[XFS] fix unaligned access in readdir
[wrt350n-kernel.git] / drivers / rtc / interface.c
blobf1e00ff54ce880fb94c69a38064abe6680c83933
1 /*
2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/log2.h>
17 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
19 int err;
21 err = mutex_lock_interruptible(&rtc->ops_lock);
22 if (err)
23 return -EBUSY;
25 if (!rtc->ops)
26 err = -ENODEV;
27 else if (!rtc->ops->read_time)
28 err = -EINVAL;
29 else {
30 memset(tm, 0, sizeof(struct rtc_time));
31 err = rtc->ops->read_time(rtc->dev.parent, tm);
34 mutex_unlock(&rtc->ops_lock);
35 return err;
37 EXPORT_SYMBOL_GPL(rtc_read_time);
39 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
41 int err;
43 err = rtc_valid_tm(tm);
44 if (err != 0)
45 return err;
47 err = mutex_lock_interruptible(&rtc->ops_lock);
48 if (err)
49 return -EBUSY;
51 if (!rtc->ops)
52 err = -ENODEV;
53 else if (!rtc->ops->set_time)
54 err = -EINVAL;
55 else
56 err = rtc->ops->set_time(rtc->dev.parent, tm);
58 mutex_unlock(&rtc->ops_lock);
59 return err;
61 EXPORT_SYMBOL_GPL(rtc_set_time);
63 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
65 int err;
67 err = mutex_lock_interruptible(&rtc->ops_lock);
68 if (err)
69 return -EBUSY;
71 if (!rtc->ops)
72 err = -ENODEV;
73 else if (rtc->ops->set_mmss)
74 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
75 else if (rtc->ops->read_time && rtc->ops->set_time) {
76 struct rtc_time new, old;
78 err = rtc->ops->read_time(rtc->dev.parent, &old);
79 if (err == 0) {
80 rtc_time_to_tm(secs, &new);
83 * avoid writing when we're going to change the day of
84 * the month. We will retry in the next minute. This
85 * basically means that if the RTC must not drift
86 * by more than 1 minute in 11 minutes.
88 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
89 (new.tm_hour == 23 && new.tm_min == 59)))
90 err = rtc->ops->set_time(rtc->dev.parent,
91 &new);
94 else
95 err = -EINVAL;
97 mutex_unlock(&rtc->ops_lock);
99 return err;
101 EXPORT_SYMBOL_GPL(rtc_set_mmss);
103 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
105 int err;
107 err = mutex_lock_interruptible(&rtc->ops_lock);
108 if (err)
109 return -EBUSY;
111 if (rtc->ops == NULL)
112 err = -ENODEV;
113 else if (!rtc->ops->read_alarm)
114 err = -EINVAL;
115 else {
116 memset(alarm, 0, sizeof(struct rtc_wkalrm));
117 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
120 mutex_unlock(&rtc->ops_lock);
121 return err;
124 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
126 int err;
127 struct rtc_time before, now;
128 int first_time = 1;
130 /* The lower level RTC driver may not be capable of filling
131 * in all fields of the rtc_time struct (eg. rtc-cmos),
132 * and so might instead return -1 in some fields.
133 * We deal with that here by grabbing a current RTC timestamp
134 * and using values from that for any missing (-1) values.
136 * But this can be racey, because some fields of the RTC timestamp
137 * may have wrapped in the interval since we read the RTC alarm,
138 * which would lead to us inserting inconsistent values in place
139 * of the -1 fields.
141 * Reading the alarm and timestamp in the reverse sequence
142 * would have the same race condition, and not solve the issue.
144 * So, we must first read the RTC timestamp,
145 * then read the RTC alarm value,
146 * and then read a second RTC timestamp.
148 * If any fields of the second timestamp have changed
149 * when compared with the first timestamp, then we know
150 * our timestamp may be inconsistent with that used by
151 * the low-level rtc_read_alarm_internal() function.
153 * So, when the two timestamps disagree, we just loop and do
154 * the process again to get a fully consistent set of values.
156 * This could all instead be done in the lower level driver,
157 * but since more than one lower level RTC implementation needs it,
158 * then it's probably best best to do it here instead of there..
161 /* Get the "before" timestamp */
162 err = rtc_read_time(rtc, &before);
163 if (err < 0)
164 return err;
165 do {
166 if (!first_time)
167 memcpy(&before, &now, sizeof(struct rtc_time));
168 first_time = 0;
170 /* get the RTC alarm values, which may be incomplete */
171 err = rtc_read_alarm_internal(rtc, alarm);
172 if (err)
173 return err;
174 if (!alarm->enabled)
175 return 0;
177 /* get the "after" timestamp, to detect wrapped fields */
178 err = rtc_read_time(rtc, &now);
179 if (err < 0)
180 return err;
182 /* note that tm_sec is a "don't care" value here: */
183 } while ( before.tm_min != now.tm_min
184 || before.tm_hour != now.tm_hour
185 || before.tm_mon != now.tm_mon
186 || before.tm_year != now.tm_year
187 || before.tm_isdst != now.tm_isdst);
189 /* Fill in any missing alarm fields using the timestamp */
190 if (alarm->time.tm_sec == -1)
191 alarm->time.tm_sec = now.tm_sec;
192 if (alarm->time.tm_min == -1)
193 alarm->time.tm_min = now.tm_min;
194 if (alarm->time.tm_hour == -1)
195 alarm->time.tm_hour = now.tm_hour;
196 if (alarm->time.tm_mday == -1)
197 alarm->time.tm_mday = now.tm_mday;
198 if (alarm->time.tm_mon == -1)
199 alarm->time.tm_mon = now.tm_mon;
200 if (alarm->time.tm_year == -1)
201 alarm->time.tm_year = now.tm_year;
202 return 0;
204 EXPORT_SYMBOL_GPL(rtc_read_alarm);
206 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
208 int err;
210 err = rtc_valid_tm(&alarm->time);
211 if (err != 0)
212 return err;
214 err = mutex_lock_interruptible(&rtc->ops_lock);
215 if (err)
216 return -EBUSY;
218 if (!rtc->ops)
219 err = -ENODEV;
220 else if (!rtc->ops->set_alarm)
221 err = -EINVAL;
222 else
223 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
225 mutex_unlock(&rtc->ops_lock);
226 return err;
228 EXPORT_SYMBOL_GPL(rtc_set_alarm);
231 * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
232 * @rtc: the rtc device
233 * @num: how many irqs are being reported (usually one)
234 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
235 * Context: in_interrupt(), irqs blocked
237 void rtc_update_irq(struct rtc_device *rtc,
238 unsigned long num, unsigned long events)
240 spin_lock(&rtc->irq_lock);
241 rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
242 spin_unlock(&rtc->irq_lock);
244 spin_lock(&rtc->irq_task_lock);
245 if (rtc->irq_task)
246 rtc->irq_task->func(rtc->irq_task->private_data);
247 spin_unlock(&rtc->irq_task_lock);
249 wake_up_interruptible(&rtc->irq_queue);
250 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
252 EXPORT_SYMBOL_GPL(rtc_update_irq);
254 struct rtc_device *rtc_class_open(char *name)
256 struct device *dev;
257 struct rtc_device *rtc = NULL;
259 down(&rtc_class->sem);
260 list_for_each_entry(dev, &rtc_class->devices, node) {
261 if (strncmp(dev->bus_id, name, BUS_ID_SIZE) == 0) {
262 dev = get_device(dev);
263 if (dev)
264 rtc = to_rtc_device(dev);
265 break;
269 if (rtc) {
270 if (!try_module_get(rtc->owner)) {
271 put_device(dev);
272 rtc = NULL;
275 up(&rtc_class->sem);
277 return rtc;
279 EXPORT_SYMBOL_GPL(rtc_class_open);
281 void rtc_class_close(struct rtc_device *rtc)
283 module_put(rtc->owner);
284 put_device(&rtc->dev);
286 EXPORT_SYMBOL_GPL(rtc_class_close);
288 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
290 int retval = -EBUSY;
292 if (task == NULL || task->func == NULL)
293 return -EINVAL;
295 /* Cannot register while the char dev is in use */
296 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
297 return -EBUSY;
299 spin_lock_irq(&rtc->irq_task_lock);
300 if (rtc->irq_task == NULL) {
301 rtc->irq_task = task;
302 retval = 0;
304 spin_unlock_irq(&rtc->irq_task_lock);
306 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
308 return retval;
310 EXPORT_SYMBOL_GPL(rtc_irq_register);
312 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
314 spin_lock_irq(&rtc->irq_task_lock);
315 if (rtc->irq_task == task)
316 rtc->irq_task = NULL;
317 spin_unlock_irq(&rtc->irq_task_lock);
319 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
322 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
323 * @rtc: the rtc device
324 * @task: currently registered with rtc_irq_register()
325 * @enabled: true to enable periodic IRQs
326 * Context: any
328 * Note that rtc_irq_set_freq() should previously have been used to
329 * specify the desired frequency of periodic IRQ task->func() callbacks.
331 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
333 int err = 0;
334 unsigned long flags;
336 if (rtc->ops->irq_set_state == NULL)
337 return -ENXIO;
339 spin_lock_irqsave(&rtc->irq_task_lock, flags);
340 if (rtc->irq_task != NULL && task == NULL)
341 err = -EBUSY;
342 if (rtc->irq_task != task)
343 err = -EACCES;
344 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
346 if (err == 0)
347 err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
349 return err;
351 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
354 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
355 * @rtc: the rtc device
356 * @task: currently registered with rtc_irq_register()
357 * @freq: positive frequency with which task->func() will be called
358 * Context: any
360 * Note that rtc_irq_set_state() is used to enable or disable the
361 * periodic IRQs.
363 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
365 int err = 0;
366 unsigned long flags;
368 if (rtc->ops->irq_set_freq == NULL)
369 return -ENXIO;
371 if (!is_power_of_2(freq))
372 return -EINVAL;
374 spin_lock_irqsave(&rtc->irq_task_lock, flags);
375 if (rtc->irq_task != NULL && task == NULL)
376 err = -EBUSY;
377 if (rtc->irq_task != task)
378 err = -EACCES;
379 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
381 if (err == 0) {
382 err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
383 if (err == 0)
384 rtc->irq_freq = freq;
386 return err;
388 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);