPLEX ? "Full":"Half",
1877 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1878 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1879 break;
1881 case E_C_LINK_DOWN:
1882 printk(KERN_WARNING "%s: Optical link DOWN\n",
1883 ap->name);
1884 break;
1885 case E_C_LINK_10_100:
1886 printk(KERN_WARNING "%s: 10/100BaseT link "
1887 "UP\n", ap->name);
1888 break;
1889 default:
1890 printk(KERN_ERR "%s: Unknown optical link "
1891 "state %02x\n", ap->name, code);
1893 break;
1895 case E_ERROR:
1896 switch(ap->evt_ring[evtcsm].code) {
1897 case E_C_ERR_INVAL_CMD:
1898 printk(KERN_ERR "%s: invalid command error\n",
1899 ap->name);
1900 break;
1901 case E_C_ERR_UNIMP_CMD:
1902 printk(KERN_ERR "%s: unimplemented command "
1903 "error\n", ap->name);
1904 break;
1905 case E_C_ERR_BAD_CFG:
1906 printk(KERN_ERR "%s: bad config error\n",
1907 ap->name);
1908 break;
1909 default:
1910 printk(KERN_ERR "%s: unknown error %02x\n",
1911 ap->name, ap->evt_ring[evtcsm].code);
1913 break;
1914 case E_RESET_JUMBO_RNG:
1916 int i;
1917 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1918 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1919 ap->rx_jumbo_ring[i].size = 0;
1920 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1921 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1922 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1926 if (ACE_IS_TIGON_I(ap)) {
1927 struct cmd cmd;
1928 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1929 cmd.code = 0;
1930 cmd.idx = 0;
1931 ace_issue_cmd(ap->regs, &cmd);
1932 } else {
1933 writel(0, &((ap->regs)->RxJumboPrd));
1934 wmb();
1937 ap->jumbo = 0;
1938 ap->rx_jumbo_skbprd = 0;
1939 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1940 ap->name);
1941 clear_bit(0, &ap->jumbo_refill_busy);
1942 break;
1944 default:
1945 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1946 ap->name, ap->evt_ring[evtcsm].evt);
1948 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1951 return evtcsm;
1955 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1957 struct ace_private *ap = netdev_priv(dev);
1958 u32 idx;
1959 int mini_count = 0, std_count = 0;
1961 idx = rxretcsm;
1963 prefetchw(&ap->cur_rx_bufs);
1964 prefetchw(&ap->cur_mini_bufs);
1966 while (idx != rxretprd) {
1967 struct ring_info *rip;
1968 struct sk_buff *skb;
1969 struct rx_desc *rxdesc, *retdesc;
1970 u32 skbidx;
1971 int bd_flags, desc_type, mapsize;
1972 u16 csum;
1975 /* make sure the rx descriptor isn't read before rxretprd */
1976 if (idx == rxretcsm)
1977 rmb();
1979 retdesc = &ap->rx_return_ring[idx];
1980 skbidx = retdesc->idx;
1981 bd_flags = retdesc->flags;
1982 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1984 switch(desc_type) {
1986 * Normal frames do not have any flags set
1988 * Mini and normal frames arrive frequently,
1989 * so use a local counter to avoid doing
1990 * atomic operations for each packet arriving.
1992 case 0:
1993 rip = &ap->skb->rx_std_skbuff[skbidx];
1994 mapsize = ACE_STD_BUFSIZE;
1995 rxdesc = &ap->rx_std_ring[skbidx];
1996 std_count++;
1997 break;
1998 case BD_FLG_JUMBO:
1999 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
2000 mapsize = ACE_JUMBO_BUFSIZE;
2001 rxdesc = &ap->rx_jumbo_ring[skbidx];
2002 atomic_dec(&ap->cur_jumbo_bufs);
2003 break;
2004 case BD_FLG_MINI:
2005 rip = &ap->skb->rx_mini_skbuff[skbidx];
2006 mapsize = ACE_MINI_BUFSIZE;
2007 rxdesc = &ap->rx_mini_ring[skbidx];
2008 mini_count++;
2009 break;
2010 default:
2011 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2012 "returned by NIC\n", dev->name,
2013 retdesc->flags);
2014 goto error;
2017 skb = rip->skb;
2018 rip->skb = NULL;
2019 pci_unmap_page(ap->pdev,
2020 pci_unmap_addr(rip, mapping),
2021 mapsize,
2022 PCI_DMA_FROMDEVICE);
2023 skb_put(skb, retdesc->size);
2026 * Fly baby, fly!
2028 csum = retdesc->tcp_udp_csum;
2030 skb->protocol = eth_type_trans(skb, dev);
2033 * Instead of forcing the poor tigon mips cpu to calculate
2034 * pseudo hdr checksum, we do this ourselves.
2036 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2037 skb->csum = htons(csum);
2038 skb->ip_summed = CHECKSUM_COMPLETE;
2039 } else {
2040 skb->ip_summed = CHECKSUM_NONE;
2043 /* send it up */
2044 #if ACENIC_DO_VLAN
2045 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2046 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2047 } else
2048 #endif
2049 netif_rx(skb);
2051 dev->last_rx = jiffies;
2052 ap->stats.rx_packets++;
2053 ap->stats.rx_bytes += retdesc->size;
2055 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2058 atomic_sub(std_count, &ap->cur_rx_bufs);
2059 if (!ACE_IS_TIGON_I(ap))
2060 atomic_sub(mini_count, &ap->cur_mini_bufs);
2062 out:
2064 * According to the documentation RxRetCsm is obsolete with
2065 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2067 if (ACE_IS_TIGON_I(ap)) {
2068 writel(idx, &ap->regs->RxRetCsm);
2070 ap->cur_rx = idx;
2072 return;
2073 error:
2074 idx = rxretprd;
2075 goto out;
2079 static inline void ace_tx_int(struct net_device *dev,
2080 u32 txcsm, u32 idx)
2082 struct ace_private *ap = netdev_priv(dev);
2084 do {
2085 struct sk_buff *skb;
2086 dma_addr_t mapping;
2087 struct tx_ring_info *info;
2089 info = ap->skb->tx_skbuff + idx;
2090 skb = info->skb;
2091 mapping = pci_unmap_addr(info, mapping);
2093 if (mapping) {
2094 pci_unmap_page(ap->pdev, mapping,
2095 pci_unmap_len(info, maplen),
2096 PCI_DMA_TODEVICE);
2097 pci_unmap_addr_set(info, mapping, 0);
2100 if (skb) {
2101 ap->stats.tx_packets++;
2102 ap->stats.tx_bytes += skb->len;
2103 dev_kfree_skb_irq(skb);
2104 info->skb = NULL;
2107 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2108 } while (idx != txcsm);
2110 if (netif_queue_stopped(dev))
2111 netif_wake_queue(dev);
2113 wmb();
2114 ap->tx_ret_csm = txcsm;
2116 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2118 * We could try to make it before. In this case we would get
2119 * the following race condition: hard_start_xmit on other cpu
2120 * enters after we advanced tx_ret_csm and fills space,
2121 * which we have just freed, so that we make illegal device wakeup.
2122 * There is no good way to workaround this (at entry
2123 * to ace_start_xmit detects this condition and prevents
2124 * ring corruption, but it is not a good workaround.)
2126 * When tx_ret_csm is advanced after, we wake up device _only_
2127 * if we really have some space in ring (though the core doing
2128 * hard_start_xmit can see full ring for some period and has to
2129 * synchronize.) Superb.
2130 * BUT! We get another subtle race condition. hard_start_xmit
2131 * may think that ring is full between wakeup and advancing
2132 * tx_ret_csm and will stop device instantly! It is not so bad.
2133 * We are guaranteed that there is something in ring, so that
2134 * the next irq will resume transmission. To speedup this we could
2135 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2136 * (see ace_start_xmit).
2138 * Well, this dilemma exists in all lock-free devices.
2139 * We, following scheme used in drivers by Donald Becker,
2140 * select the least dangerous.
2141 * --ANK
2146 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2148 struct net_device *dev = (struct net_device *)dev_id;
2149 struct ace_private *ap = netdev_priv(dev);
2150 struct ace_regs __iomem *regs = ap->regs;
2151 u32 idx;
2152 u32 txcsm, rxretcsm, rxretprd;
2153 u32 evtcsm, evtprd;
2156 * In case of PCI shared interrupts or spurious interrupts,
2157 * we want to make sure it is actually our interrupt before
2158 * spending any time in here.
2160 if (!(readl(&regs->HostCtrl) & IN_INT))
2161 return IRQ_NONE;
2164 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2165 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2166 * writel(0, &regs->Mb0Lo).
2168 * "IRQ avoidance" recommended in docs applies to IRQs served
2169 * threads and it is wrong even for that case.
2171 writel(0, &regs->Mb0Lo);
2172 readl(&regs->Mb0Lo);
2175 * There is no conflict between transmit handling in
2176 * start_xmit and receive processing, thus there is no reason
2177 * to take a spin lock for RX handling. Wait until we start
2178 * working on the other stuff - hey we don't need a spin lock
2179 * anymore.
2181 rxretprd = *ap->rx_ret_prd;
2182 rxretcsm = ap->cur_rx;
2184 if (rxretprd != rxretcsm)
2185 ace_rx_int(dev, rxretprd, rxretcsm);
2187 txcsm = *ap->tx_csm;
2188 idx = ap->tx_ret_csm;
2190 if (txcsm != idx) {
2192 * If each skb takes only one descriptor this check degenerates
2193 * to identity, because new space has just been opened.
2194 * But if skbs are fragmented we must check that this index
2195 * update releases enough of space, otherwise we just
2196 * wait for device to make more work.
2198 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2199 ace_tx_int(dev, txcsm, idx);
2202 evtcsm = readl(&regs->EvtCsm);
2203 evtprd = *ap->evt_prd;
2205 if (evtcsm != evtprd) {
2206 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2207 writel(evtcsm, &regs->EvtCsm);
2211 * This has to go last in the interrupt handler and run with
2212 * the spin lock released ... what lock?
2214 if (netif_running(dev)) {
2215 int cur_size;
2216 int run_tasklet = 0;
2218 cur_size = atomic_read(&ap->cur_rx_bufs);
2219 if (cur_size < RX_LOW_STD_THRES) {
2220 if ((cur_size < RX_PANIC_STD_THRES) &&
2221 !test_and_set_bit(0, &ap->std_refill_busy)) {
2222 #ifdef DEBUG
2223 printk("low on std buffers %i\n", cur_size);
2224 #endif
2225 ace_load_std_rx_ring(ap,
2226 RX_RING_SIZE - cur_size);
2227 } else
2228 run_tasklet = 1;
2231 if (!ACE_IS_TIGON_I(ap)) {
2232 cur_size = atomic_read(&ap->cur_mini_bufs);
2233 if (cur_size < RX_LOW_MINI_THRES) {
2234 if ((cur_size < RX_PANIC_MINI_THRES) &&
2235 !test_and_set_bit(0,
2236 &ap->mini_refill_busy)) {
2237 #ifdef DEBUG
2238 printk("low on mini buffers %i\n",
2239 cur_size);
2240 #endif
2241 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2242 } else
2243 run_tasklet = 1;
2247 if (ap->jumbo) {
2248 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2249 if (cur_size < RX_LOW_JUMBO_THRES) {
2250 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2251 !test_and_set_bit(0,
2252 &ap->jumbo_refill_busy)){
2253 #ifdef DEBUG
2254 printk("low on jumbo buffers %i\n",
2255 cur_size);
2256 #endif
2257 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2258 } else
2259 run_tasklet = 1;
2262 if (run_tasklet && !ap->tasklet_pending) {
2263 ap->tasklet_pending = 1;
2264 tasklet_schedule(&ap->ace_tasklet);
2268 return IRQ_HANDLED;
2272 #if ACENIC_DO_VLAN
2273 static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2275 struct ace_private *ap = netdev_priv(dev);
2276 unsigned long flags;
2278 local_irq_save(flags);
2279 ace_mask_irq(dev);
2281 ap->vlgrp = grp;
2283 ace_unmask_irq(dev);
2284 local_irq_restore(flags);
2288 static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2290 struct ace_private *ap = netdev_priv(dev);
2291 unsigned long flags;
2293 local_irq_save(flags);
2294 ace_mask_irq(dev);
2295 vlan_group_set_device(ap->vlgrp, vid, NULL);
2296 ace_unmask_irq(dev);
2297 local_irq_restore(flags);
2299 #endif /* ACENIC_DO_VLAN */
2302 static int ace_open(struct net_device *dev)
2304 struct ace_private *ap = netdev_priv(dev);
2305 struct ace_regs __iomem *regs = ap->regs;
2306 struct cmd cmd;
2308 if (!(ap->fw_running)) {
2309 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2310 return -EBUSY;
2313 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2315 cmd.evt = C_CLEAR_STATS;
2316 cmd.code = 0;
2317 cmd.idx = 0;
2318 ace_issue_cmd(regs, &cmd);
2320 cmd.evt = C_HOST_STATE;
2321 cmd.code = C_C_STACK_UP;
2322 cmd.idx = 0;
2323 ace_issue_cmd(regs, &cmd);
2325 if (ap->jumbo &&
2326 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2327 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2329 if (dev->flags & IFF_PROMISC) {
2330 cmd.evt = C_SET_PROMISC_MODE;
2331 cmd.code = C_C_PROMISC_ENABLE;
2332 cmd.idx = 0;
2333 ace_issue_cmd(regs, &cmd);
2335 ap->promisc = 1;
2336 }else
2337 ap->promisc = 0;
2338 ap->mcast_all = 0;
2340 #if 0
2341 cmd.evt = C_LNK_NEGOTIATION;
2342 cmd.code = 0;
2343 cmd.idx = 0;
2344 ace_issue_cmd(regs, &cmd);
2345 #endif
2347 netif_start_queue(dev);
2350 * Setup the bottom half rx ring refill handler
2352 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2353 return 0;
2357 static int ace_close(struct net_device *dev)
2359 struct ace_private *ap = netdev_priv(dev);
2360 struct ace_regs __iomem *regs = ap->regs;
2361 struct cmd cmd;
2362 unsigned long flags;
2363 short i;
2366 * Without (or before) releasing irq and stopping hardware, this
2367 * is an absolute non-sense, by the way. It will be reset instantly
2368 * by the first irq.
2370 netif_stop_queue(dev);
2373 if (ap->promisc) {
2374 cmd.evt = C_SET_PROMISC_MODE;
2375 cmd.code = C_C_PROMISC_DISABLE;
2376 cmd.idx = 0;
2377 ace_issue_cmd(regs, &cmd);
2378 ap->promisc = 0;
2381 cmd.evt = C_HOST_STATE;
2382 cmd.code = C_C_STACK_DOWN;
2383 cmd.idx = 0;
2384 ace_issue_cmd(regs, &cmd);
2386 tasklet_kill(&ap->ace_tasklet);
2389 * Make sure one CPU is not processing packets while
2390 * buffers are being released by another.
2393 local_irq_save(flags);
2394 ace_mask_irq(dev);
2396 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2397 struct sk_buff *skb;
2398 dma_addr_t mapping;
2399 struct tx_ring_info *info;
2401 info = ap->skb->tx_skbuff + i;
2402 skb = info->skb;
2403 mapping = pci_unmap_addr(info, mapping);
2405 if (mapping) {
2406 if (ACE_IS_TIGON_I(ap)) {
2407 struct tx_desc __iomem *tx
2408 = (struct tx_desc __iomem *) &ap->tx_ring[i];
2409 writel(0, &tx->addr.addrhi);
2410 writel(0, &tx->addr.addrlo);
2411 writel(0, &tx->flagsize);
2412 } else
2413 memset(ap->tx_ring + i, 0,
2414 sizeof(struct tx_desc));
2415 pci_unmap_page(ap->pdev, mapping,
2416 pci_unmap_len(info, maplen),
2417 PCI_DMA_TODEVICE);
2418 pci_unmap_addr_set(info, mapping, 0);
2420 if (skb) {
2421 dev_kfree_skb(skb);
2422 info->skb = NULL;
2426 if (ap->jumbo) {
2427 cmd.evt = C_RESET_JUMBO_RNG;
2428 cmd.code = 0;
2429 cmd.idx = 0;
2430 ace_issue_cmd(regs, &cmd);
2433 ace_unmask_irq(dev);
2434 local_irq_restore(flags);
2436 return 0;
2440 static inline dma_addr_t
2441 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2442 struct sk_buff *tail, u32 idx)
2444 dma_addr_t mapping;
2445 struct tx_ring_info *info;
2447 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2448 offset_in_page(skb->data),
2449 skb->len, PCI_DMA_TODEVICE);
2451 info = ap->skb->tx_skbuff + idx;
2452 info->skb = tail;
2453 pci_unmap_addr_set(info, mapping, mapping);
2454 pci_unmap_len_set(info, maplen, skb->len);
2455 return mapping;
2459 static inline void
2460 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2461 u32 flagsize, u32 vlan_tag)
2463 #if !USE_TX_COAL_NOW
2464 flagsize &= ~BD_FLG_COAL_NOW;
2465 #endif
2467 if (ACE_IS_TIGON_I(ap)) {
2468 struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc;
2469 writel(addr >> 32, &io->addr.addrhi);
2470 writel(addr & 0xffffffff, &io->addr.addrlo);
2471 writel(flagsize, &io->flagsize);
2472 #if ACENIC_DO_VLAN
2473 writel(vlan_tag, &io->vlanres);
2474 #endif
2475 } else {
2476 desc->addr.addrhi = addr >> 32;
2477 desc->addr.addrlo = addr;
2478 desc->flagsize = flagsize;
2479 #if ACENIC_DO_VLAN
2480 desc->vlanres = vlan_tag;
2481 #endif
2486 static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
2488 struct ace_private *ap = netdev_priv(dev);
2489 struct ace_regs __iomem *regs = ap->regs;
2490 struct tx_desc *desc;
2491 u32 idx, flagsize;
2492 unsigned long maxjiff = jiffies + 3*HZ;
2494 restart:
2495 idx = ap->tx_prd;
2497 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2498 goto overflow;
2500 if (!skb_shinfo(skb)->nr_frags) {
2501 dma_addr_t mapping;
2502 u32 vlan_tag = 0;
2504 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2505 flagsize = (skb->len << 16) | (BD_FLG_END);
2506 if (skb->ip_summed == CHECKSUM_PARTIAL)
2507 flagsize |= BD_FLG_TCP_UDP_SUM;
2508 #if ACENIC_DO_VLAN
2509 if (vlan_tx_tag_present(skb)) {
2510 flagsize |= BD_FLG_VLAN_TAG;
2511 vlan_tag = vlan_tx_tag_get(skb);
2513 #endif
2514 desc = ap->tx_ring + idx;
2515 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2517 /* Look at ace_tx_int for explanations. */
2518 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2519 flagsize |= BD_FLG_COAL_NOW;
2521 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2522 } else {
2523 dma_addr_t mapping;
2524 u32 vlan_tag = 0;
2525 int i, len = 0;
2527 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2528 flagsize = (skb_headlen(skb) << 16);
2529 if (skb->ip_summed == CHECKSUM_PARTIAL)
2530 flagsize |= BD_FLG_TCP_UDP_SUM;
2531 #if ACENIC_DO_VLAN
2532 if (vlan_tx_tag_present(skb)) {
2533 flagsize |= BD_FLG_VLAN_TAG;
2534 vlan_tag = vlan_tx_tag_get(skb);
2536 #endif
2538 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2540 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2542 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2543 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2544 struct tx_ring_info *info;
2546 len += frag->size;
2547 info = ap->skb->tx_skbuff + idx;
2548 desc = ap->tx_ring + idx;
2550 mapping = pci_map_page(ap->pdev, frag->page,
2551 frag->page_offset, frag->size,
2552 PCI_DMA_TODEVICE);
2554 flagsize = (frag->size << 16);
2555 if (skb->ip_summed == CHECKSUM_PARTIAL)
2556 flagsize |= BD_FLG_TCP_UDP_SUM;
2557 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2559 if (i == skb_shinfo(skb)->nr_frags - 1) {
2560 flagsize |= BD_FLG_END;
2561 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2562 flagsize |= BD_FLG_COAL_NOW;
2565 * Only the last fragment frees
2566 * the skb!
2568 info->skb = skb;
2569 } else {
2570 info->skb = NULL;
2572 pci_unmap_addr_set(info, mapping, mapping);
2573 pci_unmap_len_set(info, maplen, frag->size);
2574 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2578 wmb();
2579 ap->tx_prd = idx;
2580 ace_set_txprd(regs, ap, idx);
2582 if (flagsize & BD_FLG_COAL_NOW) {
2583 netif_stop_queue(dev);
2586 * A TX-descriptor producer (an IRQ) might have gotten
2587 * inbetween, making the ring free again. Since xmit is
2588 * serialized, this is the only situation we have to
2589 * re-test.
2591 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2592 netif_wake_queue(dev);
2595 dev->trans_start = jiffies;
2596 return NETDEV_TX_OK;
2598 overflow:
2600 * This race condition is unavoidable with lock-free drivers.
2601 * We wake up the queue _before_ tx_prd is advanced, so that we can
2602 * enter hard_start_xmit too early, while tx ring still looks closed.
2603 * This happens ~1-4 times per 100000 packets, so that we can allow
2604 * to loop syncing to other CPU. Probably, we need an additional
2605 * wmb() in ace_tx_intr as well.
2607 * Note that this race is relieved by reserving one more entry
2608 * in tx ring than it is necessary (see original non-SG driver).
2609 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2610 * is already overkill.
2612 * Alternative is to return with 1 not throttling queue. In this
2613 * case loop becomes longer, no more useful effects.
2615 if (time_before(jiffies, maxjiff)) {
2616 barrier();
2617 cpu_relax();
2618 goto restart;
2621 /* The ring is stuck full. */
2622 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2623 return NETDEV_TX_BUSY;
2627 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2629 struct ace_private *ap = netdev_priv(dev);
2630 struct ace_regs __iomem *regs = ap->regs;
2632 if (new_mtu > ACE_JUMBO_MTU)
2633 return -EINVAL;
2635 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2636 dev->mtu = new_mtu;
2638 if (new_mtu > ACE_STD_MTU) {
2639 if (!(ap->jumbo)) {
2640 printk(KERN_INFO "%s: Enabling Jumbo frame "
2641 "support\n", dev->name);
2642 ap->jumbo = 1;
2643 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2644 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2645 ace_set_rxtx_parms(dev, 1);
2647 } else {
2648 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2649 ace_sync_irq(dev->irq);
2650 ace_set_rxtx_parms(dev, 0);
2651 if (ap->jumbo) {
2652 struct cmd cmd;
2654 cmd.evt = C_RESET_JUMBO_RNG;
2655 cmd.code = 0;
2656 cmd.idx = 0;
2657 ace_issue_cmd(regs, &cmd);
2661 return 0;
2664 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2666 struct ace_private *ap = netdev_priv(dev);
2667 struct ace_regs __iomem *regs = ap->regs;
2668 u32 link;
2670 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2671 ecmd->supported =
2672 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2673 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2674 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2675 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2677 ecmd->port = PORT_FIBRE;
2678 ecmd->transceiver = XCVR_INTERNAL;
2680 link = readl(&regs->GigLnkState);
2681 if (link & LNK_1000MB)
2682 ecmd->speed = SPEED_1000;
2683 else {
2684 link = readl(&regs->FastLnkState);
2685 if (link & LNK_100MB)
2686 ecmd->speed = SPEED_100;
2687 else if (link & LNK_10MB)
2688 ecmd->speed = SPEED_10;
2689 else
2690 ecmd->speed = 0;
2692 if (link & LNK_FULL_DUPLEX)
2693 ecmd->duplex = DUPLEX_FULL;
2694 else
2695 ecmd->duplex = DUPLEX_HALF;
2697 if (link & LNK_NEGOTIATE)
2698 ecmd->autoneg = AUTONEG_ENABLE;
2699 else
2700 ecmd->autoneg = AUTONEG_DISABLE;
2702 #if 0
2704 * Current struct ethtool_cmd is insufficient
2706 ecmd->trace = readl(&regs->TuneTrace);
2708 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2709 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2710 #endif
2711 ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2712 ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2714 return 0;
2717 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2719 struct ace_private *ap = netdev_priv(dev);
2720 struct ace_regs __iomem *regs = ap->regs;
2721 u32 link, speed;
2723 link = readl(&regs->GigLnkState);
2724 if (link & LNK_1000MB)
2725 speed = SPEED_1000;
2726 else {
2727 link = readl(&regs->FastLnkState);
2728 if (link & LNK_100MB)
2729 speed = SPEED_100;
2730 else if (link & LNK_10MB)
2731 speed = SPEED_10;
2732 else
2733 speed = SPEED_100;
2736 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2737 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2738 if (!ACE_IS_TIGON_I(ap))
2739 link |= LNK_TX_FLOW_CTL_Y;
2740 if (ecmd->autoneg == AUTONEG_ENABLE)
2741 link |= LNK_NEGOTIATE;
2742 if (ecmd->speed != speed) {
2743 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2744 switch (speed) {
2745 case SPEED_1000:
2746 link |= LNK_1000MB;
2747 break;
2748 case SPEED_100:
2749 link |= LNK_100MB;
2750 break;
2751 case SPEED_10:
2752 link |= LNK_10MB;
2753 break;
2757 if (ecmd->duplex == DUPLEX_FULL)
2758 link |= LNK_FULL_DUPLEX;
2760 if (link != ap->link) {
2761 struct cmd cmd;
2762 printk(KERN_INFO "%s: Renegotiating link state\n",
2763 dev->name);
2765 ap->link = link;
2766 writel(link, &regs->TuneLink);
2767 if (!ACE_IS_TIGON_I(ap))
2768 writel(link, &regs->TuneFastLink);
2769 wmb();
2771 cmd.evt = C_LNK_NEGOTIATION;
2772 cmd.code = 0;
2773 cmd.idx = 0;
2774 ace_issue_cmd(regs, &cmd);
2776 return 0;
2779 static void ace_get_drvinfo(struct net_device *dev,
2780 struct ethtool_drvinfo *info)
2782 struct ace_private *ap = netdev_priv(dev);
2784 strlcpy(info->driver, "acenic", sizeof(info->driver));
2785 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2786 tigonFwReleaseMajor, tigonFwReleaseMinor,
2787 tigonFwReleaseFix);
2789 if (ap->pdev)
2790 strlcpy(info->bus_info, pci_name(ap->pdev),
2791 sizeof(info->bus_info));
2796 * Set the hardware MAC address.
2798 static int ace_set_mac_addr(struct net_device *dev, void *p)
2800 struct ace_private *ap = netdev_priv(dev);
2801 struct ace_regs __iomem *regs = ap->regs;
2802 struct sockaddr *addr=p;
2803 u8 *da;
2804 struct cmd cmd;
2806 if(netif_running(dev))
2807 return -EBUSY;
2809 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2811 da = (u8 *)dev->dev_addr;
2813 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2814 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2815 &regs->MacAddrLo);
2817 cmd.evt = C_SET_MAC_ADDR;
2818 cmd.code = 0;
2819 cmd.idx = 0;
2820 ace_issue_cmd(regs, &cmd);
2822 return 0;
2826 static void ace_set_multicast_list(struct net_device *dev)
2828 struct ace_private *ap = netdev_priv(dev);
2829 struct ace_regs __iomem *regs = ap->regs;
2830 struct cmd cmd;
2832 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2833 cmd.evt = C_SET_MULTICAST_MODE;
2834 cmd.code = C_C_MCAST_ENABLE;
2835 cmd.idx = 0;
2836 ace_issue_cmd(regs, &cmd);
2837 ap->mcast_all = 1;
2838 } else if (ap->mcast_all) {
2839 cmd.evt = C_SET_MULTICAST_MODE;
2840 cmd.code = C_C_MCAST_DISABLE;
2841 cmd.idx = 0;
2842 ace_issue_cmd(regs, &cmd);
2843 ap->mcast_all = 0;
2846 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2847 cmd.evt = C_SET_PROMISC_MODE;
2848 cmd.code = C_C_PROMISC_ENABLE;
2849 cmd.idx = 0;
2850 ace_issue_cmd(regs, &cmd);
2851 ap->promisc = 1;
2852 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2853 cmd.evt = C_SET_PROMISC_MODE;
2854 cmd.code = C_C_PROMISC_DISABLE;
2855 cmd.idx = 0;
2856 ace_issue_cmd(regs, &cmd);
2857 ap->promisc = 0;
2861 * For the time being multicast relies on the upper layers
2862 * filtering it properly. The Firmware does not allow one to
2863 * set the entire multicast list at a time and keeping track of
2864 * it here is going to be messy.
2866 if ((dev->mc_count) && !(ap->mcast_all)) {
2867 cmd.evt = C_SET_MULTICAST_MODE;
2868 cmd.code = C_C_MCAST_ENABLE;
2869 cmd.idx = 0;
2870 ace_issue_cmd(regs, &cmd);
2871 }else if (!ap->mcast_all) {
2872 cmd.evt = C_SET_MULTICAST_MODE;
2873 cmd.code = C_C_MCAST_DISABLE;
2874 cmd.idx = 0;
2875 ace_issue_cmd(regs, &cmd);
2880 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2882 struct ace_private *ap = netdev_priv(dev);
2883 struct ace_mac_stats __iomem *mac_stats =
2884 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2886 ap->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2887 ap->stats.multicast = readl(&mac_stats->kept_mc);
2888 ap->stats.collisions = readl(&mac_stats->coll);
2890 return &ap->stats;
2894 static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src,
2895 u32 dest, int size)
2897 void __iomem *tdest;
2898 u32 *wsrc;
2899 short tsize, i;
2901 if (size <= 0)
2902 return;
2904 while (size > 0) {
2905 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2906 min_t(u32, size, ACE_WINDOW_SIZE));
2907 tdest = (void __iomem *) &regs->Window +
2908 (dest & (ACE_WINDOW_SIZE - 1));
2909 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2911 * This requires byte swapping on big endian, however
2912 * writel does that for us
2914 wsrc = src;
2915 for (i = 0; i < (tsize / 4); i++) {
2916 writel(wsrc[i], tdest + i*4);
2918 dest += tsize;
2919 src += tsize;
2920 size -= tsize;
2923 return;
2927 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2929 void __iomem *tdest;
2930 short tsize = 0, i;
2932 if (size <= 0)
2933 return;
2935 while (size > 0) {
2936 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2937 min_t(u32, size, ACE_WINDOW_SIZE));
2938 tdest = (void __iomem *) &regs->Window +
2939 (dest & (ACE_WINDOW_SIZE - 1));
2940 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2942 for (i = 0; i < (tsize / 4); i++) {
2943 writel(0, tdest + i*4);
2946 dest += tsize;
2947 size -= tsize;
2950 return;
2955 * Download the firmware into the SRAM on the NIC
2957 * This operation requires the NIC to be halted and is performed with
2958 * interrupts disabled and with the spinlock hold.
2960 int __devinit ace_load_firmware(struct net_device *dev)
2962 struct ace_private *ap = netdev_priv(dev);
2963 struct ace_regs __iomem *regs = ap->regs;
2965 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2966 printk(KERN_ERR "%s: trying to download firmware while the "
2967 "CPU is running!\n", ap->name);
2968 return -EFAULT;
2972 * Do not try to clear more than 512KB or we end up seeing
2973 * funny things on NICs with only 512KB SRAM
2975 ace_clear(regs, 0x2000, 0x80000-0x2000);
2976 if (ACE_IS_TIGON_I(ap)) {
2977 ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
2978 ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
2979 ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
2980 tigonFwRodataLen);
2981 ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
2982 ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
2983 }else if (ap->version == 2) {
2984 ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
2985 ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
2986 ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
2987 ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
2988 tigon2FwRodataLen);
2989 ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
2992 return 0;
2997 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2999 * Accessing the EEPROM is `interesting' to say the least - don't read
3000 * this code right after dinner.
3002 * This is all about black magic and bit-banging the device .... I
3003 * wonder in what hospital they have put the guy who designed the i2c
3004 * specs.
3006 * Oh yes, this is only the beginning!
3008 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3009 * code i2c readout code by beta testing all my hacks.
3011 static void __devinit eeprom_start(struct ace_regs __iomem *regs)
3013 u32 local;
3015 readl(&regs->LocalCtrl);
3016 udelay(ACE_SHORT_DELAY);
3017 local = readl(&regs->LocalCtrl);
3018 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
3019 writel(local, &regs->LocalCtrl);
3020 readl(&regs->LocalCtrl);
3021 mb();
3022 udelay(ACE_SHORT_DELAY);
3023 local |= EEPROM_CLK_OUT;
3024 writel(local, &regs->LocalCtrl);
3025 readl(&regs->LocalCtrl);
3026 mb();
3027 udelay(ACE_SHORT_DELAY);
3028 local &= ~EEPROM_DATA_OUT;
3029 writel(local, &regs->LocalCtrl);
3030 readl(&regs->LocalCtrl);
3031 mb();
3032 udelay(ACE_SHORT_DELAY);
3033 local &= ~EEPROM_CLK_OUT;
3034 writel(local, &regs->LocalCtrl);
3035 readl(&regs->LocalCtrl);
3036 mb();
3040 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3042 short i;
3043 u32 local;
3045 udelay(ACE_SHORT_DELAY);
3046 local = readl(&regs->LocalCtrl);
3047 local &= ~EEPROM_DATA_OUT;
3048 local |= EEPROM_WRITE_ENABLE;
3049 writel(local, &regs->LocalCtrl);
3050 readl(&regs->LocalCtrl);
3051 mb();
3053 for (i = 0; i < 8; i++, magic <<= 1) {
3054 udelay(ACE_SHORT_DELAY);
3055 if (magic & 0x80)
3056 local |= EEPROM_DATA_OUT;
3057 else
3058 local &= ~EEPROM_DATA_OUT;
3059 writel(local, &regs->LocalCtrl);
3060 readl(&regs->LocalCtrl);
3061 mb();
3063 udelay(ACE_SHORT_DELAY);
3064 local |= EEPROM_CLK_OUT;
3065 writel(local, &regs->LocalCtrl);
3066 readl(&regs->LocalCtrl);
3067 mb();
3068 udelay(ACE_SHORT_DELAY);
3069 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3070 writel(local, &regs->LocalCtrl);
3071 readl(&regs->LocalCtrl);
3072 mb();
3077 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3079 int state;
3080 u32 local;
3082 local = readl(&regs->LocalCtrl);
3083 local &= ~EEPROM_WRITE_ENABLE;
3084 writel(local, &regs->LocalCtrl);
3085 readl(&regs->LocalCtrl);
3086 mb();
3087 udelay(ACE_LONG_DELAY);
3088 local |= EEPROM_CLK_OUT;
3089 writel(local, &regs->LocalCtrl);
3090 readl(&regs->LocalCtrl);
3091 mb();
3092 udelay(ACE_SHORT_DELAY);
3093 /* sample data in middle of high clk */
3094 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3095 udelay(ACE_SHORT_DELAY);
3096 mb();
3097 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3098 readl(&regs->LocalCtrl);
3099 mb();
3101 return state;
3105 static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3107 u32 local;
3109 udelay(ACE_SHORT_DELAY);
3110 local = readl(&regs->LocalCtrl);
3111 local |= EEPROM_WRITE_ENABLE;
3112 writel(local, &regs->LocalCtrl);
3113 readl(&regs->LocalCtrl);
3114 mb();
3115 udelay(ACE_SHORT_DELAY);
3116 local &= ~EEPROM_DATA_OUT;
3117 writel(local, &regs->LocalCtrl);
3118 readl(&regs->LocalCtrl);
3119 mb();
3120 udelay(ACE_SHORT_DELAY);
3121 local |= EEPROM_CLK_OUT;
3122 writel(local, &regs->LocalCtrl);
3123 readl(&regs->LocalCtrl);
3124 mb();
3125 udelay(ACE_SHORT_DELAY);
3126 local |= EEPROM_DATA_OUT;
3127 writel(local, &regs->LocalCtrl);
3128 readl(&regs->LocalCtrl);
3129 mb();
3130 udelay(ACE_LONG_DELAY);
3131 local &= ~EEPROM_CLK_OUT;
3132 writel(local, &regs->LocalCtrl);
3133 mb();
3138 * Read a whole byte from the EEPROM.
3140 static int __devinit read_eeprom_byte(struct net_device *dev,
3141 unsigned long offset)
3143 struct ace_private *ap = netdev_priv(dev);
3144 struct ace_regs __iomem *regs = ap->regs;
3145 unsigned long flags;
3146 u32 local;
3147 int result = 0;
3148 short i;
3150 if (!dev) {
3151 printk(KERN_ERR "No device!\n");
3152 result = -ENODEV;
3153 goto out;
3157 * Don't take interrupts on this CPU will bit banging
3158 * the %#%#@$ I2C device
3160 local_irq_save(flags);
3162 eeprom_start(regs);
3164 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3165 if (eeprom_check_ack(regs)) {
3166 local_irq_restore(flags);
3167 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3168 result = -EIO;
3169 goto eeprom_read_error;
3172 eeprom_prep(regs, (offset >> 8) & 0xff);
3173 if (eeprom_check_ack(regs)) {
3174 local_irq_restore(flags);
3175 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3176 ap->name);
3177 result = -EIO;
3178 goto eeprom_read_error;
3181 eeprom_prep(regs, offset & 0xff);
3182 if (eeprom_check_ack(regs)) {
3183 local_irq_restore(flags);
3184 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3185 ap->name);
3186 result = -EIO;
3187 goto eeprom_read_error;
3190 eeprom_start(regs);
3191 eeprom_prep(regs, EEPROM_READ_SELECT);
3192 if (eeprom_check_ack(regs)) {
3193 local_irq_restore(flags);
3194 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3195 ap->name);
3196 result = -EIO;
3197 goto eeprom_read_error;
3200 for (i = 0; i < 8; i++) {
3201 local = readl(&regs->LocalCtrl);
3202 local &= ~EEPROM_WRITE_ENABLE;
3203 writel(local, &regs->LocalCtrl);
3204 readl(&regs->LocalCtrl);
3205 udelay(ACE_LONG_DELAY);
3206 mb();
3207 local |= EEPROM_CLK_OUT;
3208 writel(local, &regs->LocalCtrl);
3209 readl(&regs->LocalCtrl);
3210 mb();
3211 udelay(ACE_SHORT_DELAY);
3212 /* sample data mid high clk */
3213 result = (result << 1) |
3214 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3215 udelay(ACE_SHORT_DELAY);
3216 mb();
3217 local = readl(&regs->LocalCtrl);
3218 local &= ~EEPROM_CLK_OUT;
3219 writel(local, &regs->LocalCtrl);
3220 readl(&regs->LocalCtrl);
3221 udelay(ACE_SHORT_DELAY);
3222 mb();
3223 if (i == 7) {
3224 local |= EEPROM_WRITE_ENABLE;
3225 writel(local, &regs->LocalCtrl);
3226 readl(&regs->LocalCtrl);
3227 mb();
3228 udelay(ACE_SHORT_DELAY);
3232 local |= EEPROM_DATA_OUT;
3233 writel(local, &regs->LocalCtrl);
3234 readl(&regs->LocalCtrl);
3235 mb();
3236 udelay(ACE_SHORT_DELAY);
3237 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3238 readl(&regs->LocalCtrl);
3239 udelay(ACE_LONG_DELAY);
3240 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3241 readl(&regs->LocalCtrl);
3242 mb();
3243 udelay(ACE_SHORT_DELAY);
3244 eeprom_stop(regs);
3246 local_irq_restore(flags);
3247 out:
3248 return result;
3250 eeprom_read_error:
3251 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3252 ap->name, offset);
3253 goto out;
3258 * Local variables:
3259 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"
3260 * End: