2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.11"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
60 #define LINK_HZ (HZ/2)
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION
);
67 static const u32 default_msg
68 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
71 static int debug
= -1; /* defaults above */
72 module_param(debug
, int, 0);
73 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table
[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
86 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
89 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
91 static int skge_up(struct net_device
*dev
);
92 static int skge_down(struct net_device
*dev
);
93 static void skge_phy_reset(struct skge_port
*skge
);
94 static void skge_tx_clean(struct net_device
*dev
);
95 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
96 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
97 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
98 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
99 static void yukon_init(struct skge_hw
*hw
, int port
);
100 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
101 static void genesis_link_up(struct skge_port
*skge
);
103 /* Avoid conditionals by using array */
104 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
105 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
106 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
107 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
108 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
109 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
111 static int skge_get_regs_len(struct net_device
*dev
)
117 * Returns copy of whole control register region
118 * Note: skip RAM address register because accessing it will
121 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
124 const struct skge_port
*skge
= netdev_priv(dev
);
125 const void __iomem
*io
= skge
->hw
->regs
;
128 memset(p
, 0, regs
->len
);
129 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
131 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
132 regs
->len
- B3_RI_WTO_R1
);
135 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
136 static u32
wol_supported(const struct skge_hw
*hw
)
138 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
!= 0)
139 return WAKE_MAGIC
| WAKE_PHY
;
144 static u32
pci_wake_enabled(struct pci_dev
*dev
)
146 int pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
149 /* If device doesn't support PM Capabilities, but request is to disable
150 * wake events, it's a nop; otherwise fail */
154 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &value
);
156 value
&= PCI_PM_CAP_PME_MASK
;
157 value
>>= ffs(PCI_PM_CAP_PME_MASK
) - 1; /* First bit of mask */
162 static void skge_wol_init(struct skge_port
*skge
)
164 struct skge_hw
*hw
= skge
->hw
;
165 int port
= skge
->port
;
168 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
169 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
172 skge_write8(hw
, B0_POWER_CTRL
,
173 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
175 /* WA code for COMA mode -- clear PHY reset */
176 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
177 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
178 u32 reg
= skge_read32(hw
, B2_GP_IO
);
181 skge_write32(hw
, B2_GP_IO
, reg
);
184 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
186 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
187 GPC_ANEG_1
| GPC_RST_SET
);
189 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
191 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
192 GPC_ANEG_1
| GPC_RST_CLR
);
194 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
196 /* Force to 10/100 skge_reset will re-enable on resume */
197 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
198 PHY_AN_100FULL
| PHY_AN_100HALF
|
199 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
);
201 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
202 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
203 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
204 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
207 /* Set GMAC to no flow control and auto update for speed/duplex */
208 gma_write16(hw
, port
, GM_GP_CTRL
,
209 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
210 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
212 /* Set WOL address */
213 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
214 skge
->netdev
->dev_addr
, ETH_ALEN
);
216 /* Turn on appropriate WOL control bits */
217 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
219 if (skge
->wol
& WAKE_PHY
)
220 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
222 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
224 if (skge
->wol
& WAKE_MAGIC
)
225 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
227 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;;
229 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
230 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
233 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
236 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
238 struct skge_port
*skge
= netdev_priv(dev
);
240 wol
->supported
= wol_supported(skge
->hw
);
241 wol
->wolopts
= skge
->wol
;
244 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
246 struct skge_port
*skge
= netdev_priv(dev
);
247 struct skge_hw
*hw
= skge
->hw
;
249 if (wol
->wolopts
& ~wol_supported(hw
))
252 skge
->wol
= wol
->wolopts
;
256 /* Determine supported/advertised modes based on hardware.
257 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
259 static u32
skge_supported_modes(const struct skge_hw
*hw
)
264 supported
= SUPPORTED_10baseT_Half
265 | SUPPORTED_10baseT_Full
266 | SUPPORTED_100baseT_Half
267 | SUPPORTED_100baseT_Full
268 | SUPPORTED_1000baseT_Half
269 | SUPPORTED_1000baseT_Full
270 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
272 if (hw
->chip_id
== CHIP_ID_GENESIS
)
273 supported
&= ~(SUPPORTED_10baseT_Half
274 | SUPPORTED_10baseT_Full
275 | SUPPORTED_100baseT_Half
276 | SUPPORTED_100baseT_Full
);
278 else if (hw
->chip_id
== CHIP_ID_YUKON
)
279 supported
&= ~SUPPORTED_1000baseT_Half
;
281 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
282 | SUPPORTED_FIBRE
| SUPPORTED_Autoneg
;
287 static int skge_get_settings(struct net_device
*dev
,
288 struct ethtool_cmd
*ecmd
)
290 struct skge_port
*skge
= netdev_priv(dev
);
291 struct skge_hw
*hw
= skge
->hw
;
293 ecmd
->transceiver
= XCVR_INTERNAL
;
294 ecmd
->supported
= skge_supported_modes(hw
);
297 ecmd
->port
= PORT_TP
;
298 ecmd
->phy_address
= hw
->phy_addr
;
300 ecmd
->port
= PORT_FIBRE
;
302 ecmd
->advertising
= skge
->advertising
;
303 ecmd
->autoneg
= skge
->autoneg
;
304 ecmd
->speed
= skge
->speed
;
305 ecmd
->duplex
= skge
->duplex
;
309 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
311 struct skge_port
*skge
= netdev_priv(dev
);
312 const struct skge_hw
*hw
= skge
->hw
;
313 u32 supported
= skge_supported_modes(hw
);
315 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
316 ecmd
->advertising
= supported
;
322 switch (ecmd
->speed
) {
324 if (ecmd
->duplex
== DUPLEX_FULL
)
325 setting
= SUPPORTED_1000baseT_Full
;
326 else if (ecmd
->duplex
== DUPLEX_HALF
)
327 setting
= SUPPORTED_1000baseT_Half
;
332 if (ecmd
->duplex
== DUPLEX_FULL
)
333 setting
= SUPPORTED_100baseT_Full
;
334 else if (ecmd
->duplex
== DUPLEX_HALF
)
335 setting
= SUPPORTED_100baseT_Half
;
341 if (ecmd
->duplex
== DUPLEX_FULL
)
342 setting
= SUPPORTED_10baseT_Full
;
343 else if (ecmd
->duplex
== DUPLEX_HALF
)
344 setting
= SUPPORTED_10baseT_Half
;
352 if ((setting
& supported
) == 0)
355 skge
->speed
= ecmd
->speed
;
356 skge
->duplex
= ecmd
->duplex
;
359 skge
->autoneg
= ecmd
->autoneg
;
360 skge
->advertising
= ecmd
->advertising
;
362 if (netif_running(dev
))
363 skge_phy_reset(skge
);
368 static void skge_get_drvinfo(struct net_device
*dev
,
369 struct ethtool_drvinfo
*info
)
371 struct skge_port
*skge
= netdev_priv(dev
);
373 strcpy(info
->driver
, DRV_NAME
);
374 strcpy(info
->version
, DRV_VERSION
);
375 strcpy(info
->fw_version
, "N/A");
376 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
379 static const struct skge_stat
{
380 char name
[ETH_GSTRING_LEN
];
384 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
385 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
387 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
388 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
389 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
390 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
391 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
392 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
393 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
394 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
396 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
397 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
398 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
399 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
400 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
401 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
403 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
404 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
405 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
406 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
407 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
410 static int skge_get_stats_count(struct net_device
*dev
)
412 return ARRAY_SIZE(skge_stats
);
415 static void skge_get_ethtool_stats(struct net_device
*dev
,
416 struct ethtool_stats
*stats
, u64
*data
)
418 struct skge_port
*skge
= netdev_priv(dev
);
420 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
421 genesis_get_stats(skge
, data
);
423 yukon_get_stats(skge
, data
);
426 /* Use hardware MIB variables for critical path statistics and
427 * transmit feedback not reported at interrupt.
428 * Other errors are accounted for in interrupt handler.
430 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
432 struct skge_port
*skge
= netdev_priv(dev
);
433 u64 data
[ARRAY_SIZE(skge_stats
)];
435 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
436 genesis_get_stats(skge
, data
);
438 yukon_get_stats(skge
, data
);
440 skge
->net_stats
.tx_bytes
= data
[0];
441 skge
->net_stats
.rx_bytes
= data
[1];
442 skge
->net_stats
.tx_packets
= data
[2] + data
[4] + data
[6];
443 skge
->net_stats
.rx_packets
= data
[3] + data
[5] + data
[7];
444 skge
->net_stats
.multicast
= data
[3] + data
[5];
445 skge
->net_stats
.collisions
= data
[10];
446 skge
->net_stats
.tx_aborted_errors
= data
[12];
448 return &skge
->net_stats
;
451 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
457 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
458 memcpy(data
+ i
* ETH_GSTRING_LEN
,
459 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
464 static void skge_get_ring_param(struct net_device
*dev
,
465 struct ethtool_ringparam
*p
)
467 struct skge_port
*skge
= netdev_priv(dev
);
469 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
470 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
471 p
->rx_mini_max_pending
= 0;
472 p
->rx_jumbo_max_pending
= 0;
474 p
->rx_pending
= skge
->rx_ring
.count
;
475 p
->tx_pending
= skge
->tx_ring
.count
;
476 p
->rx_mini_pending
= 0;
477 p
->rx_jumbo_pending
= 0;
480 static int skge_set_ring_param(struct net_device
*dev
,
481 struct ethtool_ringparam
*p
)
483 struct skge_port
*skge
= netdev_priv(dev
);
486 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
487 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
490 skge
->rx_ring
.count
= p
->rx_pending
;
491 skge
->tx_ring
.count
= p
->tx_pending
;
493 if (netif_running(dev
)) {
503 static u32
skge_get_msglevel(struct net_device
*netdev
)
505 struct skge_port
*skge
= netdev_priv(netdev
);
506 return skge
->msg_enable
;
509 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
511 struct skge_port
*skge
= netdev_priv(netdev
);
512 skge
->msg_enable
= value
;
515 static int skge_nway_reset(struct net_device
*dev
)
517 struct skge_port
*skge
= netdev_priv(dev
);
519 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
522 skge_phy_reset(skge
);
526 static int skge_set_sg(struct net_device
*dev
, u32 data
)
528 struct skge_port
*skge
= netdev_priv(dev
);
529 struct skge_hw
*hw
= skge
->hw
;
531 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
533 return ethtool_op_set_sg(dev
, data
);
536 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
538 struct skge_port
*skge
= netdev_priv(dev
);
539 struct skge_hw
*hw
= skge
->hw
;
541 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
544 return ethtool_op_set_tx_csum(dev
, data
);
547 static u32
skge_get_rx_csum(struct net_device
*dev
)
549 struct skge_port
*skge
= netdev_priv(dev
);
551 return skge
->rx_csum
;
554 /* Only Yukon supports checksum offload. */
555 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
557 struct skge_port
*skge
= netdev_priv(dev
);
559 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
562 skge
->rx_csum
= data
;
566 static void skge_get_pauseparam(struct net_device
*dev
,
567 struct ethtool_pauseparam
*ecmd
)
569 struct skge_port
*skge
= netdev_priv(dev
);
571 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_SYMMETRIC
)
572 || (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
);
573 ecmd
->tx_pause
= ecmd
->rx_pause
|| (skge
->flow_control
== FLOW_MODE_LOC_SEND
);
575 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
578 static int skge_set_pauseparam(struct net_device
*dev
,
579 struct ethtool_pauseparam
*ecmd
)
581 struct skge_port
*skge
= netdev_priv(dev
);
582 struct ethtool_pauseparam old
;
584 skge_get_pauseparam(dev
, &old
);
586 if (ecmd
->autoneg
!= old
.autoneg
)
587 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
589 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
590 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
591 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
592 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
593 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
594 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
596 skge
->flow_control
= FLOW_MODE_NONE
;
599 if (netif_running(dev
))
600 skge_phy_reset(skge
);
605 /* Chip internal frequency for clock calculations */
606 static inline u32
hwkhz(const struct skge_hw
*hw
)
608 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
611 /* Chip HZ to microseconds */
612 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
614 return (ticks
* 1000) / hwkhz(hw
);
617 /* Microseconds to chip HZ */
618 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
620 return hwkhz(hw
) * usec
/ 1000;
623 static int skge_get_coalesce(struct net_device
*dev
,
624 struct ethtool_coalesce
*ecmd
)
626 struct skge_port
*skge
= netdev_priv(dev
);
627 struct skge_hw
*hw
= skge
->hw
;
628 int port
= skge
->port
;
630 ecmd
->rx_coalesce_usecs
= 0;
631 ecmd
->tx_coalesce_usecs
= 0;
633 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
634 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
635 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
637 if (msk
& rxirqmask
[port
])
638 ecmd
->rx_coalesce_usecs
= delay
;
639 if (msk
& txirqmask
[port
])
640 ecmd
->tx_coalesce_usecs
= delay
;
646 /* Note: interrupt timer is per board, but can turn on/off per port */
647 static int skge_set_coalesce(struct net_device
*dev
,
648 struct ethtool_coalesce
*ecmd
)
650 struct skge_port
*skge
= netdev_priv(dev
);
651 struct skge_hw
*hw
= skge
->hw
;
652 int port
= skge
->port
;
653 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
656 if (ecmd
->rx_coalesce_usecs
== 0)
657 msk
&= ~rxirqmask
[port
];
658 else if (ecmd
->rx_coalesce_usecs
< 25 ||
659 ecmd
->rx_coalesce_usecs
> 33333)
662 msk
|= rxirqmask
[port
];
663 delay
= ecmd
->rx_coalesce_usecs
;
666 if (ecmd
->tx_coalesce_usecs
== 0)
667 msk
&= ~txirqmask
[port
];
668 else if (ecmd
->tx_coalesce_usecs
< 25 ||
669 ecmd
->tx_coalesce_usecs
> 33333)
672 msk
|= txirqmask
[port
];
673 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
676 skge_write32(hw
, B2_IRQM_MSK
, msk
);
678 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
680 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
681 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
686 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
687 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
689 struct skge_hw
*hw
= skge
->hw
;
690 int port
= skge
->port
;
692 spin_lock_bh(&hw
->phy_lock
);
693 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
696 if (hw
->phy_type
== SK_PHY_BCOM
)
697 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
699 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
700 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
702 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
703 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
704 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
708 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
709 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
711 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
712 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
717 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
718 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
719 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
721 if (hw
->phy_type
== SK_PHY_BCOM
)
722 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
724 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
725 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
726 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
733 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
734 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
735 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
736 PHY_M_LED_MO_10(MO_LED_OFF
) |
737 PHY_M_LED_MO_100(MO_LED_OFF
) |
738 PHY_M_LED_MO_1000(MO_LED_OFF
) |
739 PHY_M_LED_MO_RX(MO_LED_OFF
));
742 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
743 PHY_M_LED_PULS_DUR(PULS_170MS
) |
744 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
748 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
749 PHY_M_LED_MO_RX(MO_LED_OFF
) |
750 (skge
->speed
== SPEED_100
?
751 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
754 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
755 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
756 PHY_M_LED_MO_DUP(MO_LED_ON
) |
757 PHY_M_LED_MO_10(MO_LED_ON
) |
758 PHY_M_LED_MO_100(MO_LED_ON
) |
759 PHY_M_LED_MO_1000(MO_LED_ON
) |
760 PHY_M_LED_MO_RX(MO_LED_ON
));
763 spin_unlock_bh(&hw
->phy_lock
);
766 /* blink LED's for finding board */
767 static int skge_phys_id(struct net_device
*dev
, u32 data
)
769 struct skge_port
*skge
= netdev_priv(dev
);
771 enum led_mode mode
= LED_MODE_TST
;
773 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
774 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
779 skge_led(skge
, mode
);
780 mode
^= LED_MODE_TST
;
782 if (msleep_interruptible(BLINK_MS
))
787 /* back to regular LED state */
788 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
793 static const struct ethtool_ops skge_ethtool_ops
= {
794 .get_settings
= skge_get_settings
,
795 .set_settings
= skge_set_settings
,
796 .get_drvinfo
= skge_get_drvinfo
,
797 .get_regs_len
= skge_get_regs_len
,
798 .get_regs
= skge_get_regs
,
799 .get_wol
= skge_get_wol
,
800 .set_wol
= skge_set_wol
,
801 .get_msglevel
= skge_get_msglevel
,
802 .set_msglevel
= skge_set_msglevel
,
803 .nway_reset
= skge_nway_reset
,
804 .get_link
= ethtool_op_get_link
,
805 .get_ringparam
= skge_get_ring_param
,
806 .set_ringparam
= skge_set_ring_param
,
807 .get_pauseparam
= skge_get_pauseparam
,
808 .set_pauseparam
= skge_set_pauseparam
,
809 .get_coalesce
= skge_get_coalesce
,
810 .set_coalesce
= skge_set_coalesce
,
811 .get_sg
= ethtool_op_get_sg
,
812 .set_sg
= skge_set_sg
,
813 .get_tx_csum
= ethtool_op_get_tx_csum
,
814 .set_tx_csum
= skge_set_tx_csum
,
815 .get_rx_csum
= skge_get_rx_csum
,
816 .set_rx_csum
= skge_set_rx_csum
,
817 .get_strings
= skge_get_strings
,
818 .phys_id
= skge_phys_id
,
819 .get_stats_count
= skge_get_stats_count
,
820 .get_ethtool_stats
= skge_get_ethtool_stats
,
821 .get_perm_addr
= ethtool_op_get_perm_addr
,
825 * Allocate ring elements and chain them together
826 * One-to-one association of board descriptors with ring elements
828 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
830 struct skge_tx_desc
*d
;
831 struct skge_element
*e
;
834 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
838 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
840 if (i
== ring
->count
- 1) {
841 e
->next
= ring
->start
;
842 d
->next_offset
= base
;
845 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
848 ring
->to_use
= ring
->to_clean
= ring
->start
;
853 /* Allocate and setup a new buffer for receiving */
854 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
855 struct sk_buff
*skb
, unsigned int bufsize
)
857 struct skge_rx_desc
*rd
= e
->desc
;
860 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
864 rd
->dma_hi
= map
>> 32;
866 rd
->csum1_start
= ETH_HLEN
;
867 rd
->csum2_start
= ETH_HLEN
;
873 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
874 pci_unmap_addr_set(e
, mapaddr
, map
);
875 pci_unmap_len_set(e
, maplen
, bufsize
);
878 /* Resume receiving using existing skb,
879 * Note: DMA address is not changed by chip.
880 * MTU not changed while receiver active.
882 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
884 struct skge_rx_desc
*rd
= e
->desc
;
887 rd
->csum2_start
= ETH_HLEN
;
891 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
895 /* Free all buffers in receive ring, assumes receiver stopped */
896 static void skge_rx_clean(struct skge_port
*skge
)
898 struct skge_hw
*hw
= skge
->hw
;
899 struct skge_ring
*ring
= &skge
->rx_ring
;
900 struct skge_element
*e
;
904 struct skge_rx_desc
*rd
= e
->desc
;
907 pci_unmap_single(hw
->pdev
,
908 pci_unmap_addr(e
, mapaddr
),
909 pci_unmap_len(e
, maplen
),
911 dev_kfree_skb(e
->skb
);
914 } while ((e
= e
->next
) != ring
->start
);
918 /* Allocate buffers for receive ring
919 * For receive: to_clean is next received frame.
921 static int skge_rx_fill(struct net_device
*dev
)
923 struct skge_port
*skge
= netdev_priv(dev
);
924 struct skge_ring
*ring
= &skge
->rx_ring
;
925 struct skge_element
*e
;
931 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
936 skb_reserve(skb
, NET_IP_ALIGN
);
937 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
938 } while ( (e
= e
->next
) != ring
->start
);
940 ring
->to_clean
= ring
->start
;
944 static const char *skge_pause(enum pause_status status
)
949 case FLOW_STAT_REM_SEND
:
951 case FLOW_STAT_LOC_SEND
:
953 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
956 return "indeterminated";
961 static void skge_link_up(struct skge_port
*skge
)
963 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
964 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
966 netif_carrier_on(skge
->netdev
);
967 netif_wake_queue(skge
->netdev
);
969 if (netif_msg_link(skge
)) {
971 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
972 skge
->netdev
->name
, skge
->speed
,
973 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
974 skge_pause(skge
->flow_status
));
978 static void skge_link_down(struct skge_port
*skge
)
980 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
981 netif_carrier_off(skge
->netdev
);
982 netif_stop_queue(skge
->netdev
);
984 if (netif_msg_link(skge
))
985 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
989 static void xm_link_down(struct skge_hw
*hw
, int port
)
991 struct net_device
*dev
= hw
->dev
[port
];
992 struct skge_port
*skge
= netdev_priv(dev
);
995 if (hw
->phy_type
== SK_PHY_XMAC
) {
996 msk
= xm_read16(hw
, port
, XM_IMSK
);
997 msk
|= XM_IS_INP_ASS
| XM_IS_LIPA_RC
| XM_IS_RX_PAGE
| XM_IS_AND
;
998 xm_write16(hw
, port
, XM_IMSK
, msk
);
1001 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1002 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1003 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1004 /* dummy read to ensure writing */
1005 (void) xm_read16(hw
, port
, XM_MMU_CMD
);
1007 if (netif_carrier_ok(dev
))
1008 skge_link_down(skge
);
1011 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1015 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1016 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1018 if (hw
->phy_type
== SK_PHY_XMAC
)
1021 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1022 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1029 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1034 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1037 if (__xm_phy_read(hw
, port
, reg
, &v
))
1038 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
1039 hw
->dev
[port
]->name
);
1043 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1047 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1048 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1049 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1056 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1057 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1058 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1065 static void genesis_init(struct skge_hw
*hw
)
1067 /* set blink source counter */
1068 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1069 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1071 /* configure mac arbiter */
1072 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1074 /* configure mac arbiter timeout values */
1075 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1076 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1077 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1078 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1080 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1081 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1082 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1083 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1085 /* configure packet arbiter timeout */
1086 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1087 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1088 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1089 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1090 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1093 static void genesis_reset(struct skge_hw
*hw
, int port
)
1095 const u8 zero
[8] = { 0 };
1097 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1099 /* reset the statistics module */
1100 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1101 xm_write16(hw
, port
, XM_IMSK
, 0xffff); /* disable XMAC IRQs */
1102 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1103 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1104 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1106 /* disable Broadcom PHY IRQ */
1107 if (hw
->phy_type
== SK_PHY_BCOM
)
1108 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1110 xm_outhash(hw
, port
, XM_HSM
, zero
);
1114 /* Convert mode to MII values */
1115 static const u16 phy_pause_map
[] = {
1116 [FLOW_MODE_NONE
] = 0,
1117 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1118 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1119 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1122 /* special defines for FIBER (88E1011S only) */
1123 static const u16 fiber_pause_map
[] = {
1124 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1125 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1126 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1127 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1131 /* Check status of Broadcom phy link */
1132 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1134 struct net_device
*dev
= hw
->dev
[port
];
1135 struct skge_port
*skge
= netdev_priv(dev
);
1138 /* read twice because of latch */
1139 (void) xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1140 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1142 if ((status
& PHY_ST_LSYNC
) == 0) {
1143 xm_link_down(hw
, port
);
1147 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1150 if (!(status
& PHY_ST_AN_OVER
))
1153 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1154 if (lpa
& PHY_B_AN_RF
) {
1155 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1160 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1162 /* Check Duplex mismatch */
1163 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1164 case PHY_B_RES_1000FD
:
1165 skge
->duplex
= DUPLEX_FULL
;
1167 case PHY_B_RES_1000HD
:
1168 skge
->duplex
= DUPLEX_HALF
;
1171 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1176 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1177 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1178 case PHY_B_AS_PAUSE_MSK
:
1179 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1182 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1185 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1188 skge
->flow_status
= FLOW_STAT_NONE
;
1190 skge
->speed
= SPEED_1000
;
1193 if (!netif_carrier_ok(dev
))
1194 genesis_link_up(skge
);
1197 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1198 * Phy on for 100 or 10Mbit operation
1200 static void bcom_phy_init(struct skge_port
*skge
)
1202 struct skge_hw
*hw
= skge
->hw
;
1203 int port
= skge
->port
;
1205 u16 id1
, r
, ext
, ctl
;
1207 /* magic workaround patterns for Broadcom */
1208 static const struct {
1212 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1213 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1214 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1215 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1217 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1218 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1221 /* read Id from external PHY (all have the same address) */
1222 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1224 /* Optimize MDIO transfer by suppressing preamble. */
1225 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1227 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1230 case PHY_BCOM_ID1_C0
:
1232 * Workaround BCOM Errata for the C0 type.
1233 * Write magic patterns to reserved registers.
1235 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1236 xm_phy_write(hw
, port
,
1237 C0hack
[i
].reg
, C0hack
[i
].val
);
1240 case PHY_BCOM_ID1_A1
:
1242 * Workaround BCOM Errata for the A1 type.
1243 * Write magic patterns to reserved registers.
1245 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1246 xm_phy_write(hw
, port
,
1247 A1hack
[i
].reg
, A1hack
[i
].val
);
1252 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1253 * Disable Power Management after reset.
1255 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1256 r
|= PHY_B_AC_DIS_PM
;
1257 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1260 xm_read16(hw
, port
, XM_ISRC
);
1262 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1263 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1265 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1267 * Workaround BCOM Errata #1 for the C5 type.
1268 * 1000Base-T Link Acquisition Failure in Slave Mode
1269 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1271 u16 adv
= PHY_B_1000C_RD
;
1272 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1273 adv
|= PHY_B_1000C_AHD
;
1274 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1275 adv
|= PHY_B_1000C_AFD
;
1276 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1278 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1280 if (skge
->duplex
== DUPLEX_FULL
)
1281 ctl
|= PHY_CT_DUP_MD
;
1282 /* Force to slave */
1283 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1286 /* Set autonegotiation pause parameters */
1287 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1288 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1290 /* Handle Jumbo frames */
1291 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1292 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1293 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1295 ext
|= PHY_B_PEC_HIGH_LA
;
1299 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1300 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1302 /* Use link status change interrupt */
1303 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1306 static void xm_phy_init(struct skge_port
*skge
)
1308 struct skge_hw
*hw
= skge
->hw
;
1309 int port
= skge
->port
;
1312 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1313 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1314 ctrl
|= PHY_X_AN_HD
;
1315 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1316 ctrl
|= PHY_X_AN_FD
;
1318 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1320 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1322 /* Restart Auto-negotiation */
1323 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1325 /* Set DuplexMode in Config register */
1326 if (skge
->duplex
== DUPLEX_FULL
)
1327 ctrl
|= PHY_CT_DUP_MD
;
1329 * Do NOT enable Auto-negotiation here. This would hold
1330 * the link down because no IDLEs are transmitted
1334 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1336 /* Poll PHY for status changes */
1337 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1340 static void xm_check_link(struct net_device
*dev
)
1342 struct skge_port
*skge
= netdev_priv(dev
);
1343 struct skge_hw
*hw
= skge
->hw
;
1344 int port
= skge
->port
;
1347 /* read twice because of latch */
1348 (void) xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1349 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1351 if ((status
& PHY_ST_LSYNC
) == 0) {
1352 xm_link_down(hw
, port
);
1356 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1359 if (!(status
& PHY_ST_AN_OVER
))
1362 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1363 if (lpa
& PHY_B_AN_RF
) {
1364 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1369 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1371 /* Check Duplex mismatch */
1372 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1374 skge
->duplex
= DUPLEX_FULL
;
1377 skge
->duplex
= DUPLEX_HALF
;
1380 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1385 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1386 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1387 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1388 (lpa
& PHY_X_P_SYM_MD
))
1389 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1390 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1391 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1392 /* Enable PAUSE receive, disable PAUSE transmit */
1393 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1394 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1395 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1396 /* Disable PAUSE receive, enable PAUSE transmit */
1397 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1399 skge
->flow_status
= FLOW_STAT_NONE
;
1401 skge
->speed
= SPEED_1000
;
1404 if (!netif_carrier_ok(dev
))
1405 genesis_link_up(skge
);
1408 /* Poll to check for link coming up.
1409 * Since internal PHY is wired to a level triggered pin, can't
1410 * get an interrupt when carrier is detected.
1412 static void xm_link_timer(unsigned long arg
)
1414 struct skge_port
*skge
= (struct skge_port
*) arg
;
1415 struct net_device
*dev
= skge
->netdev
;
1416 struct skge_hw
*hw
= skge
->hw
;
1417 int port
= skge
->port
;
1419 if (!netif_running(dev
))
1422 if (netif_carrier_ok(dev
)) {
1423 xm_read16(hw
, port
, XM_ISRC
);
1424 if (!(xm_read16(hw
, port
, XM_ISRC
) & XM_IS_INP_ASS
))
1427 if (xm_read32(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1429 xm_read16(hw
, port
, XM_ISRC
);
1430 if (xm_read16(hw
, port
, XM_ISRC
) & XM_IS_INP_ASS
)
1434 spin_lock(&hw
->phy_lock
);
1436 spin_unlock(&hw
->phy_lock
);
1439 if (netif_running(dev
))
1440 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1443 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1445 struct net_device
*dev
= hw
->dev
[port
];
1446 struct skge_port
*skge
= netdev_priv(dev
);
1447 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1450 const u8 zero
[6] = { 0 };
1452 for (i
= 0; i
< 10; i
++) {
1453 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1455 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1460 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1463 /* Unreset the XMAC. */
1464 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1467 * Perform additional initialization for external PHYs,
1468 * namely for the 1000baseTX cards that use the XMAC's
1471 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1472 /* Take external Phy out of reset */
1473 r
= skge_read32(hw
, B2_GP_IO
);
1475 r
|= GP_DIR_0
|GP_IO_0
;
1477 r
|= GP_DIR_2
|GP_IO_2
;
1479 skge_write32(hw
, B2_GP_IO
, r
);
1481 /* Enable GMII interface */
1482 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1486 switch(hw
->phy_type
) {
1491 bcom_phy_init(skge
);
1492 bcom_check_link(hw
, port
);
1495 /* Set Station Address */
1496 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1498 /* We don't use match addresses so clear */
1499 for (i
= 1; i
< 16; i
++)
1500 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1502 /* Clear MIB counters */
1503 xm_write16(hw
, port
, XM_STAT_CMD
,
1504 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1505 /* Clear two times according to Errata #3 */
1506 xm_write16(hw
, port
, XM_STAT_CMD
,
1507 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1509 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1510 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1512 /* We don't need the FCS appended to the packet. */
1513 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1515 r
|= XM_RX_BIG_PK_OK
;
1517 if (skge
->duplex
== DUPLEX_HALF
) {
1519 * If in manual half duplex mode the other side might be in
1520 * full duplex mode, so ignore if a carrier extension is not seen
1521 * on frames received
1523 r
|= XM_RX_DIS_CEXT
;
1525 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1528 /* We want short frames padded to 60 bytes. */
1529 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1532 * Bump up the transmit threshold. This helps hold off transmit
1533 * underruns when we're blasting traffic from both ports at once.
1535 xm_write16(hw
, port
, XM_TX_THR
, 512);
1538 * Enable the reception of all error frames. This is is
1539 * a necessary evil due to the design of the XMAC. The
1540 * XMAC's receive FIFO is only 8K in size, however jumbo
1541 * frames can be up to 9000 bytes in length. When bad
1542 * frame filtering is enabled, the XMAC's RX FIFO operates
1543 * in 'store and forward' mode. For this to work, the
1544 * entire frame has to fit into the FIFO, but that means
1545 * that jumbo frames larger than 8192 bytes will be
1546 * truncated. Disabling all bad frame filtering causes
1547 * the RX FIFO to operate in streaming mode, in which
1548 * case the XMAC will start transferring frames out of the
1549 * RX FIFO as soon as the FIFO threshold is reached.
1551 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1555 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1556 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1557 * and 'Octets Rx OK Hi Cnt Ov'.
1559 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1562 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1563 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1564 * and 'Octets Tx OK Hi Cnt Ov'.
1566 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1568 /* Configure MAC arbiter */
1569 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1571 /* configure timeout values */
1572 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1573 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1574 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1575 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1577 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1578 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1579 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1580 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1582 /* Configure Rx MAC FIFO */
1583 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1584 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1585 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1587 /* Configure Tx MAC FIFO */
1588 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1589 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1590 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1593 /* Enable frame flushing if jumbo frames used */
1594 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1596 /* enable timeout timers if normal frames */
1597 skge_write16(hw
, B3_PA_CTRL
,
1598 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1602 static void genesis_stop(struct skge_port
*skge
)
1604 struct skge_hw
*hw
= skge
->hw
;
1605 int port
= skge
->port
;
1608 genesis_reset(hw
, port
);
1610 /* Clear Tx packet arbiter timeout IRQ */
1611 skge_write16(hw
, B3_PA_CTRL
,
1612 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1615 * If the transfer sticks at the MAC the STOP command will not
1616 * terminate if we don't flush the XMAC's transmit FIFO !
1618 xm_write32(hw
, port
, XM_MODE
,
1619 xm_read32(hw
, port
, XM_MODE
)|XM_MD_FTF
);
1623 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1625 /* For external PHYs there must be special handling */
1626 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1627 reg
= skge_read32(hw
, B2_GP_IO
);
1635 skge_write32(hw
, B2_GP_IO
, reg
);
1636 skge_read32(hw
, B2_GP_IO
);
1639 xm_write16(hw
, port
, XM_MMU_CMD
,
1640 xm_read16(hw
, port
, XM_MMU_CMD
)
1641 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1643 xm_read16(hw
, port
, XM_MMU_CMD
);
1647 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1649 struct skge_hw
*hw
= skge
->hw
;
1650 int port
= skge
->port
;
1652 unsigned long timeout
= jiffies
+ HZ
;
1654 xm_write16(hw
, port
,
1655 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1657 /* wait for update to complete */
1658 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1659 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1660 if (time_after(jiffies
, timeout
))
1665 /* special case for 64 bit octet counter */
1666 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1667 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1668 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1669 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1671 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1672 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1675 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1677 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1678 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1680 if (netif_msg_intr(skge
))
1681 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1682 skge
->netdev
->name
, status
);
1684 if (hw
->phy_type
== SK_PHY_XMAC
&&
1685 (status
& (XM_IS_INP_ASS
| XM_IS_LIPA_RC
)))
1686 xm_link_down(hw
, port
);
1688 if (status
& XM_IS_TXF_UR
) {
1689 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1690 ++skge
->net_stats
.tx_fifo_errors
;
1692 if (status
& XM_IS_RXF_OV
) {
1693 xm_write32(hw
, port
, XM_MODE
, XM_MD_FRF
);
1694 ++skge
->net_stats
.rx_fifo_errors
;
1698 static void genesis_link_up(struct skge_port
*skge
)
1700 struct skge_hw
*hw
= skge
->hw
;
1701 int port
= skge
->port
;
1705 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1708 * enabling pause frame reception is required for 1000BT
1709 * because the XMAC is not reset if the link is going down
1711 if (skge
->flow_status
== FLOW_STAT_NONE
||
1712 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1713 /* Disable Pause Frame Reception */
1714 cmd
|= XM_MMU_IGN_PF
;
1716 /* Enable Pause Frame Reception */
1717 cmd
&= ~XM_MMU_IGN_PF
;
1719 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1721 mode
= xm_read32(hw
, port
, XM_MODE
);
1722 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1723 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1725 * Configure Pause Frame Generation
1726 * Use internal and external Pause Frame Generation.
1727 * Sending pause frames is edge triggered.
1728 * Send a Pause frame with the maximum pause time if
1729 * internal oder external FIFO full condition occurs.
1730 * Send a zero pause time frame to re-start transmission.
1732 /* XM_PAUSE_DA = '010000C28001' (default) */
1733 /* XM_MAC_PTIME = 0xffff (maximum) */
1734 /* remember this value is defined in big endian (!) */
1735 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1737 mode
|= XM_PAUSE_MODE
;
1738 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1741 * disable pause frame generation is required for 1000BT
1742 * because the XMAC is not reset if the link is going down
1744 /* Disable Pause Mode in Mode Register */
1745 mode
&= ~XM_PAUSE_MODE
;
1747 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1750 xm_write32(hw
, port
, XM_MODE
, mode
);
1752 if (hw
->phy_type
!= SK_PHY_XMAC
)
1753 msk
|= XM_IS_INP_ASS
; /* disable GP0 interrupt bit */
1755 xm_write16(hw
, port
, XM_IMSK
, msk
);
1756 xm_read16(hw
, port
, XM_ISRC
);
1758 /* get MMU Command Reg. */
1759 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1760 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1761 cmd
|= XM_MMU_GMII_FD
;
1764 * Workaround BCOM Errata (#10523) for all BCom Phys
1765 * Enable Power Management after link up
1767 if (hw
->phy_type
== SK_PHY_BCOM
) {
1768 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1769 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1770 & ~PHY_B_AC_DIS_PM
);
1771 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1775 xm_write16(hw
, port
, XM_MMU_CMD
,
1776 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1781 static inline void bcom_phy_intr(struct skge_port
*skge
)
1783 struct skge_hw
*hw
= skge
->hw
;
1784 int port
= skge
->port
;
1787 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1788 if (netif_msg_intr(skge
))
1789 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1790 skge
->netdev
->name
, isrc
);
1792 if (isrc
& PHY_B_IS_PSE
)
1793 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1794 hw
->dev
[port
]->name
);
1796 /* Workaround BCom Errata:
1797 * enable and disable loopback mode if "NO HCD" occurs.
1799 if (isrc
& PHY_B_IS_NO_HDCL
) {
1800 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1801 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1802 ctrl
| PHY_CT_LOOP
);
1803 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1804 ctrl
& ~PHY_CT_LOOP
);
1807 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1808 bcom_check_link(hw
, port
);
1812 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1816 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1817 gma_write16(hw
, port
, GM_SMI_CTRL
,
1818 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1819 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1822 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1826 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1827 hw
->dev
[port
]->name
);
1831 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1835 gma_write16(hw
, port
, GM_SMI_CTRL
,
1836 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1837 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1839 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1841 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1847 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1851 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1854 if (__gm_phy_read(hw
, port
, reg
, &v
))
1855 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1856 hw
->dev
[port
]->name
);
1860 /* Marvell Phy Initialization */
1861 static void yukon_init(struct skge_hw
*hw
, int port
)
1863 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1864 u16 ctrl
, ct1000
, adv
;
1866 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1867 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1869 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1870 PHY_M_EC_MAC_S_MSK
);
1871 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1873 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1875 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1878 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1879 if (skge
->autoneg
== AUTONEG_DISABLE
)
1880 ctrl
&= ~PHY_CT_ANE
;
1882 ctrl
|= PHY_CT_RESET
;
1883 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1889 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1891 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1892 ct1000
|= PHY_M_1000C_AFD
;
1893 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1894 ct1000
|= PHY_M_1000C_AHD
;
1895 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1896 adv
|= PHY_M_AN_100_FD
;
1897 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1898 adv
|= PHY_M_AN_100_HD
;
1899 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1900 adv
|= PHY_M_AN_10_FD
;
1901 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1902 adv
|= PHY_M_AN_10_HD
;
1904 /* Set Flow-control capabilities */
1905 adv
|= phy_pause_map
[skge
->flow_control
];
1907 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1908 adv
|= PHY_M_AN_1000X_AFD
;
1909 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1910 adv
|= PHY_M_AN_1000X_AHD
;
1912 adv
|= fiber_pause_map
[skge
->flow_control
];
1915 /* Restart Auto-negotiation */
1916 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1918 /* forced speed/duplex settings */
1919 ct1000
= PHY_M_1000C_MSE
;
1921 if (skge
->duplex
== DUPLEX_FULL
)
1922 ctrl
|= PHY_CT_DUP_MD
;
1924 switch (skge
->speed
) {
1926 ctrl
|= PHY_CT_SP1000
;
1929 ctrl
|= PHY_CT_SP100
;
1933 ctrl
|= PHY_CT_RESET
;
1936 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
1938 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
1939 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1941 /* Enable phy interrupt on autonegotiation complete (or link up) */
1942 if (skge
->autoneg
== AUTONEG_ENABLE
)
1943 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
1945 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
1948 static void yukon_reset(struct skge_hw
*hw
, int port
)
1950 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
1951 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
1952 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
1953 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
1954 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
1956 gma_write16(hw
, port
, GM_RX_CTRL
,
1957 gma_read16(hw
, port
, GM_RX_CTRL
)
1958 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
1961 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1962 static int is_yukon_lite_a0(struct skge_hw
*hw
)
1967 if (hw
->chip_id
!= CHIP_ID_YUKON
)
1970 reg
= skge_read32(hw
, B2_FAR
);
1971 skge_write8(hw
, B2_FAR
+ 3, 0xff);
1972 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
1973 skge_write32(hw
, B2_FAR
, reg
);
1977 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
1979 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1982 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
1984 /* WA code for COMA mode -- set PHY reset */
1985 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1986 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1987 reg
= skge_read32(hw
, B2_GP_IO
);
1988 reg
|= GP_DIR_9
| GP_IO_9
;
1989 skge_write32(hw
, B2_GP_IO
, reg
);
1993 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
1994 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
1996 /* WA code for COMA mode -- clear PHY reset */
1997 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1998 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1999 reg
= skge_read32(hw
, B2_GP_IO
);
2002 skge_write32(hw
, B2_GP_IO
, reg
);
2005 /* Set hardware config mode */
2006 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2007 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2008 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2010 /* Clear GMC reset */
2011 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2012 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2013 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2015 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2016 reg
= GM_GPCR_AU_ALL_DIS
;
2017 gma_write16(hw
, port
, GM_GP_CTRL
,
2018 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2020 switch (skge
->speed
) {
2022 reg
&= ~GM_GPCR_SPEED_100
;
2023 reg
|= GM_GPCR_SPEED_1000
;
2026 reg
&= ~GM_GPCR_SPEED_1000
;
2027 reg
|= GM_GPCR_SPEED_100
;
2030 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2034 if (skge
->duplex
== DUPLEX_FULL
)
2035 reg
|= GM_GPCR_DUP_FULL
;
2037 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2039 switch (skge
->flow_control
) {
2040 case FLOW_MODE_NONE
:
2041 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2042 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2044 case FLOW_MODE_LOC_SEND
:
2045 /* disable Rx flow-control */
2046 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2048 case FLOW_MODE_SYMMETRIC
:
2049 case FLOW_MODE_SYM_OR_REM
:
2050 /* enable Tx & Rx flow-control */
2054 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2055 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2057 yukon_init(hw
, port
);
2060 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2061 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2063 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2064 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2065 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2067 /* transmit control */
2068 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2070 /* receive control reg: unicast + multicast + no FCS */
2071 gma_write16(hw
, port
, GM_RX_CTRL
,
2072 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2074 /* transmit flow control */
2075 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2077 /* transmit parameter */
2078 gma_write16(hw
, port
, GM_TX_PARAM
,
2079 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2080 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2081 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2083 /* serial mode register */
2084 reg
= GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF
);
2085 if (hw
->dev
[port
]->mtu
> 1500)
2086 reg
|= GM_SMOD_JUMBO_ENA
;
2088 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2090 /* physical address: used for pause frames */
2091 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2092 /* virtual address for data */
2093 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2095 /* enable interrupt mask for counter overflows */
2096 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2097 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2098 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2100 /* Initialize Mac Fifo */
2102 /* Configure Rx MAC FIFO */
2103 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2104 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2106 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2107 if (is_yukon_lite_a0(hw
))
2108 reg
&= ~GMF_RX_F_FL_ON
;
2110 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2111 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2113 * because Pause Packet Truncation in GMAC is not working
2114 * we have to increase the Flush Threshold to 64 bytes
2115 * in order to flush pause packets in Rx FIFO on Yukon-1
2117 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2119 /* Configure Tx MAC FIFO */
2120 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2121 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2124 /* Go into power down mode */
2125 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2129 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2130 ctrl
|= PHY_M_PC_POL_R_DIS
;
2131 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2133 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2134 ctrl
|= PHY_CT_RESET
;
2135 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2137 /* switch IEEE compatible power down mode on */
2138 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2139 ctrl
|= PHY_CT_PDOWN
;
2140 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2143 static void yukon_stop(struct skge_port
*skge
)
2145 struct skge_hw
*hw
= skge
->hw
;
2146 int port
= skge
->port
;
2148 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2149 yukon_reset(hw
, port
);
2151 gma_write16(hw
, port
, GM_GP_CTRL
,
2152 gma_read16(hw
, port
, GM_GP_CTRL
)
2153 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2154 gma_read16(hw
, port
, GM_GP_CTRL
);
2156 yukon_suspend(hw
, port
);
2158 /* set GPHY Control reset */
2159 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2160 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2163 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2165 struct skge_hw
*hw
= skge
->hw
;
2166 int port
= skge
->port
;
2169 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2170 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2171 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2172 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2174 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2175 data
[i
] = gma_read32(hw
, port
,
2176 skge_stats
[i
].gma_offset
);
2179 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2181 struct net_device
*dev
= hw
->dev
[port
];
2182 struct skge_port
*skge
= netdev_priv(dev
);
2183 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2185 if (netif_msg_intr(skge
))
2186 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
2189 if (status
& GM_IS_RX_FF_OR
) {
2190 ++skge
->net_stats
.rx_fifo_errors
;
2191 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2194 if (status
& GM_IS_TX_FF_UR
) {
2195 ++skge
->net_stats
.tx_fifo_errors
;
2196 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2201 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2203 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2204 case PHY_M_PS_SPEED_1000
:
2206 case PHY_M_PS_SPEED_100
:
2213 static void yukon_link_up(struct skge_port
*skge
)
2215 struct skge_hw
*hw
= skge
->hw
;
2216 int port
= skge
->port
;
2219 /* Enable Transmit FIFO Underrun */
2220 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2222 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2223 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2224 reg
|= GM_GPCR_DUP_FULL
;
2227 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2228 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2230 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2234 static void yukon_link_down(struct skge_port
*skge
)
2236 struct skge_hw
*hw
= skge
->hw
;
2237 int port
= skge
->port
;
2240 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2241 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2242 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2244 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2245 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2246 ctrl
|= PHY_M_AN_ASP
;
2247 /* restore Asymmetric Pause bit */
2248 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2251 skge_link_down(skge
);
2253 yukon_init(hw
, port
);
2256 static void yukon_phy_intr(struct skge_port
*skge
)
2258 struct skge_hw
*hw
= skge
->hw
;
2259 int port
= skge
->port
;
2260 const char *reason
= NULL
;
2261 u16 istatus
, phystat
;
2263 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2264 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2266 if (netif_msg_intr(skge
))
2267 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
2268 skge
->netdev
->name
, istatus
, phystat
);
2270 if (istatus
& PHY_M_IS_AN_COMPL
) {
2271 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2273 reason
= "remote fault";
2277 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2278 reason
= "master/slave fault";
2282 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2283 reason
= "speed/duplex";
2287 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2288 ? DUPLEX_FULL
: DUPLEX_HALF
;
2289 skge
->speed
= yukon_speed(hw
, phystat
);
2291 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2292 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2293 case PHY_M_PS_PAUSE_MSK
:
2294 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2296 case PHY_M_PS_RX_P_EN
:
2297 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2299 case PHY_M_PS_TX_P_EN
:
2300 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2303 skge
->flow_status
= FLOW_STAT_NONE
;
2306 if (skge
->flow_status
== FLOW_STAT_NONE
||
2307 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2308 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2310 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2311 yukon_link_up(skge
);
2315 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2316 skge
->speed
= yukon_speed(hw
, phystat
);
2318 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2319 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2320 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2321 if (phystat
& PHY_M_PS_LINK_UP
)
2322 yukon_link_up(skge
);
2324 yukon_link_down(skge
);
2328 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2329 skge
->netdev
->name
, reason
);
2331 /* XXX restart autonegotiation? */
2334 static void skge_phy_reset(struct skge_port
*skge
)
2336 struct skge_hw
*hw
= skge
->hw
;
2337 int port
= skge
->port
;
2338 struct net_device
*dev
= hw
->dev
[port
];
2340 netif_stop_queue(skge
->netdev
);
2341 netif_carrier_off(skge
->netdev
);
2343 spin_lock_bh(&hw
->phy_lock
);
2344 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2345 genesis_reset(hw
, port
);
2346 genesis_mac_init(hw
, port
);
2348 yukon_reset(hw
, port
);
2349 yukon_init(hw
, port
);
2351 spin_unlock_bh(&hw
->phy_lock
);
2353 dev
->set_multicast_list(dev
);
2356 /* Basic MII support */
2357 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2359 struct mii_ioctl_data
*data
= if_mii(ifr
);
2360 struct skge_port
*skge
= netdev_priv(dev
);
2361 struct skge_hw
*hw
= skge
->hw
;
2362 int err
= -EOPNOTSUPP
;
2364 if (!netif_running(dev
))
2365 return -ENODEV
; /* Phy still in reset */
2369 data
->phy_id
= hw
->phy_addr
;
2374 spin_lock_bh(&hw
->phy_lock
);
2375 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2376 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2378 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2379 spin_unlock_bh(&hw
->phy_lock
);
2380 data
->val_out
= val
;
2385 if (!capable(CAP_NET_ADMIN
))
2388 spin_lock_bh(&hw
->phy_lock
);
2389 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2390 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2393 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2395 spin_unlock_bh(&hw
->phy_lock
);
2401 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2407 end
= start
+ len
- 1;
2409 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2410 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2411 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2412 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2413 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2415 if (q
== Q_R1
|| q
== Q_R2
) {
2416 /* Set thresholds on receive queue's */
2417 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2419 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2422 /* Enable store & forward on Tx queue's because
2423 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2425 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2428 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2431 /* Setup Bus Memory Interface */
2432 static void skge_qset(struct skge_port
*skge
, u16 q
,
2433 const struct skge_element
*e
)
2435 struct skge_hw
*hw
= skge
->hw
;
2436 u32 watermark
= 0x600;
2437 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2439 /* optimization to reduce window on 32bit/33mhz */
2440 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2443 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2444 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2445 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2446 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2449 static int skge_up(struct net_device
*dev
)
2451 struct skge_port
*skge
= netdev_priv(dev
);
2452 struct skge_hw
*hw
= skge
->hw
;
2453 int port
= skge
->port
;
2454 u32 chunk
, ram_addr
;
2455 size_t rx_size
, tx_size
;
2458 if (!is_valid_ether_addr(dev
->dev_addr
))
2461 if (netif_msg_ifup(skge
))
2462 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2464 if (dev
->mtu
> RX_BUF_SIZE
)
2465 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2467 skge
->rx_buf_size
= RX_BUF_SIZE
;
2470 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2471 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2472 skge
->mem_size
= tx_size
+ rx_size
;
2473 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2477 BUG_ON(skge
->dma
& 7);
2479 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2480 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2485 memset(skge
->mem
, 0, skge
->mem_size
);
2487 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2491 err
= skge_rx_fill(dev
);
2495 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2496 skge
->dma
+ rx_size
);
2500 /* Initialize MAC */
2501 spin_lock_bh(&hw
->phy_lock
);
2502 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2503 genesis_mac_init(hw
, port
);
2505 yukon_mac_init(hw
, port
);
2506 spin_unlock_bh(&hw
->phy_lock
);
2508 /* Configure RAMbuffers */
2509 chunk
= hw
->ram_size
/ ((hw
->ports
+ 1)*2);
2510 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2512 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2513 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2515 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2516 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2517 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2519 /* Start receiver BMU */
2521 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2522 skge_led(skge
, LED_MODE_ON
);
2524 spin_lock_irq(&hw
->hw_lock
);
2525 hw
->intr_mask
|= portmask
[port
];
2526 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2527 spin_unlock_irq(&hw
->hw_lock
);
2529 netif_poll_enable(dev
);
2533 skge_rx_clean(skge
);
2534 kfree(skge
->rx_ring
.start
);
2536 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2542 static int skge_down(struct net_device
*dev
)
2544 struct skge_port
*skge
= netdev_priv(dev
);
2545 struct skge_hw
*hw
= skge
->hw
;
2546 int port
= skge
->port
;
2548 if (skge
->mem
== NULL
)
2551 if (netif_msg_ifdown(skge
))
2552 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2554 netif_stop_queue(dev
);
2556 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2557 del_timer_sync(&skge
->link_timer
);
2559 netif_poll_disable(dev
);
2560 netif_carrier_off(dev
);
2562 spin_lock_irq(&hw
->hw_lock
);
2563 hw
->intr_mask
&= ~portmask
[port
];
2564 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2565 spin_unlock_irq(&hw
->hw_lock
);
2567 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2568 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2573 /* Stop transmitter */
2574 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2575 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2576 RB_RST_SET
|RB_DIS_OP_MD
);
2579 /* Disable Force Sync bit and Enable Alloc bit */
2580 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2581 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2583 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2584 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2585 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2587 /* Reset PCI FIFO */
2588 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2589 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2591 /* Reset the RAM Buffer async Tx queue */
2592 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2594 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2595 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2596 RB_RST_SET
|RB_DIS_OP_MD
);
2597 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2599 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2600 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2601 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2603 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2604 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2607 skge_led(skge
, LED_MODE_OFF
);
2609 netif_tx_lock_bh(dev
);
2611 netif_tx_unlock_bh(dev
);
2613 skge_rx_clean(skge
);
2615 kfree(skge
->rx_ring
.start
);
2616 kfree(skge
->tx_ring
.start
);
2617 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2622 static inline int skge_avail(const struct skge_ring
*ring
)
2625 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2626 + (ring
->to_clean
- ring
->to_use
) - 1;
2629 static int skge_xmit_frame(struct sk_buff
*skb
, struct net_device
*dev
)
2631 struct skge_port
*skge
= netdev_priv(dev
);
2632 struct skge_hw
*hw
= skge
->hw
;
2633 struct skge_element
*e
;
2634 struct skge_tx_desc
*td
;
2639 if (skb_padto(skb
, ETH_ZLEN
))
2640 return NETDEV_TX_OK
;
2642 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2643 return NETDEV_TX_BUSY
;
2645 e
= skge
->tx_ring
.to_use
;
2647 BUG_ON(td
->control
& BMU_OWN
);
2649 len
= skb_headlen(skb
);
2650 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2651 pci_unmap_addr_set(e
, mapaddr
, map
);
2652 pci_unmap_len_set(e
, maplen
, len
);
2655 td
->dma_hi
= map
>> 32;
2657 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2658 const int offset
= skb_transport_offset(skb
);
2660 /* This seems backwards, but it is what the sk98lin
2661 * does. Looks like hardware is wrong?
2663 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
2664 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2665 control
= BMU_TCP_CHECK
;
2667 control
= BMU_UDP_CHECK
;
2670 td
->csum_start
= offset
;
2671 td
->csum_write
= offset
+ skb
->csum_offset
;
2673 control
= BMU_CHECK
;
2675 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2676 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2678 struct skge_tx_desc
*tf
= td
;
2680 control
|= BMU_STFWD
;
2681 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2682 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2684 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2685 frag
->size
, PCI_DMA_TODEVICE
);
2690 BUG_ON(tf
->control
& BMU_OWN
);
2693 tf
->dma_hi
= (u64
) map
>> 32;
2694 pci_unmap_addr_set(e
, mapaddr
, map
);
2695 pci_unmap_len_set(e
, maplen
, frag
->size
);
2697 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2699 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2701 /* Make sure all the descriptors written */
2703 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2706 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2708 if (unlikely(netif_msg_tx_queued(skge
)))
2709 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2710 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2712 skge
->tx_ring
.to_use
= e
->next
;
2715 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2716 pr_debug("%s: transmit queue full\n", dev
->name
);
2717 netif_stop_queue(dev
);
2720 dev
->trans_start
= jiffies
;
2722 return NETDEV_TX_OK
;
2726 /* Free resources associated with this reing element */
2727 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2730 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2732 /* skb header vs. fragment */
2733 if (control
& BMU_STF
)
2734 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2735 pci_unmap_len(e
, maplen
),
2738 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2739 pci_unmap_len(e
, maplen
),
2742 if (control
& BMU_EOF
) {
2743 if (unlikely(netif_msg_tx_done(skge
)))
2744 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2745 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2747 dev_kfree_skb(e
->skb
);
2751 /* Free all buffers in transmit ring */
2752 static void skge_tx_clean(struct net_device
*dev
)
2754 struct skge_port
*skge
= netdev_priv(dev
);
2755 struct skge_element
*e
;
2757 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2758 struct skge_tx_desc
*td
= e
->desc
;
2759 skge_tx_free(skge
, e
, td
->control
);
2763 skge
->tx_ring
.to_clean
= e
;
2764 netif_wake_queue(dev
);
2767 static void skge_tx_timeout(struct net_device
*dev
)
2769 struct skge_port
*skge
= netdev_priv(dev
);
2771 if (netif_msg_timer(skge
))
2772 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2774 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2778 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2782 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2785 if (!netif_running(dev
)) {
2801 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2803 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2807 crc
= ether_crc_le(ETH_ALEN
, addr
);
2809 filter
[bit
/8] |= 1 << (bit
%8);
2812 static void genesis_set_multicast(struct net_device
*dev
)
2814 struct skge_port
*skge
= netdev_priv(dev
);
2815 struct skge_hw
*hw
= skge
->hw
;
2816 int port
= skge
->port
;
2817 int i
, count
= dev
->mc_count
;
2818 struct dev_mc_list
*list
= dev
->mc_list
;
2822 mode
= xm_read32(hw
, port
, XM_MODE
);
2823 mode
|= XM_MD_ENA_HASH
;
2824 if (dev
->flags
& IFF_PROMISC
)
2825 mode
|= XM_MD_ENA_PROM
;
2827 mode
&= ~XM_MD_ENA_PROM
;
2829 if (dev
->flags
& IFF_ALLMULTI
)
2830 memset(filter
, 0xff, sizeof(filter
));
2832 memset(filter
, 0, sizeof(filter
));
2834 if (skge
->flow_status
== FLOW_STAT_REM_SEND
2835 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2836 genesis_add_filter(filter
, pause_mc_addr
);
2838 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
2839 genesis_add_filter(filter
, list
->dmi_addr
);
2842 xm_write32(hw
, port
, XM_MODE
, mode
);
2843 xm_outhash(hw
, port
, XM_HSM
, filter
);
2846 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2848 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2849 filter
[bit
/8] |= 1 << (bit
%8);
2852 static void yukon_set_multicast(struct net_device
*dev
)
2854 struct skge_port
*skge
= netdev_priv(dev
);
2855 struct skge_hw
*hw
= skge
->hw
;
2856 int port
= skge
->port
;
2857 struct dev_mc_list
*list
= dev
->mc_list
;
2858 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
2859 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2863 memset(filter
, 0, sizeof(filter
));
2865 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2866 reg
|= GM_RXCR_UCF_ENA
;
2868 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2869 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2870 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2871 memset(filter
, 0xff, sizeof(filter
));
2872 else if (dev
->mc_count
== 0 && !rx_pause
)/* no multicast */
2873 reg
&= ~GM_RXCR_MCF_ENA
;
2876 reg
|= GM_RXCR_MCF_ENA
;
2879 yukon_add_filter(filter
, pause_mc_addr
);
2881 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
)
2882 yukon_add_filter(filter
, list
->dmi_addr
);
2886 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2887 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2888 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2889 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2890 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2891 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2892 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2893 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2895 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2898 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
2900 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2901 return status
>> XMR_FS_LEN_SHIFT
;
2903 return status
>> GMR_FS_LEN_SHIFT
;
2906 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2908 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2909 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2911 return (status
& GMR_FS_ANY_ERR
) ||
2912 (status
& GMR_FS_RX_OK
) == 0;
2916 /* Get receive buffer from descriptor.
2917 * Handles copy of small buffers and reallocation failures
2919 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
2920 struct skge_element
*e
,
2921 u32 control
, u32 status
, u16 csum
)
2923 struct skge_port
*skge
= netdev_priv(dev
);
2924 struct sk_buff
*skb
;
2925 u16 len
= control
& BMU_BBC
;
2927 if (unlikely(netif_msg_rx_status(skge
)))
2928 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
2929 dev
->name
, e
- skge
->rx_ring
.start
,
2932 if (len
> skge
->rx_buf_size
)
2935 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
2938 if (bad_phy_status(skge
->hw
, status
))
2941 if (phy_length(skge
->hw
, status
) != len
)
2944 if (len
< RX_COPY_THRESHOLD
) {
2945 skb
= netdev_alloc_skb(dev
, len
+ 2);
2949 skb_reserve(skb
, 2);
2950 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
2951 pci_unmap_addr(e
, mapaddr
),
2952 len
, PCI_DMA_FROMDEVICE
);
2953 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
2954 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
2955 pci_unmap_addr(e
, mapaddr
),
2956 len
, PCI_DMA_FROMDEVICE
);
2957 skge_rx_reuse(e
, skge
->rx_buf_size
);
2959 struct sk_buff
*nskb
;
2960 nskb
= netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
);
2964 skb_reserve(nskb
, NET_IP_ALIGN
);
2965 pci_unmap_single(skge
->hw
->pdev
,
2966 pci_unmap_addr(e
, mapaddr
),
2967 pci_unmap_len(e
, maplen
),
2968 PCI_DMA_FROMDEVICE
);
2970 prefetch(skb
->data
);
2971 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
2975 if (skge
->rx_csum
) {
2977 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2980 skb
->protocol
= eth_type_trans(skb
, dev
);
2985 if (netif_msg_rx_err(skge
))
2986 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
2987 dev
->name
, e
- skge
->rx_ring
.start
,
2990 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
2991 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
2992 skge
->net_stats
.rx_length_errors
++;
2993 if (status
& XMR_FS_FRA_ERR
)
2994 skge
->net_stats
.rx_frame_errors
++;
2995 if (status
& XMR_FS_FCS_ERR
)
2996 skge
->net_stats
.rx_crc_errors
++;
2998 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
2999 skge
->net_stats
.rx_length_errors
++;
3000 if (status
& GMR_FS_FRAGMENT
)
3001 skge
->net_stats
.rx_frame_errors
++;
3002 if (status
& GMR_FS_CRC_ERR
)
3003 skge
->net_stats
.rx_crc_errors
++;
3007 skge_rx_reuse(e
, skge
->rx_buf_size
);
3011 /* Free all buffers in Tx ring which are no longer owned by device */
3012 static void skge_tx_done(struct net_device
*dev
)
3014 struct skge_port
*skge
= netdev_priv(dev
);
3015 struct skge_ring
*ring
= &skge
->tx_ring
;
3016 struct skge_element
*e
;
3018 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3020 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3021 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3023 if (control
& BMU_OWN
)
3026 skge_tx_free(skge
, e
, control
);
3028 skge
->tx_ring
.to_clean
= e
;
3030 /* Can run lockless until we need to synchronize to restart queue. */
3033 if (unlikely(netif_queue_stopped(dev
) &&
3034 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3036 if (unlikely(netif_queue_stopped(dev
) &&
3037 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3038 netif_wake_queue(dev
);
3041 netif_tx_unlock(dev
);
3045 static int skge_poll(struct net_device
*dev
, int *budget
)
3047 struct skge_port
*skge
= netdev_priv(dev
);
3048 struct skge_hw
*hw
= skge
->hw
;
3049 struct skge_ring
*ring
= &skge
->rx_ring
;
3050 struct skge_element
*e
;
3051 unsigned long flags
;
3052 int to_do
= min(dev
->quota
, *budget
);
3057 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3059 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3060 struct skge_rx_desc
*rd
= e
->desc
;
3061 struct sk_buff
*skb
;
3065 control
= rd
->control
;
3066 if (control
& BMU_OWN
)
3069 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3071 dev
->last_rx
= jiffies
;
3072 netif_receive_skb(skb
);
3079 /* restart receiver */
3081 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3083 *budget
-= work_done
;
3084 dev
->quota
-= work_done
;
3086 if (work_done
>= to_do
)
3087 return 1; /* not done */
3089 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3090 __netif_rx_complete(dev
);
3091 hw
->intr_mask
|= napimask
[skge
->port
];
3092 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3093 skge_read32(hw
, B0_IMSK
);
3094 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3099 /* Parity errors seem to happen when Genesis is connected to a switch
3100 * with no other ports present. Heartbeat error??
3102 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3104 struct net_device
*dev
= hw
->dev
[port
];
3107 struct skge_port
*skge
= netdev_priv(dev
);
3108 ++skge
->net_stats
.tx_heartbeat_errors
;
3111 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3112 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3115 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3116 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3117 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3118 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3121 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3123 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3124 genesis_mac_intr(hw
, port
);
3126 yukon_mac_intr(hw
, port
);
3129 /* Handle device specific framing and timeout interrupts */
3130 static void skge_error_irq(struct skge_hw
*hw
)
3132 struct pci_dev
*pdev
= hw
->pdev
;
3133 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3135 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3136 /* clear xmac errors */
3137 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3138 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3139 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3140 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3142 /* Timestamp (unused) overflow */
3143 if (hwstatus
& IS_IRQ_TIST_OV
)
3144 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3147 if (hwstatus
& IS_RAM_RD_PAR
) {
3148 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3149 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3152 if (hwstatus
& IS_RAM_WR_PAR
) {
3153 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3154 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3157 if (hwstatus
& IS_M1_PAR_ERR
)
3158 skge_mac_parity(hw
, 0);
3160 if (hwstatus
& IS_M2_PAR_ERR
)
3161 skge_mac_parity(hw
, 1);
3163 if (hwstatus
& IS_R1_PAR_ERR
) {
3164 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3166 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3169 if (hwstatus
& IS_R2_PAR_ERR
) {
3170 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3172 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3175 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3176 u16 pci_status
, pci_cmd
;
3178 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3179 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3181 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3182 pci_cmd
, pci_status
);
3184 /* Write the error bits back to clear them. */
3185 pci_status
&= PCI_STATUS_ERROR_BITS
;
3186 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3187 pci_write_config_word(pdev
, PCI_COMMAND
,
3188 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3189 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3190 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3192 /* if error still set then just ignore it */
3193 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3194 if (hwstatus
& IS_IRQ_STAT
) {
3195 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3196 hw
->intr_mask
&= ~IS_HW_ERR
;
3202 * Interrupt from PHY are handled in tasklet (softirq)
3203 * because accessing phy registers requires spin wait which might
3204 * cause excess interrupt latency.
3206 static void skge_extirq(unsigned long arg
)
3208 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3211 for (port
= 0; port
< hw
->ports
; port
++) {
3212 struct net_device
*dev
= hw
->dev
[port
];
3214 if (netif_running(dev
)) {
3215 struct skge_port
*skge
= netdev_priv(dev
);
3217 spin_lock(&hw
->phy_lock
);
3218 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3219 yukon_phy_intr(skge
);
3220 else if (hw
->phy_type
== SK_PHY_BCOM
)
3221 bcom_phy_intr(skge
);
3222 spin_unlock(&hw
->phy_lock
);
3226 spin_lock_irq(&hw
->hw_lock
);
3227 hw
->intr_mask
|= IS_EXT_REG
;
3228 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3229 skge_read32(hw
, B0_IMSK
);
3230 spin_unlock_irq(&hw
->hw_lock
);
3233 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3235 struct skge_hw
*hw
= dev_id
;
3239 spin_lock(&hw
->hw_lock
);
3240 /* Reading this register masks IRQ */
3241 status
= skge_read32(hw
, B0_SP_ISRC
);
3242 if (status
== 0 || status
== ~0)
3246 status
&= hw
->intr_mask
;
3247 if (status
& IS_EXT_REG
) {
3248 hw
->intr_mask
&= ~IS_EXT_REG
;
3249 tasklet_schedule(&hw
->phy_task
);
3252 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3253 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3254 netif_rx_schedule(hw
->dev
[0]);
3257 if (status
& IS_PA_TO_TX1
)
3258 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3260 if (status
& IS_PA_TO_RX1
) {
3261 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3263 ++skge
->net_stats
.rx_over_errors
;
3264 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3268 if (status
& IS_MAC1
)
3269 skge_mac_intr(hw
, 0);
3272 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3273 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3274 netif_rx_schedule(hw
->dev
[1]);
3277 if (status
& IS_PA_TO_RX2
) {
3278 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3279 ++skge
->net_stats
.rx_over_errors
;
3280 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3283 if (status
& IS_PA_TO_TX2
)
3284 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3286 if (status
& IS_MAC2
)
3287 skge_mac_intr(hw
, 1);
3290 if (status
& IS_HW_ERR
)
3293 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3294 skge_read32(hw
, B0_IMSK
);
3296 spin_unlock(&hw
->hw_lock
);
3298 return IRQ_RETVAL(handled
);
3301 #ifdef CONFIG_NET_POLL_CONTROLLER
3302 static void skge_netpoll(struct net_device
*dev
)
3304 struct skge_port
*skge
= netdev_priv(dev
);
3306 disable_irq(dev
->irq
);
3307 skge_intr(dev
->irq
, skge
->hw
);
3308 enable_irq(dev
->irq
);
3312 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3314 struct skge_port
*skge
= netdev_priv(dev
);
3315 struct skge_hw
*hw
= skge
->hw
;
3316 unsigned port
= skge
->port
;
3317 const struct sockaddr
*addr
= p
;
3320 if (!is_valid_ether_addr(addr
->sa_data
))
3321 return -EADDRNOTAVAIL
;
3323 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3325 if (!netif_running(dev
)) {
3326 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3327 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3330 spin_lock_bh(&hw
->phy_lock
);
3331 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3332 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3334 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3335 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3337 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3338 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3340 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3341 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3344 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3345 spin_unlock_bh(&hw
->phy_lock
);
3351 static const struct {
3355 { CHIP_ID_GENESIS
, "Genesis" },
3356 { CHIP_ID_YUKON
, "Yukon" },
3357 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3358 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3361 static const char *skge_board_name(const struct skge_hw
*hw
)
3364 static char buf
[16];
3366 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3367 if (skge_chips
[i
].id
== hw
->chip_id
)
3368 return skge_chips
[i
].name
;
3370 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3376 * Setup the board data structure, but don't bring up
3379 static int skge_reset(struct skge_hw
*hw
)
3382 u16 ctst
, pci_status
;
3383 u8 t8
, mac_cfg
, pmd_type
;
3386 ctst
= skge_read16(hw
, B0_CTST
);
3389 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3390 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3392 /* clear PCI errors, if any */
3393 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3394 skge_write8(hw
, B2_TST_CTRL2
, 0);
3396 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3397 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3398 pci_status
| PCI_STATUS_ERROR_BITS
);
3399 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3400 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3402 /* restore CLK_RUN bits (for Yukon-Lite) */
3403 skge_write16(hw
, B0_CTST
,
3404 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3406 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3407 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3408 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3409 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3411 switch (hw
->chip_id
) {
3412 case CHIP_ID_GENESIS
:
3413 switch (hw
->phy_type
) {
3415 hw
->phy_addr
= PHY_ADDR_XMAC
;
3418 hw
->phy_addr
= PHY_ADDR_BCOM
;
3421 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3428 case CHIP_ID_YUKON_LITE
:
3429 case CHIP_ID_YUKON_LP
:
3430 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3433 hw
->phy_addr
= PHY_ADDR_MARV
;
3437 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3442 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3443 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3444 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3446 /* read the adapters RAM size */
3447 t8
= skge_read8(hw
, B2_E_0
);
3448 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3450 /* special case: 4 x 64k x 36, offset = 0x80000 */
3451 hw
->ram_size
= 0x100000;
3452 hw
->ram_offset
= 0x80000;
3454 hw
->ram_size
= t8
* 512;
3457 hw
->ram_size
= 0x20000;
3459 hw
->ram_size
= t8
* 4096;
3461 hw
->intr_mask
= IS_HW_ERR
;
3463 /* Use PHY IRQ for all but fiber based Genesis board */
3464 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3465 hw
->intr_mask
|= IS_EXT_REG
;
3467 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3470 /* switch power to VCC (WA for VAUX problem) */
3471 skge_write8(hw
, B0_POWER_CTRL
,
3472 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3474 /* avoid boards with stuck Hardware error bits */
3475 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3476 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3477 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3478 hw
->intr_mask
&= ~IS_HW_ERR
;
3481 /* Clear PHY COMA */
3482 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3483 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3484 reg
&= ~PCI_PHY_COMA
;
3485 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3486 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3489 for (i
= 0; i
< hw
->ports
; i
++) {
3490 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3491 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3495 /* turn off hardware timer (unused) */
3496 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3497 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3498 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3500 /* enable the Tx Arbiters */
3501 for (i
= 0; i
< hw
->ports
; i
++)
3502 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3504 /* Initialize ram interface */
3505 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3507 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3508 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3509 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3510 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3511 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3512 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3513 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3514 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3515 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3516 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3517 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3518 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3520 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3522 /* Set interrupt moderation for Transmit only
3523 * Receive interrupts avoided by NAPI
3525 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3526 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3527 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3529 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3531 for (i
= 0; i
< hw
->ports
; i
++) {
3532 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3533 genesis_reset(hw
, i
);
3541 /* Initialize network device */
3542 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3545 struct skge_port
*skge
;
3546 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3549 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3553 SET_MODULE_OWNER(dev
);
3554 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3555 dev
->open
= skge_up
;
3556 dev
->stop
= skge_down
;
3557 dev
->do_ioctl
= skge_ioctl
;
3558 dev
->hard_start_xmit
= skge_xmit_frame
;
3559 dev
->get_stats
= skge_get_stats
;
3560 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3561 dev
->set_multicast_list
= genesis_set_multicast
;
3563 dev
->set_multicast_list
= yukon_set_multicast
;
3565 dev
->set_mac_address
= skge_set_mac_address
;
3566 dev
->change_mtu
= skge_change_mtu
;
3567 SET_ETHTOOL_OPS(dev
, &skge_ethtool_ops
);
3568 dev
->tx_timeout
= skge_tx_timeout
;
3569 dev
->watchdog_timeo
= TX_WATCHDOG
;
3570 dev
->poll
= skge_poll
;
3571 dev
->weight
= NAPI_WEIGHT
;
3572 #ifdef CONFIG_NET_POLL_CONTROLLER
3573 dev
->poll_controller
= skge_netpoll
;
3575 dev
->irq
= hw
->pdev
->irq
;
3578 dev
->features
|= NETIF_F_HIGHDMA
;
3580 skge
= netdev_priv(dev
);
3583 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3585 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3586 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3588 /* Auto speed and flow control */
3589 skge
->autoneg
= AUTONEG_ENABLE
;
3590 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3593 skge
->advertising
= skge_supported_modes(hw
);
3594 skge
->wol
= pci_wake_enabled(hw
->pdev
) ? wol_supported(hw
) : 0;
3596 hw
->dev
[port
] = dev
;
3600 /* Only used for Genesis XMAC */
3601 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3603 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3604 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3608 /* read the mac address */
3609 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3610 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3612 /* device is off until link detection */
3613 netif_carrier_off(dev
);
3614 netif_stop_queue(dev
);
3619 static void __devinit
skge_show_addr(struct net_device
*dev
)
3621 const struct skge_port
*skge
= netdev_priv(dev
);
3623 if (netif_msg_probe(skge
))
3624 printk(KERN_INFO PFX
"%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3626 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
3627 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5]);
3630 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3631 const struct pci_device_id
*ent
)
3633 struct net_device
*dev
, *dev1
;
3635 int err
, using_dac
= 0;
3637 err
= pci_enable_device(pdev
);
3639 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3643 err
= pci_request_regions(pdev
, DRV_NAME
);
3645 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3646 goto err_out_disable_pdev
;
3649 pci_set_master(pdev
);
3651 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3653 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3654 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
3656 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3660 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3661 goto err_out_free_regions
;
3665 /* byte swap descriptors in hardware */
3669 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3670 reg
|= PCI_REV_DESC
;
3671 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3676 hw
= kzalloc(sizeof(*hw
), GFP_KERNEL
);
3678 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3679 goto err_out_free_regions
;
3683 spin_lock_init(&hw
->hw_lock
);
3684 spin_lock_init(&hw
->phy_lock
);
3685 tasklet_init(&hw
->phy_task
, &skge_extirq
, (unsigned long) hw
);
3687 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3689 dev_err(&pdev
->dev
, "cannot map device registers\n");
3690 goto err_out_free_hw
;
3693 err
= skge_reset(hw
);
3695 goto err_out_iounmap
;
3697 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3698 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3699 skge_board_name(hw
), hw
->chip_rev
);
3701 dev
= skge_devinit(hw
, 0, using_dac
);
3703 goto err_out_led_off
;
3705 /* Some motherboards are broken and has zero in ROM. */
3706 if (!is_valid_ether_addr(dev
->dev_addr
))
3707 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3709 err
= register_netdev(dev
);
3711 dev_err(&pdev
->dev
, "cannot register net device\n");
3712 goto err_out_free_netdev
;
3715 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, dev
->name
, hw
);
3717 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3718 dev
->name
, pdev
->irq
);
3719 goto err_out_unregister
;
3721 skge_show_addr(dev
);
3723 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
3724 if (register_netdev(dev1
) == 0)
3725 skge_show_addr(dev1
);
3727 /* Failure to register second port need not be fatal */
3728 dev_warn(&pdev
->dev
, "register of second port failed\n");
3733 pci_set_drvdata(pdev
, hw
);
3738 unregister_netdev(dev
);
3739 err_out_free_netdev
:
3742 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3747 err_out_free_regions
:
3748 pci_release_regions(pdev
);
3749 err_out_disable_pdev
:
3750 pci_disable_device(pdev
);
3751 pci_set_drvdata(pdev
, NULL
);
3756 static void __devexit
skge_remove(struct pci_dev
*pdev
)
3758 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3759 struct net_device
*dev0
, *dev1
;
3764 flush_scheduled_work();
3766 if ((dev1
= hw
->dev
[1]))
3767 unregister_netdev(dev1
);
3769 unregister_netdev(dev0
);
3771 tasklet_disable(&hw
->phy_task
);
3773 spin_lock_irq(&hw
->hw_lock
);
3775 skge_write32(hw
, B0_IMSK
, 0);
3776 skge_read32(hw
, B0_IMSK
);
3777 spin_unlock_irq(&hw
->hw_lock
);
3779 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3780 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3782 free_irq(pdev
->irq
, hw
);
3783 pci_release_regions(pdev
);
3784 pci_disable_device(pdev
);
3791 pci_set_drvdata(pdev
, NULL
);
3795 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3797 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3798 int i
, err
, wol
= 0;
3800 err
= pci_save_state(pdev
);
3804 for (i
= 0; i
< hw
->ports
; i
++) {
3805 struct net_device
*dev
= hw
->dev
[i
];
3806 struct skge_port
*skge
= netdev_priv(dev
);
3808 if (netif_running(dev
))
3811 skge_wol_init(skge
);
3816 skge_write32(hw
, B0_IMSK
, 0);
3817 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), wol
);
3818 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3823 static int skge_resume(struct pci_dev
*pdev
)
3825 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3828 err
= pci_set_power_state(pdev
, PCI_D0
);
3832 err
= pci_restore_state(pdev
);
3836 pci_enable_wake(pdev
, PCI_D0
, 0);
3838 err
= skge_reset(hw
);
3842 for (i
= 0; i
< hw
->ports
; i
++) {
3843 struct net_device
*dev
= hw
->dev
[i
];
3845 if (netif_running(dev
)) {
3849 printk(KERN_ERR PFX
"%s: could not up: %d\n",
3861 static void skge_shutdown(struct pci_dev
*pdev
)
3863 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3866 for (i
= 0; i
< hw
->ports
; i
++) {
3867 struct net_device
*dev
= hw
->dev
[i
];
3868 struct skge_port
*skge
= netdev_priv(dev
);
3871 skge_wol_init(skge
);
3875 pci_enable_wake(pdev
, PCI_D3hot
, wol
);
3876 pci_enable_wake(pdev
, PCI_D3cold
, wol
);
3878 pci_disable_device(pdev
);
3879 pci_set_power_state(pdev
, PCI_D3hot
);
3883 static struct pci_driver skge_driver
= {
3885 .id_table
= skge_id_table
,
3886 .probe
= skge_probe
,
3887 .remove
= __devexit_p(skge_remove
),
3889 .suspend
= skge_suspend
,
3890 .resume
= skge_resume
,
3892 .shutdown
= skge_shutdown
,
3895 static int __init
skge_init_module(void)
3897 return pci_register_driver(&skge_driver
);
3900 static void __exit
skge_cleanup_module(void)
3902 pci_unregister_driver(&skge_driver
);
3905 module_init(skge_init_module
);
3906 module_exit(skge_cleanup_module
);