[MTD] generalise the handling of MTD-specific superblocks
[wrt350n-kernel.git] / arch / sparc / mm / srmmu.c
blob0df7121cef07b768d8fe0090609f994edcca3ac5
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
22 #include <asm/bitext.h>
23 #include <asm/page.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/io.h>
27 #include <asm/kdebug.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/sbus.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/a.out.h>
38 #include <asm/mmu_context.h>
39 #include <asm/io-unit.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/viking.h>
45 #include <asm/mxcc.h>
46 #include <asm/ross.h>
47 #include <asm/tsunami.h>
48 #include <asm/swift.h>
49 #include <asm/turbosparc.h>
51 #include <asm/btfixup.h>
53 enum mbus_module srmmu_modtype;
54 unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
58 extern struct resource sparc_iomap;
60 extern unsigned long last_valid_pfn;
62 extern unsigned long page_kernel;
64 pgd_t *srmmu_swapper_pg_dir;
66 #ifdef CONFIG_SMP
67 #define FLUSH_BEGIN(mm)
68 #define FLUSH_END
69 #else
70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71 #define FLUSH_END }
72 #endif
74 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
77 int flush_page_for_dma_global = 1;
79 #ifdef CONFIG_SMP
80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82 #endif
84 char *srmmu_name;
86 ctxd_t *srmmu_ctx_table_phys;
87 ctxd_t *srmmu_context_table;
89 int viking_mxcc_present;
90 static DEFINE_SPINLOCK(srmmu_context_spinlock);
92 int is_hypersparc;
95 * In general all page table modifications should use the V8 atomic
96 * swap instruction. This insures the mmu and the cpu are in sync
97 * with respect to ref/mod bits in the page tables.
99 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
101 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102 return value;
105 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
107 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
110 /* The very generic SRMMU page table operations. */
111 static inline int srmmu_device_memory(unsigned long x)
113 return ((x & 0xF0000000) != 0);
116 int srmmu_cache_pagetables;
118 /* these will be initialized in srmmu_nocache_calcsize() */
119 unsigned long srmmu_nocache_size;
120 unsigned long srmmu_nocache_end;
122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
125 /* The context table is a nocache user with the biggest alignment needs. */
126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
128 void *srmmu_nocache_pool;
129 void *srmmu_nocache_bitmap;
130 static struct bit_map srmmu_nocache_map;
132 static unsigned long srmmu_pte_pfn(pte_t pte)
134 if (srmmu_device_memory(pte_val(pte))) {
135 /* Just return something that will cause
136 * pfn_valid() to return false. This makes
137 * copy_one_pte() to just directly copy to
138 * PTE over.
140 return ~0UL;
142 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
145 static struct page *srmmu_pmd_page(pmd_t pmd)
148 if (srmmu_device_memory(pmd_val(pmd)))
149 BUG();
150 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
157 static inline int srmmu_pte_none(pte_t pte)
158 { return !(pte_val(pte) & 0xFFFFFFF); }
160 static inline int srmmu_pte_present(pte_t pte)
161 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
163 static inline int srmmu_pte_read(pte_t pte)
164 { return !(pte_val(pte) & SRMMU_NOREAD); }
166 static inline void srmmu_pte_clear(pte_t *ptep)
167 { srmmu_set_pte(ptep, __pte(0)); }
169 static inline int srmmu_pmd_none(pmd_t pmd)
170 { return !(pmd_val(pmd) & 0xFFFFFFF); }
172 static inline int srmmu_pmd_bad(pmd_t pmd)
173 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
175 static inline int srmmu_pmd_present(pmd_t pmd)
176 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
178 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
179 int i;
180 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
181 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
184 static inline int srmmu_pgd_none(pgd_t pgd)
185 { return !(pgd_val(pgd) & 0xFFFFFFF); }
187 static inline int srmmu_pgd_bad(pgd_t pgd)
188 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
190 static inline int srmmu_pgd_present(pgd_t pgd)
191 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
193 static inline void srmmu_pgd_clear(pgd_t * pgdp)
194 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
196 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
197 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
199 static inline pte_t srmmu_pte_mkclean(pte_t pte)
200 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
202 static inline pte_t srmmu_pte_mkold(pte_t pte)
203 { return __pte(pte_val(pte) & ~SRMMU_REF);}
205 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
206 { return __pte(pte_val(pte) | SRMMU_WRITE);}
208 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
209 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
211 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
212 { return __pte(pte_val(pte) | SRMMU_REF);}
215 * Conversion functions: convert a page and protection to a page entry,
216 * and a page entry and page directory to the page they refer to.
218 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
219 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
221 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
222 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
224 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
225 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
227 /* XXX should we hyper_flush_whole_icache here - Anton */
228 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
229 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
231 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
232 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
234 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
236 unsigned long ptp; /* Physical address, shifted right by 4 */
237 int i;
239 ptp = __nocache_pa((unsigned long) ptep) >> 4;
240 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
241 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
242 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
246 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
248 unsigned long ptp; /* Physical address, shifted right by 4 */
249 int i;
251 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
252 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
253 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
254 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
258 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
259 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
261 /* to find an entry in a top-level page table... */
262 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
263 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
265 /* Find an entry in the second-level page table.. */
266 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
268 return (pmd_t *) srmmu_pgd_page(*dir) +
269 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
272 /* Find an entry in the third-level page table.. */
273 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
275 void *pte;
277 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
278 return (pte_t *) pte +
279 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
282 static unsigned long srmmu_swp_type(swp_entry_t entry)
284 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
287 static unsigned long srmmu_swp_offset(swp_entry_t entry)
289 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
292 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
294 return (swp_entry_t) {
295 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
296 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
300 * size: bytes to allocate in the nocache area.
301 * align: bytes, number to align at.
302 * Returns the virtual address of the allocated area.
304 static unsigned long __srmmu_get_nocache(int size, int align)
306 int offset;
308 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
309 printk("Size 0x%x too small for nocache request\n", size);
310 size = SRMMU_NOCACHE_BITMAP_SHIFT;
312 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
313 printk("Size 0x%x unaligned int nocache request\n", size);
314 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
316 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
318 offset = bit_map_string_get(&srmmu_nocache_map,
319 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
320 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
321 if (offset == -1) {
322 printk("srmmu: out of nocache %d: %d/%d\n",
323 size, (int) srmmu_nocache_size,
324 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
325 return 0;
328 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
331 unsigned inline long srmmu_get_nocache(int size, int align)
333 unsigned long tmp;
335 tmp = __srmmu_get_nocache(size, align);
337 if (tmp)
338 memset((void *)tmp, 0, size);
340 return tmp;
343 void srmmu_free_nocache(unsigned long vaddr, int size)
345 int offset;
347 if (vaddr < SRMMU_NOCACHE_VADDR) {
348 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
349 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
350 BUG();
352 if (vaddr+size > srmmu_nocache_end) {
353 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
354 vaddr, srmmu_nocache_end);
355 BUG();
357 if (size & (size-1)) {
358 printk("Size 0x%x is not a power of 2\n", size);
359 BUG();
361 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
362 printk("Size 0x%x is too small\n", size);
363 BUG();
365 if (vaddr & (size-1)) {
366 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
367 BUG();
370 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
371 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
373 bit_map_clear(&srmmu_nocache_map, offset, size);
376 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
378 extern unsigned long probe_memory(void); /* in fault.c */
381 * Reserve nocache dynamically proportionally to the amount of
382 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
384 void srmmu_nocache_calcsize(void)
386 unsigned long sysmemavail = probe_memory() / 1024;
387 int srmmu_nocache_npages;
389 srmmu_nocache_npages =
390 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
392 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
393 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
394 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
395 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
397 /* anything above 1280 blows up */
398 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
399 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
401 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
402 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
405 void __init srmmu_nocache_init(void)
407 unsigned int bitmap_bits;
408 pgd_t *pgd;
409 pmd_t *pmd;
410 pte_t *pte;
411 unsigned long paddr, vaddr;
412 unsigned long pteval;
414 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
416 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
417 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
418 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
420 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
421 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
423 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
424 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
425 init_mm.pgd = srmmu_swapper_pg_dir;
427 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
429 paddr = __pa((unsigned long)srmmu_nocache_pool);
430 vaddr = SRMMU_NOCACHE_VADDR;
432 while (vaddr < srmmu_nocache_end) {
433 pgd = pgd_offset_k(vaddr);
434 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
435 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
437 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
439 if (srmmu_cache_pagetables)
440 pteval |= SRMMU_CACHE;
442 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
444 vaddr += PAGE_SIZE;
445 paddr += PAGE_SIZE;
448 flush_cache_all();
449 flush_tlb_all();
452 static inline pgd_t *srmmu_get_pgd_fast(void)
454 pgd_t *pgd = NULL;
456 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
457 if (pgd) {
458 pgd_t *init = pgd_offset_k(0);
459 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
460 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
461 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
464 return pgd;
467 static void srmmu_free_pgd_fast(pgd_t *pgd)
469 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
472 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
474 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
477 static void srmmu_pmd_free(pmd_t * pmd)
479 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
483 * Hardware needs alignment to 256 only, but we align to whole page size
484 * to reduce fragmentation problems due to the buddy principle.
485 * XXX Provide actual fragmentation statistics in /proc.
487 * Alignments up to the page size are the same for physical and virtual
488 * addresses of the nocache area.
490 static pte_t *
491 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
493 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
496 static struct page *
497 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
499 unsigned long pte;
501 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
502 return NULL;
503 return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
506 static void srmmu_free_pte_fast(pte_t *pte)
508 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
511 static void srmmu_pte_free(struct page *pte)
513 unsigned long p;
515 p = (unsigned long)page_address(pte); /* Cached address (for test) */
516 if (p == 0)
517 BUG();
518 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
519 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
520 srmmu_free_nocache(p, PTE_SIZE);
525 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
527 struct ctx_list *ctxp;
529 ctxp = ctx_free.next;
530 if(ctxp != &ctx_free) {
531 remove_from_ctx_list(ctxp);
532 add_to_used_ctxlist(ctxp);
533 mm->context = ctxp->ctx_number;
534 ctxp->ctx_mm = mm;
535 return;
537 ctxp = ctx_used.next;
538 if(ctxp->ctx_mm == old_mm)
539 ctxp = ctxp->next;
540 if(ctxp == &ctx_used)
541 panic("out of mmu contexts");
542 flush_cache_mm(ctxp->ctx_mm);
543 flush_tlb_mm(ctxp->ctx_mm);
544 remove_from_ctx_list(ctxp);
545 add_to_used_ctxlist(ctxp);
546 ctxp->ctx_mm->context = NO_CONTEXT;
547 ctxp->ctx_mm = mm;
548 mm->context = ctxp->ctx_number;
551 static inline void free_context(int context)
553 struct ctx_list *ctx_old;
555 ctx_old = ctx_list_pool + context;
556 remove_from_ctx_list(ctx_old);
557 add_to_free_ctxlist(ctx_old);
561 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
562 struct task_struct *tsk, int cpu)
564 if(mm->context == NO_CONTEXT) {
565 spin_lock(&srmmu_context_spinlock);
566 alloc_context(old_mm, mm);
567 spin_unlock(&srmmu_context_spinlock);
568 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
571 if (is_hypersparc)
572 hyper_flush_whole_icache();
574 srmmu_set_context(mm->context);
577 /* Low level IO area allocation on the SRMMU. */
578 static inline void srmmu_mapioaddr(unsigned long physaddr,
579 unsigned long virt_addr, int bus_type)
581 pgd_t *pgdp;
582 pmd_t *pmdp;
583 pte_t *ptep;
584 unsigned long tmp;
586 physaddr &= PAGE_MASK;
587 pgdp = pgd_offset_k(virt_addr);
588 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
589 ptep = srmmu_pte_offset(pmdp, virt_addr);
590 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
593 * I need to test whether this is consistent over all
594 * sun4m's. The bus_type represents the upper 4 bits of
595 * 36-bit physical address on the I/O space lines...
597 tmp |= (bus_type << 28);
598 tmp |= SRMMU_PRIV;
599 __flush_page_to_ram(virt_addr);
600 srmmu_set_pte(ptep, __pte(tmp));
603 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
604 unsigned long xva, unsigned int len)
606 while (len != 0) {
607 len -= PAGE_SIZE;
608 srmmu_mapioaddr(xpa, xva, bus);
609 xva += PAGE_SIZE;
610 xpa += PAGE_SIZE;
612 flush_tlb_all();
615 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
617 pgd_t *pgdp;
618 pmd_t *pmdp;
619 pte_t *ptep;
621 pgdp = pgd_offset_k(virt_addr);
622 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
623 ptep = srmmu_pte_offset(pmdp, virt_addr);
625 /* No need to flush uncacheable page. */
626 srmmu_pte_clear(ptep);
629 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
631 while (len != 0) {
632 len -= PAGE_SIZE;
633 srmmu_unmapioaddr(virt_addr);
634 virt_addr += PAGE_SIZE;
636 flush_tlb_all();
640 * On the SRMMU we do not have the problems with limited tlb entries
641 * for mapping kernel pages, so we just take things from the free page
642 * pool. As a side effect we are putting a little too much pressure
643 * on the gfp() subsystem. This setup also makes the logic of the
644 * iommu mapping code a lot easier as we can transparently handle
645 * mappings on the kernel stack without any special code as we did
646 * need on the sun4c.
648 struct thread_info *srmmu_alloc_thread_info(void)
650 struct thread_info *ret;
652 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
653 THREAD_INFO_ORDER);
654 #ifdef CONFIG_DEBUG_STACK_USAGE
655 if (ret)
656 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
657 #endif /* DEBUG_STACK_USAGE */
659 return ret;
662 static void srmmu_free_thread_info(struct thread_info *ti)
664 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
667 /* tsunami.S */
668 extern void tsunami_flush_cache_all(void);
669 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
670 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
671 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
672 extern void tsunami_flush_page_to_ram(unsigned long page);
673 extern void tsunami_flush_page_for_dma(unsigned long page);
674 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
675 extern void tsunami_flush_tlb_all(void);
676 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
677 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
678 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
679 extern void tsunami_setup_blockops(void);
682 * Workaround, until we find what's going on with Swift. When low on memory,
683 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
684 * out it is already in page tables/ fault again on the same instruction.
685 * I really don't understand it, have checked it and contexts
686 * are right, flush_tlb_all is done as well, and it faults again...
687 * Strange. -jj
689 * The following code is a deadwood that may be necessary when
690 * we start to make precise page flushes again. --zaitcev
692 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
694 #if 0
695 static unsigned long last;
696 unsigned int val;
697 /* unsigned int n; */
699 if (address == last) {
700 val = srmmu_hwprobe(address);
701 if (val != 0 && pte_val(pte) != val) {
702 printk("swift_update_mmu_cache: "
703 "addr %lx put %08x probed %08x from %p\n",
704 address, pte_val(pte), val,
705 __builtin_return_address(0));
706 srmmu_flush_whole_tlb();
709 last = address;
710 #endif
713 /* swift.S */
714 extern void swift_flush_cache_all(void);
715 extern void swift_flush_cache_mm(struct mm_struct *mm);
716 extern void swift_flush_cache_range(struct vm_area_struct *vma,
717 unsigned long start, unsigned long end);
718 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
719 extern void swift_flush_page_to_ram(unsigned long page);
720 extern void swift_flush_page_for_dma(unsigned long page);
721 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
722 extern void swift_flush_tlb_all(void);
723 extern void swift_flush_tlb_mm(struct mm_struct *mm);
724 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
725 unsigned long start, unsigned long end);
726 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
728 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
729 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
731 int cctx, ctx1;
733 page &= PAGE_MASK;
734 if ((ctx1 = vma->vm_mm->context) != -1) {
735 cctx = srmmu_get_context();
736 /* Is context # ever different from current context? P3 */
737 if (cctx != ctx1) {
738 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
739 srmmu_set_context(ctx1);
740 swift_flush_page(page);
741 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
742 "r" (page), "i" (ASI_M_FLUSH_PROBE));
743 srmmu_set_context(cctx);
744 } else {
745 /* Rm. prot. bits from virt. c. */
746 /* swift_flush_cache_all(); */
747 /* swift_flush_cache_page(vma, page); */
748 swift_flush_page(page);
750 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
751 "r" (page), "i" (ASI_M_FLUSH_PROBE));
752 /* same as above: srmmu_flush_tlb_page() */
756 #endif
759 * The following are all MBUS based SRMMU modules, and therefore could
760 * be found in a multiprocessor configuration. On the whole, these
761 * chips seems to be much more touchy about DVMA and page tables
762 * with respect to cache coherency.
765 /* Cypress flushes. */
766 static void cypress_flush_cache_all(void)
768 volatile unsigned long cypress_sucks;
769 unsigned long faddr, tagval;
771 flush_user_windows();
772 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
773 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
774 "=r" (tagval) :
775 "r" (faddr), "r" (0x40000),
776 "i" (ASI_M_DATAC_TAG));
778 /* If modified and valid, kick it. */
779 if((tagval & 0x60) == 0x60)
780 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
784 static void cypress_flush_cache_mm(struct mm_struct *mm)
786 register unsigned long a, b, c, d, e, f, g;
787 unsigned long flags, faddr;
788 int octx;
790 FLUSH_BEGIN(mm)
791 flush_user_windows();
792 local_irq_save(flags);
793 octx = srmmu_get_context();
794 srmmu_set_context(mm->context);
795 a = 0x20; b = 0x40; c = 0x60;
796 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
798 faddr = (0x10000 - 0x100);
799 goto inside;
800 do {
801 faddr -= 0x100;
802 inside:
803 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
804 "sta %%g0, [%0 + %2] %1\n\t"
805 "sta %%g0, [%0 + %3] %1\n\t"
806 "sta %%g0, [%0 + %4] %1\n\t"
807 "sta %%g0, [%0 + %5] %1\n\t"
808 "sta %%g0, [%0 + %6] %1\n\t"
809 "sta %%g0, [%0 + %7] %1\n\t"
810 "sta %%g0, [%0 + %8] %1\n\t" : :
811 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
812 "r" (a), "r" (b), "r" (c), "r" (d),
813 "r" (e), "r" (f), "r" (g));
814 } while(faddr);
815 srmmu_set_context(octx);
816 local_irq_restore(flags);
817 FLUSH_END
820 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
822 struct mm_struct *mm = vma->vm_mm;
823 register unsigned long a, b, c, d, e, f, g;
824 unsigned long flags, faddr;
825 int octx;
827 FLUSH_BEGIN(mm)
828 flush_user_windows();
829 local_irq_save(flags);
830 octx = srmmu_get_context();
831 srmmu_set_context(mm->context);
832 a = 0x20; b = 0x40; c = 0x60;
833 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
835 start &= SRMMU_REAL_PMD_MASK;
836 while(start < end) {
837 faddr = (start + (0x10000 - 0x100));
838 goto inside;
839 do {
840 faddr -= 0x100;
841 inside:
842 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
843 "sta %%g0, [%0 + %2] %1\n\t"
844 "sta %%g0, [%0 + %3] %1\n\t"
845 "sta %%g0, [%0 + %4] %1\n\t"
846 "sta %%g0, [%0 + %5] %1\n\t"
847 "sta %%g0, [%0 + %6] %1\n\t"
848 "sta %%g0, [%0 + %7] %1\n\t"
849 "sta %%g0, [%0 + %8] %1\n\t" : :
850 "r" (faddr),
851 "i" (ASI_M_FLUSH_SEG),
852 "r" (a), "r" (b), "r" (c), "r" (d),
853 "r" (e), "r" (f), "r" (g));
854 } while (faddr != start);
855 start += SRMMU_REAL_PMD_SIZE;
857 srmmu_set_context(octx);
858 local_irq_restore(flags);
859 FLUSH_END
862 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
864 register unsigned long a, b, c, d, e, f, g;
865 struct mm_struct *mm = vma->vm_mm;
866 unsigned long flags, line;
867 int octx;
869 FLUSH_BEGIN(mm)
870 flush_user_windows();
871 local_irq_save(flags);
872 octx = srmmu_get_context();
873 srmmu_set_context(mm->context);
874 a = 0x20; b = 0x40; c = 0x60;
875 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
877 page &= PAGE_MASK;
878 line = (page + PAGE_SIZE) - 0x100;
879 goto inside;
880 do {
881 line -= 0x100;
882 inside:
883 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
884 "sta %%g0, [%0 + %2] %1\n\t"
885 "sta %%g0, [%0 + %3] %1\n\t"
886 "sta %%g0, [%0 + %4] %1\n\t"
887 "sta %%g0, [%0 + %5] %1\n\t"
888 "sta %%g0, [%0 + %6] %1\n\t"
889 "sta %%g0, [%0 + %7] %1\n\t"
890 "sta %%g0, [%0 + %8] %1\n\t" : :
891 "r" (line),
892 "i" (ASI_M_FLUSH_PAGE),
893 "r" (a), "r" (b), "r" (c), "r" (d),
894 "r" (e), "r" (f), "r" (g));
895 } while(line != page);
896 srmmu_set_context(octx);
897 local_irq_restore(flags);
898 FLUSH_END
901 /* Cypress is copy-back, at least that is how we configure it. */
902 static void cypress_flush_page_to_ram(unsigned long page)
904 register unsigned long a, b, c, d, e, f, g;
905 unsigned long line;
907 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
908 page &= PAGE_MASK;
909 line = (page + PAGE_SIZE) - 0x100;
910 goto inside;
911 do {
912 line -= 0x100;
913 inside:
914 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
915 "sta %%g0, [%0 + %2] %1\n\t"
916 "sta %%g0, [%0 + %3] %1\n\t"
917 "sta %%g0, [%0 + %4] %1\n\t"
918 "sta %%g0, [%0 + %5] %1\n\t"
919 "sta %%g0, [%0 + %6] %1\n\t"
920 "sta %%g0, [%0 + %7] %1\n\t"
921 "sta %%g0, [%0 + %8] %1\n\t" : :
922 "r" (line),
923 "i" (ASI_M_FLUSH_PAGE),
924 "r" (a), "r" (b), "r" (c), "r" (d),
925 "r" (e), "r" (f), "r" (g));
926 } while(line != page);
929 /* Cypress is also IO cache coherent. */
930 static void cypress_flush_page_for_dma(unsigned long page)
934 /* Cypress has unified L2 VIPT, from which both instructions and data
935 * are stored. It does not have an onboard icache of any sort, therefore
936 * no flush is necessary.
938 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
942 static void cypress_flush_tlb_all(void)
944 srmmu_flush_whole_tlb();
947 static void cypress_flush_tlb_mm(struct mm_struct *mm)
949 FLUSH_BEGIN(mm)
950 __asm__ __volatile__(
951 "lda [%0] %3, %%g5\n\t"
952 "sta %2, [%0] %3\n\t"
953 "sta %%g0, [%1] %4\n\t"
954 "sta %%g5, [%0] %3\n"
955 : /* no outputs */
956 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
957 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
958 : "g5");
959 FLUSH_END
962 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
964 struct mm_struct *mm = vma->vm_mm;
965 unsigned long size;
967 FLUSH_BEGIN(mm)
968 start &= SRMMU_PGDIR_MASK;
969 size = SRMMU_PGDIR_ALIGN(end) - start;
970 __asm__ __volatile__(
971 "lda [%0] %5, %%g5\n\t"
972 "sta %1, [%0] %5\n"
973 "1:\n\t"
974 "subcc %3, %4, %3\n\t"
975 "bne 1b\n\t"
976 " sta %%g0, [%2 + %3] %6\n\t"
977 "sta %%g5, [%0] %5\n"
978 : /* no outputs */
979 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
980 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
981 "i" (ASI_M_FLUSH_PROBE)
982 : "g5", "cc");
983 FLUSH_END
986 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
988 struct mm_struct *mm = vma->vm_mm;
990 FLUSH_BEGIN(mm)
991 __asm__ __volatile__(
992 "lda [%0] %3, %%g5\n\t"
993 "sta %1, [%0] %3\n\t"
994 "sta %%g0, [%2] %4\n\t"
995 "sta %%g5, [%0] %3\n"
996 : /* no outputs */
997 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
998 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
999 : "g5");
1000 FLUSH_END
1003 /* viking.S */
1004 extern void viking_flush_cache_all(void);
1005 extern void viking_flush_cache_mm(struct mm_struct *mm);
1006 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1007 unsigned long end);
1008 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1009 extern void viking_flush_page_to_ram(unsigned long page);
1010 extern void viking_flush_page_for_dma(unsigned long page);
1011 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1012 extern void viking_flush_page(unsigned long page);
1013 extern void viking_mxcc_flush_page(unsigned long page);
1014 extern void viking_flush_tlb_all(void);
1015 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1016 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1017 unsigned long end);
1018 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1019 unsigned long page);
1020 extern void sun4dsmp_flush_tlb_all(void);
1021 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1022 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1023 unsigned long end);
1024 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1025 unsigned long page);
1027 /* hypersparc.S */
1028 extern void hypersparc_flush_cache_all(void);
1029 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1030 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1031 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1032 extern void hypersparc_flush_page_to_ram(unsigned long page);
1033 extern void hypersparc_flush_page_for_dma(unsigned long page);
1034 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1035 extern void hypersparc_flush_tlb_all(void);
1036 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1037 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1038 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1039 extern void hypersparc_setup_blockops(void);
1042 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1043 * kernel mappings are done with one single contiguous chunk of
1044 * ram. On small ram machines (classics mainly) we only get
1045 * around 8mb mapped for us.
1048 void __init early_pgtable_allocfail(char *type)
1050 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1051 prom_halt();
1054 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1056 pgd_t *pgdp;
1057 pmd_t *pmdp;
1058 pte_t *ptep;
1060 while(start < end) {
1061 pgdp = pgd_offset_k(start);
1062 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1063 pmdp = (pmd_t *) __srmmu_get_nocache(
1064 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1065 if (pmdp == NULL)
1066 early_pgtable_allocfail("pmd");
1067 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1068 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1070 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1071 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1072 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1073 if (ptep == NULL)
1074 early_pgtable_allocfail("pte");
1075 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1076 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1078 if (start > (0xffffffffUL - PMD_SIZE))
1079 break;
1080 start = (start + PMD_SIZE) & PMD_MASK;
1084 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1086 pgd_t *pgdp;
1087 pmd_t *pmdp;
1088 pte_t *ptep;
1090 while(start < end) {
1091 pgdp = pgd_offset_k(start);
1092 if(srmmu_pgd_none(*pgdp)) {
1093 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1094 if (pmdp == NULL)
1095 early_pgtable_allocfail("pmd");
1096 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1097 srmmu_pgd_set(pgdp, pmdp);
1099 pmdp = srmmu_pmd_offset(pgdp, start);
1100 if(srmmu_pmd_none(*pmdp)) {
1101 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1102 PTE_SIZE);
1103 if (ptep == NULL)
1104 early_pgtable_allocfail("pte");
1105 memset(ptep, 0, PTE_SIZE);
1106 srmmu_pmd_set(pmdp, ptep);
1108 if (start > (0xffffffffUL - PMD_SIZE))
1109 break;
1110 start = (start + PMD_SIZE) & PMD_MASK;
1115 * This is much cleaner than poking around physical address space
1116 * looking at the prom's page table directly which is what most
1117 * other OS's do. Yuck... this is much better.
1119 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1121 pgd_t *pgdp;
1122 pmd_t *pmdp;
1123 pte_t *ptep;
1124 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1125 unsigned long prompte;
1127 while(start <= end) {
1128 if (start == 0)
1129 break; /* probably wrap around */
1130 if(start == 0xfef00000)
1131 start = KADB_DEBUGGER_BEGVM;
1132 if(!(prompte = srmmu_hwprobe(start))) {
1133 start += PAGE_SIZE;
1134 continue;
1137 /* A red snapper, see what it really is. */
1138 what = 0;
1140 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1141 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1142 what = 1;
1145 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1146 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1147 prompte)
1148 what = 2;
1151 pgdp = pgd_offset_k(start);
1152 if(what == 2) {
1153 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1154 start += SRMMU_PGDIR_SIZE;
1155 continue;
1157 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1158 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1159 if (pmdp == NULL)
1160 early_pgtable_allocfail("pmd");
1161 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1162 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1164 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1165 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1166 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1167 PTE_SIZE);
1168 if (ptep == NULL)
1169 early_pgtable_allocfail("pte");
1170 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1171 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1173 if(what == 1) {
1175 * We bend the rule where all 16 PTPs in a pmd_t point
1176 * inside the same PTE page, and we leak a perfectly
1177 * good hardware PTE piece. Alternatives seem worse.
1179 unsigned int x; /* Index of HW PMD in soft cluster */
1180 x = (start >> PMD_SHIFT) & 15;
1181 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1182 start += SRMMU_REAL_PMD_SIZE;
1183 continue;
1185 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1186 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1187 start += PAGE_SIZE;
1191 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1193 /* Create a third-level SRMMU 16MB page mapping. */
1194 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1196 pgd_t *pgdp = pgd_offset_k(vaddr);
1197 unsigned long big_pte;
1199 big_pte = KERNEL_PTE(phys_base >> 4);
1200 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1203 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1204 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1206 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1207 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1208 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1209 /* Map "low" memory only */
1210 const unsigned long min_vaddr = PAGE_OFFSET;
1211 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1213 if (vstart < min_vaddr || vstart >= max_vaddr)
1214 return vstart;
1216 if (vend > max_vaddr || vend < min_vaddr)
1217 vend = max_vaddr;
1219 while(vstart < vend) {
1220 do_large_mapping(vstart, pstart);
1221 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1223 return vstart;
1226 static inline void memprobe_error(char *msg)
1228 prom_printf(msg);
1229 prom_printf("Halting now...\n");
1230 prom_halt();
1233 static inline void map_kernel(void)
1235 int i;
1237 if (phys_base > 0) {
1238 do_large_mapping(PAGE_OFFSET, phys_base);
1241 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1242 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1245 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1248 /* Paging initialization on the Sparc Reference MMU. */
1249 extern void sparc_context_init(int);
1251 void (*poke_srmmu)(void) __initdata = NULL;
1253 extern unsigned long bootmem_init(unsigned long *pages_avail);
1255 void __init srmmu_paging_init(void)
1257 int i, cpunode;
1258 char node_str[128];
1259 pgd_t *pgd;
1260 pmd_t *pmd;
1261 pte_t *pte;
1262 unsigned long pages_avail;
1264 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1266 if (sparc_cpu_model == sun4d)
1267 num_contexts = 65536; /* We know it is Viking */
1268 else {
1269 /* Find the number of contexts on the srmmu. */
1270 cpunode = prom_getchild(prom_root_node);
1271 num_contexts = 0;
1272 while(cpunode != 0) {
1273 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1274 if(!strcmp(node_str, "cpu")) {
1275 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1276 break;
1278 cpunode = prom_getsibling(cpunode);
1282 if(!num_contexts) {
1283 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1284 prom_halt();
1287 pages_avail = 0;
1288 last_valid_pfn = bootmem_init(&pages_avail);
1290 srmmu_nocache_calcsize();
1291 srmmu_nocache_init();
1292 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1293 map_kernel();
1295 /* ctx table has to be physically aligned to its size */
1296 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1297 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1299 for(i = 0; i < num_contexts; i++)
1300 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1302 flush_cache_all();
1303 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1304 #ifdef CONFIG_SMP
1305 /* Stop from hanging here... */
1306 local_flush_tlb_all();
1307 #else
1308 flush_tlb_all();
1309 #endif
1310 poke_srmmu();
1312 #ifdef CONFIG_SUN_IO
1313 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1314 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1315 #endif
1317 srmmu_allocate_ptable_skeleton(
1318 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1319 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1321 pgd = pgd_offset_k(PKMAP_BASE);
1322 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1323 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1324 pkmap_page_table = pte;
1326 flush_cache_all();
1327 flush_tlb_all();
1329 sparc_context_init(num_contexts);
1331 kmap_init();
1334 unsigned long zones_size[MAX_NR_ZONES];
1335 unsigned long zholes_size[MAX_NR_ZONES];
1336 unsigned long npages;
1337 int znum;
1339 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1340 zones_size[znum] = zholes_size[znum] = 0;
1342 npages = max_low_pfn - pfn_base;
1344 zones_size[ZONE_DMA] = npages;
1345 zholes_size[ZONE_DMA] = npages - pages_avail;
1347 npages = highend_pfn - max_low_pfn;
1348 zones_size[ZONE_HIGHMEM] = npages;
1349 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1351 free_area_init_node(0, &contig_page_data, zones_size,
1352 pfn_base, zholes_size);
1356 static void srmmu_mmu_info(struct seq_file *m)
1358 seq_printf(m,
1359 "MMU type\t: %s\n"
1360 "contexts\t: %d\n"
1361 "nocache total\t: %ld\n"
1362 "nocache used\t: %d\n",
1363 srmmu_name,
1364 num_contexts,
1365 srmmu_nocache_size,
1366 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1369 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1373 static void srmmu_destroy_context(struct mm_struct *mm)
1376 if(mm->context != NO_CONTEXT) {
1377 flush_cache_mm(mm);
1378 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1379 flush_tlb_mm(mm);
1380 spin_lock(&srmmu_context_spinlock);
1381 free_context(mm->context);
1382 spin_unlock(&srmmu_context_spinlock);
1383 mm->context = NO_CONTEXT;
1387 /* Init various srmmu chip types. */
1388 static void __init srmmu_is_bad(void)
1390 prom_printf("Could not determine SRMMU chip type.\n");
1391 prom_halt();
1394 static void __init init_vac_layout(void)
1396 int nd, cache_lines;
1397 char node_str[128];
1398 #ifdef CONFIG_SMP
1399 int cpu = 0;
1400 unsigned long max_size = 0;
1401 unsigned long min_line_size = 0x10000000;
1402 #endif
1404 nd = prom_getchild(prom_root_node);
1405 while((nd = prom_getsibling(nd)) != 0) {
1406 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1407 if(!strcmp(node_str, "cpu")) {
1408 vac_line_size = prom_getint(nd, "cache-line-size");
1409 if (vac_line_size == -1) {
1410 prom_printf("can't determine cache-line-size, "
1411 "halting.\n");
1412 prom_halt();
1414 cache_lines = prom_getint(nd, "cache-nlines");
1415 if (cache_lines == -1) {
1416 prom_printf("can't determine cache-nlines, halting.\n");
1417 prom_halt();
1420 vac_cache_size = cache_lines * vac_line_size;
1421 #ifdef CONFIG_SMP
1422 if(vac_cache_size > max_size)
1423 max_size = vac_cache_size;
1424 if(vac_line_size < min_line_size)
1425 min_line_size = vac_line_size;
1426 //FIXME: cpus not contiguous!!
1427 cpu++;
1428 if (cpu >= NR_CPUS || !cpu_online(cpu))
1429 break;
1430 #else
1431 break;
1432 #endif
1435 if(nd == 0) {
1436 prom_printf("No CPU nodes found, halting.\n");
1437 prom_halt();
1439 #ifdef CONFIG_SMP
1440 vac_cache_size = max_size;
1441 vac_line_size = min_line_size;
1442 #endif
1443 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1444 (int)vac_cache_size, (int)vac_line_size);
1447 static void __init poke_hypersparc(void)
1449 volatile unsigned long clear;
1450 unsigned long mreg = srmmu_get_mmureg();
1452 hyper_flush_unconditional_combined();
1454 mreg &= ~(HYPERSPARC_CWENABLE);
1455 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1456 mreg |= (HYPERSPARC_CMODE);
1458 srmmu_set_mmureg(mreg);
1460 #if 0 /* XXX I think this is bad news... -DaveM */
1461 hyper_clear_all_tags();
1462 #endif
1464 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1465 hyper_flush_whole_icache();
1466 clear = srmmu_get_faddr();
1467 clear = srmmu_get_fstatus();
1470 static void __init init_hypersparc(void)
1472 srmmu_name = "ROSS HyperSparc";
1473 srmmu_modtype = HyperSparc;
1475 init_vac_layout();
1477 is_hypersparc = 1;
1479 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1480 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1481 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1482 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1483 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1484 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1488 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1490 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1492 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1493 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1494 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1497 poke_srmmu = poke_hypersparc;
1499 hypersparc_setup_blockops();
1502 static void __init poke_cypress(void)
1504 unsigned long mreg = srmmu_get_mmureg();
1505 unsigned long faddr, tagval;
1506 volatile unsigned long cypress_sucks;
1507 volatile unsigned long clear;
1509 clear = srmmu_get_faddr();
1510 clear = srmmu_get_fstatus();
1512 if (!(mreg & CYPRESS_CENABLE)) {
1513 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1514 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1515 "sta %%g0, [%0] %2\n\t" : :
1516 "r" (faddr), "r" (0x40000),
1517 "i" (ASI_M_DATAC_TAG));
1519 } else {
1520 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1521 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1522 "=r" (tagval) :
1523 "r" (faddr), "r" (0x40000),
1524 "i" (ASI_M_DATAC_TAG));
1526 /* If modified and valid, kick it. */
1527 if((tagval & 0x60) == 0x60)
1528 cypress_sucks = *(unsigned long *)
1529 (0xf0020000 + faddr);
1533 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1534 clear = srmmu_get_faddr();
1535 clear = srmmu_get_fstatus();
1537 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1538 srmmu_set_mmureg(mreg);
1541 static void __init init_cypress_common(void)
1543 init_vac_layout();
1545 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1546 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1547 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1548 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1549 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1550 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1551 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1553 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1554 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1555 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1556 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1559 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1560 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1561 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1563 poke_srmmu = poke_cypress;
1566 static void __init init_cypress_604(void)
1568 srmmu_name = "ROSS Cypress-604(UP)";
1569 srmmu_modtype = Cypress;
1570 init_cypress_common();
1573 static void __init init_cypress_605(unsigned long mrev)
1575 srmmu_name = "ROSS Cypress-605(MP)";
1576 if(mrev == 0xe) {
1577 srmmu_modtype = Cypress_vE;
1578 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1579 } else {
1580 if(mrev == 0xd) {
1581 srmmu_modtype = Cypress_vD;
1582 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1583 } else {
1584 srmmu_modtype = Cypress;
1587 init_cypress_common();
1590 static void __init poke_swift(void)
1592 unsigned long mreg;
1594 /* Clear any crap from the cache or else... */
1595 swift_flush_cache_all();
1597 /* Enable I & D caches */
1598 mreg = srmmu_get_mmureg();
1599 mreg |= (SWIFT_IE | SWIFT_DE);
1601 * The Swift branch folding logic is completely broken. At
1602 * trap time, if things are just right, if can mistakenly
1603 * think that a trap is coming from kernel mode when in fact
1604 * it is coming from user mode (it mis-executes the branch in
1605 * the trap code). So you see things like crashme completely
1606 * hosing your machine which is completely unacceptable. Turn
1607 * this shit off... nice job Fujitsu.
1609 mreg &= ~(SWIFT_BF);
1610 srmmu_set_mmureg(mreg);
1613 #define SWIFT_MASKID_ADDR 0x10003018
1614 static void __init init_swift(void)
1616 unsigned long swift_rev;
1618 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1619 "srl %0, 0x18, %0\n\t" :
1620 "=r" (swift_rev) :
1621 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1622 srmmu_name = "Fujitsu Swift";
1623 switch(swift_rev) {
1624 case 0x11:
1625 case 0x20:
1626 case 0x23:
1627 case 0x30:
1628 srmmu_modtype = Swift_lots_o_bugs;
1629 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1631 * Gee george, I wonder why Sun is so hush hush about
1632 * this hardware bug... really braindamage stuff going
1633 * on here. However I think we can find a way to avoid
1634 * all of the workaround overhead under Linux. Basically,
1635 * any page fault can cause kernel pages to become user
1636 * accessible (the mmu gets confused and clears some of
1637 * the ACC bits in kernel ptes). Aha, sounds pretty
1638 * horrible eh? But wait, after extensive testing it appears
1639 * that if you use pgd_t level large kernel pte's (like the
1640 * 4MB pages on the Pentium) the bug does not get tripped
1641 * at all. This avoids almost all of the major overhead.
1642 * Welcome to a world where your vendor tells you to,
1643 * "apply this kernel patch" instead of "sorry for the
1644 * broken hardware, send it back and we'll give you
1645 * properly functioning parts"
1647 break;
1648 case 0x25:
1649 case 0x31:
1650 srmmu_modtype = Swift_bad_c;
1651 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1653 * You see Sun allude to this hardware bug but never
1654 * admit things directly, they'll say things like,
1655 * "the Swift chip cache problems" or similar.
1657 break;
1658 default:
1659 srmmu_modtype = Swift_ok;
1660 break;
1663 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1664 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1665 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1666 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1669 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1670 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1671 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1672 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1674 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1675 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1676 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1678 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1680 flush_page_for_dma_global = 0;
1683 * Are you now convinced that the Swift is one of the
1684 * biggest VLSI abortions of all time? Bravo Fujitsu!
1685 * Fujitsu, the !#?!%$'d up processor people. I bet if
1686 * you examined the microcode of the Swift you'd find
1687 * XXX's all over the place.
1689 poke_srmmu = poke_swift;
1692 static void turbosparc_flush_cache_all(void)
1694 flush_user_windows();
1695 turbosparc_idflash_clear();
1698 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1700 FLUSH_BEGIN(mm)
1701 flush_user_windows();
1702 turbosparc_idflash_clear();
1703 FLUSH_END
1706 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1708 FLUSH_BEGIN(vma->vm_mm)
1709 flush_user_windows();
1710 turbosparc_idflash_clear();
1711 FLUSH_END
1714 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1716 FLUSH_BEGIN(vma->vm_mm)
1717 flush_user_windows();
1718 if (vma->vm_flags & VM_EXEC)
1719 turbosparc_flush_icache();
1720 turbosparc_flush_dcache();
1721 FLUSH_END
1724 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1725 static void turbosparc_flush_page_to_ram(unsigned long page)
1727 #ifdef TURBOSPARC_WRITEBACK
1728 volatile unsigned long clear;
1730 if (srmmu_hwprobe(page))
1731 turbosparc_flush_page_cache(page);
1732 clear = srmmu_get_fstatus();
1733 #endif
1736 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1740 static void turbosparc_flush_page_for_dma(unsigned long page)
1742 turbosparc_flush_dcache();
1745 static void turbosparc_flush_tlb_all(void)
1747 srmmu_flush_whole_tlb();
1750 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1752 FLUSH_BEGIN(mm)
1753 srmmu_flush_whole_tlb();
1754 FLUSH_END
1757 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1759 FLUSH_BEGIN(vma->vm_mm)
1760 srmmu_flush_whole_tlb();
1761 FLUSH_END
1764 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1766 FLUSH_BEGIN(vma->vm_mm)
1767 srmmu_flush_whole_tlb();
1768 FLUSH_END
1772 static void __init poke_turbosparc(void)
1774 unsigned long mreg = srmmu_get_mmureg();
1775 unsigned long ccreg;
1777 /* Clear any crap from the cache or else... */
1778 turbosparc_flush_cache_all();
1779 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1780 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1781 srmmu_set_mmureg(mreg);
1783 ccreg = turbosparc_get_ccreg();
1785 #ifdef TURBOSPARC_WRITEBACK
1786 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1787 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1788 /* Write-back D-cache, emulate VLSI
1789 * abortion number three, not number one */
1790 #else
1791 /* For now let's play safe, optimize later */
1792 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1793 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1794 ccreg &= ~(TURBOSPARC_uS2);
1795 /* Emulate VLSI abortion number three, not number one */
1796 #endif
1798 switch (ccreg & 7) {
1799 case 0: /* No SE cache */
1800 case 7: /* Test mode */
1801 break;
1802 default:
1803 ccreg |= (TURBOSPARC_SCENABLE);
1805 turbosparc_set_ccreg (ccreg);
1807 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1808 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1809 srmmu_set_mmureg(mreg);
1812 static void __init init_turbosparc(void)
1814 srmmu_name = "Fujitsu TurboSparc";
1815 srmmu_modtype = TurboSparc;
1817 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1818 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1819 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1820 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1822 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1823 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1824 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1825 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1827 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1829 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1830 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1832 poke_srmmu = poke_turbosparc;
1835 static void __init poke_tsunami(void)
1837 unsigned long mreg = srmmu_get_mmureg();
1839 tsunami_flush_icache();
1840 tsunami_flush_dcache();
1841 mreg &= ~TSUNAMI_ITD;
1842 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1843 srmmu_set_mmureg(mreg);
1846 static void __init init_tsunami(void)
1849 * Tsunami's pretty sane, Sun and TI actually got it
1850 * somewhat right this time. Fujitsu should have
1851 * taken some lessons from them.
1854 srmmu_name = "TI Tsunami";
1855 srmmu_modtype = Tsunami;
1857 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1858 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1859 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1860 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1863 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1864 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1865 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1866 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1868 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1869 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1870 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1872 poke_srmmu = poke_tsunami;
1874 tsunami_setup_blockops();
1877 static void __init poke_viking(void)
1879 unsigned long mreg = srmmu_get_mmureg();
1880 static int smp_catch;
1882 if(viking_mxcc_present) {
1883 unsigned long mxcc_control = mxcc_get_creg();
1885 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1886 mxcc_control &= ~(MXCC_CTL_RRC);
1887 mxcc_set_creg(mxcc_control);
1890 * We don't need memory parity checks.
1891 * XXX This is a mess, have to dig out later. ecd.
1892 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1895 /* We do cache ptables on MXCC. */
1896 mreg |= VIKING_TCENABLE;
1897 } else {
1898 unsigned long bpreg;
1900 mreg &= ~(VIKING_TCENABLE);
1901 if(smp_catch++) {
1902 /* Must disable mixed-cmd mode here for other cpu's. */
1903 bpreg = viking_get_bpreg();
1904 bpreg &= ~(VIKING_ACTION_MIX);
1905 viking_set_bpreg(bpreg);
1907 /* Just in case PROM does something funny. */
1908 msi_set_sync();
1912 mreg |= VIKING_SPENABLE;
1913 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1914 mreg |= VIKING_SBENABLE;
1915 mreg &= ~(VIKING_ACENABLE);
1916 srmmu_set_mmureg(mreg);
1918 #ifdef CONFIG_SMP
1919 /* Avoid unnecessary cross calls. */
1920 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1921 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1922 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1923 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1924 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1925 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1926 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1927 btfixup();
1928 #endif
1931 static void __init init_viking(void)
1933 unsigned long mreg = srmmu_get_mmureg();
1935 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1936 if(mreg & VIKING_MMODE) {
1937 srmmu_name = "TI Viking";
1938 viking_mxcc_present = 0;
1939 msi_set_sync();
1941 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1942 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1943 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1946 * We need this to make sure old viking takes no hits
1947 * on it's cache for dma snoops to workaround the
1948 * "load from non-cacheable memory" interrupt bug.
1949 * This is only necessary because of the new way in
1950 * which we use the IOMMU.
1952 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1954 flush_page_for_dma_global = 0;
1955 } else {
1956 srmmu_name = "TI Viking/MXCC";
1957 viking_mxcc_present = 1;
1959 srmmu_cache_pagetables = 1;
1961 /* MXCC vikings lack the DMA snooping bug. */
1962 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1965 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1966 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1967 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1968 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1970 #ifdef CONFIG_SMP
1971 if (sparc_cpu_model == sun4d) {
1972 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1973 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1974 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1975 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1976 } else
1977 #endif
1979 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1980 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1981 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1982 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1985 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1986 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1988 poke_srmmu = poke_viking;
1991 /* Probe for the srmmu chip version. */
1992 static void __init get_srmmu_type(void)
1994 unsigned long mreg, psr;
1995 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1997 srmmu_modtype = SRMMU_INVAL_MOD;
1998 hwbug_bitmask = 0;
2000 mreg = srmmu_get_mmureg(); psr = get_psr();
2001 mod_typ = (mreg & 0xf0000000) >> 28;
2002 mod_rev = (mreg & 0x0f000000) >> 24;
2003 psr_typ = (psr >> 28) & 0xf;
2004 psr_vers = (psr >> 24) & 0xf;
2006 /* First, check for HyperSparc or Cypress. */
2007 if(mod_typ == 1) {
2008 switch(mod_rev) {
2009 case 7:
2010 /* UP or MP Hypersparc */
2011 init_hypersparc();
2012 break;
2013 case 0:
2014 case 2:
2015 /* Uniprocessor Cypress */
2016 init_cypress_604();
2017 break;
2018 case 10:
2019 case 11:
2020 case 12:
2021 /* _REALLY OLD_ Cypress MP chips... */
2022 case 13:
2023 case 14:
2024 case 15:
2025 /* MP Cypress mmu/cache-controller */
2026 init_cypress_605(mod_rev);
2027 break;
2028 default:
2029 /* Some other Cypress revision, assume a 605. */
2030 init_cypress_605(mod_rev);
2031 break;
2033 return;
2037 * Now Fujitsu TurboSparc. It might happen that it is
2038 * in Swift emulation mode, so we will check later...
2040 if (psr_typ == 0 && psr_vers == 5) {
2041 init_turbosparc();
2042 return;
2045 /* Next check for Fujitsu Swift. */
2046 if(psr_typ == 0 && psr_vers == 4) {
2047 int cpunode;
2048 char node_str[128];
2050 /* Look if it is not a TurboSparc emulating Swift... */
2051 cpunode = prom_getchild(prom_root_node);
2052 while((cpunode = prom_getsibling(cpunode)) != 0) {
2053 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2054 if(!strcmp(node_str, "cpu")) {
2055 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2056 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2057 init_turbosparc();
2058 return;
2060 break;
2064 init_swift();
2065 return;
2068 /* Now the Viking family of srmmu. */
2069 if(psr_typ == 4 &&
2070 ((psr_vers == 0) ||
2071 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2072 init_viking();
2073 return;
2076 /* Finally the Tsunami. */
2077 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2078 init_tsunami();
2079 return;
2082 /* Oh well */
2083 srmmu_is_bad();
2086 /* don't laugh, static pagetables */
2087 static void srmmu_check_pgt_cache(int low, int high)
2091 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2092 tsetup_mmu_patchme, rtrap_mmu_patchme;
2094 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2095 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2097 extern unsigned long srmmu_fault;
2099 #define PATCH_BRANCH(insn, dest) do { \
2100 iaddr = &(insn); \
2101 daddr = &(dest); \
2102 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2103 } while(0)
2105 static void __init patch_window_trap_handlers(void)
2107 unsigned long *iaddr, *daddr;
2109 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2110 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2111 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2112 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2113 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2114 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2115 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2118 #ifdef CONFIG_SMP
2119 /* Local cross-calls. */
2120 static void smp_flush_page_for_dma(unsigned long page)
2122 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2123 local_flush_page_for_dma(page);
2126 #endif
2128 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2130 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2133 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2135 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2138 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2140 prot &= ~__pgprot(SRMMU_CACHE);
2142 return prot;
2145 /* Load up routines and constants for sun4m and sun4d mmu */
2146 void __init ld_mmu_srmmu(void)
2148 extern void ld_mmu_iommu(void);
2149 extern void ld_mmu_iounit(void);
2150 extern void ___xchg32_sun4md(void);
2152 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2153 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2154 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2156 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2157 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2159 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2160 BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED));
2161 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2162 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2163 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2164 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2166 /* Functions */
2167 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2168 #ifndef CONFIG_SMP
2169 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2170 #endif
2171 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2173 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2174 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2176 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2177 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2178 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2180 BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2182 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2183 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2184 BTFIXUPSET_CALL(pte_read, srmmu_pte_read, BTFIXUPCALL_NORM);
2186 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2187 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2188 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2190 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2191 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2192 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2193 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2195 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2196 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2197 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2198 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2199 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2200 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2202 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2203 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2204 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2206 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2207 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2208 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2209 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2210 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2211 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2212 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2213 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2215 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2216 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2217 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2218 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2219 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2220 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2221 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2222 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2223 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2224 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2225 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2226 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2228 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2229 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2231 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2232 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2233 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2235 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2237 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2238 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2240 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2241 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2243 get_srmmu_type();
2244 patch_window_trap_handlers();
2246 #ifdef CONFIG_SMP
2247 /* El switcheroo... */
2249 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2250 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2251 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2252 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2253 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2254 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2255 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2256 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2257 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2258 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2259 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2261 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2262 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2263 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2264 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2265 if (sparc_cpu_model != sun4d) {
2266 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2267 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2268 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2269 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2271 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2272 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2273 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2274 #endif
2276 if (sparc_cpu_model == sun4d)
2277 ld_mmu_iounit();
2278 else
2279 ld_mmu_iommu();
2280 #ifdef CONFIG_SMP
2281 if (sparc_cpu_model == sun4d)
2282 sun4d_init_smp();
2283 else
2284 sun4m_init_smp();
2285 #endif