[AF_RXRPC/AFS]: Arch-specific fixes.
[wrt350n-kernel.git] / net / sunrpc / sched.c
blob6d87320074b1556f98280dde419157f6288a2cb7
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
23 #include <linux/sunrpc/clnt.h>
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id;
29 #endif
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache *rpc_task_slabp __read_mostly;
38 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
39 static mempool_t *rpc_task_mempool __read_mostly;
40 static mempool_t *rpc_buffer_mempool __read_mostly;
42 static void __rpc_default_timer(struct rpc_task *task);
43 static void rpciod_killall(void);
44 static void rpc_async_schedule(struct work_struct *);
45 static void rpc_release_task(struct rpc_task *task);
48 * RPC tasks sit here while waiting for conditions to improve.
50 static RPC_WAITQ(delay_queue, "delayq");
53 * All RPC tasks are linked into this list
55 static LIST_HEAD(all_tasks);
58 * rpciod-related stuff
60 static DEFINE_MUTEX(rpciod_mutex);
61 static unsigned int rpciod_users;
62 struct workqueue_struct *rpciod_workqueue;
65 * Spinlock for other critical sections of code.
67 static DEFINE_SPINLOCK(rpc_sched_lock);
70 * Disable the timer for a given RPC task. Should be called with
71 * queue->lock and bh_disabled in order to avoid races within
72 * rpc_run_timer().
74 static inline void
75 __rpc_disable_timer(struct rpc_task *task)
77 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
78 task->tk_timeout_fn = NULL;
79 task->tk_timeout = 0;
83 * Run a timeout function.
84 * We use the callback in order to allow __rpc_wake_up_task()
85 * and friends to disable the timer synchronously on SMP systems
86 * without calling del_timer_sync(). The latter could cause a
87 * deadlock if called while we're holding spinlocks...
89 static void rpc_run_timer(struct rpc_task *task)
91 void (*callback)(struct rpc_task *);
93 callback = task->tk_timeout_fn;
94 task->tk_timeout_fn = NULL;
95 if (callback && RPC_IS_QUEUED(task)) {
96 dprintk("RPC: %5u running timer\n", task->tk_pid);
97 callback(task);
99 smp_mb__before_clear_bit();
100 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
101 smp_mb__after_clear_bit();
105 * Set up a timer for the current task.
107 static inline void
108 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
110 if (!task->tk_timeout)
111 return;
113 dprintk("RPC: %5u setting alarm for %lu ms\n",
114 task->tk_pid, task->tk_timeout * 1000 / HZ);
116 if (timer)
117 task->tk_timeout_fn = timer;
118 else
119 task->tk_timeout_fn = __rpc_default_timer;
120 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
121 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
125 * Delete any timer for the current task. Because we use del_timer_sync(),
126 * this function should never be called while holding queue->lock.
128 static void
129 rpc_delete_timer(struct rpc_task *task)
131 if (RPC_IS_QUEUED(task))
132 return;
133 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
134 del_singleshot_timer_sync(&task->tk_timer);
135 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
140 * Add new request to a priority queue.
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
144 struct list_head *q;
145 struct rpc_task *t;
147 INIT_LIST_HEAD(&task->u.tk_wait.links);
148 q = &queue->tasks[task->tk_priority];
149 if (unlikely(task->tk_priority > queue->maxpriority))
150 q = &queue->tasks[queue->maxpriority];
151 list_for_each_entry(t, q, u.tk_wait.list) {
152 if (t->tk_cookie == task->tk_cookie) {
153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154 return;
157 list_add_tail(&task->u.tk_wait.list, q);
161 * Add new request to wait queue.
163 * Swapper tasks always get inserted at the head of the queue.
164 * This should avoid many nasty memory deadlocks and hopefully
165 * improve overall performance.
166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
170 BUG_ON (RPC_IS_QUEUED(task));
172 if (RPC_IS_PRIORITY(queue))
173 __rpc_add_wait_queue_priority(queue, task);
174 else if (RPC_IS_SWAPPER(task))
175 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
176 else
177 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
178 task->u.tk_wait.rpc_waitq = queue;
179 queue->qlen++;
180 rpc_set_queued(task);
182 dprintk("RPC: %5u added to queue %p \"%s\"\n",
183 task->tk_pid, queue, rpc_qname(queue));
187 * Remove request from a priority queue.
189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
191 struct rpc_task *t;
193 if (!list_empty(&task->u.tk_wait.links)) {
194 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
195 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
196 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
198 list_del(&task->u.tk_wait.list);
202 * Remove request from queue.
203 * Note: must be called with spin lock held.
205 static void __rpc_remove_wait_queue(struct rpc_task *task)
207 struct rpc_wait_queue *queue;
208 queue = task->u.tk_wait.rpc_waitq;
210 if (RPC_IS_PRIORITY(queue))
211 __rpc_remove_wait_queue_priority(task);
212 else
213 list_del(&task->u.tk_wait.list);
214 queue->qlen--;
215 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
216 task->tk_pid, queue, rpc_qname(queue));
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
221 queue->priority = priority;
222 queue->count = 1 << (priority * 2);
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
227 queue->cookie = cookie;
228 queue->nr = RPC_BATCH_COUNT;
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
233 rpc_set_waitqueue_priority(queue, queue->maxpriority);
234 rpc_set_waitqueue_cookie(queue, 0);
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
239 int i;
241 spin_lock_init(&queue->lock);
242 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
243 INIT_LIST_HEAD(&queue->tasks[i]);
244 queue->maxpriority = maxprio;
245 rpc_reset_waitqueue_priority(queue);
246 #ifdef RPC_DEBUG
247 queue->name = qname;
248 #endif
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
253 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 __rpc_init_priority_wait_queue(queue, qname, 0);
260 EXPORT_SYMBOL(rpc_init_wait_queue);
262 static int rpc_wait_bit_interruptible(void *word)
264 if (signal_pending(current))
265 return -ERESTARTSYS;
266 schedule();
267 return 0;
270 static void rpc_set_active(struct rpc_task *task)
272 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
273 return;
274 spin_lock(&rpc_sched_lock);
275 #ifdef RPC_DEBUG
276 task->tk_magic = RPC_TASK_MAGIC_ID;
277 task->tk_pid = rpc_task_id++;
278 #endif
279 /* Add to global list of all tasks */
280 list_add_tail(&task->tk_task, &all_tasks);
281 spin_unlock(&rpc_sched_lock);
285 * Mark an RPC call as having completed by clearing the 'active' bit
287 static void rpc_mark_complete_task(struct rpc_task *task)
289 smp_mb__before_clear_bit();
290 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
291 smp_mb__after_clear_bit();
292 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
296 * Allow callers to wait for completion of an RPC call
298 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
300 if (action == NULL)
301 action = rpc_wait_bit_interruptible;
302 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
303 action, TASK_INTERRUPTIBLE);
305 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
308 * Make an RPC task runnable.
310 * Note: If the task is ASYNC, this must be called with
311 * the spinlock held to protect the wait queue operation.
313 static void rpc_make_runnable(struct rpc_task *task)
315 BUG_ON(task->tk_timeout_fn);
316 rpc_clear_queued(task);
317 if (rpc_test_and_set_running(task))
318 return;
319 /* We might have raced */
320 if (RPC_IS_QUEUED(task)) {
321 rpc_clear_running(task);
322 return;
324 if (RPC_IS_ASYNC(task)) {
325 int status;
327 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
328 status = queue_work(task->tk_workqueue, &task->u.tk_work);
329 if (status < 0) {
330 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
331 task->tk_status = status;
332 return;
334 } else
335 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
339 * Prepare for sleeping on a wait queue.
340 * By always appending tasks to the list we ensure FIFO behavior.
341 * NB: An RPC task will only receive interrupt-driven events as long
342 * as it's on a wait queue.
344 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345 rpc_action action, rpc_action timer)
347 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
348 task->tk_pid, rpc_qname(q), jiffies);
350 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
351 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
352 return;
355 __rpc_add_wait_queue(q, task);
357 BUG_ON(task->tk_callback != NULL);
358 task->tk_callback = action;
359 __rpc_add_timer(task, timer);
362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
363 rpc_action action, rpc_action timer)
365 /* Mark the task as being activated if so needed */
366 rpc_set_active(task);
369 * Protect the queue operations.
371 spin_lock_bh(&q->lock);
372 __rpc_sleep_on(q, task, action, timer);
373 spin_unlock_bh(&q->lock);
377 * __rpc_do_wake_up_task - wake up a single rpc_task
378 * @task: task to be woken up
380 * Caller must hold queue->lock, and have cleared the task queued flag.
382 static void __rpc_do_wake_up_task(struct rpc_task *task)
384 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
385 task->tk_pid, jiffies);
387 #ifdef RPC_DEBUG
388 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
389 #endif
390 /* Has the task been executed yet? If not, we cannot wake it up! */
391 if (!RPC_IS_ACTIVATED(task)) {
392 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
393 return;
396 __rpc_disable_timer(task);
397 __rpc_remove_wait_queue(task);
399 rpc_make_runnable(task);
401 dprintk("RPC: __rpc_wake_up_task done\n");
405 * Wake up the specified task
407 static void __rpc_wake_up_task(struct rpc_task *task)
409 if (rpc_start_wakeup(task)) {
410 if (RPC_IS_QUEUED(task))
411 __rpc_do_wake_up_task(task);
412 rpc_finish_wakeup(task);
417 * Default timeout handler if none specified by user
419 static void
420 __rpc_default_timer(struct rpc_task *task)
422 dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
423 task->tk_status = -ETIMEDOUT;
424 rpc_wake_up_task(task);
428 * Wake up the specified task
430 void rpc_wake_up_task(struct rpc_task *task)
432 rcu_read_lock_bh();
433 if (rpc_start_wakeup(task)) {
434 if (RPC_IS_QUEUED(task)) {
435 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
437 /* Note: we're already in a bh-safe context */
438 spin_lock(&queue->lock);
439 __rpc_do_wake_up_task(task);
440 spin_unlock(&queue->lock);
442 rpc_finish_wakeup(task);
444 rcu_read_unlock_bh();
448 * Wake up the next task on a priority queue.
450 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
452 struct list_head *q;
453 struct rpc_task *task;
456 * Service a batch of tasks from a single cookie.
458 q = &queue->tasks[queue->priority];
459 if (!list_empty(q)) {
460 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
461 if (queue->cookie == task->tk_cookie) {
462 if (--queue->nr)
463 goto out;
464 list_move_tail(&task->u.tk_wait.list, q);
467 * Check if we need to switch queues.
469 if (--queue->count)
470 goto new_cookie;
474 * Service the next queue.
476 do {
477 if (q == &queue->tasks[0])
478 q = &queue->tasks[queue->maxpriority];
479 else
480 q = q - 1;
481 if (!list_empty(q)) {
482 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
483 goto new_queue;
485 } while (q != &queue->tasks[queue->priority]);
487 rpc_reset_waitqueue_priority(queue);
488 return NULL;
490 new_queue:
491 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
492 new_cookie:
493 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
494 out:
495 __rpc_wake_up_task(task);
496 return task;
500 * Wake up the next task on the wait queue.
502 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
504 struct rpc_task *task = NULL;
506 dprintk("RPC: wake_up_next(%p \"%s\")\n",
507 queue, rpc_qname(queue));
508 rcu_read_lock_bh();
509 spin_lock(&queue->lock);
510 if (RPC_IS_PRIORITY(queue))
511 task = __rpc_wake_up_next_priority(queue);
512 else {
513 task_for_first(task, &queue->tasks[0])
514 __rpc_wake_up_task(task);
516 spin_unlock(&queue->lock);
517 rcu_read_unlock_bh();
519 return task;
523 * rpc_wake_up - wake up all rpc_tasks
524 * @queue: rpc_wait_queue on which the tasks are sleeping
526 * Grabs queue->lock
528 void rpc_wake_up(struct rpc_wait_queue *queue)
530 struct rpc_task *task, *next;
531 struct list_head *head;
533 rcu_read_lock_bh();
534 spin_lock(&queue->lock);
535 head = &queue->tasks[queue->maxpriority];
536 for (;;) {
537 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
538 __rpc_wake_up_task(task);
539 if (head == &queue->tasks[0])
540 break;
541 head--;
543 spin_unlock(&queue->lock);
544 rcu_read_unlock_bh();
548 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
549 * @queue: rpc_wait_queue on which the tasks are sleeping
550 * @status: status value to set
552 * Grabs queue->lock
554 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
556 struct rpc_task *task, *next;
557 struct list_head *head;
559 rcu_read_lock_bh();
560 spin_lock(&queue->lock);
561 head = &queue->tasks[queue->maxpriority];
562 for (;;) {
563 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
564 task->tk_status = status;
565 __rpc_wake_up_task(task);
567 if (head == &queue->tasks[0])
568 break;
569 head--;
571 spin_unlock(&queue->lock);
572 rcu_read_unlock_bh();
575 static void __rpc_atrun(struct rpc_task *task)
577 rpc_wake_up_task(task);
581 * Run a task at a later time
583 void rpc_delay(struct rpc_task *task, unsigned long delay)
585 task->tk_timeout = delay;
586 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
590 * Helper to call task->tk_ops->rpc_call_prepare
592 static void rpc_prepare_task(struct rpc_task *task)
594 lock_kernel();
595 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
596 unlock_kernel();
600 * Helper that calls task->tk_ops->rpc_call_done if it exists
602 void rpc_exit_task(struct rpc_task *task)
604 task->tk_action = NULL;
605 if (task->tk_ops->rpc_call_done != NULL) {
606 lock_kernel();
607 task->tk_ops->rpc_call_done(task, task->tk_calldata);
608 unlock_kernel();
609 if (task->tk_action != NULL) {
610 WARN_ON(RPC_ASSASSINATED(task));
611 /* Always release the RPC slot and buffer memory */
612 xprt_release(task);
616 EXPORT_SYMBOL(rpc_exit_task);
618 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
620 if (ops->rpc_release != NULL) {
621 lock_kernel();
622 ops->rpc_release(calldata);
623 unlock_kernel();
628 * This is the RPC `scheduler' (or rather, the finite state machine).
630 static void __rpc_execute(struct rpc_task *task)
632 int status = 0;
634 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
635 task->tk_pid, task->tk_flags);
637 BUG_ON(RPC_IS_QUEUED(task));
639 for (;;) {
641 * Garbage collection of pending timers...
643 rpc_delete_timer(task);
646 * Execute any pending callback.
648 if (RPC_DO_CALLBACK(task)) {
649 /* Define a callback save pointer */
650 void (*save_callback)(struct rpc_task *);
653 * If a callback exists, save it, reset it,
654 * call it.
655 * The save is needed to stop from resetting
656 * another callback set within the callback handler
657 * - Dave
659 save_callback=task->tk_callback;
660 task->tk_callback=NULL;
661 save_callback(task);
665 * Perform the next FSM step.
666 * tk_action may be NULL when the task has been killed
667 * by someone else.
669 if (!RPC_IS_QUEUED(task)) {
670 if (task->tk_action == NULL)
671 break;
672 task->tk_action(task);
676 * Lockless check for whether task is sleeping or not.
678 if (!RPC_IS_QUEUED(task))
679 continue;
680 rpc_clear_running(task);
681 if (RPC_IS_ASYNC(task)) {
682 /* Careful! we may have raced... */
683 if (RPC_IS_QUEUED(task))
684 return;
685 if (rpc_test_and_set_running(task))
686 return;
687 continue;
690 /* sync task: sleep here */
691 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
692 /* Note: Caller should be using rpc_clnt_sigmask() */
693 status = out_of_line_wait_on_bit(&task->tk_runstate,
694 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
695 TASK_INTERRUPTIBLE);
696 if (status == -ERESTARTSYS) {
698 * When a sync task receives a signal, it exits with
699 * -ERESTARTSYS. In order to catch any callbacks that
700 * clean up after sleeping on some queue, we don't
701 * break the loop here, but go around once more.
703 dprintk("RPC: %5u got signal\n", task->tk_pid);
704 task->tk_flags |= RPC_TASK_KILLED;
705 rpc_exit(task, -ERESTARTSYS);
706 rpc_wake_up_task(task);
708 rpc_set_running(task);
709 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
712 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
713 task->tk_status);
714 /* Release all resources associated with the task */
715 rpc_release_task(task);
719 * User-visible entry point to the scheduler.
721 * This may be called recursively if e.g. an async NFS task updates
722 * the attributes and finds that dirty pages must be flushed.
723 * NOTE: Upon exit of this function the task is guaranteed to be
724 * released. In particular note that tk_release() will have
725 * been called, so your task memory may have been freed.
727 void rpc_execute(struct rpc_task *task)
729 rpc_set_active(task);
730 rpc_set_running(task);
731 __rpc_execute(task);
734 static void rpc_async_schedule(struct work_struct *work)
736 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
740 * rpc_malloc - allocate an RPC buffer
741 * @task: RPC task that will use this buffer
742 * @size: requested byte size
744 * We try to ensure that some NFS reads and writes can always proceed
745 * by using a mempool when allocating 'small' buffers.
746 * In order to avoid memory starvation triggering more writebacks of
747 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
749 void * rpc_malloc(struct rpc_task *task, size_t size)
751 struct rpc_rqst *req = task->tk_rqstp;
752 gfp_t gfp;
754 if (task->tk_flags & RPC_TASK_SWAPPER)
755 gfp = GFP_ATOMIC;
756 else
757 gfp = GFP_NOFS;
759 if (size > RPC_BUFFER_MAXSIZE) {
760 req->rq_buffer = kmalloc(size, gfp);
761 if (req->rq_buffer)
762 req->rq_bufsize = size;
763 } else {
764 req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
765 if (req->rq_buffer)
766 req->rq_bufsize = RPC_BUFFER_MAXSIZE;
768 return req->rq_buffer;
772 * rpc_free - free buffer allocated via rpc_malloc
773 * @task: RPC task with a buffer to be freed
776 void rpc_free(struct rpc_task *task)
778 struct rpc_rqst *req = task->tk_rqstp;
780 if (req->rq_buffer) {
781 if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
782 mempool_free(req->rq_buffer, rpc_buffer_mempool);
783 else
784 kfree(req->rq_buffer);
785 req->rq_buffer = NULL;
786 req->rq_bufsize = 0;
791 * Creation and deletion of RPC task structures
793 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
795 memset(task, 0, sizeof(*task));
796 init_timer(&task->tk_timer);
797 task->tk_timer.data = (unsigned long) task;
798 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
799 atomic_set(&task->tk_count, 1);
800 task->tk_client = clnt;
801 task->tk_flags = flags;
802 task->tk_ops = tk_ops;
803 if (tk_ops->rpc_call_prepare != NULL)
804 task->tk_action = rpc_prepare_task;
805 task->tk_calldata = calldata;
807 /* Initialize retry counters */
808 task->tk_garb_retry = 2;
809 task->tk_cred_retry = 2;
811 task->tk_priority = RPC_PRIORITY_NORMAL;
812 task->tk_cookie = (unsigned long)current;
814 /* Initialize workqueue for async tasks */
815 task->tk_workqueue = rpciod_workqueue;
817 if (clnt) {
818 atomic_inc(&clnt->cl_users);
819 if (clnt->cl_softrtry)
820 task->tk_flags |= RPC_TASK_SOFT;
821 if (!clnt->cl_intr)
822 task->tk_flags |= RPC_TASK_NOINTR;
825 BUG_ON(task->tk_ops == NULL);
827 /* starting timestamp */
828 task->tk_start = jiffies;
830 dprintk("RPC: new task initialized, procpid %u\n",
831 current->pid);
834 static struct rpc_task *
835 rpc_alloc_task(void)
837 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
840 static void rpc_free_task(struct rcu_head *rcu)
842 struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
843 dprintk("RPC: %5u freeing task\n", task->tk_pid);
844 mempool_free(task, rpc_task_mempool);
848 * Create a new task for the specified client. We have to
849 * clean up after an allocation failure, as the client may
850 * have specified "oneshot".
852 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
854 struct rpc_task *task;
856 task = rpc_alloc_task();
857 if (!task)
858 goto cleanup;
860 rpc_init_task(task, clnt, flags, tk_ops, calldata);
862 dprintk("RPC: allocated task %p\n", task);
863 task->tk_flags |= RPC_TASK_DYNAMIC;
864 out:
865 return task;
867 cleanup:
868 /* Check whether to release the client */
869 if (clnt) {
870 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
871 atomic_read(&clnt->cl_users), clnt->cl_oneshot);
872 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
873 rpc_release_client(clnt);
875 goto out;
879 void rpc_put_task(struct rpc_task *task)
881 const struct rpc_call_ops *tk_ops = task->tk_ops;
882 void *calldata = task->tk_calldata;
884 if (!atomic_dec_and_test(&task->tk_count))
885 return;
886 /* Release resources */
887 if (task->tk_rqstp)
888 xprt_release(task);
889 if (task->tk_msg.rpc_cred)
890 rpcauth_unbindcred(task);
891 if (task->tk_client) {
892 rpc_release_client(task->tk_client);
893 task->tk_client = NULL;
895 if (task->tk_flags & RPC_TASK_DYNAMIC)
896 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
897 rpc_release_calldata(tk_ops, calldata);
899 EXPORT_SYMBOL(rpc_put_task);
901 static void rpc_release_task(struct rpc_task *task)
903 #ifdef RPC_DEBUG
904 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
905 #endif
906 dprintk("RPC: %5u release task\n", task->tk_pid);
908 /* Remove from global task list */
909 spin_lock(&rpc_sched_lock);
910 list_del(&task->tk_task);
911 spin_unlock(&rpc_sched_lock);
913 BUG_ON (RPC_IS_QUEUED(task));
915 /* Synchronously delete any running timer */
916 rpc_delete_timer(task);
918 #ifdef RPC_DEBUG
919 task->tk_magic = 0;
920 #endif
921 /* Wake up anyone who is waiting for task completion */
922 rpc_mark_complete_task(task);
924 rpc_put_task(task);
928 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
929 * @clnt: pointer to RPC client
930 * @flags: RPC flags
931 * @ops: RPC call ops
932 * @data: user call data
934 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
935 const struct rpc_call_ops *ops,
936 void *data)
938 struct rpc_task *task;
939 task = rpc_new_task(clnt, flags, ops, data);
940 if (task == NULL) {
941 rpc_release_calldata(ops, data);
942 return ERR_PTR(-ENOMEM);
944 atomic_inc(&task->tk_count);
945 rpc_execute(task);
946 return task;
948 EXPORT_SYMBOL(rpc_run_task);
951 * Kill all tasks for the given client.
952 * XXX: kill their descendants as well?
954 void rpc_killall_tasks(struct rpc_clnt *clnt)
956 struct rpc_task *rovr;
957 struct list_head *le;
959 dprintk("RPC: killing all tasks for client %p\n", clnt);
962 * Spin lock all_tasks to prevent changes...
964 spin_lock(&rpc_sched_lock);
965 alltask_for_each(rovr, le, &all_tasks) {
966 if (! RPC_IS_ACTIVATED(rovr))
967 continue;
968 if (!clnt || rovr->tk_client == clnt) {
969 rovr->tk_flags |= RPC_TASK_KILLED;
970 rpc_exit(rovr, -EIO);
971 rpc_wake_up_task(rovr);
974 spin_unlock(&rpc_sched_lock);
977 static DECLARE_MUTEX_LOCKED(rpciod_running);
979 static void rpciod_killall(void)
981 unsigned long flags;
983 while (!list_empty(&all_tasks)) {
984 clear_thread_flag(TIF_SIGPENDING);
985 rpc_killall_tasks(NULL);
986 flush_workqueue(rpciod_workqueue);
987 if (!list_empty(&all_tasks)) {
988 dprintk("RPC: rpciod_killall: waiting for tasks "
989 "to exit\n");
990 yield();
994 spin_lock_irqsave(&current->sighand->siglock, flags);
995 recalc_sigpending();
996 spin_unlock_irqrestore(&current->sighand->siglock, flags);
1000 * Start up the rpciod process if it's not already running.
1003 rpciod_up(void)
1005 struct workqueue_struct *wq;
1006 int error = 0;
1008 mutex_lock(&rpciod_mutex);
1009 dprintk("RPC: rpciod_up: users %u\n", rpciod_users);
1010 rpciod_users++;
1011 if (rpciod_workqueue)
1012 goto out;
1014 * If there's no pid, we should be the first user.
1016 if (rpciod_users > 1)
1017 printk(KERN_WARNING "rpciod_up: no workqueue, %u users??\n", rpciod_users);
1019 * Create the rpciod thread and wait for it to start.
1021 error = -ENOMEM;
1022 wq = create_workqueue("rpciod");
1023 if (wq == NULL) {
1024 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1025 rpciod_users--;
1026 goto out;
1028 rpciod_workqueue = wq;
1029 error = 0;
1030 out:
1031 mutex_unlock(&rpciod_mutex);
1032 return error;
1035 void
1036 rpciod_down(void)
1038 mutex_lock(&rpciod_mutex);
1039 dprintk("RPC: rpciod_down sema %u\n", rpciod_users);
1040 if (rpciod_users) {
1041 if (--rpciod_users)
1042 goto out;
1043 } else
1044 printk(KERN_WARNING "rpciod_down: no users??\n");
1046 if (!rpciod_workqueue) {
1047 dprintk("RPC: rpciod_down: Nothing to do!\n");
1048 goto out;
1050 rpciod_killall();
1052 destroy_workqueue(rpciod_workqueue);
1053 rpciod_workqueue = NULL;
1054 out:
1055 mutex_unlock(&rpciod_mutex);
1058 #ifdef RPC_DEBUG
1059 void rpc_show_tasks(void)
1061 struct list_head *le;
1062 struct rpc_task *t;
1064 spin_lock(&rpc_sched_lock);
1065 if (list_empty(&all_tasks)) {
1066 spin_unlock(&rpc_sched_lock);
1067 return;
1069 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1070 "-rpcwait -action- ---ops--\n");
1071 alltask_for_each(t, le, &all_tasks) {
1072 const char *rpc_waitq = "none";
1074 if (RPC_IS_QUEUED(t))
1075 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1077 printk("%5u %04d %04x %6d %8p %6d %8p %8ld %8s %8p %8p\n",
1078 t->tk_pid,
1079 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1080 t->tk_flags, t->tk_status,
1081 t->tk_client,
1082 (t->tk_client ? t->tk_client->cl_prog : 0),
1083 t->tk_rqstp, t->tk_timeout,
1084 rpc_waitq,
1085 t->tk_action, t->tk_ops);
1087 spin_unlock(&rpc_sched_lock);
1089 #endif
1091 void
1092 rpc_destroy_mempool(void)
1094 if (rpc_buffer_mempool)
1095 mempool_destroy(rpc_buffer_mempool);
1096 if (rpc_task_mempool)
1097 mempool_destroy(rpc_task_mempool);
1098 if (rpc_task_slabp)
1099 kmem_cache_destroy(rpc_task_slabp);
1100 if (rpc_buffer_slabp)
1101 kmem_cache_destroy(rpc_buffer_slabp);
1105 rpc_init_mempool(void)
1107 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1108 sizeof(struct rpc_task),
1109 0, SLAB_HWCACHE_ALIGN,
1110 NULL, NULL);
1111 if (!rpc_task_slabp)
1112 goto err_nomem;
1113 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1114 RPC_BUFFER_MAXSIZE,
1115 0, SLAB_HWCACHE_ALIGN,
1116 NULL, NULL);
1117 if (!rpc_buffer_slabp)
1118 goto err_nomem;
1119 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1120 rpc_task_slabp);
1121 if (!rpc_task_mempool)
1122 goto err_nomem;
1123 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1124 rpc_buffer_slabp);
1125 if (!rpc_buffer_mempool)
1126 goto err_nomem;
1127 return 0;
1128 err_nomem:
1129 rpc_destroy_mempool();
1130 return -ENOMEM;