Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus
[wrt350n-kernel.git] / drivers / net / yellowfin.c
blobfe6ff3e3d5255653f4d42c8b9ed31f459a856881
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
26 #define DRV_NAME "yellowfin"
27 #define DRV_VERSION "2.1"
28 #define DRV_RELDATE "Sep 11, 2006"
30 #define PFX DRV_NAME ": "
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #define yellowfin_debug debug
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
107 #include <asm/io.h>
109 /* These identify the driver base version and may not be removed. */
110 static char version[] __devinitdata =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 KERN_INFO " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
134 Theory of Operation
136 I. Board Compatibility
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
142 II. Board-specific settings
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board. The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
148 interrupt lines.
150 III. Driver operation
152 IIIa. Ring buffers
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip. This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames. For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information). For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
174 IIIC. Synchronization
176 The driver runs as two independent, single-threaded flows of control. One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag. The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
191 IV. Notes
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
197 IVb. References
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
201 Data Manual v3.0
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
205 IVc. Errata
207 See Packet Engines confidential appendix (prototype chips only).
212 enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
218 /* The PCI I/O space extent. */
219 enum {
220 YELLOWFIN_SIZE = 0x100,
223 struct pci_id_info {
224 const char *name;
225 struct match_info {
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
228 } id;
229 int drv_flags; /* Driver use, intended as capability flags. */
232 static const struct pci_id_info pci_id_tbl[] = {
233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236 HasMII | DontUseEeprom },
240 static const struct pci_device_id yellowfin_pci_tbl[] = {
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
248 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249 enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258 MII_Status=0xAE,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
262 EEFeature=0xF5,
265 /* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
268 __le32 dbdma_cmd;
269 __le32 addr;
270 __le32 branch_addr;
271 __le32 result_status;
274 struct tx_status_words {
275 #ifdef __BIG_ENDIAN
276 u16 tx_errs;
277 u16 tx_cnt;
278 u16 paused;
279 u16 total_tx_cnt;
280 #else /* Little endian chips. */
281 u16 tx_cnt;
282 u16 tx_errs;
283 u16 total_tx_cnt;
284 u16 paused;
285 #endif /* __BIG_ENDIAN */
288 /* Bits in yellowfin_desc.cmd */
289 enum desc_cmd_bits {
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
305 #define PRIV_ALIGN 31 /* Required alignment mask */
306 #define MII_CNT 4
307 struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
320 struct timer_list timer; /* Media selection timer. */
321 /* Frequently used and paired value: keep adjacent for cache effect. */
322 int chip_id, drv_flags;
323 struct pci_dev *pci_dev;
324 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
325 unsigned int rx_buf_sz; /* Based on MTU+slack. */
326 struct tx_status_words *tx_tail_desc;
327 unsigned int cur_tx, dirty_tx;
328 int tx_threshold;
329 unsigned int tx_full:1; /* The Tx queue is full. */
330 unsigned int full_duplex:1; /* Full-duplex operation requested. */
331 unsigned int duplex_lock:1;
332 unsigned int medialock:1; /* Do not sense media. */
333 unsigned int default_port:4; /* Last dev->if_port value. */
334 /* MII transceiver section. */
335 int mii_cnt; /* MII device addresses. */
336 u16 advertising; /* NWay media advertisement */
337 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
338 spinlock_t lock;
339 void __iomem *base;
342 static int read_eeprom(void __iomem *ioaddr, int location);
343 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346 static int yellowfin_open(struct net_device *dev);
347 static void yellowfin_timer(unsigned long data);
348 static void yellowfin_tx_timeout(struct net_device *dev);
349 static void yellowfin_init_ring(struct net_device *dev);
350 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
359 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
360 const struct pci_device_id *ent)
362 struct net_device *dev;
363 struct yellowfin_private *np;
364 int irq;
365 int chip_idx = ent->driver_data;
366 static int find_cnt;
367 void __iomem *ioaddr;
368 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
369 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
370 void *ring_space;
371 dma_addr_t ring_dma;
372 #ifdef USE_IO_OPS
373 int bar = 0;
374 #else
375 int bar = 1;
376 #endif
377 DECLARE_MAC_BUF(mac);
379 /* when built into the kernel, we only print version if device is found */
380 #ifndef MODULE
381 static int printed_version;
382 if (!printed_version++)
383 printk(version);
384 #endif
386 i = pci_enable_device(pdev);
387 if (i) return i;
389 dev = alloc_etherdev(sizeof(*np));
390 if (!dev) {
391 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
392 return -ENOMEM;
394 SET_NETDEV_DEV(dev, &pdev->dev);
396 np = netdev_priv(dev);
398 if (pci_request_regions(pdev, DRV_NAME))
399 goto err_out_free_netdev;
401 pci_set_master (pdev);
403 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
404 if (!ioaddr)
405 goto err_out_free_res;
407 irq = pdev->irq;
409 if (drv_flags & DontUseEeprom)
410 for (i = 0; i < 6; i++)
411 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
412 else {
413 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
414 for (i = 0; i < 6; i++)
415 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
418 /* Reset the chip. */
419 iowrite32(0x80000000, ioaddr + DMACtrl);
421 dev->base_addr = (unsigned long)ioaddr;
422 dev->irq = irq;
424 pci_set_drvdata(pdev, dev);
425 spin_lock_init(&np->lock);
427 np->pci_dev = pdev;
428 np->chip_id = chip_idx;
429 np->drv_flags = drv_flags;
430 np->base = ioaddr;
432 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
433 if (!ring_space)
434 goto err_out_cleardev;
435 np->tx_ring = (struct yellowfin_desc *)ring_space;
436 np->tx_ring_dma = ring_dma;
438 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
439 if (!ring_space)
440 goto err_out_unmap_tx;
441 np->rx_ring = (struct yellowfin_desc *)ring_space;
442 np->rx_ring_dma = ring_dma;
444 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
445 if (!ring_space)
446 goto err_out_unmap_rx;
447 np->tx_status = (struct tx_status_words *)ring_space;
448 np->tx_status_dma = ring_dma;
450 if (dev->mem_start)
451 option = dev->mem_start;
453 /* The lower four bits are the media type. */
454 if (option > 0) {
455 if (option & 0x200)
456 np->full_duplex = 1;
457 np->default_port = option & 15;
458 if (np->default_port)
459 np->medialock = 1;
461 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
462 np->full_duplex = 1;
464 if (np->full_duplex)
465 np->duplex_lock = 1;
467 /* The Yellowfin-specific entries in the device structure. */
468 dev->open = &yellowfin_open;
469 dev->hard_start_xmit = &yellowfin_start_xmit;
470 dev->stop = &yellowfin_close;
471 dev->set_multicast_list = &set_rx_mode;
472 dev->do_ioctl = &netdev_ioctl;
473 SET_ETHTOOL_OPS(dev, &ethtool_ops);
474 dev->tx_timeout = yellowfin_tx_timeout;
475 dev->watchdog_timeo = TX_TIMEOUT;
477 if (mtu)
478 dev->mtu = mtu;
480 i = register_netdev(dev);
481 if (i)
482 goto err_out_unmap_status;
484 printk(KERN_INFO "%s: %s type %8x at %p, %s, IRQ %d.\n",
485 dev->name, pci_id_tbl[chip_idx].name,
486 ioread32(ioaddr + ChipRev), ioaddr,
487 print_mac(mac, dev->dev_addr), irq);
489 if (np->drv_flags & HasMII) {
490 int phy, phy_idx = 0;
491 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
492 int mii_status = mdio_read(ioaddr, phy, 1);
493 if (mii_status != 0xffff && mii_status != 0x0000) {
494 np->phys[phy_idx++] = phy;
495 np->advertising = mdio_read(ioaddr, phy, 4);
496 printk(KERN_INFO "%s: MII PHY found at address %d, status "
497 "0x%4.4x advertising %4.4x.\n",
498 dev->name, phy, mii_status, np->advertising);
501 np->mii_cnt = phy_idx;
504 find_cnt++;
506 return 0;
508 err_out_unmap_status:
509 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
510 np->tx_status_dma);
511 err_out_unmap_rx:
512 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
513 err_out_unmap_tx:
514 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
515 err_out_cleardev:
516 pci_set_drvdata(pdev, NULL);
517 pci_iounmap(pdev, ioaddr);
518 err_out_free_res:
519 pci_release_regions(pdev);
520 err_out_free_netdev:
521 free_netdev (dev);
522 return -ENODEV;
525 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
527 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
529 iowrite8(location, ioaddr + EEAddr);
530 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
531 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
533 return ioread8(ioaddr + EERead);
536 /* MII Managemen Data I/O accesses.
537 These routines assume the MDIO controller is idle, and do not exit until
538 the command is finished. */
540 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
542 int i;
544 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
545 iowrite16(1, ioaddr + MII_Cmd);
546 for (i = 10000; i >= 0; i--)
547 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
548 break;
549 return ioread16(ioaddr + MII_Rd_Data);
552 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
554 int i;
556 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
557 iowrite16(value, ioaddr + MII_Wr_Data);
559 /* Wait for the command to finish. */
560 for (i = 10000; i >= 0; i--)
561 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
562 break;
563 return;
567 static int yellowfin_open(struct net_device *dev)
569 struct yellowfin_private *yp = netdev_priv(dev);
570 void __iomem *ioaddr = yp->base;
571 int i;
573 /* Reset the chip. */
574 iowrite32(0x80000000, ioaddr + DMACtrl);
576 i = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
577 if (i) return i;
579 if (yellowfin_debug > 1)
580 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
581 dev->name, dev->irq);
583 yellowfin_init_ring(dev);
585 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
586 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
588 for (i = 0; i < 6; i++)
589 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
591 /* Set up various condition 'select' registers.
592 There are no options here. */
593 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
594 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
595 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
596 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
597 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
598 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
600 /* Initialize other registers: with so many this eventually this will
601 converted to an offset/value list. */
602 iowrite32(dma_ctrl, ioaddr + DMACtrl);
603 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
604 /* Enable automatic generation of flow control frames, period 0xffff. */
605 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
607 yp->tx_threshold = 32;
608 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
610 if (dev->if_port == 0)
611 dev->if_port = yp->default_port;
613 netif_start_queue(dev);
615 /* Setting the Rx mode will start the Rx process. */
616 if (yp->drv_flags & IsGigabit) {
617 /* We are always in full-duplex mode with gigabit! */
618 yp->full_duplex = 1;
619 iowrite16(0x01CF, ioaddr + Cnfg);
620 } else {
621 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
622 iowrite16(0x1018, ioaddr + FrameGap1);
623 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
625 set_rx_mode(dev);
627 /* Enable interrupts by setting the interrupt mask. */
628 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
629 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
630 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
631 iowrite32(0x80008000, ioaddr + TxCtrl);
633 if (yellowfin_debug > 2) {
634 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
635 dev->name);
638 /* Set the timer to check for link beat. */
639 init_timer(&yp->timer);
640 yp->timer.expires = jiffies + 3*HZ;
641 yp->timer.data = (unsigned long)dev;
642 yp->timer.function = &yellowfin_timer; /* timer handler */
643 add_timer(&yp->timer);
645 return 0;
648 static void yellowfin_timer(unsigned long data)
650 struct net_device *dev = (struct net_device *)data;
651 struct yellowfin_private *yp = netdev_priv(dev);
652 void __iomem *ioaddr = yp->base;
653 int next_tick = 60*HZ;
655 if (yellowfin_debug > 3) {
656 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
657 dev->name, ioread16(ioaddr + IntrStatus));
660 if (yp->mii_cnt) {
661 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
662 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
663 int negotiated = lpa & yp->advertising;
664 if (yellowfin_debug > 1)
665 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
666 "link partner capability %4.4x.\n",
667 dev->name, yp->phys[0], bmsr, lpa);
669 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
671 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
673 if (bmsr & BMSR_LSTATUS)
674 next_tick = 60*HZ;
675 else
676 next_tick = 3*HZ;
679 yp->timer.expires = jiffies + next_tick;
680 add_timer(&yp->timer);
683 static void yellowfin_tx_timeout(struct net_device *dev)
685 struct yellowfin_private *yp = netdev_priv(dev);
686 void __iomem *ioaddr = yp->base;
688 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
689 "status %4.4x, Rx status %4.4x, resetting...\n",
690 dev->name, yp->cur_tx, yp->dirty_tx,
691 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
693 /* Note: these should be KERN_DEBUG. */
694 if (yellowfin_debug) {
695 int i;
696 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
697 for (i = 0; i < RX_RING_SIZE; i++)
698 printk(" %8.8x", yp->rx_ring[i].result_status);
699 printk("\n"KERN_WARNING" Tx ring %p: ", yp->tx_ring);
700 for (i = 0; i < TX_RING_SIZE; i++)
701 printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs,
702 yp->tx_ring[i].result_status);
703 printk("\n");
706 /* If the hardware is found to hang regularly, we will update the code
707 to reinitialize the chip here. */
708 dev->if_port = 0;
710 /* Wake the potentially-idle transmit channel. */
711 iowrite32(0x10001000, yp->base + TxCtrl);
712 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
713 netif_wake_queue (dev); /* Typical path */
715 dev->trans_start = jiffies;
716 dev->stats.tx_errors++;
719 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
720 static void yellowfin_init_ring(struct net_device *dev)
722 struct yellowfin_private *yp = netdev_priv(dev);
723 int i;
725 yp->tx_full = 0;
726 yp->cur_rx = yp->cur_tx = 0;
727 yp->dirty_tx = 0;
729 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
731 for (i = 0; i < RX_RING_SIZE; i++) {
732 yp->rx_ring[i].dbdma_cmd =
733 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
734 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
735 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
738 for (i = 0; i < RX_RING_SIZE; i++) {
739 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
740 yp->rx_skbuff[i] = skb;
741 if (skb == NULL)
742 break;
743 skb->dev = dev; /* Mark as being used by this device. */
744 skb_reserve(skb, 2); /* 16 byte align the IP header. */
745 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
746 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
748 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
749 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
751 #define NO_TXSTATS
752 #ifdef NO_TXSTATS
753 /* In this mode the Tx ring needs only a single descriptor. */
754 for (i = 0; i < TX_RING_SIZE; i++) {
755 yp->tx_skbuff[i] = NULL;
756 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
757 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
758 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
760 /* Wrap ring */
761 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
762 #else
764 int j;
766 /* Tx ring needs a pair of descriptors, the second for the status. */
767 for (i = 0; i < TX_RING_SIZE; i++) {
768 j = 2*i;
769 yp->tx_skbuff[i] = 0;
770 /* Branch on Tx error. */
771 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
772 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
773 (j+1)*sizeof(struct yellowfin_desc);
774 j++;
775 if (yp->flags & FullTxStatus) {
776 yp->tx_ring[j].dbdma_cmd =
777 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
778 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
779 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
780 i*sizeof(struct tx_status_words);
781 } else {
782 /* Symbios chips write only tx_errs word. */
783 yp->tx_ring[j].dbdma_cmd =
784 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
785 yp->tx_ring[j].request_cnt = 2;
786 /* Om pade ummmmm... */
787 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
788 i*sizeof(struct tx_status_words) +
789 &(yp->tx_status[0].tx_errs) -
790 &(yp->tx_status[0]));
792 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
793 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
795 /* Wrap ring */
796 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
798 #endif
799 yp->tx_tail_desc = &yp->tx_status[0];
800 return;
803 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
805 struct yellowfin_private *yp = netdev_priv(dev);
806 unsigned entry;
807 int len = skb->len;
809 netif_stop_queue (dev);
811 /* Note: Ordering is important here, set the field with the
812 "ownership" bit last, and only then increment cur_tx. */
814 /* Calculate the next Tx descriptor entry. */
815 entry = yp->cur_tx % TX_RING_SIZE;
817 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
818 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
819 /* Fix GX chipset errata. */
820 if (cacheline_end > 24 || cacheline_end == 0) {
821 len = skb->len + 32 - cacheline_end + 1;
822 if (skb_padto(skb, len)) {
823 yp->tx_skbuff[entry] = NULL;
824 netif_wake_queue(dev);
825 return 0;
829 yp->tx_skbuff[entry] = skb;
831 #ifdef NO_TXSTATS
832 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
833 skb->data, len, PCI_DMA_TODEVICE));
834 yp->tx_ring[entry].result_status = 0;
835 if (entry >= TX_RING_SIZE-1) {
836 /* New stop command. */
837 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
838 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
839 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
840 } else {
841 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
842 yp->tx_ring[entry].dbdma_cmd =
843 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
845 yp->cur_tx++;
846 #else
847 yp->tx_ring[entry<<1].request_cnt = len;
848 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
849 skb->data, len, PCI_DMA_TODEVICE));
850 /* The input_last (status-write) command is constant, but we must
851 rewrite the subsequent 'stop' command. */
853 yp->cur_tx++;
855 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
856 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
858 /* Final step -- overwrite the old 'stop' command. */
860 yp->tx_ring[entry<<1].dbdma_cmd =
861 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
862 CMD_TX_PKT | BRANCH_IFTRUE) | len);
863 #endif
865 /* Non-x86 Todo: explicitly flush cache lines here. */
867 /* Wake the potentially-idle transmit channel. */
868 iowrite32(0x10001000, yp->base + TxCtrl);
870 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
871 netif_start_queue (dev); /* Typical path */
872 else
873 yp->tx_full = 1;
874 dev->trans_start = jiffies;
876 if (yellowfin_debug > 4) {
877 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
878 dev->name, yp->cur_tx, entry);
880 return 0;
883 /* The interrupt handler does all of the Rx thread work and cleans up
884 after the Tx thread. */
885 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
887 struct net_device *dev = dev_instance;
888 struct yellowfin_private *yp;
889 void __iomem *ioaddr;
890 int boguscnt = max_interrupt_work;
891 unsigned int handled = 0;
893 yp = netdev_priv(dev);
894 ioaddr = yp->base;
896 spin_lock (&yp->lock);
898 do {
899 u16 intr_status = ioread16(ioaddr + IntrClear);
901 if (yellowfin_debug > 4)
902 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
903 dev->name, intr_status);
905 if (intr_status == 0)
906 break;
907 handled = 1;
909 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
910 yellowfin_rx(dev);
911 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
914 #ifdef NO_TXSTATS
915 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
916 int entry = yp->dirty_tx % TX_RING_SIZE;
917 struct sk_buff *skb;
919 if (yp->tx_ring[entry].result_status == 0)
920 break;
921 skb = yp->tx_skbuff[entry];
922 dev->stats.tx_packets++;
923 dev->stats.tx_bytes += skb->len;
924 /* Free the original skb. */
925 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
926 skb->len, PCI_DMA_TODEVICE);
927 dev_kfree_skb_irq(skb);
928 yp->tx_skbuff[entry] = NULL;
930 if (yp->tx_full
931 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
932 /* The ring is no longer full, clear tbusy. */
933 yp->tx_full = 0;
934 netif_wake_queue(dev);
936 #else
937 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
938 unsigned dirty_tx = yp->dirty_tx;
940 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
941 dirty_tx++) {
942 /* Todo: optimize this. */
943 int entry = dirty_tx % TX_RING_SIZE;
944 u16 tx_errs = yp->tx_status[entry].tx_errs;
945 struct sk_buff *skb;
947 #ifndef final_version
948 if (yellowfin_debug > 5)
949 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
950 "%4.4x %4.4x %4.4x %4.4x.\n",
951 dev->name, entry,
952 yp->tx_status[entry].tx_cnt,
953 yp->tx_status[entry].tx_errs,
954 yp->tx_status[entry].total_tx_cnt,
955 yp->tx_status[entry].paused);
956 #endif
957 if (tx_errs == 0)
958 break; /* It still hasn't been Txed */
959 skb = yp->tx_skbuff[entry];
960 if (tx_errs & 0xF810) {
961 /* There was an major error, log it. */
962 #ifndef final_version
963 if (yellowfin_debug > 1)
964 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
965 dev->name, tx_errs);
966 #endif
967 dev->stats.tx_errors++;
968 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
969 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
970 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
971 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
972 } else {
973 #ifndef final_version
974 if (yellowfin_debug > 4)
975 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
976 dev->name, tx_errs);
977 #endif
978 dev->stats.tx_bytes += skb->len;
979 dev->stats.collisions += tx_errs & 15;
980 dev->stats.tx_packets++;
982 /* Free the original skb. */
983 pci_unmap_single(yp->pci_dev,
984 yp->tx_ring[entry<<1].addr, skb->len,
985 PCI_DMA_TODEVICE);
986 dev_kfree_skb_irq(skb);
987 yp->tx_skbuff[entry] = 0;
988 /* Mark status as empty. */
989 yp->tx_status[entry].tx_errs = 0;
992 #ifndef final_version
993 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
994 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
995 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
996 dirty_tx += TX_RING_SIZE;
998 #endif
1000 if (yp->tx_full
1001 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1002 /* The ring is no longer full, clear tbusy. */
1003 yp->tx_full = 0;
1004 netif_wake_queue(dev);
1007 yp->dirty_tx = dirty_tx;
1008 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1010 #endif
1012 /* Log errors and other uncommon events. */
1013 if (intr_status & 0x2ee) /* Abnormal error summary. */
1014 yellowfin_error(dev, intr_status);
1016 if (--boguscnt < 0) {
1017 printk(KERN_WARNING "%s: Too much work at interrupt, "
1018 "status=0x%4.4x.\n",
1019 dev->name, intr_status);
1020 break;
1022 } while (1);
1024 if (yellowfin_debug > 3)
1025 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1026 dev->name, ioread16(ioaddr + IntrStatus));
1028 spin_unlock (&yp->lock);
1029 return IRQ_RETVAL(handled);
1032 /* This routine is logically part of the interrupt handler, but separated
1033 for clarity and better register allocation. */
1034 static int yellowfin_rx(struct net_device *dev)
1036 struct yellowfin_private *yp = netdev_priv(dev);
1037 int entry = yp->cur_rx % RX_RING_SIZE;
1038 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1040 if (yellowfin_debug > 4) {
1041 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1042 entry, yp->rx_ring[entry].result_status);
1043 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1044 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1045 yp->rx_ring[entry].result_status);
1048 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1049 while (1) {
1050 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1051 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1052 s16 frame_status;
1053 u16 desc_status;
1054 int data_size;
1055 u8 *buf_addr;
1057 if(!desc->result_status)
1058 break;
1059 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1060 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1061 desc_status = le32_to_cpu(desc->result_status) >> 16;
1062 buf_addr = rx_skb->data;
1063 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1064 le32_to_cpu(desc->result_status)) & 0xffff;
1065 frame_status = le16_to_cpu(get_unaligned((__le16*)&(buf_addr[data_size - 2])));
1066 if (yellowfin_debug > 4)
1067 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1068 frame_status);
1069 if (--boguscnt < 0)
1070 break;
1071 if ( ! (desc_status & RX_EOP)) {
1072 if (data_size != 0)
1073 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1074 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1075 dev->stats.rx_length_errors++;
1076 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1077 /* There was a error. */
1078 if (yellowfin_debug > 3)
1079 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1080 frame_status);
1081 dev->stats.rx_errors++;
1082 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1083 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1084 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1085 if (frame_status < 0) dev->stats.rx_dropped++;
1086 } else if ( !(yp->drv_flags & IsGigabit) &&
1087 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1088 u8 status1 = buf_addr[data_size-2];
1089 u8 status2 = buf_addr[data_size-1];
1090 dev->stats.rx_errors++;
1091 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1092 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1093 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1094 if (status2 & 0x80) dev->stats.rx_dropped++;
1095 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1096 } else if ((yp->flags & HasMACAddrBug) &&
1097 memcmp(le32_to_cpu(yp->rx_ring_dma +
1098 entry*sizeof(struct yellowfin_desc)),
1099 dev->dev_addr, 6) != 0 &&
1100 memcmp(le32_to_cpu(yp->rx_ring_dma +
1101 entry*sizeof(struct yellowfin_desc)),
1102 "\377\377\377\377\377\377", 6) != 0) {
1103 if (bogus_rx++ == 0) {
1104 DECLARE_MAC_BUF(mac);
1105 printk(KERN_WARNING "%s: Bad frame to %s\n",
1106 dev->name, print_mac(mac, buf_addr));
1108 #endif
1109 } else {
1110 struct sk_buff *skb;
1111 int pkt_len = data_size -
1112 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1113 /* To verify: Yellowfin Length should omit the CRC! */
1115 #ifndef final_version
1116 if (yellowfin_debug > 4)
1117 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1118 " of %d, bogus_cnt %d.\n",
1119 pkt_len, data_size, boguscnt);
1120 #endif
1121 /* Check if the packet is long enough to just pass up the skbuff
1122 without copying to a properly sized skbuff. */
1123 if (pkt_len > rx_copybreak) {
1124 skb_put(skb = rx_skb, pkt_len);
1125 pci_unmap_single(yp->pci_dev,
1126 le32_to_cpu(yp->rx_ring[entry].addr),
1127 yp->rx_buf_sz,
1128 PCI_DMA_FROMDEVICE);
1129 yp->rx_skbuff[entry] = NULL;
1130 } else {
1131 skb = dev_alloc_skb(pkt_len + 2);
1132 if (skb == NULL)
1133 break;
1134 skb_reserve(skb, 2); /* 16 byte align the IP header */
1135 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1136 skb_put(skb, pkt_len);
1137 pci_dma_sync_single_for_device(yp->pci_dev,
1138 le32_to_cpu(desc->addr),
1139 yp->rx_buf_sz,
1140 PCI_DMA_FROMDEVICE);
1142 skb->protocol = eth_type_trans(skb, dev);
1143 netif_rx(skb);
1144 dev->last_rx = jiffies;
1145 dev->stats.rx_packets++;
1146 dev->stats.rx_bytes += pkt_len;
1148 entry = (++yp->cur_rx) % RX_RING_SIZE;
1151 /* Refill the Rx ring buffers. */
1152 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1153 entry = yp->dirty_rx % RX_RING_SIZE;
1154 if (yp->rx_skbuff[entry] == NULL) {
1155 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1156 if (skb == NULL)
1157 break; /* Better luck next round. */
1158 yp->rx_skbuff[entry] = skb;
1159 skb->dev = dev; /* Mark as being used by this device. */
1160 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1161 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1162 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1164 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1165 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1166 if (entry != 0)
1167 yp->rx_ring[entry - 1].dbdma_cmd =
1168 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1169 else
1170 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1171 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1172 | yp->rx_buf_sz);
1175 return 0;
1178 static void yellowfin_error(struct net_device *dev, int intr_status)
1180 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1181 dev->name, intr_status);
1182 /* Hmmmmm, it's not clear what to do here. */
1183 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1184 dev->stats.tx_errors++;
1185 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1186 dev->stats.rx_errors++;
1189 static int yellowfin_close(struct net_device *dev)
1191 struct yellowfin_private *yp = netdev_priv(dev);
1192 void __iomem *ioaddr = yp->base;
1193 int i;
1195 netif_stop_queue (dev);
1197 if (yellowfin_debug > 1) {
1198 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1199 "Rx %4.4x Int %2.2x.\n",
1200 dev->name, ioread16(ioaddr + TxStatus),
1201 ioread16(ioaddr + RxStatus),
1202 ioread16(ioaddr + IntrStatus));
1203 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1204 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1207 /* Disable interrupts by clearing the interrupt mask. */
1208 iowrite16(0x0000, ioaddr + IntrEnb);
1210 /* Stop the chip's Tx and Rx processes. */
1211 iowrite32(0x80000000, ioaddr + RxCtrl);
1212 iowrite32(0x80000000, ioaddr + TxCtrl);
1214 del_timer(&yp->timer);
1216 #if defined(__i386__)
1217 if (yellowfin_debug > 2) {
1218 printk("\n"KERN_DEBUG" Tx ring at %8.8llx:\n",
1219 (unsigned long long)yp->tx_ring_dma);
1220 for (i = 0; i < TX_RING_SIZE*2; i++)
1221 printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1222 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1223 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1224 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1225 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1226 for (i = 0; i < TX_RING_SIZE; i++)
1227 printk(" #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1228 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1229 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1231 printk("\n"KERN_DEBUG " Rx ring %8.8llx:\n",
1232 (unsigned long long)yp->rx_ring_dma);
1233 for (i = 0; i < RX_RING_SIZE; i++) {
1234 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1235 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1236 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1237 yp->rx_ring[i].result_status);
1238 if (yellowfin_debug > 6) {
1239 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1240 int j;
1241 for (j = 0; j < 0x50; j++)
1242 printk(" %4.4x",
1243 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1244 printk("\n");
1249 #endif /* __i386__ debugging only */
1251 free_irq(dev->irq, dev);
1253 /* Free all the skbuffs in the Rx queue. */
1254 for (i = 0; i < RX_RING_SIZE; i++) {
1255 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1256 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1257 if (yp->rx_skbuff[i]) {
1258 dev_kfree_skb(yp->rx_skbuff[i]);
1260 yp->rx_skbuff[i] = NULL;
1262 for (i = 0; i < TX_RING_SIZE; i++) {
1263 if (yp->tx_skbuff[i])
1264 dev_kfree_skb(yp->tx_skbuff[i]);
1265 yp->tx_skbuff[i] = NULL;
1268 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1269 if (yellowfin_debug > 0) {
1270 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1271 dev->name, bogus_rx);
1273 #endif
1275 return 0;
1278 /* Set or clear the multicast filter for this adaptor. */
1280 static void set_rx_mode(struct net_device *dev)
1282 struct yellowfin_private *yp = netdev_priv(dev);
1283 void __iomem *ioaddr = yp->base;
1284 u16 cfg_value = ioread16(ioaddr + Cnfg);
1286 /* Stop the Rx process to change any value. */
1287 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1288 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1289 iowrite16(0x000F, ioaddr + AddrMode);
1290 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1291 /* Too many to filter well, or accept all multicasts. */
1292 iowrite16(0x000B, ioaddr + AddrMode);
1293 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1294 struct dev_mc_list *mclist;
1295 u16 hash_table[4];
1296 int i;
1297 memset(hash_table, 0, sizeof(hash_table));
1298 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1299 i++, mclist = mclist->next) {
1300 unsigned int bit;
1302 /* Due to a bug in the early chip versions, multiple filter
1303 slots must be set for each address. */
1304 if (yp->drv_flags & HasMulticastBug) {
1305 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1306 hash_table[bit >> 4] |= (1 << bit);
1307 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1308 hash_table[bit >> 4] |= (1 << bit);
1309 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1310 hash_table[bit >> 4] |= (1 << bit);
1312 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1313 hash_table[bit >> 4] |= (1 << bit);
1315 /* Copy the hash table to the chip. */
1316 for (i = 0; i < 4; i++)
1317 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1318 iowrite16(0x0003, ioaddr + AddrMode);
1319 } else { /* Normal, unicast/broadcast-only mode. */
1320 iowrite16(0x0001, ioaddr + AddrMode);
1322 /* Restart the Rx process. */
1323 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1326 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1328 struct yellowfin_private *np = netdev_priv(dev);
1329 strcpy(info->driver, DRV_NAME);
1330 strcpy(info->version, DRV_VERSION);
1331 strcpy(info->bus_info, pci_name(np->pci_dev));
1334 static const struct ethtool_ops ethtool_ops = {
1335 .get_drvinfo = yellowfin_get_drvinfo
1338 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1340 struct yellowfin_private *np = netdev_priv(dev);
1341 void __iomem *ioaddr = np->base;
1342 struct mii_ioctl_data *data = if_mii(rq);
1344 switch(cmd) {
1345 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1346 data->phy_id = np->phys[0] & 0x1f;
1347 /* Fall Through */
1349 case SIOCGMIIREG: /* Read MII PHY register. */
1350 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1351 return 0;
1353 case SIOCSMIIREG: /* Write MII PHY register. */
1354 if (!capable(CAP_NET_ADMIN))
1355 return -EPERM;
1356 if (data->phy_id == np->phys[0]) {
1357 u16 value = data->val_in;
1358 switch (data->reg_num) {
1359 case 0:
1360 /* Check for autonegotiation on or reset. */
1361 np->medialock = (value & 0x9000) ? 0 : 1;
1362 if (np->medialock)
1363 np->full_duplex = (value & 0x0100) ? 1 : 0;
1364 break;
1365 case 4: np->advertising = value; break;
1367 /* Perhaps check_duplex(dev), depending on chip semantics. */
1369 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1370 return 0;
1371 default:
1372 return -EOPNOTSUPP;
1377 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1379 struct net_device *dev = pci_get_drvdata(pdev);
1380 struct yellowfin_private *np;
1382 BUG_ON(!dev);
1383 np = netdev_priv(dev);
1385 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1386 np->tx_status_dma);
1387 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1388 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1389 unregister_netdev (dev);
1391 pci_iounmap(pdev, np->base);
1393 pci_release_regions (pdev);
1395 free_netdev (dev);
1396 pci_set_drvdata(pdev, NULL);
1400 static struct pci_driver yellowfin_driver = {
1401 .name = DRV_NAME,
1402 .id_table = yellowfin_pci_tbl,
1403 .probe = yellowfin_init_one,
1404 .remove = __devexit_p(yellowfin_remove_one),
1408 static int __init yellowfin_init (void)
1410 /* when a module, this is printed whether or not devices are found in probe */
1411 #ifdef MODULE
1412 printk(version);
1413 #endif
1414 return pci_register_driver(&yellowfin_driver);
1418 static void __exit yellowfin_cleanup (void)
1420 pci_unregister_driver (&yellowfin_driver);
1424 module_init(yellowfin_init);
1425 module_exit(yellowfin_cleanup);
1428 * Local variables:
1429 * compile-command: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c yellowfin.c"
1430 * compile-command-alphaLX: "gcc -DMODULE -Wall -Wstrict-prototypes -O2 -c yellowfin.c -fomit-frame-pointer -fno-strength-reduce -mno-fp-regs -Wa,-m21164a -DBWX_USABLE -DBWIO_ENABLED"
1431 * simple-compile-command: "gcc -DMODULE -O6 -c yellowfin.c"
1432 * c-indent-level: 4
1433 * c-basic-offset: 4
1434 * tab-width: 4
1435 * End: