[AF_RXRPC/AFS]: Arch-specific fixes.
[wrt350n-kernel.git] / fs / ntfs / inode.c
blobf8bf8da67ee8f86bb0813b231f55ddbfc5148a46
1 /**
2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/smp_lock.h>
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "attrib.h"
39 #include "lcnalloc.h"
40 #include "malloc.h"
41 #include "mft.h"
42 #include "time.h"
43 #include "ntfs.h"
45 /**
46 * ntfs_test_inode - compare two (possibly fake) inodes for equality
47 * @vi: vfs inode which to test
48 * @na: ntfs attribute which is being tested with
50 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
51 * inode @vi for equality with the ntfs attribute @na.
53 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
54 * @na->name and @na->name_len are then ignored.
56 * Return 1 if the attributes match and 0 if not.
58 * NOTE: This function runs with the inode_lock spin lock held so it is not
59 * allowed to sleep.
61 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
63 ntfs_inode *ni;
65 if (vi->i_ino != na->mft_no)
66 return 0;
67 ni = NTFS_I(vi);
68 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
69 if (likely(!NInoAttr(ni))) {
70 /* If not looking for a normal inode this is a mismatch. */
71 if (unlikely(na->type != AT_UNUSED))
72 return 0;
73 } else {
74 /* A fake inode describing an attribute. */
75 if (ni->type != na->type)
76 return 0;
77 if (ni->name_len != na->name_len)
78 return 0;
79 if (na->name_len && memcmp(ni->name, na->name,
80 na->name_len * sizeof(ntfschar)))
81 return 0;
83 /* Match! */
84 return 1;
87 /**
88 * ntfs_init_locked_inode - initialize an inode
89 * @vi: vfs inode to initialize
90 * @na: ntfs attribute which to initialize @vi to
92 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
93 * order to enable ntfs_test_inode() to do its work.
95 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
96 * In that case, @na->name and @na->name_len should be set to NULL and 0,
97 * respectively. Although that is not strictly necessary as
98 * ntfs_read_locked_inode() will fill them in later.
100 * Return 0 on success and -errno on error.
102 * NOTE: This function runs with the inode_lock spin lock held so it is not
103 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
105 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
107 ntfs_inode *ni = NTFS_I(vi);
109 vi->i_ino = na->mft_no;
111 ni->type = na->type;
112 if (na->type == AT_INDEX_ALLOCATION)
113 NInoSetMstProtected(ni);
115 ni->name = na->name;
116 ni->name_len = na->name_len;
118 /* If initializing a normal inode, we are done. */
119 if (likely(na->type == AT_UNUSED)) {
120 BUG_ON(na->name);
121 BUG_ON(na->name_len);
122 return 0;
125 /* It is a fake inode. */
126 NInoSetAttr(ni);
129 * We have I30 global constant as an optimization as it is the name
130 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
131 * allocation but that is ok. And most attributes are unnamed anyway,
132 * thus the fraction of named attributes with name != I30 is actually
133 * absolutely tiny.
135 if (na->name_len && na->name != I30) {
136 unsigned int i;
138 BUG_ON(!na->name);
139 i = na->name_len * sizeof(ntfschar);
140 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
141 if (!ni->name)
142 return -ENOMEM;
143 memcpy(ni->name, na->name, i);
144 ni->name[i] = 0;
146 return 0;
149 typedef int (*set_t)(struct inode *, void *);
150 static int ntfs_read_locked_inode(struct inode *vi);
151 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
152 static int ntfs_read_locked_index_inode(struct inode *base_vi,
153 struct inode *vi);
156 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
157 * @sb: super block of mounted volume
158 * @mft_no: mft record number / inode number to obtain
160 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
161 * file or directory).
163 * If the inode is in the cache, it is just returned with an increased
164 * reference count. Otherwise, a new struct inode is allocated and initialized,
165 * and finally ntfs_read_locked_inode() is called to read in the inode and
166 * fill in the remainder of the inode structure.
168 * Return the struct inode on success. Check the return value with IS_ERR() and
169 * if true, the function failed and the error code is obtained from PTR_ERR().
171 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
173 struct inode *vi;
174 int err;
175 ntfs_attr na;
177 na.mft_no = mft_no;
178 na.type = AT_UNUSED;
179 na.name = NULL;
180 na.name_len = 0;
182 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
183 (set_t)ntfs_init_locked_inode, &na);
184 if (unlikely(!vi))
185 return ERR_PTR(-ENOMEM);
187 err = 0;
189 /* If this is a freshly allocated inode, need to read it now. */
190 if (vi->i_state & I_NEW) {
191 err = ntfs_read_locked_inode(vi);
192 unlock_new_inode(vi);
195 * There is no point in keeping bad inodes around if the failure was
196 * due to ENOMEM. We want to be able to retry again later.
198 if (unlikely(err == -ENOMEM)) {
199 iput(vi);
200 vi = ERR_PTR(err);
202 return vi;
206 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
207 * @base_vi: vfs base inode containing the attribute
208 * @type: attribute type
209 * @name: Unicode name of the attribute (NULL if unnamed)
210 * @name_len: length of @name in Unicode characters (0 if unnamed)
212 * Obtain the (fake) struct inode corresponding to the attribute specified by
213 * @type, @name, and @name_len, which is present in the base mft record
214 * specified by the vfs inode @base_vi.
216 * If the attribute inode is in the cache, it is just returned with an
217 * increased reference count. Otherwise, a new struct inode is allocated and
218 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
219 * attribute and fill in the inode structure.
221 * Note, for index allocation attributes, you need to use ntfs_index_iget()
222 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
224 * Return the struct inode of the attribute inode on success. Check the return
225 * value with IS_ERR() and if true, the function failed and the error code is
226 * obtained from PTR_ERR().
228 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
229 ntfschar *name, u32 name_len)
231 struct inode *vi;
232 int err;
233 ntfs_attr na;
235 /* Make sure no one calls ntfs_attr_iget() for indices. */
236 BUG_ON(type == AT_INDEX_ALLOCATION);
238 na.mft_no = base_vi->i_ino;
239 na.type = type;
240 na.name = name;
241 na.name_len = name_len;
243 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
244 (set_t)ntfs_init_locked_inode, &na);
245 if (unlikely(!vi))
246 return ERR_PTR(-ENOMEM);
248 err = 0;
250 /* If this is a freshly allocated inode, need to read it now. */
251 if (vi->i_state & I_NEW) {
252 err = ntfs_read_locked_attr_inode(base_vi, vi);
253 unlock_new_inode(vi);
256 * There is no point in keeping bad attribute inodes around. This also
257 * simplifies things in that we never need to check for bad attribute
258 * inodes elsewhere.
260 if (unlikely(err)) {
261 iput(vi);
262 vi = ERR_PTR(err);
264 return vi;
268 * ntfs_index_iget - obtain a struct inode corresponding to an index
269 * @base_vi: vfs base inode containing the index related attributes
270 * @name: Unicode name of the index
271 * @name_len: length of @name in Unicode characters
273 * Obtain the (fake) struct inode corresponding to the index specified by @name
274 * and @name_len, which is present in the base mft record specified by the vfs
275 * inode @base_vi.
277 * If the index inode is in the cache, it is just returned with an increased
278 * reference count. Otherwise, a new struct inode is allocated and
279 * initialized, and finally ntfs_read_locked_index_inode() is called to read
280 * the index related attributes and fill in the inode structure.
282 * Return the struct inode of the index inode on success. Check the return
283 * value with IS_ERR() and if true, the function failed and the error code is
284 * obtained from PTR_ERR().
286 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
287 u32 name_len)
289 struct inode *vi;
290 int err;
291 ntfs_attr na;
293 na.mft_no = base_vi->i_ino;
294 na.type = AT_INDEX_ALLOCATION;
295 na.name = name;
296 na.name_len = name_len;
298 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
299 (set_t)ntfs_init_locked_inode, &na);
300 if (unlikely(!vi))
301 return ERR_PTR(-ENOMEM);
303 err = 0;
305 /* If this is a freshly allocated inode, need to read it now. */
306 if (vi->i_state & I_NEW) {
307 err = ntfs_read_locked_index_inode(base_vi, vi);
308 unlock_new_inode(vi);
311 * There is no point in keeping bad index inodes around. This also
312 * simplifies things in that we never need to check for bad index
313 * inodes elsewhere.
315 if (unlikely(err)) {
316 iput(vi);
317 vi = ERR_PTR(err);
319 return vi;
322 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
324 ntfs_inode *ni;
326 ntfs_debug("Entering.");
327 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
328 if (likely(ni != NULL)) {
329 ni->state = 0;
330 return VFS_I(ni);
332 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
333 return NULL;
336 void ntfs_destroy_big_inode(struct inode *inode)
338 ntfs_inode *ni = NTFS_I(inode);
340 ntfs_debug("Entering.");
341 BUG_ON(ni->page);
342 if (!atomic_dec_and_test(&ni->count))
343 BUG();
344 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
347 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
349 ntfs_inode *ni;
351 ntfs_debug("Entering.");
352 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
353 if (likely(ni != NULL)) {
354 ni->state = 0;
355 return ni;
357 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
358 return NULL;
361 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
363 ntfs_debug("Entering.");
364 BUG_ON(ni->page);
365 if (!atomic_dec_and_test(&ni->count))
366 BUG();
367 kmem_cache_free(ntfs_inode_cache, ni);
371 * The attribute runlist lock has separate locking rules from the
372 * normal runlist lock, so split the two lock-classes:
374 static struct lock_class_key attr_list_rl_lock_class;
377 * __ntfs_init_inode - initialize ntfs specific part of an inode
378 * @sb: super block of mounted volume
379 * @ni: freshly allocated ntfs inode which to initialize
381 * Initialize an ntfs inode to defaults.
383 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
384 * untouched. Make sure to initialize them elsewhere.
386 * Return zero on success and -ENOMEM on error.
388 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
390 ntfs_debug("Entering.");
391 rwlock_init(&ni->size_lock);
392 ni->initialized_size = ni->allocated_size = 0;
393 ni->seq_no = 0;
394 atomic_set(&ni->count, 1);
395 ni->vol = NTFS_SB(sb);
396 ntfs_init_runlist(&ni->runlist);
397 mutex_init(&ni->mrec_lock);
398 ni->page = NULL;
399 ni->page_ofs = 0;
400 ni->attr_list_size = 0;
401 ni->attr_list = NULL;
402 ntfs_init_runlist(&ni->attr_list_rl);
403 lockdep_set_class(&ni->attr_list_rl.lock,
404 &attr_list_rl_lock_class);
405 ni->itype.index.block_size = 0;
406 ni->itype.index.vcn_size = 0;
407 ni->itype.index.collation_rule = 0;
408 ni->itype.index.block_size_bits = 0;
409 ni->itype.index.vcn_size_bits = 0;
410 mutex_init(&ni->extent_lock);
411 ni->nr_extents = 0;
412 ni->ext.base_ntfs_ino = NULL;
416 * Extent inodes get MFT-mapped in a nested way, while the base inode
417 * is still mapped. Teach this nesting to the lock validator by creating
418 * a separate class for nested inode's mrec_lock's:
420 static struct lock_class_key extent_inode_mrec_lock_key;
422 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
423 unsigned long mft_no)
425 ntfs_inode *ni = ntfs_alloc_extent_inode();
427 ntfs_debug("Entering.");
428 if (likely(ni != NULL)) {
429 __ntfs_init_inode(sb, ni);
430 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
431 ni->mft_no = mft_no;
432 ni->type = AT_UNUSED;
433 ni->name = NULL;
434 ni->name_len = 0;
436 return ni;
440 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
441 * @ctx: initialized attribute search context
443 * Search all file name attributes in the inode described by the attribute
444 * search context @ctx and check if any of the names are in the $Extend system
445 * directory.
447 * Return values:
448 * 1: file is in $Extend directory
449 * 0: file is not in $Extend directory
450 * -errno: failed to determine if the file is in the $Extend directory
452 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
454 int nr_links, err;
456 /* Restart search. */
457 ntfs_attr_reinit_search_ctx(ctx);
459 /* Get number of hard links. */
460 nr_links = le16_to_cpu(ctx->mrec->link_count);
462 /* Loop through all hard links. */
463 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
464 ctx))) {
465 FILE_NAME_ATTR *file_name_attr;
466 ATTR_RECORD *attr = ctx->attr;
467 u8 *p, *p2;
469 nr_links--;
471 * Maximum sanity checking as we are called on an inode that
472 * we suspect might be corrupt.
474 p = (u8*)attr + le32_to_cpu(attr->length);
475 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
476 le32_to_cpu(ctx->mrec->bytes_in_use)) {
477 err_corrupt_attr:
478 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
479 "attribute. You should run chkdsk.");
480 return -EIO;
482 if (attr->non_resident) {
483 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
484 "name. You should run chkdsk.");
485 return -EIO;
487 if (attr->flags) {
488 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
489 "invalid flags. You should run "
490 "chkdsk.");
491 return -EIO;
493 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
494 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
495 "name. You should run chkdsk.");
496 return -EIO;
498 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
499 le16_to_cpu(attr->data.resident.value_offset));
500 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
501 if (p2 < (u8*)attr || p2 > p)
502 goto err_corrupt_attr;
503 /* This attribute is ok, but is it in the $Extend directory? */
504 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
505 return 1; /* YES, it's an extended system file. */
507 if (unlikely(err != -ENOENT))
508 return err;
509 if (unlikely(nr_links)) {
510 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
511 "doesn't match number of name attributes. You "
512 "should run chkdsk.");
513 return -EIO;
515 return 0; /* NO, it is not an extended system file. */
519 * ntfs_read_locked_inode - read an inode from its device
520 * @vi: inode to read
522 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
523 * described by @vi into memory from the device.
525 * The only fields in @vi that we need to/can look at when the function is
526 * called are i_sb, pointing to the mounted device's super block, and i_ino,
527 * the number of the inode to load.
529 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
530 * for reading and sets up the necessary @vi fields as well as initializing
531 * the ntfs inode.
533 * Q: What locks are held when the function is called?
534 * A: i_state has I_LOCK set, hence the inode is locked, also
535 * i_count is set to 1, so it is not going to go away
536 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
537 * is allowed to write to them. We should of course be honouring them but
538 * we need to do that using the IS_* macros defined in include/linux/fs.h.
539 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
541 * Return 0 on success and -errno on error. In the error case, the inode will
542 * have had make_bad_inode() executed on it.
544 static int ntfs_read_locked_inode(struct inode *vi)
546 ntfs_volume *vol = NTFS_SB(vi->i_sb);
547 ntfs_inode *ni;
548 struct inode *bvi;
549 MFT_RECORD *m;
550 ATTR_RECORD *a;
551 STANDARD_INFORMATION *si;
552 ntfs_attr_search_ctx *ctx;
553 int err = 0;
555 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
557 /* Setup the generic vfs inode parts now. */
560 * This is for checking whether an inode has changed w.r.t. a file so
561 * that the file can be updated if necessary (compare with f_version).
563 vi->i_version = 1;
565 vi->i_uid = vol->uid;
566 vi->i_gid = vol->gid;
567 vi->i_mode = 0;
570 * Initialize the ntfs specific part of @vi special casing
571 * FILE_MFT which we need to do at mount time.
573 if (vi->i_ino != FILE_MFT)
574 ntfs_init_big_inode(vi);
575 ni = NTFS_I(vi);
577 m = map_mft_record(ni);
578 if (IS_ERR(m)) {
579 err = PTR_ERR(m);
580 goto err_out;
582 ctx = ntfs_attr_get_search_ctx(ni, m);
583 if (!ctx) {
584 err = -ENOMEM;
585 goto unm_err_out;
588 if (!(m->flags & MFT_RECORD_IN_USE)) {
589 ntfs_error(vi->i_sb, "Inode is not in use!");
590 goto unm_err_out;
592 if (m->base_mft_record) {
593 ntfs_error(vi->i_sb, "Inode is an extent inode!");
594 goto unm_err_out;
597 /* Transfer information from mft record into vfs and ntfs inodes. */
598 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
601 * FIXME: Keep in mind that link_count is two for files which have both
602 * a long file name and a short file name as separate entries, so if
603 * we are hiding short file names this will be too high. Either we need
604 * to account for the short file names by subtracting them or we need
605 * to make sure we delete files even though i_nlink is not zero which
606 * might be tricky due to vfs interactions. Need to think about this
607 * some more when implementing the unlink command.
609 vi->i_nlink = le16_to_cpu(m->link_count);
611 * FIXME: Reparse points can have the directory bit set even though
612 * they would be S_IFLNK. Need to deal with this further below when we
613 * implement reparse points / symbolic links but it will do for now.
614 * Also if not a directory, it could be something else, rather than
615 * a regular file. But again, will do for now.
617 /* Everyone gets all permissions. */
618 vi->i_mode |= S_IRWXUGO;
619 /* If read-only, noone gets write permissions. */
620 if (IS_RDONLY(vi))
621 vi->i_mode &= ~S_IWUGO;
622 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
623 vi->i_mode |= S_IFDIR;
625 * Apply the directory permissions mask set in the mount
626 * options.
628 vi->i_mode &= ~vol->dmask;
629 /* Things break without this kludge! */
630 if (vi->i_nlink > 1)
631 vi->i_nlink = 1;
632 } else {
633 vi->i_mode |= S_IFREG;
634 /* Apply the file permissions mask set in the mount options. */
635 vi->i_mode &= ~vol->fmask;
638 * Find the standard information attribute in the mft record. At this
639 * stage we haven't setup the attribute list stuff yet, so this could
640 * in fact fail if the standard information is in an extent record, but
641 * I don't think this actually ever happens.
643 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
644 ctx);
645 if (unlikely(err)) {
646 if (err == -ENOENT) {
648 * TODO: We should be performing a hot fix here (if the
649 * recover mount option is set) by creating a new
650 * attribute.
652 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
653 "is missing.");
655 goto unm_err_out;
657 a = ctx->attr;
658 /* Get the standard information attribute value. */
659 si = (STANDARD_INFORMATION*)((u8*)a +
660 le16_to_cpu(a->data.resident.value_offset));
662 /* Transfer information from the standard information into vi. */
664 * Note: The i_?times do not quite map perfectly onto the NTFS times,
665 * but they are close enough, and in the end it doesn't really matter
666 * that much...
669 * mtime is the last change of the data within the file. Not changed
670 * when only metadata is changed, e.g. a rename doesn't affect mtime.
672 vi->i_mtime = ntfs2utc(si->last_data_change_time);
674 * ctime is the last change of the metadata of the file. This obviously
675 * always changes, when mtime is changed. ctime can be changed on its
676 * own, mtime is then not changed, e.g. when a file is renamed.
678 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
680 * Last access to the data within the file. Not changed during a rename
681 * for example but changed whenever the file is written to.
683 vi->i_atime = ntfs2utc(si->last_access_time);
685 /* Find the attribute list attribute if present. */
686 ntfs_attr_reinit_search_ctx(ctx);
687 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
688 if (err) {
689 if (unlikely(err != -ENOENT)) {
690 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
691 "attribute.");
692 goto unm_err_out;
694 } else /* if (!err) */ {
695 if (vi->i_ino == FILE_MFT)
696 goto skip_attr_list_load;
697 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
698 NInoSetAttrList(ni);
699 a = ctx->attr;
700 if (a->flags & ATTR_COMPRESSION_MASK) {
701 ntfs_error(vi->i_sb, "Attribute list attribute is "
702 "compressed.");
703 goto unm_err_out;
705 if (a->flags & ATTR_IS_ENCRYPTED ||
706 a->flags & ATTR_IS_SPARSE) {
707 if (a->non_resident) {
708 ntfs_error(vi->i_sb, "Non-resident attribute "
709 "list attribute is encrypted/"
710 "sparse.");
711 goto unm_err_out;
713 ntfs_warning(vi->i_sb, "Resident attribute list "
714 "attribute in inode 0x%lx is marked "
715 "encrypted/sparse which is not true. "
716 "However, Windows allows this and "
717 "chkdsk does not detect or correct it "
718 "so we will just ignore the invalid "
719 "flags and pretend they are not set.",
720 vi->i_ino);
722 /* Now allocate memory for the attribute list. */
723 ni->attr_list_size = (u32)ntfs_attr_size(a);
724 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
725 if (!ni->attr_list) {
726 ntfs_error(vi->i_sb, "Not enough memory to allocate "
727 "buffer for attribute list.");
728 err = -ENOMEM;
729 goto unm_err_out;
731 if (a->non_resident) {
732 NInoSetAttrListNonResident(ni);
733 if (a->data.non_resident.lowest_vcn) {
734 ntfs_error(vi->i_sb, "Attribute list has non "
735 "zero lowest_vcn.");
736 goto unm_err_out;
739 * Setup the runlist. No need for locking as we have
740 * exclusive access to the inode at this time.
742 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
743 a, NULL);
744 if (IS_ERR(ni->attr_list_rl.rl)) {
745 err = PTR_ERR(ni->attr_list_rl.rl);
746 ni->attr_list_rl.rl = NULL;
747 ntfs_error(vi->i_sb, "Mapping pairs "
748 "decompression failed.");
749 goto unm_err_out;
751 /* Now load the attribute list. */
752 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
753 ni->attr_list, ni->attr_list_size,
754 sle64_to_cpu(a->data.non_resident.
755 initialized_size)))) {
756 ntfs_error(vi->i_sb, "Failed to load "
757 "attribute list attribute.");
758 goto unm_err_out;
760 } else /* if (!a->non_resident) */ {
761 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
762 + le32_to_cpu(
763 a->data.resident.value_length) >
764 (u8*)ctx->mrec + vol->mft_record_size) {
765 ntfs_error(vi->i_sb, "Corrupt attribute list "
766 "in inode.");
767 goto unm_err_out;
769 /* Now copy the attribute list. */
770 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
771 a->data.resident.value_offset),
772 le32_to_cpu(
773 a->data.resident.value_length));
776 skip_attr_list_load:
778 * If an attribute list is present we now have the attribute list value
779 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
781 if (S_ISDIR(vi->i_mode)) {
782 loff_t bvi_size;
783 ntfs_inode *bni;
784 INDEX_ROOT *ir;
785 u8 *ir_end, *index_end;
787 /* It is a directory, find index root attribute. */
788 ntfs_attr_reinit_search_ctx(ctx);
789 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
790 0, NULL, 0, ctx);
791 if (unlikely(err)) {
792 if (err == -ENOENT) {
793 // FIXME: File is corrupt! Hot-fix with empty
794 // index root attribute if recovery option is
795 // set.
796 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
797 "is missing.");
799 goto unm_err_out;
801 a = ctx->attr;
802 /* Set up the state. */
803 if (unlikely(a->non_resident)) {
804 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
805 "resident.");
806 goto unm_err_out;
808 /* Ensure the attribute name is placed before the value. */
809 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
810 le16_to_cpu(a->data.resident.value_offset)))) {
811 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
812 "placed after the attribute value.");
813 goto unm_err_out;
816 * Compressed/encrypted index root just means that the newly
817 * created files in that directory should be created compressed/
818 * encrypted. However index root cannot be both compressed and
819 * encrypted.
821 if (a->flags & ATTR_COMPRESSION_MASK)
822 NInoSetCompressed(ni);
823 if (a->flags & ATTR_IS_ENCRYPTED) {
824 if (a->flags & ATTR_COMPRESSION_MASK) {
825 ntfs_error(vi->i_sb, "Found encrypted and "
826 "compressed attribute.");
827 goto unm_err_out;
829 NInoSetEncrypted(ni);
831 if (a->flags & ATTR_IS_SPARSE)
832 NInoSetSparse(ni);
833 ir = (INDEX_ROOT*)((u8*)a +
834 le16_to_cpu(a->data.resident.value_offset));
835 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
836 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
837 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
838 "corrupt.");
839 goto unm_err_out;
841 index_end = (u8*)&ir->index +
842 le32_to_cpu(ir->index.index_length);
843 if (index_end > ir_end) {
844 ntfs_error(vi->i_sb, "Directory index is corrupt.");
845 goto unm_err_out;
847 if (ir->type != AT_FILE_NAME) {
848 ntfs_error(vi->i_sb, "Indexed attribute is not "
849 "$FILE_NAME.");
850 goto unm_err_out;
852 if (ir->collation_rule != COLLATION_FILE_NAME) {
853 ntfs_error(vi->i_sb, "Index collation rule is not "
854 "COLLATION_FILE_NAME.");
855 goto unm_err_out;
857 ni->itype.index.collation_rule = ir->collation_rule;
858 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
859 if (ni->itype.index.block_size &
860 (ni->itype.index.block_size - 1)) {
861 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
862 "power of two.",
863 ni->itype.index.block_size);
864 goto unm_err_out;
866 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
867 ntfs_error(vi->i_sb, "Index block size (%u) > "
868 "PAGE_CACHE_SIZE (%ld) is not "
869 "supported. Sorry.",
870 ni->itype.index.block_size,
871 PAGE_CACHE_SIZE);
872 err = -EOPNOTSUPP;
873 goto unm_err_out;
875 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
876 ntfs_error(vi->i_sb, "Index block size (%u) < "
877 "NTFS_BLOCK_SIZE (%i) is not "
878 "supported. Sorry.",
879 ni->itype.index.block_size,
880 NTFS_BLOCK_SIZE);
881 err = -EOPNOTSUPP;
882 goto unm_err_out;
884 ni->itype.index.block_size_bits =
885 ffs(ni->itype.index.block_size) - 1;
886 /* Determine the size of a vcn in the directory index. */
887 if (vol->cluster_size <= ni->itype.index.block_size) {
888 ni->itype.index.vcn_size = vol->cluster_size;
889 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
890 } else {
891 ni->itype.index.vcn_size = vol->sector_size;
892 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
895 /* Setup the index allocation attribute, even if not present. */
896 NInoSetMstProtected(ni);
897 ni->type = AT_INDEX_ALLOCATION;
898 ni->name = I30;
899 ni->name_len = 4;
901 if (!(ir->index.flags & LARGE_INDEX)) {
902 /* No index allocation. */
903 vi->i_size = ni->initialized_size =
904 ni->allocated_size = 0;
905 /* We are done with the mft record, so we release it. */
906 ntfs_attr_put_search_ctx(ctx);
907 unmap_mft_record(ni);
908 m = NULL;
909 ctx = NULL;
910 goto skip_large_dir_stuff;
911 } /* LARGE_INDEX: Index allocation present. Setup state. */
912 NInoSetIndexAllocPresent(ni);
913 /* Find index allocation attribute. */
914 ntfs_attr_reinit_search_ctx(ctx);
915 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
916 CASE_SENSITIVE, 0, NULL, 0, ctx);
917 if (unlikely(err)) {
918 if (err == -ENOENT)
919 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
920 "attribute is not present but "
921 "$INDEX_ROOT indicated it is.");
922 else
923 ntfs_error(vi->i_sb, "Failed to lookup "
924 "$INDEX_ALLOCATION "
925 "attribute.");
926 goto unm_err_out;
928 a = ctx->attr;
929 if (!a->non_resident) {
930 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
931 "is resident.");
932 goto unm_err_out;
935 * Ensure the attribute name is placed before the mapping pairs
936 * array.
938 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
939 le16_to_cpu(
940 a->data.non_resident.mapping_pairs_offset)))) {
941 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
942 "is placed after the mapping pairs "
943 "array.");
944 goto unm_err_out;
946 if (a->flags & ATTR_IS_ENCRYPTED) {
947 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
948 "is encrypted.");
949 goto unm_err_out;
951 if (a->flags & ATTR_IS_SPARSE) {
952 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
953 "is sparse.");
954 goto unm_err_out;
956 if (a->flags & ATTR_COMPRESSION_MASK) {
957 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
958 "is compressed.");
959 goto unm_err_out;
961 if (a->data.non_resident.lowest_vcn) {
962 ntfs_error(vi->i_sb, "First extent of "
963 "$INDEX_ALLOCATION attribute has non "
964 "zero lowest_vcn.");
965 goto unm_err_out;
967 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
968 ni->initialized_size = sle64_to_cpu(
969 a->data.non_resident.initialized_size);
970 ni->allocated_size = sle64_to_cpu(
971 a->data.non_resident.allocated_size);
973 * We are done with the mft record, so we release it. Otherwise
974 * we would deadlock in ntfs_attr_iget().
976 ntfs_attr_put_search_ctx(ctx);
977 unmap_mft_record(ni);
978 m = NULL;
979 ctx = NULL;
980 /* Get the index bitmap attribute inode. */
981 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
982 if (IS_ERR(bvi)) {
983 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
984 err = PTR_ERR(bvi);
985 goto unm_err_out;
987 bni = NTFS_I(bvi);
988 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
989 NInoSparse(bni)) {
990 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
991 "and/or encrypted and/or sparse.");
992 goto iput_unm_err_out;
994 /* Consistency check bitmap size vs. index allocation size. */
995 bvi_size = i_size_read(bvi);
996 if ((bvi_size << 3) < (vi->i_size >>
997 ni->itype.index.block_size_bits)) {
998 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
999 "for index allocation (0x%llx).",
1000 bvi_size << 3, vi->i_size);
1001 goto iput_unm_err_out;
1003 /* No longer need the bitmap attribute inode. */
1004 iput(bvi);
1005 skip_large_dir_stuff:
1006 /* Setup the operations for this inode. */
1007 vi->i_op = &ntfs_dir_inode_ops;
1008 vi->i_fop = &ntfs_dir_ops;
1009 } else {
1010 /* It is a file. */
1011 ntfs_attr_reinit_search_ctx(ctx);
1013 /* Setup the data attribute, even if not present. */
1014 ni->type = AT_DATA;
1015 ni->name = NULL;
1016 ni->name_len = 0;
1018 /* Find first extent of the unnamed data attribute. */
1019 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1020 if (unlikely(err)) {
1021 vi->i_size = ni->initialized_size =
1022 ni->allocated_size = 0;
1023 if (err != -ENOENT) {
1024 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1025 "attribute.");
1026 goto unm_err_out;
1029 * FILE_Secure does not have an unnamed $DATA
1030 * attribute, so we special case it here.
1032 if (vi->i_ino == FILE_Secure)
1033 goto no_data_attr_special_case;
1035 * Most if not all the system files in the $Extend
1036 * system directory do not have unnamed data
1037 * attributes so we need to check if the parent
1038 * directory of the file is FILE_Extend and if it is
1039 * ignore this error. To do this we need to get the
1040 * name of this inode from the mft record as the name
1041 * contains the back reference to the parent directory.
1043 if (ntfs_is_extended_system_file(ctx) > 0)
1044 goto no_data_attr_special_case;
1045 // FIXME: File is corrupt! Hot-fix with empty data
1046 // attribute if recovery option is set.
1047 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1048 goto unm_err_out;
1050 a = ctx->attr;
1051 /* Setup the state. */
1052 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1053 if (a->flags & ATTR_COMPRESSION_MASK) {
1054 NInoSetCompressed(ni);
1055 if (vol->cluster_size > 4096) {
1056 ntfs_error(vi->i_sb, "Found "
1057 "compressed data but "
1058 "compression is "
1059 "disabled due to "
1060 "cluster size (%i) > "
1061 "4kiB.",
1062 vol->cluster_size);
1063 goto unm_err_out;
1065 if ((a->flags & ATTR_COMPRESSION_MASK)
1066 != ATTR_IS_COMPRESSED) {
1067 ntfs_error(vi->i_sb, "Found unknown "
1068 "compression method "
1069 "or corrupt file.");
1070 goto unm_err_out;
1073 if (a->flags & ATTR_IS_SPARSE)
1074 NInoSetSparse(ni);
1076 if (a->flags & ATTR_IS_ENCRYPTED) {
1077 if (NInoCompressed(ni)) {
1078 ntfs_error(vi->i_sb, "Found encrypted and "
1079 "compressed data.");
1080 goto unm_err_out;
1082 NInoSetEncrypted(ni);
1084 if (a->non_resident) {
1085 NInoSetNonResident(ni);
1086 if (NInoCompressed(ni) || NInoSparse(ni)) {
1087 if (NInoCompressed(ni) && a->data.non_resident.
1088 compression_unit != 4) {
1089 ntfs_error(vi->i_sb, "Found "
1090 "non-standard "
1091 "compression unit (%u "
1092 "instead of 4). "
1093 "Cannot handle this.",
1094 a->data.non_resident.
1095 compression_unit);
1096 err = -EOPNOTSUPP;
1097 goto unm_err_out;
1099 if (a->data.non_resident.compression_unit) {
1100 ni->itype.compressed.block_size = 1U <<
1101 (a->data.non_resident.
1102 compression_unit +
1103 vol->cluster_size_bits);
1104 ni->itype.compressed.block_size_bits =
1105 ffs(ni->itype.
1106 compressed.
1107 block_size) - 1;
1108 ni->itype.compressed.block_clusters =
1109 1U << a->data.
1110 non_resident.
1111 compression_unit;
1112 } else {
1113 ni->itype.compressed.block_size = 0;
1114 ni->itype.compressed.block_size_bits =
1116 ni->itype.compressed.block_clusters =
1119 ni->itype.compressed.size = sle64_to_cpu(
1120 a->data.non_resident.
1121 compressed_size);
1123 if (a->data.non_resident.lowest_vcn) {
1124 ntfs_error(vi->i_sb, "First extent of $DATA "
1125 "attribute has non zero "
1126 "lowest_vcn.");
1127 goto unm_err_out;
1129 vi->i_size = sle64_to_cpu(
1130 a->data.non_resident.data_size);
1131 ni->initialized_size = sle64_to_cpu(
1132 a->data.non_resident.initialized_size);
1133 ni->allocated_size = sle64_to_cpu(
1134 a->data.non_resident.allocated_size);
1135 } else { /* Resident attribute. */
1136 vi->i_size = ni->initialized_size = le32_to_cpu(
1137 a->data.resident.value_length);
1138 ni->allocated_size = le32_to_cpu(a->length) -
1139 le16_to_cpu(
1140 a->data.resident.value_offset);
1141 if (vi->i_size > ni->allocated_size) {
1142 ntfs_error(vi->i_sb, "Resident data attribute "
1143 "is corrupt (size exceeds "
1144 "allocation).");
1145 goto unm_err_out;
1148 no_data_attr_special_case:
1149 /* We are done with the mft record, so we release it. */
1150 ntfs_attr_put_search_ctx(ctx);
1151 unmap_mft_record(ni);
1152 m = NULL;
1153 ctx = NULL;
1154 /* Setup the operations for this inode. */
1155 vi->i_op = &ntfs_file_inode_ops;
1156 vi->i_fop = &ntfs_file_ops;
1158 if (NInoMstProtected(ni))
1159 vi->i_mapping->a_ops = &ntfs_mst_aops;
1160 else
1161 vi->i_mapping->a_ops = &ntfs_aops;
1163 * The number of 512-byte blocks used on disk (for stat). This is in so
1164 * far inaccurate as it doesn't account for any named streams or other
1165 * special non-resident attributes, but that is how Windows works, too,
1166 * so we are at least consistent with Windows, if not entirely
1167 * consistent with the Linux Way. Doing it the Linux Way would cause a
1168 * significant slowdown as it would involve iterating over all
1169 * attributes in the mft record and adding the allocated/compressed
1170 * sizes of all non-resident attributes present to give us the Linux
1171 * correct size that should go into i_blocks (after division by 512).
1173 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1174 vi->i_blocks = ni->itype.compressed.size >> 9;
1175 else
1176 vi->i_blocks = ni->allocated_size >> 9;
1177 ntfs_debug("Done.");
1178 return 0;
1179 iput_unm_err_out:
1180 iput(bvi);
1181 unm_err_out:
1182 if (!err)
1183 err = -EIO;
1184 if (ctx)
1185 ntfs_attr_put_search_ctx(ctx);
1186 if (m)
1187 unmap_mft_record(ni);
1188 err_out:
1189 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1190 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1191 make_bad_inode(vi);
1192 if (err != -EOPNOTSUPP && err != -ENOMEM)
1193 NVolSetErrors(vol);
1194 return err;
1198 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1199 * @base_vi: base inode
1200 * @vi: attribute inode to read
1202 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1203 * attribute inode described by @vi into memory from the base mft record
1204 * described by @base_ni.
1206 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1207 * reading and looks up the attribute described by @vi before setting up the
1208 * necessary fields in @vi as well as initializing the ntfs inode.
1210 * Q: What locks are held when the function is called?
1211 * A: i_state has I_LOCK set, hence the inode is locked, also
1212 * i_count is set to 1, so it is not going to go away
1214 * Return 0 on success and -errno on error. In the error case, the inode will
1215 * have had make_bad_inode() executed on it.
1217 * Note this cannot be called for AT_INDEX_ALLOCATION.
1219 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1221 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1222 ntfs_inode *ni, *base_ni;
1223 MFT_RECORD *m;
1224 ATTR_RECORD *a;
1225 ntfs_attr_search_ctx *ctx;
1226 int err = 0;
1228 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1230 ntfs_init_big_inode(vi);
1232 ni = NTFS_I(vi);
1233 base_ni = NTFS_I(base_vi);
1235 /* Just mirror the values from the base inode. */
1236 vi->i_version = base_vi->i_version;
1237 vi->i_uid = base_vi->i_uid;
1238 vi->i_gid = base_vi->i_gid;
1239 vi->i_nlink = base_vi->i_nlink;
1240 vi->i_mtime = base_vi->i_mtime;
1241 vi->i_ctime = base_vi->i_ctime;
1242 vi->i_atime = base_vi->i_atime;
1243 vi->i_generation = ni->seq_no = base_ni->seq_no;
1245 /* Set inode type to zero but preserve permissions. */
1246 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1248 m = map_mft_record(base_ni);
1249 if (IS_ERR(m)) {
1250 err = PTR_ERR(m);
1251 goto err_out;
1253 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1254 if (!ctx) {
1255 err = -ENOMEM;
1256 goto unm_err_out;
1258 /* Find the attribute. */
1259 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1260 CASE_SENSITIVE, 0, NULL, 0, ctx);
1261 if (unlikely(err))
1262 goto unm_err_out;
1263 a = ctx->attr;
1264 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1265 if (a->flags & ATTR_COMPRESSION_MASK) {
1266 NInoSetCompressed(ni);
1267 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1268 ni->name_len)) {
1269 ntfs_error(vi->i_sb, "Found compressed "
1270 "non-data or named data "
1271 "attribute. Please report "
1272 "you saw this message to "
1273 "linux-ntfs-dev@lists."
1274 "sourceforge.net");
1275 goto unm_err_out;
1277 if (vol->cluster_size > 4096) {
1278 ntfs_error(vi->i_sb, "Found compressed "
1279 "attribute but compression is "
1280 "disabled due to cluster size "
1281 "(%i) > 4kiB.",
1282 vol->cluster_size);
1283 goto unm_err_out;
1285 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1286 ATTR_IS_COMPRESSED) {
1287 ntfs_error(vi->i_sb, "Found unknown "
1288 "compression method.");
1289 goto unm_err_out;
1293 * The compressed/sparse flag set in an index root just means
1294 * to compress all files.
1296 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1297 ntfs_error(vi->i_sb, "Found mst protected attribute "
1298 "but the attribute is %s. Please "
1299 "report you saw this message to "
1300 "linux-ntfs-dev@lists.sourceforge.net",
1301 NInoCompressed(ni) ? "compressed" :
1302 "sparse");
1303 goto unm_err_out;
1305 if (a->flags & ATTR_IS_SPARSE)
1306 NInoSetSparse(ni);
1308 if (a->flags & ATTR_IS_ENCRYPTED) {
1309 if (NInoCompressed(ni)) {
1310 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1311 "data.");
1312 goto unm_err_out;
1315 * The encryption flag set in an index root just means to
1316 * encrypt all files.
1318 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1319 ntfs_error(vi->i_sb, "Found mst protected attribute "
1320 "but the attribute is encrypted. "
1321 "Please report you saw this message "
1322 "to linux-ntfs-dev@lists.sourceforge."
1323 "net");
1324 goto unm_err_out;
1326 if (ni->type != AT_DATA) {
1327 ntfs_error(vi->i_sb, "Found encrypted non-data "
1328 "attribute.");
1329 goto unm_err_out;
1331 NInoSetEncrypted(ni);
1333 if (!a->non_resident) {
1334 /* Ensure the attribute name is placed before the value. */
1335 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1336 le16_to_cpu(a->data.resident.value_offset)))) {
1337 ntfs_error(vol->sb, "Attribute name is placed after "
1338 "the attribute value.");
1339 goto unm_err_out;
1341 if (NInoMstProtected(ni)) {
1342 ntfs_error(vi->i_sb, "Found mst protected attribute "
1343 "but the attribute is resident. "
1344 "Please report you saw this message to "
1345 "linux-ntfs-dev@lists.sourceforge.net");
1346 goto unm_err_out;
1348 vi->i_size = ni->initialized_size = le32_to_cpu(
1349 a->data.resident.value_length);
1350 ni->allocated_size = le32_to_cpu(a->length) -
1351 le16_to_cpu(a->data.resident.value_offset);
1352 if (vi->i_size > ni->allocated_size) {
1353 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1354 "(size exceeds allocation).");
1355 goto unm_err_out;
1357 } else {
1358 NInoSetNonResident(ni);
1360 * Ensure the attribute name is placed before the mapping pairs
1361 * array.
1363 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1364 le16_to_cpu(
1365 a->data.non_resident.mapping_pairs_offset)))) {
1366 ntfs_error(vol->sb, "Attribute name is placed after "
1367 "the mapping pairs array.");
1368 goto unm_err_out;
1370 if (NInoCompressed(ni) || NInoSparse(ni)) {
1371 if (NInoCompressed(ni) && a->data.non_resident.
1372 compression_unit != 4) {
1373 ntfs_error(vi->i_sb, "Found non-standard "
1374 "compression unit (%u instead "
1375 "of 4). Cannot handle this.",
1376 a->data.non_resident.
1377 compression_unit);
1378 err = -EOPNOTSUPP;
1379 goto unm_err_out;
1381 if (a->data.non_resident.compression_unit) {
1382 ni->itype.compressed.block_size = 1U <<
1383 (a->data.non_resident.
1384 compression_unit +
1385 vol->cluster_size_bits);
1386 ni->itype.compressed.block_size_bits =
1387 ffs(ni->itype.compressed.
1388 block_size) - 1;
1389 ni->itype.compressed.block_clusters = 1U <<
1390 a->data.non_resident.
1391 compression_unit;
1392 } else {
1393 ni->itype.compressed.block_size = 0;
1394 ni->itype.compressed.block_size_bits = 0;
1395 ni->itype.compressed.block_clusters = 0;
1397 ni->itype.compressed.size = sle64_to_cpu(
1398 a->data.non_resident.compressed_size);
1400 if (a->data.non_resident.lowest_vcn) {
1401 ntfs_error(vi->i_sb, "First extent of attribute has "
1402 "non-zero lowest_vcn.");
1403 goto unm_err_out;
1405 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1406 ni->initialized_size = sle64_to_cpu(
1407 a->data.non_resident.initialized_size);
1408 ni->allocated_size = sle64_to_cpu(
1409 a->data.non_resident.allocated_size);
1411 /* Setup the operations for this attribute inode. */
1412 vi->i_op = NULL;
1413 vi->i_fop = NULL;
1414 if (NInoMstProtected(ni))
1415 vi->i_mapping->a_ops = &ntfs_mst_aops;
1416 else
1417 vi->i_mapping->a_ops = &ntfs_aops;
1418 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1419 vi->i_blocks = ni->itype.compressed.size >> 9;
1420 else
1421 vi->i_blocks = ni->allocated_size >> 9;
1423 * Make sure the base inode does not go away and attach it to the
1424 * attribute inode.
1426 igrab(base_vi);
1427 ni->ext.base_ntfs_ino = base_ni;
1428 ni->nr_extents = -1;
1430 ntfs_attr_put_search_ctx(ctx);
1431 unmap_mft_record(base_ni);
1433 ntfs_debug("Done.");
1434 return 0;
1436 unm_err_out:
1437 if (!err)
1438 err = -EIO;
1439 if (ctx)
1440 ntfs_attr_put_search_ctx(ctx);
1441 unmap_mft_record(base_ni);
1442 err_out:
1443 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1444 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1445 "Marking corrupt inode and base inode 0x%lx as bad. "
1446 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1447 base_vi->i_ino);
1448 make_bad_inode(vi);
1449 if (err != -ENOMEM)
1450 NVolSetErrors(vol);
1451 return err;
1455 * ntfs_read_locked_index_inode - read an index inode from its base inode
1456 * @base_vi: base inode
1457 * @vi: index inode to read
1459 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1460 * index inode described by @vi into memory from the base mft record described
1461 * by @base_ni.
1463 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1464 * reading and looks up the attributes relating to the index described by @vi
1465 * before setting up the necessary fields in @vi as well as initializing the
1466 * ntfs inode.
1468 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1469 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1470 * are setup like directory inodes since directories are a special case of
1471 * indices ao they need to be treated in much the same way. Most importantly,
1472 * for small indices the index allocation attribute might not actually exist.
1473 * However, the index root attribute always exists but this does not need to
1474 * have an inode associated with it and this is why we define a new inode type
1475 * index. Also, like for directories, we need to have an attribute inode for
1476 * the bitmap attribute corresponding to the index allocation attribute and we
1477 * can store this in the appropriate field of the inode, just like we do for
1478 * normal directory inodes.
1480 * Q: What locks are held when the function is called?
1481 * A: i_state has I_LOCK set, hence the inode is locked, also
1482 * i_count is set to 1, so it is not going to go away
1484 * Return 0 on success and -errno on error. In the error case, the inode will
1485 * have had make_bad_inode() executed on it.
1487 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1489 loff_t bvi_size;
1490 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1491 ntfs_inode *ni, *base_ni, *bni;
1492 struct inode *bvi;
1493 MFT_RECORD *m;
1494 ATTR_RECORD *a;
1495 ntfs_attr_search_ctx *ctx;
1496 INDEX_ROOT *ir;
1497 u8 *ir_end, *index_end;
1498 int err = 0;
1500 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1501 ntfs_init_big_inode(vi);
1502 ni = NTFS_I(vi);
1503 base_ni = NTFS_I(base_vi);
1504 /* Just mirror the values from the base inode. */
1505 vi->i_version = base_vi->i_version;
1506 vi->i_uid = base_vi->i_uid;
1507 vi->i_gid = base_vi->i_gid;
1508 vi->i_nlink = base_vi->i_nlink;
1509 vi->i_mtime = base_vi->i_mtime;
1510 vi->i_ctime = base_vi->i_ctime;
1511 vi->i_atime = base_vi->i_atime;
1512 vi->i_generation = ni->seq_no = base_ni->seq_no;
1513 /* Set inode type to zero but preserve permissions. */
1514 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1515 /* Map the mft record for the base inode. */
1516 m = map_mft_record(base_ni);
1517 if (IS_ERR(m)) {
1518 err = PTR_ERR(m);
1519 goto err_out;
1521 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1522 if (!ctx) {
1523 err = -ENOMEM;
1524 goto unm_err_out;
1526 /* Find the index root attribute. */
1527 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1528 CASE_SENSITIVE, 0, NULL, 0, ctx);
1529 if (unlikely(err)) {
1530 if (err == -ENOENT)
1531 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1532 "missing.");
1533 goto unm_err_out;
1535 a = ctx->attr;
1536 /* Set up the state. */
1537 if (unlikely(a->non_resident)) {
1538 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1539 goto unm_err_out;
1541 /* Ensure the attribute name is placed before the value. */
1542 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1543 le16_to_cpu(a->data.resident.value_offset)))) {
1544 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1545 "after the attribute value.");
1546 goto unm_err_out;
1549 * Compressed/encrypted/sparse index root is not allowed, except for
1550 * directories of course but those are not dealt with here.
1552 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1553 ATTR_IS_SPARSE)) {
1554 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1555 "root attribute.");
1556 goto unm_err_out;
1558 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1559 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1560 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1561 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1562 goto unm_err_out;
1564 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1565 if (index_end > ir_end) {
1566 ntfs_error(vi->i_sb, "Index is corrupt.");
1567 goto unm_err_out;
1569 if (ir->type) {
1570 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1571 le32_to_cpu(ir->type));
1572 goto unm_err_out;
1574 ni->itype.index.collation_rule = ir->collation_rule;
1575 ntfs_debug("Index collation rule is 0x%x.",
1576 le32_to_cpu(ir->collation_rule));
1577 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1578 if (ni->itype.index.block_size & (ni->itype.index.block_size - 1)) {
1579 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1580 "two.", ni->itype.index.block_size);
1581 goto unm_err_out;
1583 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1584 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1585 "(%ld) is not supported. Sorry.",
1586 ni->itype.index.block_size, PAGE_CACHE_SIZE);
1587 err = -EOPNOTSUPP;
1588 goto unm_err_out;
1590 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1591 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1592 "(%i) is not supported. Sorry.",
1593 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1594 err = -EOPNOTSUPP;
1595 goto unm_err_out;
1597 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1598 /* Determine the size of a vcn in the index. */
1599 if (vol->cluster_size <= ni->itype.index.block_size) {
1600 ni->itype.index.vcn_size = vol->cluster_size;
1601 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1602 } else {
1603 ni->itype.index.vcn_size = vol->sector_size;
1604 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1606 /* Check for presence of index allocation attribute. */
1607 if (!(ir->index.flags & LARGE_INDEX)) {
1608 /* No index allocation. */
1609 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1610 /* We are done with the mft record, so we release it. */
1611 ntfs_attr_put_search_ctx(ctx);
1612 unmap_mft_record(base_ni);
1613 m = NULL;
1614 ctx = NULL;
1615 goto skip_large_index_stuff;
1616 } /* LARGE_INDEX: Index allocation present. Setup state. */
1617 NInoSetIndexAllocPresent(ni);
1618 /* Find index allocation attribute. */
1619 ntfs_attr_reinit_search_ctx(ctx);
1620 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1621 CASE_SENSITIVE, 0, NULL, 0, ctx);
1622 if (unlikely(err)) {
1623 if (err == -ENOENT)
1624 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1625 "not present but $INDEX_ROOT "
1626 "indicated it is.");
1627 else
1628 ntfs_error(vi->i_sb, "Failed to lookup "
1629 "$INDEX_ALLOCATION attribute.");
1630 goto unm_err_out;
1632 a = ctx->attr;
1633 if (!a->non_resident) {
1634 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1635 "resident.");
1636 goto unm_err_out;
1639 * Ensure the attribute name is placed before the mapping pairs array.
1641 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1642 le16_to_cpu(
1643 a->data.non_resident.mapping_pairs_offset)))) {
1644 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1645 "placed after the mapping pairs array.");
1646 goto unm_err_out;
1648 if (a->flags & ATTR_IS_ENCRYPTED) {
1649 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1650 "encrypted.");
1651 goto unm_err_out;
1653 if (a->flags & ATTR_IS_SPARSE) {
1654 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1655 goto unm_err_out;
1657 if (a->flags & ATTR_COMPRESSION_MASK) {
1658 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1659 "compressed.");
1660 goto unm_err_out;
1662 if (a->data.non_resident.lowest_vcn) {
1663 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1664 "attribute has non zero lowest_vcn.");
1665 goto unm_err_out;
1667 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1668 ni->initialized_size = sle64_to_cpu(
1669 a->data.non_resident.initialized_size);
1670 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1672 * We are done with the mft record, so we release it. Otherwise
1673 * we would deadlock in ntfs_attr_iget().
1675 ntfs_attr_put_search_ctx(ctx);
1676 unmap_mft_record(base_ni);
1677 m = NULL;
1678 ctx = NULL;
1679 /* Get the index bitmap attribute inode. */
1680 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1681 if (IS_ERR(bvi)) {
1682 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1683 err = PTR_ERR(bvi);
1684 goto unm_err_out;
1686 bni = NTFS_I(bvi);
1687 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1688 NInoSparse(bni)) {
1689 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1690 "encrypted and/or sparse.");
1691 goto iput_unm_err_out;
1693 /* Consistency check bitmap size vs. index allocation size. */
1694 bvi_size = i_size_read(bvi);
1695 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1696 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1697 "index allocation (0x%llx).", bvi_size << 3,
1698 vi->i_size);
1699 goto iput_unm_err_out;
1701 iput(bvi);
1702 skip_large_index_stuff:
1703 /* Setup the operations for this index inode. */
1704 vi->i_op = NULL;
1705 vi->i_fop = NULL;
1706 vi->i_mapping->a_ops = &ntfs_mst_aops;
1707 vi->i_blocks = ni->allocated_size >> 9;
1709 * Make sure the base inode doesn't go away and attach it to the
1710 * index inode.
1712 igrab(base_vi);
1713 ni->ext.base_ntfs_ino = base_ni;
1714 ni->nr_extents = -1;
1716 ntfs_debug("Done.");
1717 return 0;
1718 iput_unm_err_out:
1719 iput(bvi);
1720 unm_err_out:
1721 if (!err)
1722 err = -EIO;
1723 if (ctx)
1724 ntfs_attr_put_search_ctx(ctx);
1725 if (m)
1726 unmap_mft_record(base_ni);
1727 err_out:
1728 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1729 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1730 ni->name_len);
1731 make_bad_inode(vi);
1732 if (err != -EOPNOTSUPP && err != -ENOMEM)
1733 NVolSetErrors(vol);
1734 return err;
1738 * The MFT inode has special locking, so teach the lock validator
1739 * about this by splitting off the locking rules of the MFT from
1740 * the locking rules of other inodes. The MFT inode can never be
1741 * accessed from the VFS side (or even internally), only by the
1742 * map_mft functions.
1744 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1747 * ntfs_read_inode_mount - special read_inode for mount time use only
1748 * @vi: inode to read
1750 * Read inode FILE_MFT at mount time, only called with super_block lock
1751 * held from within the read_super() code path.
1753 * This function exists because when it is called the page cache for $MFT/$DATA
1754 * is not initialized and hence we cannot get at the contents of mft records
1755 * by calling map_mft_record*().
1757 * Further it needs to cope with the circular references problem, i.e. cannot
1758 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1759 * we do not know where the other extent mft records are yet and again, because
1760 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1761 * attribute list is actually present in $MFT inode.
1763 * We solve these problems by starting with the $DATA attribute before anything
1764 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1765 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1766 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1767 * sufficient information for the next step to complete.
1769 * This should work but there are two possible pit falls (see inline comments
1770 * below), but only time will tell if they are real pits or just smoke...
1772 int ntfs_read_inode_mount(struct inode *vi)
1774 VCN next_vcn, last_vcn, highest_vcn;
1775 s64 block;
1776 struct super_block *sb = vi->i_sb;
1777 ntfs_volume *vol = NTFS_SB(sb);
1778 struct buffer_head *bh;
1779 ntfs_inode *ni;
1780 MFT_RECORD *m = NULL;
1781 ATTR_RECORD *a;
1782 ntfs_attr_search_ctx *ctx;
1783 unsigned int i, nr_blocks;
1784 int err;
1786 ntfs_debug("Entering.");
1788 /* Initialize the ntfs specific part of @vi. */
1789 ntfs_init_big_inode(vi);
1791 ni = NTFS_I(vi);
1793 /* Setup the data attribute. It is special as it is mst protected. */
1794 NInoSetNonResident(ni);
1795 NInoSetMstProtected(ni);
1796 NInoSetSparseDisabled(ni);
1797 ni->type = AT_DATA;
1798 ni->name = NULL;
1799 ni->name_len = 0;
1801 * This sets up our little cheat allowing us to reuse the async read io
1802 * completion handler for directories.
1804 ni->itype.index.block_size = vol->mft_record_size;
1805 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1807 /* Very important! Needed to be able to call map_mft_record*(). */
1808 vol->mft_ino = vi;
1810 /* Allocate enough memory to read the first mft record. */
1811 if (vol->mft_record_size > 64 * 1024) {
1812 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1813 vol->mft_record_size);
1814 goto err_out;
1816 i = vol->mft_record_size;
1817 if (i < sb->s_blocksize)
1818 i = sb->s_blocksize;
1819 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1820 if (!m) {
1821 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1822 goto err_out;
1825 /* Determine the first block of the $MFT/$DATA attribute. */
1826 block = vol->mft_lcn << vol->cluster_size_bits >>
1827 sb->s_blocksize_bits;
1828 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1829 if (!nr_blocks)
1830 nr_blocks = 1;
1832 /* Load $MFT/$DATA's first mft record. */
1833 for (i = 0; i < nr_blocks; i++) {
1834 bh = sb_bread(sb, block++);
1835 if (!bh) {
1836 ntfs_error(sb, "Device read failed.");
1837 goto err_out;
1839 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1840 sb->s_blocksize);
1841 brelse(bh);
1844 /* Apply the mst fixups. */
1845 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1846 /* FIXME: Try to use the $MFTMirr now. */
1847 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1848 goto err_out;
1851 /* Need this to sanity check attribute list references to $MFT. */
1852 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1854 /* Provides readpage() and sync_page() for map_mft_record(). */
1855 vi->i_mapping->a_ops = &ntfs_mst_aops;
1857 ctx = ntfs_attr_get_search_ctx(ni, m);
1858 if (!ctx) {
1859 err = -ENOMEM;
1860 goto err_out;
1863 /* Find the attribute list attribute if present. */
1864 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1865 if (err) {
1866 if (unlikely(err != -ENOENT)) {
1867 ntfs_error(sb, "Failed to lookup attribute list "
1868 "attribute. You should run chkdsk.");
1869 goto put_err_out;
1871 } else /* if (!err) */ {
1872 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1873 u8 *al_end;
1874 static const char *es = " Not allowed. $MFT is corrupt. "
1875 "You should run chkdsk.";
1877 ntfs_debug("Attribute list attribute found in $MFT.");
1878 NInoSetAttrList(ni);
1879 a = ctx->attr;
1880 if (a->flags & ATTR_COMPRESSION_MASK) {
1881 ntfs_error(sb, "Attribute list attribute is "
1882 "compressed.%s", es);
1883 goto put_err_out;
1885 if (a->flags & ATTR_IS_ENCRYPTED ||
1886 a->flags & ATTR_IS_SPARSE) {
1887 if (a->non_resident) {
1888 ntfs_error(sb, "Non-resident attribute list "
1889 "attribute is encrypted/"
1890 "sparse.%s", es);
1891 goto put_err_out;
1893 ntfs_warning(sb, "Resident attribute list attribute "
1894 "in $MFT system file is marked "
1895 "encrypted/sparse which is not true. "
1896 "However, Windows allows this and "
1897 "chkdsk does not detect or correct it "
1898 "so we will just ignore the invalid "
1899 "flags and pretend they are not set.");
1901 /* Now allocate memory for the attribute list. */
1902 ni->attr_list_size = (u32)ntfs_attr_size(a);
1903 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1904 if (!ni->attr_list) {
1905 ntfs_error(sb, "Not enough memory to allocate buffer "
1906 "for attribute list.");
1907 goto put_err_out;
1909 if (a->non_resident) {
1910 NInoSetAttrListNonResident(ni);
1911 if (a->data.non_resident.lowest_vcn) {
1912 ntfs_error(sb, "Attribute list has non zero "
1913 "lowest_vcn. $MFT is corrupt. "
1914 "You should run chkdsk.");
1915 goto put_err_out;
1917 /* Setup the runlist. */
1918 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1919 a, NULL);
1920 if (IS_ERR(ni->attr_list_rl.rl)) {
1921 err = PTR_ERR(ni->attr_list_rl.rl);
1922 ni->attr_list_rl.rl = NULL;
1923 ntfs_error(sb, "Mapping pairs decompression "
1924 "failed with error code %i.",
1925 -err);
1926 goto put_err_out;
1928 /* Now load the attribute list. */
1929 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1930 ni->attr_list, ni->attr_list_size,
1931 sle64_to_cpu(a->data.
1932 non_resident.initialized_size)))) {
1933 ntfs_error(sb, "Failed to load attribute list "
1934 "attribute with error code %i.",
1935 -err);
1936 goto put_err_out;
1938 } else /* if (!ctx.attr->non_resident) */ {
1939 if ((u8*)a + le16_to_cpu(
1940 a->data.resident.value_offset) +
1941 le32_to_cpu(
1942 a->data.resident.value_length) >
1943 (u8*)ctx->mrec + vol->mft_record_size) {
1944 ntfs_error(sb, "Corrupt attribute list "
1945 "attribute.");
1946 goto put_err_out;
1948 /* Now copy the attribute list. */
1949 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1950 a->data.resident.value_offset),
1951 le32_to_cpu(
1952 a->data.resident.value_length));
1954 /* The attribute list is now setup in memory. */
1956 * FIXME: I don't know if this case is actually possible.
1957 * According to logic it is not possible but I have seen too
1958 * many weird things in MS software to rely on logic... Thus we
1959 * perform a manual search and make sure the first $MFT/$DATA
1960 * extent is in the base inode. If it is not we abort with an
1961 * error and if we ever see a report of this error we will need
1962 * to do some magic in order to have the necessary mft record
1963 * loaded and in the right place in the page cache. But
1964 * hopefully logic will prevail and this never happens...
1966 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1967 al_end = (u8*)al_entry + ni->attr_list_size;
1968 for (;; al_entry = next_al_entry) {
1969 /* Out of bounds check. */
1970 if ((u8*)al_entry < ni->attr_list ||
1971 (u8*)al_entry > al_end)
1972 goto em_put_err_out;
1973 /* Catch the end of the attribute list. */
1974 if ((u8*)al_entry == al_end)
1975 goto em_put_err_out;
1976 if (!al_entry->length)
1977 goto em_put_err_out;
1978 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1979 le16_to_cpu(al_entry->length) > al_end)
1980 goto em_put_err_out;
1981 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1982 le16_to_cpu(al_entry->length));
1983 if (le32_to_cpu(al_entry->type) >
1984 const_le32_to_cpu(AT_DATA))
1985 goto em_put_err_out;
1986 if (AT_DATA != al_entry->type)
1987 continue;
1988 /* We want an unnamed attribute. */
1989 if (al_entry->name_length)
1990 goto em_put_err_out;
1991 /* Want the first entry, i.e. lowest_vcn == 0. */
1992 if (al_entry->lowest_vcn)
1993 goto em_put_err_out;
1994 /* First entry has to be in the base mft record. */
1995 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1996 /* MFT references do not match, logic fails. */
1997 ntfs_error(sb, "BUG: The first $DATA extent "
1998 "of $MFT is not in the base "
1999 "mft record. Please report "
2000 "you saw this message to "
2001 "linux-ntfs-dev@lists."
2002 "sourceforge.net");
2003 goto put_err_out;
2004 } else {
2005 /* Sequence numbers must match. */
2006 if (MSEQNO_LE(al_entry->mft_reference) !=
2007 ni->seq_no)
2008 goto em_put_err_out;
2009 /* Got it. All is ok. We can stop now. */
2010 break;
2015 ntfs_attr_reinit_search_ctx(ctx);
2017 /* Now load all attribute extents. */
2018 a = NULL;
2019 next_vcn = last_vcn = highest_vcn = 0;
2020 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2021 ctx))) {
2022 runlist_element *nrl;
2024 /* Cache the current attribute. */
2025 a = ctx->attr;
2026 /* $MFT must be non-resident. */
2027 if (!a->non_resident) {
2028 ntfs_error(sb, "$MFT must be non-resident but a "
2029 "resident extent was found. $MFT is "
2030 "corrupt. Run chkdsk.");
2031 goto put_err_out;
2033 /* $MFT must be uncompressed and unencrypted. */
2034 if (a->flags & ATTR_COMPRESSION_MASK ||
2035 a->flags & ATTR_IS_ENCRYPTED ||
2036 a->flags & ATTR_IS_SPARSE) {
2037 ntfs_error(sb, "$MFT must be uncompressed, "
2038 "non-sparse, and unencrypted but a "
2039 "compressed/sparse/encrypted extent "
2040 "was found. $MFT is corrupt. Run "
2041 "chkdsk.");
2042 goto put_err_out;
2045 * Decompress the mapping pairs array of this extent and merge
2046 * the result into the existing runlist. No need for locking
2047 * as we have exclusive access to the inode at this time and we
2048 * are a mount in progress task, too.
2050 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2051 if (IS_ERR(nrl)) {
2052 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2053 "failed with error code %ld. $MFT is "
2054 "corrupt.", PTR_ERR(nrl));
2055 goto put_err_out;
2057 ni->runlist.rl = nrl;
2059 /* Are we in the first extent? */
2060 if (!next_vcn) {
2061 if (a->data.non_resident.lowest_vcn) {
2062 ntfs_error(sb, "First extent of $DATA "
2063 "attribute has non zero "
2064 "lowest_vcn. $MFT is corrupt. "
2065 "You should run chkdsk.");
2066 goto put_err_out;
2068 /* Get the last vcn in the $DATA attribute. */
2069 last_vcn = sle64_to_cpu(
2070 a->data.non_resident.allocated_size)
2071 >> vol->cluster_size_bits;
2072 /* Fill in the inode size. */
2073 vi->i_size = sle64_to_cpu(
2074 a->data.non_resident.data_size);
2075 ni->initialized_size = sle64_to_cpu(
2076 a->data.non_resident.initialized_size);
2077 ni->allocated_size = sle64_to_cpu(
2078 a->data.non_resident.allocated_size);
2080 * Verify the number of mft records does not exceed
2081 * 2^32 - 1.
2083 if ((vi->i_size >> vol->mft_record_size_bits) >=
2084 (1ULL << 32)) {
2085 ntfs_error(sb, "$MFT is too big! Aborting.");
2086 goto put_err_out;
2089 * We have got the first extent of the runlist for
2090 * $MFT which means it is now relatively safe to call
2091 * the normal ntfs_read_inode() function.
2092 * Complete reading the inode, this will actually
2093 * re-read the mft record for $MFT, this time entering
2094 * it into the page cache with which we complete the
2095 * kick start of the volume. It should be safe to do
2096 * this now as the first extent of $MFT/$DATA is
2097 * already known and we would hope that we don't need
2098 * further extents in order to find the other
2099 * attributes belonging to $MFT. Only time will tell if
2100 * this is really the case. If not we will have to play
2101 * magic at this point, possibly duplicating a lot of
2102 * ntfs_read_inode() at this point. We will need to
2103 * ensure we do enough of its work to be able to call
2104 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2105 * hope this never happens...
2107 ntfs_read_locked_inode(vi);
2108 if (is_bad_inode(vi)) {
2109 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2110 "failed. BUG or corrupt $MFT. "
2111 "Run chkdsk and if no errors "
2112 "are found, please report you "
2113 "saw this message to "
2114 "linux-ntfs-dev@lists."
2115 "sourceforge.net");
2116 ntfs_attr_put_search_ctx(ctx);
2117 /* Revert to the safe super operations. */
2118 ntfs_free(m);
2119 return -1;
2122 * Re-initialize some specifics about $MFT's inode as
2123 * ntfs_read_inode() will have set up the default ones.
2125 /* Set uid and gid to root. */
2126 vi->i_uid = vi->i_gid = 0;
2127 /* Regular file. No access for anyone. */
2128 vi->i_mode = S_IFREG;
2129 /* No VFS initiated operations allowed for $MFT. */
2130 vi->i_op = &ntfs_empty_inode_ops;
2131 vi->i_fop = &ntfs_empty_file_ops;
2134 /* Get the lowest vcn for the next extent. */
2135 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2136 next_vcn = highest_vcn + 1;
2138 /* Only one extent or error, which we catch below. */
2139 if (next_vcn <= 0)
2140 break;
2142 /* Avoid endless loops due to corruption. */
2143 if (next_vcn < sle64_to_cpu(
2144 a->data.non_resident.lowest_vcn)) {
2145 ntfs_error(sb, "$MFT has corrupt attribute list "
2146 "attribute. Run chkdsk.");
2147 goto put_err_out;
2150 if (err != -ENOENT) {
2151 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2152 "$MFT is corrupt. Run chkdsk.");
2153 goto put_err_out;
2155 if (!a) {
2156 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2157 "corrupt. Run chkdsk.");
2158 goto put_err_out;
2160 if (highest_vcn && highest_vcn != last_vcn - 1) {
2161 ntfs_error(sb, "Failed to load the complete runlist for "
2162 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2163 "Run chkdsk.");
2164 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2165 (unsigned long long)highest_vcn,
2166 (unsigned long long)last_vcn - 1);
2167 goto put_err_out;
2169 ntfs_attr_put_search_ctx(ctx);
2170 ntfs_debug("Done.");
2171 ntfs_free(m);
2174 * Split the locking rules of the MFT inode from the
2175 * locking rules of other inodes:
2177 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2178 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2180 return 0;
2182 em_put_err_out:
2183 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2184 "attribute list. $MFT is corrupt. Run chkdsk.");
2185 put_err_out:
2186 ntfs_attr_put_search_ctx(ctx);
2187 err_out:
2188 ntfs_error(sb, "Failed. Marking inode as bad.");
2189 make_bad_inode(vi);
2190 ntfs_free(m);
2191 return -1;
2194 static void __ntfs_clear_inode(ntfs_inode *ni)
2196 /* Free all alocated memory. */
2197 down_write(&ni->runlist.lock);
2198 if (ni->runlist.rl) {
2199 ntfs_free(ni->runlist.rl);
2200 ni->runlist.rl = NULL;
2202 up_write(&ni->runlist.lock);
2204 if (ni->attr_list) {
2205 ntfs_free(ni->attr_list);
2206 ni->attr_list = NULL;
2209 down_write(&ni->attr_list_rl.lock);
2210 if (ni->attr_list_rl.rl) {
2211 ntfs_free(ni->attr_list_rl.rl);
2212 ni->attr_list_rl.rl = NULL;
2214 up_write(&ni->attr_list_rl.lock);
2216 if (ni->name_len && ni->name != I30) {
2217 /* Catch bugs... */
2218 BUG_ON(!ni->name);
2219 kfree(ni->name);
2223 void ntfs_clear_extent_inode(ntfs_inode *ni)
2225 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2227 BUG_ON(NInoAttr(ni));
2228 BUG_ON(ni->nr_extents != -1);
2230 #ifdef NTFS_RW
2231 if (NInoDirty(ni)) {
2232 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2233 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2234 "Losing data! This is a BUG!!!");
2235 // FIXME: Do something!!!
2237 #endif /* NTFS_RW */
2239 __ntfs_clear_inode(ni);
2241 /* Bye, bye... */
2242 ntfs_destroy_extent_inode(ni);
2246 * ntfs_clear_big_inode - clean up the ntfs specific part of an inode
2247 * @vi: vfs inode pending annihilation
2249 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2250 * is called, which deallocates all memory belonging to the NTFS specific part
2251 * of the inode and returns.
2253 * If the MFT record is dirty, we commit it before doing anything else.
2255 void ntfs_clear_big_inode(struct inode *vi)
2257 ntfs_inode *ni = NTFS_I(vi);
2259 #ifdef NTFS_RW
2260 if (NInoDirty(ni)) {
2261 bool was_bad = (is_bad_inode(vi));
2263 /* Committing the inode also commits all extent inodes. */
2264 ntfs_commit_inode(vi);
2266 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2267 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2268 "0x%lx. Losing data!", vi->i_ino);
2269 // FIXME: Do something!!!
2272 #endif /* NTFS_RW */
2274 /* No need to lock at this stage as no one else has a reference. */
2275 if (ni->nr_extents > 0) {
2276 int i;
2278 for (i = 0; i < ni->nr_extents; i++)
2279 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2280 kfree(ni->ext.extent_ntfs_inos);
2283 __ntfs_clear_inode(ni);
2285 if (NInoAttr(ni)) {
2286 /* Release the base inode if we are holding it. */
2287 if (ni->nr_extents == -1) {
2288 iput(VFS_I(ni->ext.base_ntfs_ino));
2289 ni->nr_extents = 0;
2290 ni->ext.base_ntfs_ino = NULL;
2293 return;
2297 * ntfs_show_options - show mount options in /proc/mounts
2298 * @sf: seq_file in which to write our mount options
2299 * @mnt: vfs mount whose mount options to display
2301 * Called by the VFS once for each mounted ntfs volume when someone reads
2302 * /proc/mounts in order to display the NTFS specific mount options of each
2303 * mount. The mount options of the vfs mount @mnt are written to the seq file
2304 * @sf and success is returned.
2306 int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt)
2308 ntfs_volume *vol = NTFS_SB(mnt->mnt_sb);
2309 int i;
2311 seq_printf(sf, ",uid=%i", vol->uid);
2312 seq_printf(sf, ",gid=%i", vol->gid);
2313 if (vol->fmask == vol->dmask)
2314 seq_printf(sf, ",umask=0%o", vol->fmask);
2315 else {
2316 seq_printf(sf, ",fmask=0%o", vol->fmask);
2317 seq_printf(sf, ",dmask=0%o", vol->dmask);
2319 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2320 if (NVolCaseSensitive(vol))
2321 seq_printf(sf, ",case_sensitive");
2322 if (NVolShowSystemFiles(vol))
2323 seq_printf(sf, ",show_sys_files");
2324 if (!NVolSparseEnabled(vol))
2325 seq_printf(sf, ",disable_sparse");
2326 for (i = 0; on_errors_arr[i].val; i++) {
2327 if (on_errors_arr[i].val & vol->on_errors)
2328 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2330 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2331 return 0;
2334 #ifdef NTFS_RW
2336 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2337 "chkdsk.";
2340 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2341 * @vi: inode for which the i_size was changed
2343 * We only support i_size changes for normal files at present, i.e. not
2344 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2345 * below.
2347 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2348 * that the change is allowed.
2350 * This implies for us that @vi is a file inode rather than a directory, index,
2351 * or attribute inode as well as that @vi is a base inode.
2353 * Returns 0 on success or -errno on error.
2355 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for
2356 * writing. The only case in the kernel where ->i_alloc_sem is not held is
2357 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2358 * with the current i_size as the offset. The analogous place in NTFS is in
2359 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2360 * without holding ->i_alloc_sem.
2362 int ntfs_truncate(struct inode *vi)
2364 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2365 VCN highest_vcn;
2366 unsigned long flags;
2367 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2368 ntfs_volume *vol = ni->vol;
2369 ntfs_attr_search_ctx *ctx;
2370 MFT_RECORD *m;
2371 ATTR_RECORD *a;
2372 const char *te = " Leaving file length out of sync with i_size.";
2373 int err, mp_size, size_change, alloc_change;
2374 u32 attr_len;
2376 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2377 BUG_ON(NInoAttr(ni));
2378 BUG_ON(S_ISDIR(vi->i_mode));
2379 BUG_ON(NInoMstProtected(ni));
2380 BUG_ON(ni->nr_extents < 0);
2381 retry_truncate:
2383 * Lock the runlist for writing and map the mft record to ensure it is
2384 * safe to mess with the attribute runlist and sizes.
2386 down_write(&ni->runlist.lock);
2387 if (!NInoAttr(ni))
2388 base_ni = ni;
2389 else
2390 base_ni = ni->ext.base_ntfs_ino;
2391 m = map_mft_record(base_ni);
2392 if (IS_ERR(m)) {
2393 err = PTR_ERR(m);
2394 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2395 "(error code %d).%s", vi->i_ino, err, te);
2396 ctx = NULL;
2397 m = NULL;
2398 goto old_bad_out;
2400 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2401 if (unlikely(!ctx)) {
2402 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2403 "inode 0x%lx (not enough memory).%s",
2404 vi->i_ino, te);
2405 err = -ENOMEM;
2406 goto old_bad_out;
2408 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2409 CASE_SENSITIVE, 0, NULL, 0, ctx);
2410 if (unlikely(err)) {
2411 if (err == -ENOENT) {
2412 ntfs_error(vi->i_sb, "Open attribute is missing from "
2413 "mft record. Inode 0x%lx is corrupt. "
2414 "Run chkdsk.%s", vi->i_ino, te);
2415 err = -EIO;
2416 } else
2417 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2418 "inode 0x%lx (error code %d).%s",
2419 vi->i_ino, err, te);
2420 goto old_bad_out;
2422 m = ctx->mrec;
2423 a = ctx->attr;
2425 * The i_size of the vfs inode is the new size for the attribute value.
2427 new_size = i_size_read(vi);
2428 /* The current size of the attribute value is the old size. */
2429 old_size = ntfs_attr_size(a);
2430 /* Calculate the new allocated size. */
2431 if (NInoNonResident(ni))
2432 new_alloc_size = (new_size + vol->cluster_size - 1) &
2433 ~(s64)vol->cluster_size_mask;
2434 else
2435 new_alloc_size = (new_size + 7) & ~7;
2436 /* The current allocated size is the old allocated size. */
2437 read_lock_irqsave(&ni->size_lock, flags);
2438 old_alloc_size = ni->allocated_size;
2439 read_unlock_irqrestore(&ni->size_lock, flags);
2441 * The change in the file size. This will be 0 if no change, >0 if the
2442 * size is growing, and <0 if the size is shrinking.
2444 size_change = -1;
2445 if (new_size - old_size >= 0) {
2446 size_change = 1;
2447 if (new_size == old_size)
2448 size_change = 0;
2450 /* As above for the allocated size. */
2451 alloc_change = -1;
2452 if (new_alloc_size - old_alloc_size >= 0) {
2453 alloc_change = 1;
2454 if (new_alloc_size == old_alloc_size)
2455 alloc_change = 0;
2458 * If neither the size nor the allocation are being changed there is
2459 * nothing to do.
2461 if (!size_change && !alloc_change)
2462 goto unm_done;
2463 /* If the size is changing, check if new size is allowed in $AttrDef. */
2464 if (size_change) {
2465 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2466 if (unlikely(err)) {
2467 if (err == -ERANGE) {
2468 ntfs_error(vol->sb, "Truncate would cause the "
2469 "inode 0x%lx to %simum size "
2470 "for its attribute type "
2471 "(0x%x). Aborting truncate.",
2472 vi->i_ino,
2473 new_size > old_size ? "exceed "
2474 "the max" : "go under the min",
2475 le32_to_cpu(ni->type));
2476 err = -EFBIG;
2477 } else {
2478 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2479 "attribute type 0x%x. "
2480 "Aborting truncate.",
2481 vi->i_ino,
2482 le32_to_cpu(ni->type));
2483 err = -EIO;
2485 /* Reset the vfs inode size to the old size. */
2486 i_size_write(vi, old_size);
2487 goto err_out;
2490 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2491 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2492 "supported yet for %s files, ignoring.",
2493 NInoCompressed(ni) ? "compressed" :
2494 "encrypted");
2495 err = -EOPNOTSUPP;
2496 goto bad_out;
2498 if (a->non_resident)
2499 goto do_non_resident_truncate;
2500 BUG_ON(NInoNonResident(ni));
2501 /* Resize the attribute record to best fit the new attribute size. */
2502 if (new_size < vol->mft_record_size &&
2503 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2504 unsigned long flags;
2506 /* The resize succeeded! */
2507 flush_dcache_mft_record_page(ctx->ntfs_ino);
2508 mark_mft_record_dirty(ctx->ntfs_ino);
2509 write_lock_irqsave(&ni->size_lock, flags);
2510 /* Update the sizes in the ntfs inode and all is done. */
2511 ni->allocated_size = le32_to_cpu(a->length) -
2512 le16_to_cpu(a->data.resident.value_offset);
2514 * Note ntfs_resident_attr_value_resize() has already done any
2515 * necessary data clearing in the attribute record. When the
2516 * file is being shrunk vmtruncate() will already have cleared
2517 * the top part of the last partial page, i.e. since this is
2518 * the resident case this is the page with index 0. However,
2519 * when the file is being expanded, the page cache page data
2520 * between the old data_size, i.e. old_size, and the new_size
2521 * has not been zeroed. Fortunately, we do not need to zero it
2522 * either since on one hand it will either already be zero due
2523 * to both readpage and writepage clearing partial page data
2524 * beyond i_size in which case there is nothing to do or in the
2525 * case of the file being mmap()ped at the same time, POSIX
2526 * specifies that the behaviour is unspecified thus we do not
2527 * have to do anything. This means that in our implementation
2528 * in the rare case that the file is mmap()ped and a write
2529 * occured into the mmap()ped region just beyond the file size
2530 * and writepage has not yet been called to write out the page
2531 * (which would clear the area beyond the file size) and we now
2532 * extend the file size to incorporate this dirty region
2533 * outside the file size, a write of the page would result in
2534 * this data being written to disk instead of being cleared.
2535 * Given both POSIX and the Linux mmap(2) man page specify that
2536 * this corner case is undefined, we choose to leave it like
2537 * that as this is much simpler for us as we cannot lock the
2538 * relevant page now since we are holding too many ntfs locks
2539 * which would result in a lock reversal deadlock.
2541 ni->initialized_size = new_size;
2542 write_unlock_irqrestore(&ni->size_lock, flags);
2543 goto unm_done;
2545 /* If the above resize failed, this must be an attribute extension. */
2546 BUG_ON(size_change < 0);
2548 * We have to drop all the locks so we can call
2549 * ntfs_attr_make_non_resident(). This could be optimised by try-
2550 * locking the first page cache page and only if that fails dropping
2551 * the locks, locking the page, and redoing all the locking and
2552 * lookups. While this would be a huge optimisation, it is not worth
2553 * it as this is definitely a slow code path as it only ever can happen
2554 * once for any given file.
2556 ntfs_attr_put_search_ctx(ctx);
2557 unmap_mft_record(base_ni);
2558 up_write(&ni->runlist.lock);
2560 * Not enough space in the mft record, try to make the attribute
2561 * non-resident and if successful restart the truncation process.
2563 err = ntfs_attr_make_non_resident(ni, old_size);
2564 if (likely(!err))
2565 goto retry_truncate;
2567 * Could not make non-resident. If this is due to this not being
2568 * permitted for this attribute type or there not being enough space,
2569 * try to make other attributes non-resident. Otherwise fail.
2571 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2572 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2573 "type 0x%x, because the conversion from "
2574 "resident to non-resident attribute failed "
2575 "with error code %i.", vi->i_ino,
2576 (unsigned)le32_to_cpu(ni->type), err);
2577 if (err != -ENOMEM)
2578 err = -EIO;
2579 goto conv_err_out;
2581 /* TODO: Not implemented from here, abort. */
2582 if (err == -ENOSPC)
2583 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2584 "disk for the non-resident attribute value. "
2585 "This case is not implemented yet.");
2586 else /* if (err == -EPERM) */
2587 ntfs_error(vol->sb, "This attribute type may not be "
2588 "non-resident. This case is not implemented "
2589 "yet.");
2590 err = -EOPNOTSUPP;
2591 goto conv_err_out;
2592 #if 0
2593 // TODO: Attempt to make other attributes non-resident.
2594 if (!err)
2595 goto do_resident_extend;
2597 * Both the attribute list attribute and the standard information
2598 * attribute must remain in the base inode. Thus, if this is one of
2599 * these attributes, we have to try to move other attributes out into
2600 * extent mft records instead.
2602 if (ni->type == AT_ATTRIBUTE_LIST ||
2603 ni->type == AT_STANDARD_INFORMATION) {
2604 // TODO: Attempt to move other attributes into extent mft
2605 // records.
2606 err = -EOPNOTSUPP;
2607 if (!err)
2608 goto do_resident_extend;
2609 goto err_out;
2611 // TODO: Attempt to move this attribute to an extent mft record, but
2612 // only if it is not already the only attribute in an mft record in
2613 // which case there would be nothing to gain.
2614 err = -EOPNOTSUPP;
2615 if (!err)
2616 goto do_resident_extend;
2617 /* There is nothing we can do to make enough space. )-: */
2618 goto err_out;
2619 #endif
2620 do_non_resident_truncate:
2621 BUG_ON(!NInoNonResident(ni));
2622 if (alloc_change < 0) {
2623 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2624 if (highest_vcn > 0 &&
2625 old_alloc_size >> vol->cluster_size_bits >
2626 highest_vcn + 1) {
2628 * This attribute has multiple extents. Not yet
2629 * supported.
2631 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2632 "attribute type 0x%x, because the "
2633 "attribute is highly fragmented (it "
2634 "consists of multiple extents) and "
2635 "this case is not implemented yet.",
2636 vi->i_ino,
2637 (unsigned)le32_to_cpu(ni->type));
2638 err = -EOPNOTSUPP;
2639 goto bad_out;
2643 * If the size is shrinking, need to reduce the initialized_size and
2644 * the data_size before reducing the allocation.
2646 if (size_change < 0) {
2648 * Make the valid size smaller (i_size is already up-to-date).
2650 write_lock_irqsave(&ni->size_lock, flags);
2651 if (new_size < ni->initialized_size) {
2652 ni->initialized_size = new_size;
2653 a->data.non_resident.initialized_size =
2654 cpu_to_sle64(new_size);
2656 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2657 write_unlock_irqrestore(&ni->size_lock, flags);
2658 flush_dcache_mft_record_page(ctx->ntfs_ino);
2659 mark_mft_record_dirty(ctx->ntfs_ino);
2660 /* If the allocated size is not changing, we are done. */
2661 if (!alloc_change)
2662 goto unm_done;
2664 * If the size is shrinking it makes no sense for the
2665 * allocation to be growing.
2667 BUG_ON(alloc_change > 0);
2668 } else /* if (size_change >= 0) */ {
2670 * The file size is growing or staying the same but the
2671 * allocation can be shrinking, growing or staying the same.
2673 if (alloc_change > 0) {
2675 * We need to extend the allocation and possibly update
2676 * the data size. If we are updating the data size,
2677 * since we are not touching the initialized_size we do
2678 * not need to worry about the actual data on disk.
2679 * And as far as the page cache is concerned, there
2680 * will be no pages beyond the old data size and any
2681 * partial region in the last page between the old and
2682 * new data size (or the end of the page if the new
2683 * data size is outside the page) does not need to be
2684 * modified as explained above for the resident
2685 * attribute truncate case. To do this, we simply drop
2686 * the locks we hold and leave all the work to our
2687 * friendly helper ntfs_attr_extend_allocation().
2689 ntfs_attr_put_search_ctx(ctx);
2690 unmap_mft_record(base_ni);
2691 up_write(&ni->runlist.lock);
2692 err = ntfs_attr_extend_allocation(ni, new_size,
2693 size_change > 0 ? new_size : -1, -1);
2695 * ntfs_attr_extend_allocation() will have done error
2696 * output already.
2698 goto done;
2700 if (!alloc_change)
2701 goto alloc_done;
2703 /* alloc_change < 0 */
2704 /* Free the clusters. */
2705 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2706 vol->cluster_size_bits, -1, ctx);
2707 m = ctx->mrec;
2708 a = ctx->attr;
2709 if (unlikely(nr_freed < 0)) {
2710 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2711 "%lli). Unmount and run chkdsk to recover "
2712 "the lost cluster(s).", (long long)nr_freed);
2713 NVolSetErrors(vol);
2714 nr_freed = 0;
2716 /* Truncate the runlist. */
2717 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2718 new_alloc_size >> vol->cluster_size_bits);
2720 * If the runlist truncation failed and/or the search context is no
2721 * longer valid, we cannot resize the attribute record or build the
2722 * mapping pairs array thus we mark the inode bad so that no access to
2723 * the freed clusters can happen.
2725 if (unlikely(err || IS_ERR(m))) {
2726 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2727 IS_ERR(m) ?
2728 "restore attribute search context" :
2729 "truncate attribute runlist",
2730 IS_ERR(m) ? PTR_ERR(m) : err, es);
2731 err = -EIO;
2732 goto bad_out;
2734 /* Get the size for the shrunk mapping pairs array for the runlist. */
2735 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2736 if (unlikely(mp_size <= 0)) {
2737 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2738 "attribute type 0x%x, because determining the "
2739 "size for the mapping pairs failed with error "
2740 "code %i.%s", vi->i_ino,
2741 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2742 err = -EIO;
2743 goto bad_out;
2746 * Shrink the attribute record for the new mapping pairs array. Note,
2747 * this cannot fail since we are making the attribute smaller thus by
2748 * definition there is enough space to do so.
2750 attr_len = le32_to_cpu(a->length);
2751 err = ntfs_attr_record_resize(m, a, mp_size +
2752 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2753 BUG_ON(err);
2755 * Generate the mapping pairs array directly into the attribute record.
2757 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2758 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2759 mp_size, ni->runlist.rl, 0, -1, NULL);
2760 if (unlikely(err)) {
2761 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2762 "attribute type 0x%x, because building the "
2763 "mapping pairs failed with error code %i.%s",
2764 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2765 err, es);
2766 err = -EIO;
2767 goto bad_out;
2769 /* Update the allocated/compressed size as well as the highest vcn. */
2770 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2771 vol->cluster_size_bits) - 1);
2772 write_lock_irqsave(&ni->size_lock, flags);
2773 ni->allocated_size = new_alloc_size;
2774 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2775 if (NInoSparse(ni) || NInoCompressed(ni)) {
2776 if (nr_freed) {
2777 ni->itype.compressed.size -= nr_freed <<
2778 vol->cluster_size_bits;
2779 BUG_ON(ni->itype.compressed.size < 0);
2780 a->data.non_resident.compressed_size = cpu_to_sle64(
2781 ni->itype.compressed.size);
2782 vi->i_blocks = ni->itype.compressed.size >> 9;
2784 } else
2785 vi->i_blocks = new_alloc_size >> 9;
2786 write_unlock_irqrestore(&ni->size_lock, flags);
2788 * We have shrunk the allocation. If this is a shrinking truncate we
2789 * have already dealt with the initialized_size and the data_size above
2790 * and we are done. If the truncate is only changing the allocation
2791 * and not the data_size, we are also done. If this is an extending
2792 * truncate, need to extend the data_size now which is ensured by the
2793 * fact that @size_change is positive.
2795 alloc_done:
2797 * If the size is growing, need to update it now. If it is shrinking,
2798 * we have already updated it above (before the allocation change).
2800 if (size_change > 0)
2801 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2802 /* Ensure the modified mft record is written out. */
2803 flush_dcache_mft_record_page(ctx->ntfs_ino);
2804 mark_mft_record_dirty(ctx->ntfs_ino);
2805 unm_done:
2806 ntfs_attr_put_search_ctx(ctx);
2807 unmap_mft_record(base_ni);
2808 up_write(&ni->runlist.lock);
2809 done:
2810 /* Update the mtime and ctime on the base inode. */
2811 /* normally ->truncate shouldn't update ctime or mtime,
2812 * but ntfs did before so it got a copy & paste version
2813 * of file_update_time. one day someone should fix this
2814 * for real.
2816 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2817 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2818 int sync_it = 0;
2820 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2821 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2822 sync_it = 1;
2823 VFS_I(base_ni)->i_mtime = now;
2824 VFS_I(base_ni)->i_ctime = now;
2826 if (sync_it)
2827 mark_inode_dirty_sync(VFS_I(base_ni));
2830 if (likely(!err)) {
2831 NInoClearTruncateFailed(ni);
2832 ntfs_debug("Done.");
2834 return err;
2835 old_bad_out:
2836 old_size = -1;
2837 bad_out:
2838 if (err != -ENOMEM && err != -EOPNOTSUPP)
2839 NVolSetErrors(vol);
2840 if (err != -EOPNOTSUPP)
2841 NInoSetTruncateFailed(ni);
2842 else if (old_size >= 0)
2843 i_size_write(vi, old_size);
2844 err_out:
2845 if (ctx)
2846 ntfs_attr_put_search_ctx(ctx);
2847 if (m)
2848 unmap_mft_record(base_ni);
2849 up_write(&ni->runlist.lock);
2850 out:
2851 ntfs_debug("Failed. Returning error code %i.", err);
2852 return err;
2853 conv_err_out:
2854 if (err != -ENOMEM && err != -EOPNOTSUPP)
2855 NVolSetErrors(vol);
2856 if (err != -EOPNOTSUPP)
2857 NInoSetTruncateFailed(ni);
2858 else
2859 i_size_write(vi, old_size);
2860 goto out;
2864 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2865 * @vi: inode for which the i_size was changed
2867 * Wrapper for ntfs_truncate() that has no return value.
2869 * See ntfs_truncate() description above for details.
2871 void ntfs_truncate_vfs(struct inode *vi) {
2872 ntfs_truncate(vi);
2876 * ntfs_setattr - called from notify_change() when an attribute is being changed
2877 * @dentry: dentry whose attributes to change
2878 * @attr: structure describing the attributes and the changes
2880 * We have to trap VFS attempts to truncate the file described by @dentry as
2881 * soon as possible, because we do not implement changes in i_size yet. So we
2882 * abort all i_size changes here.
2884 * We also abort all changes of user, group, and mode as we do not implement
2885 * the NTFS ACLs yet.
2887 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also
2888 * called with ->i_alloc_sem held for writing.
2890 * Basically this is a copy of generic notify_change() and inode_setattr()
2891 * functionality, except we intercept and abort changes in i_size.
2893 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2895 struct inode *vi = dentry->d_inode;
2896 int err;
2897 unsigned int ia_valid = attr->ia_valid;
2899 err = inode_change_ok(vi, attr);
2900 if (err)
2901 goto out;
2902 /* We do not support NTFS ACLs yet. */
2903 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2904 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2905 "supported yet, ignoring.");
2906 err = -EOPNOTSUPP;
2907 goto out;
2909 if (ia_valid & ATTR_SIZE) {
2910 if (attr->ia_size != i_size_read(vi)) {
2911 ntfs_inode *ni = NTFS_I(vi);
2913 * FIXME: For now we do not support resizing of
2914 * compressed or encrypted files yet.
2916 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2917 ntfs_warning(vi->i_sb, "Changes in inode size "
2918 "are not supported yet for "
2919 "%s files, ignoring.",
2920 NInoCompressed(ni) ?
2921 "compressed" : "encrypted");
2922 err = -EOPNOTSUPP;
2923 } else
2924 err = vmtruncate(vi, attr->ia_size);
2925 if (err || ia_valid == ATTR_SIZE)
2926 goto out;
2927 } else {
2929 * We skipped the truncate but must still update
2930 * timestamps.
2932 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2935 if (ia_valid & ATTR_ATIME)
2936 vi->i_atime = timespec_trunc(attr->ia_atime,
2937 vi->i_sb->s_time_gran);
2938 if (ia_valid & ATTR_MTIME)
2939 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2940 vi->i_sb->s_time_gran);
2941 if (ia_valid & ATTR_CTIME)
2942 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2943 vi->i_sb->s_time_gran);
2944 mark_inode_dirty(vi);
2945 out:
2946 return err;
2950 * ntfs_write_inode - write out a dirty inode
2951 * @vi: inode to write out
2952 * @sync: if true, write out synchronously
2954 * Write out a dirty inode to disk including any extent inodes if present.
2956 * If @sync is true, commit the inode to disk and wait for io completion. This
2957 * is done using write_mft_record().
2959 * If @sync is false, just schedule the write to happen but do not wait for i/o
2960 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2961 * marking the page (and in this case mft record) dirty but we do not implement
2962 * this yet as write_mft_record() largely ignores the @sync parameter and
2963 * always performs synchronous writes.
2965 * Return 0 on success and -errno on error.
2967 int ntfs_write_inode(struct inode *vi, int sync)
2969 sle64 nt;
2970 ntfs_inode *ni = NTFS_I(vi);
2971 ntfs_attr_search_ctx *ctx;
2972 MFT_RECORD *m;
2973 STANDARD_INFORMATION *si;
2974 int err = 0;
2975 bool modified = false;
2977 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2978 vi->i_ino);
2980 * Dirty attribute inodes are written via their real inodes so just
2981 * clean them here. Access time updates are taken care off when the
2982 * real inode is written.
2984 if (NInoAttr(ni)) {
2985 NInoClearDirty(ni);
2986 ntfs_debug("Done.");
2987 return 0;
2989 /* Map, pin, and lock the mft record belonging to the inode. */
2990 m = map_mft_record(ni);
2991 if (IS_ERR(m)) {
2992 err = PTR_ERR(m);
2993 goto err_out;
2995 /* Update the access times in the standard information attribute. */
2996 ctx = ntfs_attr_get_search_ctx(ni, m);
2997 if (unlikely(!ctx)) {
2998 err = -ENOMEM;
2999 goto unm_err_out;
3001 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
3002 CASE_SENSITIVE, 0, NULL, 0, ctx);
3003 if (unlikely(err)) {
3004 ntfs_attr_put_search_ctx(ctx);
3005 goto unm_err_out;
3007 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3008 le16_to_cpu(ctx->attr->data.resident.value_offset));
3009 /* Update the access times if they have changed. */
3010 nt = utc2ntfs(vi->i_mtime);
3011 if (si->last_data_change_time != nt) {
3012 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3013 "new = 0x%llx", vi->i_ino, (long long)
3014 sle64_to_cpu(si->last_data_change_time),
3015 (long long)sle64_to_cpu(nt));
3016 si->last_data_change_time = nt;
3017 modified = true;
3019 nt = utc2ntfs(vi->i_ctime);
3020 if (si->last_mft_change_time != nt) {
3021 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3022 "new = 0x%llx", vi->i_ino, (long long)
3023 sle64_to_cpu(si->last_mft_change_time),
3024 (long long)sle64_to_cpu(nt));
3025 si->last_mft_change_time = nt;
3026 modified = true;
3028 nt = utc2ntfs(vi->i_atime);
3029 if (si->last_access_time != nt) {
3030 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3031 "new = 0x%llx", vi->i_ino,
3032 (long long)sle64_to_cpu(si->last_access_time),
3033 (long long)sle64_to_cpu(nt));
3034 si->last_access_time = nt;
3035 modified = true;
3038 * If we just modified the standard information attribute we need to
3039 * mark the mft record it is in dirty. We do this manually so that
3040 * mark_inode_dirty() is not called which would redirty the inode and
3041 * hence result in an infinite loop of trying to write the inode.
3042 * There is no need to mark the base inode nor the base mft record
3043 * dirty, since we are going to write this mft record below in any case
3044 * and the base mft record may actually not have been modified so it
3045 * might not need to be written out.
3046 * NOTE: It is not a problem when the inode for $MFT itself is being
3047 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3048 * on the $MFT inode and hence ntfs_write_inode() will not be
3049 * re-invoked because of it which in turn is ok since the dirtied mft
3050 * record will be cleaned and written out to disk below, i.e. before
3051 * this function returns.
3053 if (modified) {
3054 flush_dcache_mft_record_page(ctx->ntfs_ino);
3055 if (!NInoTestSetDirty(ctx->ntfs_ino))
3056 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3057 ctx->ntfs_ino->page_ofs);
3059 ntfs_attr_put_search_ctx(ctx);
3060 /* Now the access times are updated, write the base mft record. */
3061 if (NInoDirty(ni))
3062 err = write_mft_record(ni, m, sync);
3063 /* Write all attached extent mft records. */
3064 mutex_lock(&ni->extent_lock);
3065 if (ni->nr_extents > 0) {
3066 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3067 int i;
3069 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3070 for (i = 0; i < ni->nr_extents; i++) {
3071 ntfs_inode *tni = extent_nis[i];
3073 if (NInoDirty(tni)) {
3074 MFT_RECORD *tm = map_mft_record(tni);
3075 int ret;
3077 if (IS_ERR(tm)) {
3078 if (!err || err == -ENOMEM)
3079 err = PTR_ERR(tm);
3080 continue;
3082 ret = write_mft_record(tni, tm, sync);
3083 unmap_mft_record(tni);
3084 if (unlikely(ret)) {
3085 if (!err || err == -ENOMEM)
3086 err = ret;
3091 mutex_unlock(&ni->extent_lock);
3092 unmap_mft_record(ni);
3093 if (unlikely(err))
3094 goto err_out;
3095 ntfs_debug("Done.");
3096 return 0;
3097 unm_err_out:
3098 unmap_mft_record(ni);
3099 err_out:
3100 if (err == -ENOMEM) {
3101 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3102 "Marking the inode dirty again, so the VFS "
3103 "retries later.");
3104 mark_inode_dirty(vi);
3105 } else {
3106 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3107 NVolSetErrors(ni->vol);
3109 return err;
3112 #endif /* NTFS_RW */