2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
34 #include <asm/semaphore.h>
36 #include <asm/spu_info.h>
37 #include <asm/uaccess.h>
41 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
43 /* Simple attribute files */
45 int (*get
)(void *, u64
*);
46 int (*set
)(void *, u64
);
47 char get_buf
[24]; /* enough to store a u64 and "\n\0" */
50 const char *fmt
; /* format for read operation */
51 struct mutex mutex
; /* protects access to these buffers */
54 static int spufs_attr_open(struct inode
*inode
, struct file
*file
,
55 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
58 struct spufs_attr
*attr
;
60 attr
= kmalloc(sizeof(*attr
), GFP_KERNEL
);
66 attr
->data
= inode
->i_private
;
68 mutex_init(&attr
->mutex
);
69 file
->private_data
= attr
;
71 return nonseekable_open(inode
, file
);
74 static int spufs_attr_release(struct inode
*inode
, struct file
*file
)
76 kfree(file
->private_data
);
80 static ssize_t
spufs_attr_read(struct file
*file
, char __user
*buf
,
81 size_t len
, loff_t
*ppos
)
83 struct spufs_attr
*attr
;
87 attr
= file
->private_data
;
91 ret
= mutex_lock_interruptible(&attr
->mutex
);
95 if (*ppos
) { /* continued read */
96 size
= strlen(attr
->get_buf
);
97 } else { /* first read */
99 ret
= attr
->get(attr
->data
, &val
);
103 size
= scnprintf(attr
->get_buf
, sizeof(attr
->get_buf
),
104 attr
->fmt
, (unsigned long long)val
);
107 ret
= simple_read_from_buffer(buf
, len
, ppos
, attr
->get_buf
, size
);
109 mutex_unlock(&attr
->mutex
);
113 static ssize_t
spufs_attr_write(struct file
*file
, const char __user
*buf
,
114 size_t len
, loff_t
*ppos
)
116 struct spufs_attr
*attr
;
121 attr
= file
->private_data
;
125 ret
= mutex_lock_interruptible(&attr
->mutex
);
130 size
= min(sizeof(attr
->set_buf
) - 1, len
);
131 if (copy_from_user(attr
->set_buf
, buf
, size
))
134 ret
= len
; /* claim we got the whole input */
135 attr
->set_buf
[size
] = '\0';
136 val
= simple_strtol(attr
->set_buf
, NULL
, 0);
137 attr
->set(attr
->data
, val
);
139 mutex_unlock(&attr
->mutex
);
143 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
144 static int __fops ## _open(struct inode *inode, struct file *file) \
146 __simple_attr_check_format(__fmt, 0ull); \
147 return spufs_attr_open(inode, file, __get, __set, __fmt); \
149 static struct file_operations __fops = { \
150 .owner = THIS_MODULE, \
151 .open = __fops ## _open, \
152 .release = spufs_attr_release, \
153 .read = spufs_attr_read, \
154 .write = spufs_attr_write, \
159 spufs_mem_open(struct inode
*inode
, struct file
*file
)
161 struct spufs_inode_info
*i
= SPUFS_I(inode
);
162 struct spu_context
*ctx
= i
->i_ctx
;
164 mutex_lock(&ctx
->mapping_lock
);
165 file
->private_data
= ctx
;
167 ctx
->local_store
= inode
->i_mapping
;
168 mutex_unlock(&ctx
->mapping_lock
);
173 spufs_mem_release(struct inode
*inode
, struct file
*file
)
175 struct spufs_inode_info
*i
= SPUFS_I(inode
);
176 struct spu_context
*ctx
= i
->i_ctx
;
178 mutex_lock(&ctx
->mapping_lock
);
180 ctx
->local_store
= NULL
;
181 mutex_unlock(&ctx
->mapping_lock
);
186 __spufs_mem_read(struct spu_context
*ctx
, char __user
*buffer
,
187 size_t size
, loff_t
*pos
)
189 char *local_store
= ctx
->ops
->get_ls(ctx
);
190 return simple_read_from_buffer(buffer
, size
, pos
, local_store
,
195 spufs_mem_read(struct file
*file
, char __user
*buffer
,
196 size_t size
, loff_t
*pos
)
198 struct spu_context
*ctx
= file
->private_data
;
201 ret
= spu_acquire(ctx
);
204 ret
= __spufs_mem_read(ctx
, buffer
, size
, pos
);
211 spufs_mem_write(struct file
*file
, const char __user
*buffer
,
212 size_t size
, loff_t
*ppos
)
214 struct spu_context
*ctx
= file
->private_data
;
223 if (size
> LS_SIZE
- pos
)
224 size
= LS_SIZE
- pos
;
226 ret
= spu_acquire(ctx
);
230 local_store
= ctx
->ops
->get_ls(ctx
);
231 ret
= copy_from_user(local_store
+ pos
, buffer
, size
);
240 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct
*vma
,
241 unsigned long address
)
243 struct spu_context
*ctx
= vma
->vm_file
->private_data
;
244 unsigned long pfn
, offset
, addr0
= address
;
245 #ifdef CONFIG_SPU_FS_64K_LS
246 struct spu_state
*csa
= &ctx
->csa
;
249 /* Check what page size we are using */
250 psize
= get_slice_psize(vma
->vm_mm
, address
);
252 /* Some sanity checking */
253 BUG_ON(csa
->use_big_pages
!= (psize
== MMU_PAGE_64K
));
255 /* Wow, 64K, cool, we need to align the address though */
256 if (csa
->use_big_pages
) {
257 BUG_ON(vma
->vm_start
& 0xffff);
258 address
&= ~0xfffful
;
260 #endif /* CONFIG_SPU_FS_64K_LS */
262 offset
= (address
- vma
->vm_start
) + (vma
->vm_pgoff
<< PAGE_SHIFT
);
263 if (offset
>= LS_SIZE
)
266 pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
267 addr0
, address
, offset
);
269 if (spu_acquire(ctx
))
270 return NOPFN_REFAULT
;
272 if (ctx
->state
== SPU_STATE_SAVED
) {
273 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
275 pfn
= vmalloc_to_pfn(ctx
->csa
.lscsa
->ls
+ offset
);
277 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
279 pfn
= (ctx
->spu
->local_store_phys
+ offset
) >> PAGE_SHIFT
;
281 vm_insert_pfn(vma
, address
, pfn
);
285 return NOPFN_REFAULT
;
289 static struct vm_operations_struct spufs_mem_mmap_vmops
= {
290 .nopfn
= spufs_mem_mmap_nopfn
,
293 static int spufs_mem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
295 #ifdef CONFIG_SPU_FS_64K_LS
296 struct spu_context
*ctx
= file
->private_data
;
297 struct spu_state
*csa
= &ctx
->csa
;
299 /* Sanity check VMA alignment */
300 if (csa
->use_big_pages
) {
301 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
302 " pgoff=0x%lx\n", vma
->vm_start
, vma
->vm_end
,
304 if (vma
->vm_start
& 0xffff)
306 if (vma
->vm_pgoff
& 0xf)
309 #endif /* CONFIG_SPU_FS_64K_LS */
311 if (!(vma
->vm_flags
& VM_SHARED
))
314 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
315 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
318 vma
->vm_ops
= &spufs_mem_mmap_vmops
;
322 #ifdef CONFIG_SPU_FS_64K_LS
323 static unsigned long spufs_get_unmapped_area(struct file
*file
,
324 unsigned long addr
, unsigned long len
, unsigned long pgoff
,
327 struct spu_context
*ctx
= file
->private_data
;
328 struct spu_state
*csa
= &ctx
->csa
;
330 /* If not using big pages, fallback to normal MM g_u_a */
331 if (!csa
->use_big_pages
)
332 return current
->mm
->get_unmapped_area(file
, addr
, len
,
335 /* Else, try to obtain a 64K pages slice */
336 return slice_get_unmapped_area(addr
, len
, flags
,
339 #endif /* CONFIG_SPU_FS_64K_LS */
341 static const struct file_operations spufs_mem_fops
= {
342 .open
= spufs_mem_open
,
343 .release
= spufs_mem_release
,
344 .read
= spufs_mem_read
,
345 .write
= spufs_mem_write
,
346 .llseek
= generic_file_llseek
,
347 .mmap
= spufs_mem_mmap
,
348 #ifdef CONFIG_SPU_FS_64K_LS
349 .get_unmapped_area
= spufs_get_unmapped_area
,
353 static unsigned long spufs_ps_nopfn(struct vm_area_struct
*vma
,
354 unsigned long address
,
355 unsigned long ps_offs
,
356 unsigned long ps_size
)
358 struct spu_context
*ctx
= vma
->vm_file
->private_data
;
359 unsigned long area
, offset
= address
- vma
->vm_start
;
361 offset
+= vma
->vm_pgoff
<< PAGE_SHIFT
;
362 if (offset
>= ps_size
)
366 * We have to wait for context to be loaded before we have
367 * pages to hand out to the user, but we don't want to wait
368 * with the mmap_sem held.
369 * It is possible to drop the mmap_sem here, but then we need
370 * to return NOPFN_REFAULT because the mappings may have
373 if (spu_acquire(ctx
))
374 return NOPFN_REFAULT
;
376 if (ctx
->state
== SPU_STATE_SAVED
) {
377 up_read(¤t
->mm
->mmap_sem
);
378 spufs_wait(ctx
->run_wq
, ctx
->state
== SPU_STATE_RUNNABLE
);
379 down_read(¤t
->mm
->mmap_sem
);
381 area
= ctx
->spu
->problem_phys
+ ps_offs
;
382 vm_insert_pfn(vma
, address
, (area
+ offset
) >> PAGE_SHIFT
);
386 return NOPFN_REFAULT
;
390 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct
*vma
,
391 unsigned long address
)
393 return spufs_ps_nopfn(vma
, address
, 0x4000, 0x1000);
396 static struct vm_operations_struct spufs_cntl_mmap_vmops
= {
397 .nopfn
= spufs_cntl_mmap_nopfn
,
401 * mmap support for problem state control area [0x4000 - 0x4fff].
403 static int spufs_cntl_mmap(struct file
*file
, struct vm_area_struct
*vma
)
405 if (!(vma
->vm_flags
& VM_SHARED
))
408 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
409 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
410 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
412 vma
->vm_ops
= &spufs_cntl_mmap_vmops
;
415 #else /* SPUFS_MMAP_4K */
416 #define spufs_cntl_mmap NULL
417 #endif /* !SPUFS_MMAP_4K */
419 static int spufs_cntl_get(void *data
, u64
*val
)
421 struct spu_context
*ctx
= data
;
424 ret
= spu_acquire(ctx
);
427 *val
= ctx
->ops
->status_read(ctx
);
433 static int spufs_cntl_set(void *data
, u64 val
)
435 struct spu_context
*ctx
= data
;
438 ret
= spu_acquire(ctx
);
441 ctx
->ops
->runcntl_write(ctx
, val
);
447 static int spufs_cntl_open(struct inode
*inode
, struct file
*file
)
449 struct spufs_inode_info
*i
= SPUFS_I(inode
);
450 struct spu_context
*ctx
= i
->i_ctx
;
452 mutex_lock(&ctx
->mapping_lock
);
453 file
->private_data
= ctx
;
455 ctx
->cntl
= inode
->i_mapping
;
456 mutex_unlock(&ctx
->mapping_lock
);
457 return spufs_attr_open(inode
, file
, spufs_cntl_get
,
458 spufs_cntl_set
, "0x%08lx");
462 spufs_cntl_release(struct inode
*inode
, struct file
*file
)
464 struct spufs_inode_info
*i
= SPUFS_I(inode
);
465 struct spu_context
*ctx
= i
->i_ctx
;
467 spufs_attr_release(inode
, file
);
469 mutex_lock(&ctx
->mapping_lock
);
472 mutex_unlock(&ctx
->mapping_lock
);
476 static const struct file_operations spufs_cntl_fops
= {
477 .open
= spufs_cntl_open
,
478 .release
= spufs_cntl_release
,
479 .read
= spufs_attr_read
,
480 .write
= spufs_attr_write
,
481 .mmap
= spufs_cntl_mmap
,
485 spufs_regs_open(struct inode
*inode
, struct file
*file
)
487 struct spufs_inode_info
*i
= SPUFS_I(inode
);
488 file
->private_data
= i
->i_ctx
;
493 __spufs_regs_read(struct spu_context
*ctx
, char __user
*buffer
,
494 size_t size
, loff_t
*pos
)
496 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
497 return simple_read_from_buffer(buffer
, size
, pos
,
498 lscsa
->gprs
, sizeof lscsa
->gprs
);
502 spufs_regs_read(struct file
*file
, char __user
*buffer
,
503 size_t size
, loff_t
*pos
)
506 struct spu_context
*ctx
= file
->private_data
;
508 ret
= spu_acquire_saved(ctx
);
511 ret
= __spufs_regs_read(ctx
, buffer
, size
, pos
);
512 spu_release_saved(ctx
);
517 spufs_regs_write(struct file
*file
, const char __user
*buffer
,
518 size_t size
, loff_t
*pos
)
520 struct spu_context
*ctx
= file
->private_data
;
521 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
524 size
= min_t(ssize_t
, sizeof lscsa
->gprs
- *pos
, size
);
529 ret
= spu_acquire_saved(ctx
);
533 ret
= copy_from_user(lscsa
->gprs
+ *pos
- size
,
534 buffer
, size
) ? -EFAULT
: size
;
536 spu_release_saved(ctx
);
540 static const struct file_operations spufs_regs_fops
= {
541 .open
= spufs_regs_open
,
542 .read
= spufs_regs_read
,
543 .write
= spufs_regs_write
,
544 .llseek
= generic_file_llseek
,
548 __spufs_fpcr_read(struct spu_context
*ctx
, char __user
* buffer
,
549 size_t size
, loff_t
* pos
)
551 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
552 return simple_read_from_buffer(buffer
, size
, pos
,
553 &lscsa
->fpcr
, sizeof(lscsa
->fpcr
));
557 spufs_fpcr_read(struct file
*file
, char __user
* buffer
,
558 size_t size
, loff_t
* pos
)
561 struct spu_context
*ctx
= file
->private_data
;
563 ret
= spu_acquire_saved(ctx
);
566 ret
= __spufs_fpcr_read(ctx
, buffer
, size
, pos
);
567 spu_release_saved(ctx
);
572 spufs_fpcr_write(struct file
*file
, const char __user
* buffer
,
573 size_t size
, loff_t
* pos
)
575 struct spu_context
*ctx
= file
->private_data
;
576 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
579 size
= min_t(ssize_t
, sizeof(lscsa
->fpcr
) - *pos
, size
);
583 ret
= spu_acquire_saved(ctx
);
588 ret
= copy_from_user((char *)&lscsa
->fpcr
+ *pos
- size
,
589 buffer
, size
) ? -EFAULT
: size
;
591 spu_release_saved(ctx
);
595 static const struct file_operations spufs_fpcr_fops
= {
596 .open
= spufs_regs_open
,
597 .read
= spufs_fpcr_read
,
598 .write
= spufs_fpcr_write
,
599 .llseek
= generic_file_llseek
,
602 /* generic open function for all pipe-like files */
603 static int spufs_pipe_open(struct inode
*inode
, struct file
*file
)
605 struct spufs_inode_info
*i
= SPUFS_I(inode
);
606 file
->private_data
= i
->i_ctx
;
608 return nonseekable_open(inode
, file
);
612 * Read as many bytes from the mailbox as possible, until
613 * one of the conditions becomes true:
615 * - no more data available in the mailbox
616 * - end of the user provided buffer
617 * - end of the mapped area
619 static ssize_t
spufs_mbox_read(struct file
*file
, char __user
*buf
,
620 size_t len
, loff_t
*pos
)
622 struct spu_context
*ctx
= file
->private_data
;
623 u32 mbox_data
, __user
*udata
;
629 if (!access_ok(VERIFY_WRITE
, buf
, len
))
632 udata
= (void __user
*)buf
;
634 count
= spu_acquire(ctx
);
638 for (count
= 0; (count
+ 4) <= len
; count
+= 4, udata
++) {
640 ret
= ctx
->ops
->mbox_read(ctx
, &mbox_data
);
645 * at the end of the mapped area, we can fault
646 * but still need to return the data we have
647 * read successfully so far.
649 ret
= __put_user(mbox_data
, udata
);
664 static const struct file_operations spufs_mbox_fops
= {
665 .open
= spufs_pipe_open
,
666 .read
= spufs_mbox_read
,
669 static ssize_t
spufs_mbox_stat_read(struct file
*file
, char __user
*buf
,
670 size_t len
, loff_t
*pos
)
672 struct spu_context
*ctx
= file
->private_data
;
679 ret
= spu_acquire(ctx
);
683 mbox_stat
= ctx
->ops
->mbox_stat_read(ctx
) & 0xff;
687 if (copy_to_user(buf
, &mbox_stat
, sizeof mbox_stat
))
693 static const struct file_operations spufs_mbox_stat_fops
= {
694 .open
= spufs_pipe_open
,
695 .read
= spufs_mbox_stat_read
,
698 /* low-level ibox access function */
699 size_t spu_ibox_read(struct spu_context
*ctx
, u32
*data
)
701 return ctx
->ops
->ibox_read(ctx
, data
);
704 static int spufs_ibox_fasync(int fd
, struct file
*file
, int on
)
706 struct spu_context
*ctx
= file
->private_data
;
708 return fasync_helper(fd
, file
, on
, &ctx
->ibox_fasync
);
711 /* interrupt-level ibox callback function. */
712 void spufs_ibox_callback(struct spu
*spu
)
714 struct spu_context
*ctx
= spu
->ctx
;
719 wake_up_all(&ctx
->ibox_wq
);
720 kill_fasync(&ctx
->ibox_fasync
, SIGIO
, POLLIN
);
724 * Read as many bytes from the interrupt mailbox as possible, until
725 * one of the conditions becomes true:
727 * - no more data available in the mailbox
728 * - end of the user provided buffer
729 * - end of the mapped area
731 * If the file is opened without O_NONBLOCK, we wait here until
732 * any data is available, but return when we have been able to
735 static ssize_t
spufs_ibox_read(struct file
*file
, char __user
*buf
,
736 size_t len
, loff_t
*pos
)
738 struct spu_context
*ctx
= file
->private_data
;
739 u32 ibox_data
, __user
*udata
;
745 if (!access_ok(VERIFY_WRITE
, buf
, len
))
748 udata
= (void __user
*)buf
;
750 count
= spu_acquire(ctx
);
754 /* wait only for the first element */
756 if (file
->f_flags
& O_NONBLOCK
) {
757 if (!spu_ibox_read(ctx
, &ibox_data
))
760 count
= spufs_wait(ctx
->ibox_wq
, spu_ibox_read(ctx
, &ibox_data
));
765 /* if we can't write at all, return -EFAULT */
766 count
= __put_user(ibox_data
, udata
);
770 for (count
= 4, udata
++; (count
+ 4) <= len
; count
+= 4, udata
++) {
772 ret
= ctx
->ops
->ibox_read(ctx
, &ibox_data
);
776 * at the end of the mapped area, we can fault
777 * but still need to return the data we have
778 * read successfully so far.
780 ret
= __put_user(ibox_data
, udata
);
791 static unsigned int spufs_ibox_poll(struct file
*file
, poll_table
*wait
)
793 struct spu_context
*ctx
= file
->private_data
;
796 poll_wait(file
, &ctx
->ibox_wq
, wait
);
799 * For now keep this uninterruptible and also ignore the rule
800 * that poll should not sleep. Will be fixed later.
802 mutex_lock(&ctx
->state_mutex
);
803 mask
= ctx
->ops
->mbox_stat_poll(ctx
, POLLIN
| POLLRDNORM
);
809 static const struct file_operations spufs_ibox_fops
= {
810 .open
= spufs_pipe_open
,
811 .read
= spufs_ibox_read
,
812 .poll
= spufs_ibox_poll
,
813 .fasync
= spufs_ibox_fasync
,
816 static ssize_t
spufs_ibox_stat_read(struct file
*file
, char __user
*buf
,
817 size_t len
, loff_t
*pos
)
819 struct spu_context
*ctx
= file
->private_data
;
826 ret
= spu_acquire(ctx
);
829 ibox_stat
= (ctx
->ops
->mbox_stat_read(ctx
) >> 16) & 0xff;
832 if (copy_to_user(buf
, &ibox_stat
, sizeof ibox_stat
))
838 static const struct file_operations spufs_ibox_stat_fops
= {
839 .open
= spufs_pipe_open
,
840 .read
= spufs_ibox_stat_read
,
843 /* low-level mailbox write */
844 size_t spu_wbox_write(struct spu_context
*ctx
, u32 data
)
846 return ctx
->ops
->wbox_write(ctx
, data
);
849 static int spufs_wbox_fasync(int fd
, struct file
*file
, int on
)
851 struct spu_context
*ctx
= file
->private_data
;
854 ret
= fasync_helper(fd
, file
, on
, &ctx
->wbox_fasync
);
859 /* interrupt-level wbox callback function. */
860 void spufs_wbox_callback(struct spu
*spu
)
862 struct spu_context
*ctx
= spu
->ctx
;
867 wake_up_all(&ctx
->wbox_wq
);
868 kill_fasync(&ctx
->wbox_fasync
, SIGIO
, POLLOUT
);
872 * Write as many bytes to the interrupt mailbox as possible, until
873 * one of the conditions becomes true:
875 * - the mailbox is full
876 * - end of the user provided buffer
877 * - end of the mapped area
879 * If the file is opened without O_NONBLOCK, we wait here until
880 * space is availabyl, but return when we have been able to
883 static ssize_t
spufs_wbox_write(struct file
*file
, const char __user
*buf
,
884 size_t len
, loff_t
*pos
)
886 struct spu_context
*ctx
= file
->private_data
;
887 u32 wbox_data
, __user
*udata
;
893 udata
= (void __user
*)buf
;
894 if (!access_ok(VERIFY_READ
, buf
, len
))
897 if (__get_user(wbox_data
, udata
))
900 count
= spu_acquire(ctx
);
905 * make sure we can at least write one element, by waiting
906 * in case of !O_NONBLOCK
909 if (file
->f_flags
& O_NONBLOCK
) {
910 if (!spu_wbox_write(ctx
, wbox_data
))
913 count
= spufs_wait(ctx
->wbox_wq
, spu_wbox_write(ctx
, wbox_data
));
919 /* write as much as possible */
920 for (count
= 4, udata
++; (count
+ 4) <= len
; count
+= 4, udata
++) {
922 ret
= __get_user(wbox_data
, udata
);
926 ret
= spu_wbox_write(ctx
, wbox_data
);
936 static unsigned int spufs_wbox_poll(struct file
*file
, poll_table
*wait
)
938 struct spu_context
*ctx
= file
->private_data
;
941 poll_wait(file
, &ctx
->wbox_wq
, wait
);
944 * For now keep this uninterruptible and also ignore the rule
945 * that poll should not sleep. Will be fixed later.
947 mutex_lock(&ctx
->state_mutex
);
948 mask
= ctx
->ops
->mbox_stat_poll(ctx
, POLLOUT
| POLLWRNORM
);
954 static const struct file_operations spufs_wbox_fops
= {
955 .open
= spufs_pipe_open
,
956 .write
= spufs_wbox_write
,
957 .poll
= spufs_wbox_poll
,
958 .fasync
= spufs_wbox_fasync
,
961 static ssize_t
spufs_wbox_stat_read(struct file
*file
, char __user
*buf
,
962 size_t len
, loff_t
*pos
)
964 struct spu_context
*ctx
= file
->private_data
;
971 ret
= spu_acquire(ctx
);
974 wbox_stat
= (ctx
->ops
->mbox_stat_read(ctx
) >> 8) & 0xff;
977 if (copy_to_user(buf
, &wbox_stat
, sizeof wbox_stat
))
983 static const struct file_operations spufs_wbox_stat_fops
= {
984 .open
= spufs_pipe_open
,
985 .read
= spufs_wbox_stat_read
,
988 static int spufs_signal1_open(struct inode
*inode
, struct file
*file
)
990 struct spufs_inode_info
*i
= SPUFS_I(inode
);
991 struct spu_context
*ctx
= i
->i_ctx
;
993 mutex_lock(&ctx
->mapping_lock
);
994 file
->private_data
= ctx
;
996 ctx
->signal1
= inode
->i_mapping
;
997 mutex_unlock(&ctx
->mapping_lock
);
998 return nonseekable_open(inode
, file
);
1002 spufs_signal1_release(struct inode
*inode
, struct file
*file
)
1004 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1005 struct spu_context
*ctx
= i
->i_ctx
;
1007 mutex_lock(&ctx
->mapping_lock
);
1008 if (!--i
->i_openers
)
1009 ctx
->signal1
= NULL
;
1010 mutex_unlock(&ctx
->mapping_lock
);
1014 static ssize_t
__spufs_signal1_read(struct spu_context
*ctx
, char __user
*buf
,
1015 size_t len
, loff_t
*pos
)
1023 if (ctx
->csa
.spu_chnlcnt_RW
[3]) {
1024 data
= ctx
->csa
.spu_chnldata_RW
[3];
1031 if (copy_to_user(buf
, &data
, 4))
1038 static ssize_t
spufs_signal1_read(struct file
*file
, char __user
*buf
,
1039 size_t len
, loff_t
*pos
)
1042 struct spu_context
*ctx
= file
->private_data
;
1044 ret
= spu_acquire_saved(ctx
);
1047 ret
= __spufs_signal1_read(ctx
, buf
, len
, pos
);
1048 spu_release_saved(ctx
);
1053 static ssize_t
spufs_signal1_write(struct file
*file
, const char __user
*buf
,
1054 size_t len
, loff_t
*pos
)
1056 struct spu_context
*ctx
;
1060 ctx
= file
->private_data
;
1065 if (copy_from_user(&data
, buf
, 4))
1068 ret
= spu_acquire(ctx
);
1071 ctx
->ops
->signal1_write(ctx
, data
);
1077 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct
*vma
,
1078 unsigned long address
)
1080 #if PAGE_SIZE == 0x1000
1081 return spufs_ps_nopfn(vma
, address
, 0x14000, 0x1000);
1082 #elif PAGE_SIZE == 0x10000
1083 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1084 * signal 1 and 2 area
1086 return spufs_ps_nopfn(vma
, address
, 0x10000, 0x10000);
1088 #error unsupported page size
1092 static struct vm_operations_struct spufs_signal1_mmap_vmops
= {
1093 .nopfn
= spufs_signal1_mmap_nopfn
,
1096 static int spufs_signal1_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1098 if (!(vma
->vm_flags
& VM_SHARED
))
1101 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1102 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1103 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1105 vma
->vm_ops
= &spufs_signal1_mmap_vmops
;
1109 static const struct file_operations spufs_signal1_fops
= {
1110 .open
= spufs_signal1_open
,
1111 .release
= spufs_signal1_release
,
1112 .read
= spufs_signal1_read
,
1113 .write
= spufs_signal1_write
,
1114 .mmap
= spufs_signal1_mmap
,
1117 static const struct file_operations spufs_signal1_nosched_fops
= {
1118 .open
= spufs_signal1_open
,
1119 .release
= spufs_signal1_release
,
1120 .write
= spufs_signal1_write
,
1121 .mmap
= spufs_signal1_mmap
,
1124 static int spufs_signal2_open(struct inode
*inode
, struct file
*file
)
1126 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1127 struct spu_context
*ctx
= i
->i_ctx
;
1129 mutex_lock(&ctx
->mapping_lock
);
1130 file
->private_data
= ctx
;
1131 if (!i
->i_openers
++)
1132 ctx
->signal2
= inode
->i_mapping
;
1133 mutex_unlock(&ctx
->mapping_lock
);
1134 return nonseekable_open(inode
, file
);
1138 spufs_signal2_release(struct inode
*inode
, struct file
*file
)
1140 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1141 struct spu_context
*ctx
= i
->i_ctx
;
1143 mutex_lock(&ctx
->mapping_lock
);
1144 if (!--i
->i_openers
)
1145 ctx
->signal2
= NULL
;
1146 mutex_unlock(&ctx
->mapping_lock
);
1150 static ssize_t
__spufs_signal2_read(struct spu_context
*ctx
, char __user
*buf
,
1151 size_t len
, loff_t
*pos
)
1159 if (ctx
->csa
.spu_chnlcnt_RW
[4]) {
1160 data
= ctx
->csa
.spu_chnldata_RW
[4];
1167 if (copy_to_user(buf
, &data
, 4))
1174 static ssize_t
spufs_signal2_read(struct file
*file
, char __user
*buf
,
1175 size_t len
, loff_t
*pos
)
1177 struct spu_context
*ctx
= file
->private_data
;
1180 ret
= spu_acquire_saved(ctx
);
1183 ret
= __spufs_signal2_read(ctx
, buf
, len
, pos
);
1184 spu_release_saved(ctx
);
1189 static ssize_t
spufs_signal2_write(struct file
*file
, const char __user
*buf
,
1190 size_t len
, loff_t
*pos
)
1192 struct spu_context
*ctx
;
1196 ctx
= file
->private_data
;
1201 if (copy_from_user(&data
, buf
, 4))
1204 ret
= spu_acquire(ctx
);
1207 ctx
->ops
->signal2_write(ctx
, data
);
1214 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct
*vma
,
1215 unsigned long address
)
1217 #if PAGE_SIZE == 0x1000
1218 return spufs_ps_nopfn(vma
, address
, 0x1c000, 0x1000);
1219 #elif PAGE_SIZE == 0x10000
1220 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1221 * signal 1 and 2 area
1223 return spufs_ps_nopfn(vma
, address
, 0x10000, 0x10000);
1225 #error unsupported page size
1229 static struct vm_operations_struct spufs_signal2_mmap_vmops
= {
1230 .nopfn
= spufs_signal2_mmap_nopfn
,
1233 static int spufs_signal2_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1235 if (!(vma
->vm_flags
& VM_SHARED
))
1238 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1239 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1240 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1242 vma
->vm_ops
= &spufs_signal2_mmap_vmops
;
1245 #else /* SPUFS_MMAP_4K */
1246 #define spufs_signal2_mmap NULL
1247 #endif /* !SPUFS_MMAP_4K */
1249 static const struct file_operations spufs_signal2_fops
= {
1250 .open
= spufs_signal2_open
,
1251 .release
= spufs_signal2_release
,
1252 .read
= spufs_signal2_read
,
1253 .write
= spufs_signal2_write
,
1254 .mmap
= spufs_signal2_mmap
,
1257 static const struct file_operations spufs_signal2_nosched_fops
= {
1258 .open
= spufs_signal2_open
,
1259 .release
= spufs_signal2_release
,
1260 .write
= spufs_signal2_write
,
1261 .mmap
= spufs_signal2_mmap
,
1265 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1266 * work of acquiring (or not) the SPU context before calling through
1267 * to the actual get routine. The set routine is called directly.
1269 #define SPU_ATTR_NOACQUIRE 0
1270 #define SPU_ATTR_ACQUIRE 1
1271 #define SPU_ATTR_ACQUIRE_SAVED 2
1273 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1274 static int __##__get(void *data, u64 *val) \
1276 struct spu_context *ctx = data; \
1279 if (__acquire == SPU_ATTR_ACQUIRE) { \
1280 ret = spu_acquire(ctx); \
1283 *val = __get(ctx); \
1285 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1286 ret = spu_acquire_saved(ctx); \
1289 *val = __get(ctx); \
1290 spu_release_saved(ctx); \
1292 *val = __get(ctx); \
1296 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1298 static int spufs_signal1_type_set(void *data
, u64 val
)
1300 struct spu_context
*ctx
= data
;
1303 ret
= spu_acquire(ctx
);
1306 ctx
->ops
->signal1_type_set(ctx
, val
);
1312 static u64
spufs_signal1_type_get(struct spu_context
*ctx
)
1314 return ctx
->ops
->signal1_type_get(ctx
);
1316 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type
, spufs_signal1_type_get
,
1317 spufs_signal1_type_set
, "%llu", SPU_ATTR_ACQUIRE
);
1320 static int spufs_signal2_type_set(void *data
, u64 val
)
1322 struct spu_context
*ctx
= data
;
1325 ret
= spu_acquire(ctx
);
1328 ctx
->ops
->signal2_type_set(ctx
, val
);
1334 static u64
spufs_signal2_type_get(struct spu_context
*ctx
)
1336 return ctx
->ops
->signal2_type_get(ctx
);
1338 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type
, spufs_signal2_type_get
,
1339 spufs_signal2_type_set
, "%llu", SPU_ATTR_ACQUIRE
);
1342 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct
*vma
,
1343 unsigned long address
)
1345 return spufs_ps_nopfn(vma
, address
, 0x0000, 0x1000);
1348 static struct vm_operations_struct spufs_mss_mmap_vmops
= {
1349 .nopfn
= spufs_mss_mmap_nopfn
,
1353 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1355 static int spufs_mss_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1357 if (!(vma
->vm_flags
& VM_SHARED
))
1360 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1361 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1362 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1364 vma
->vm_ops
= &spufs_mss_mmap_vmops
;
1367 #else /* SPUFS_MMAP_4K */
1368 #define spufs_mss_mmap NULL
1369 #endif /* !SPUFS_MMAP_4K */
1371 static int spufs_mss_open(struct inode
*inode
, struct file
*file
)
1373 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1374 struct spu_context
*ctx
= i
->i_ctx
;
1376 file
->private_data
= i
->i_ctx
;
1378 mutex_lock(&ctx
->mapping_lock
);
1379 if (!i
->i_openers
++)
1380 ctx
->mss
= inode
->i_mapping
;
1381 mutex_unlock(&ctx
->mapping_lock
);
1382 return nonseekable_open(inode
, file
);
1386 spufs_mss_release(struct inode
*inode
, struct file
*file
)
1388 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1389 struct spu_context
*ctx
= i
->i_ctx
;
1391 mutex_lock(&ctx
->mapping_lock
);
1392 if (!--i
->i_openers
)
1394 mutex_unlock(&ctx
->mapping_lock
);
1398 static const struct file_operations spufs_mss_fops
= {
1399 .open
= spufs_mss_open
,
1400 .release
= spufs_mss_release
,
1401 .mmap
= spufs_mss_mmap
,
1404 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct
*vma
,
1405 unsigned long address
)
1407 return spufs_ps_nopfn(vma
, address
, 0x0000, 0x20000);
1410 static struct vm_operations_struct spufs_psmap_mmap_vmops
= {
1411 .nopfn
= spufs_psmap_mmap_nopfn
,
1415 * mmap support for full problem state area [0x00000 - 0x1ffff].
1417 static int spufs_psmap_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1419 if (!(vma
->vm_flags
& VM_SHARED
))
1422 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1423 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1424 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1426 vma
->vm_ops
= &spufs_psmap_mmap_vmops
;
1430 static int spufs_psmap_open(struct inode
*inode
, struct file
*file
)
1432 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1433 struct spu_context
*ctx
= i
->i_ctx
;
1435 mutex_lock(&ctx
->mapping_lock
);
1436 file
->private_data
= i
->i_ctx
;
1437 if (!i
->i_openers
++)
1438 ctx
->psmap
= inode
->i_mapping
;
1439 mutex_unlock(&ctx
->mapping_lock
);
1440 return nonseekable_open(inode
, file
);
1444 spufs_psmap_release(struct inode
*inode
, struct file
*file
)
1446 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1447 struct spu_context
*ctx
= i
->i_ctx
;
1449 mutex_lock(&ctx
->mapping_lock
);
1450 if (!--i
->i_openers
)
1452 mutex_unlock(&ctx
->mapping_lock
);
1456 static const struct file_operations spufs_psmap_fops
= {
1457 .open
= spufs_psmap_open
,
1458 .release
= spufs_psmap_release
,
1459 .mmap
= spufs_psmap_mmap
,
1464 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct
*vma
,
1465 unsigned long address
)
1467 return spufs_ps_nopfn(vma
, address
, 0x3000, 0x1000);
1470 static struct vm_operations_struct spufs_mfc_mmap_vmops
= {
1471 .nopfn
= spufs_mfc_mmap_nopfn
,
1475 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1477 static int spufs_mfc_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1479 if (!(vma
->vm_flags
& VM_SHARED
))
1482 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
;
1483 vma
->vm_page_prot
= __pgprot(pgprot_val(vma
->vm_page_prot
)
1484 | _PAGE_NO_CACHE
| _PAGE_GUARDED
);
1486 vma
->vm_ops
= &spufs_mfc_mmap_vmops
;
1489 #else /* SPUFS_MMAP_4K */
1490 #define spufs_mfc_mmap NULL
1491 #endif /* !SPUFS_MMAP_4K */
1493 static int spufs_mfc_open(struct inode
*inode
, struct file
*file
)
1495 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1496 struct spu_context
*ctx
= i
->i_ctx
;
1498 /* we don't want to deal with DMA into other processes */
1499 if (ctx
->owner
!= current
->mm
)
1502 if (atomic_read(&inode
->i_count
) != 1)
1505 mutex_lock(&ctx
->mapping_lock
);
1506 file
->private_data
= ctx
;
1507 if (!i
->i_openers
++)
1508 ctx
->mfc
= inode
->i_mapping
;
1509 mutex_unlock(&ctx
->mapping_lock
);
1510 return nonseekable_open(inode
, file
);
1514 spufs_mfc_release(struct inode
*inode
, struct file
*file
)
1516 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1517 struct spu_context
*ctx
= i
->i_ctx
;
1519 mutex_lock(&ctx
->mapping_lock
);
1520 if (!--i
->i_openers
)
1522 mutex_unlock(&ctx
->mapping_lock
);
1526 /* interrupt-level mfc callback function. */
1527 void spufs_mfc_callback(struct spu
*spu
)
1529 struct spu_context
*ctx
= spu
->ctx
;
1534 wake_up_all(&ctx
->mfc_wq
);
1536 pr_debug("%s %s\n", __FUNCTION__
, spu
->name
);
1537 if (ctx
->mfc_fasync
) {
1538 u32 free_elements
, tagstatus
;
1541 /* no need for spu_acquire in interrupt context */
1542 free_elements
= ctx
->ops
->get_mfc_free_elements(ctx
);
1543 tagstatus
= ctx
->ops
->read_mfc_tagstatus(ctx
);
1546 if (free_elements
& 0xffff)
1548 if (tagstatus
& ctx
->tagwait
)
1551 kill_fasync(&ctx
->mfc_fasync
, SIGIO
, mask
);
1555 static int spufs_read_mfc_tagstatus(struct spu_context
*ctx
, u32
*status
)
1557 /* See if there is one tag group is complete */
1558 /* FIXME we need locking around tagwait */
1559 *status
= ctx
->ops
->read_mfc_tagstatus(ctx
) & ctx
->tagwait
;
1560 ctx
->tagwait
&= ~*status
;
1564 /* enable interrupt waiting for any tag group,
1565 may silently fail if interrupts are already enabled */
1566 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 1);
1570 static ssize_t
spufs_mfc_read(struct file
*file
, char __user
*buffer
,
1571 size_t size
, loff_t
*pos
)
1573 struct spu_context
*ctx
= file
->private_data
;
1580 ret
= spu_acquire(ctx
);
1585 if (file
->f_flags
& O_NONBLOCK
) {
1586 status
= ctx
->ops
->read_mfc_tagstatus(ctx
);
1587 if (!(status
& ctx
->tagwait
))
1590 /* XXX(hch): shouldn't we clear ret here? */
1591 ctx
->tagwait
&= ~status
;
1593 ret
= spufs_wait(ctx
->mfc_wq
,
1594 spufs_read_mfc_tagstatus(ctx
, &status
));
1602 if (copy_to_user(buffer
, &status
, 4))
1609 static int spufs_check_valid_dma(struct mfc_dma_command
*cmd
)
1611 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd
->lsa
,
1612 cmd
->ea
, cmd
->size
, cmd
->tag
, cmd
->cmd
);
1623 pr_debug("invalid DMA opcode %x\n", cmd
->cmd
);
1627 if ((cmd
->lsa
& 0xf) != (cmd
->ea
&0xf)) {
1628 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1633 switch (cmd
->size
& 0xf) {
1654 pr_debug("invalid DMA alignment %x for size %x\n",
1655 cmd
->lsa
& 0xf, cmd
->size
);
1659 if (cmd
->size
> 16 * 1024) {
1660 pr_debug("invalid DMA size %x\n", cmd
->size
);
1664 if (cmd
->tag
& 0xfff0) {
1665 /* we reserve the higher tag numbers for kernel use */
1666 pr_debug("invalid DMA tag\n");
1671 /* not supported in this version */
1672 pr_debug("invalid DMA class\n");
1679 static int spu_send_mfc_command(struct spu_context
*ctx
,
1680 struct mfc_dma_command cmd
,
1683 *error
= ctx
->ops
->send_mfc_command(ctx
, &cmd
);
1684 if (*error
== -EAGAIN
) {
1685 /* wait for any tag group to complete
1686 so we have space for the new command */
1687 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 1);
1688 /* try again, because the queue might be
1690 *error
= ctx
->ops
->send_mfc_command(ctx
, &cmd
);
1691 if (*error
== -EAGAIN
)
1697 static ssize_t
spufs_mfc_write(struct file
*file
, const char __user
*buffer
,
1698 size_t size
, loff_t
*pos
)
1700 struct spu_context
*ctx
= file
->private_data
;
1701 struct mfc_dma_command cmd
;
1704 if (size
!= sizeof cmd
)
1708 if (copy_from_user(&cmd
, buffer
, sizeof cmd
))
1711 ret
= spufs_check_valid_dma(&cmd
);
1715 ret
= spu_acquire(ctx
);
1719 ret
= spufs_wait(ctx
->run_wq
, ctx
->state
== SPU_STATE_RUNNABLE
);
1723 if (file
->f_flags
& O_NONBLOCK
) {
1724 ret
= ctx
->ops
->send_mfc_command(ctx
, &cmd
);
1727 ret
= spufs_wait(ctx
->mfc_wq
,
1728 spu_send_mfc_command(ctx
, cmd
, &status
));
1736 ctx
->tagwait
|= 1 << cmd
.tag
;
1745 static unsigned int spufs_mfc_poll(struct file
*file
,poll_table
*wait
)
1747 struct spu_context
*ctx
= file
->private_data
;
1748 u32 free_elements
, tagstatus
;
1751 poll_wait(file
, &ctx
->mfc_wq
, wait
);
1754 * For now keep this uninterruptible and also ignore the rule
1755 * that poll should not sleep. Will be fixed later.
1757 mutex_lock(&ctx
->state_mutex
);
1758 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 2);
1759 free_elements
= ctx
->ops
->get_mfc_free_elements(ctx
);
1760 tagstatus
= ctx
->ops
->read_mfc_tagstatus(ctx
);
1764 if (free_elements
& 0xffff)
1765 mask
|= POLLOUT
| POLLWRNORM
;
1766 if (tagstatus
& ctx
->tagwait
)
1767 mask
|= POLLIN
| POLLRDNORM
;
1769 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__
,
1770 free_elements
, tagstatus
, ctx
->tagwait
);
1775 static int spufs_mfc_flush(struct file
*file
, fl_owner_t id
)
1777 struct spu_context
*ctx
= file
->private_data
;
1780 ret
= spu_acquire(ctx
);
1784 /* this currently hangs */
1785 ret
= spufs_wait(ctx
->mfc_wq
,
1786 ctx
->ops
->set_mfc_query(ctx
, ctx
->tagwait
, 2));
1789 ret
= spufs_wait(ctx
->mfc_wq
,
1790 ctx
->ops
->read_mfc_tagstatus(ctx
) == ctx
->tagwait
);
1800 static int spufs_mfc_fsync(struct file
*file
, struct dentry
*dentry
,
1803 return spufs_mfc_flush(file
, NULL
);
1806 static int spufs_mfc_fasync(int fd
, struct file
*file
, int on
)
1808 struct spu_context
*ctx
= file
->private_data
;
1810 return fasync_helper(fd
, file
, on
, &ctx
->mfc_fasync
);
1813 static const struct file_operations spufs_mfc_fops
= {
1814 .open
= spufs_mfc_open
,
1815 .release
= spufs_mfc_release
,
1816 .read
= spufs_mfc_read
,
1817 .write
= spufs_mfc_write
,
1818 .poll
= spufs_mfc_poll
,
1819 .flush
= spufs_mfc_flush
,
1820 .fsync
= spufs_mfc_fsync
,
1821 .fasync
= spufs_mfc_fasync
,
1822 .mmap
= spufs_mfc_mmap
,
1825 static int spufs_npc_set(void *data
, u64 val
)
1827 struct spu_context
*ctx
= data
;
1830 ret
= spu_acquire(ctx
);
1833 ctx
->ops
->npc_write(ctx
, val
);
1839 static u64
spufs_npc_get(struct spu_context
*ctx
)
1841 return ctx
->ops
->npc_read(ctx
);
1843 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops
, spufs_npc_get
, spufs_npc_set
,
1844 "0x%llx\n", SPU_ATTR_ACQUIRE
);
1846 static int spufs_decr_set(void *data
, u64 val
)
1848 struct spu_context
*ctx
= data
;
1849 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1852 ret
= spu_acquire_saved(ctx
);
1855 lscsa
->decr
.slot
[0] = (u32
) val
;
1856 spu_release_saved(ctx
);
1861 static u64
spufs_decr_get(struct spu_context
*ctx
)
1863 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1864 return lscsa
->decr
.slot
[0];
1866 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops
, spufs_decr_get
, spufs_decr_set
,
1867 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED
);
1869 static int spufs_decr_status_set(void *data
, u64 val
)
1871 struct spu_context
*ctx
= data
;
1874 ret
= spu_acquire_saved(ctx
);
1878 ctx
->csa
.priv2
.mfc_control_RW
|= MFC_CNTL_DECREMENTER_RUNNING
;
1880 ctx
->csa
.priv2
.mfc_control_RW
&= ~MFC_CNTL_DECREMENTER_RUNNING
;
1881 spu_release_saved(ctx
);
1886 static u64
spufs_decr_status_get(struct spu_context
*ctx
)
1888 if (ctx
->csa
.priv2
.mfc_control_RW
& MFC_CNTL_DECREMENTER_RUNNING
)
1889 return SPU_DECR_STATUS_RUNNING
;
1893 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops
, spufs_decr_status_get
,
1894 spufs_decr_status_set
, "0x%llx\n",
1895 SPU_ATTR_ACQUIRE_SAVED
);
1897 static int spufs_event_mask_set(void *data
, u64 val
)
1899 struct spu_context
*ctx
= data
;
1900 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1903 ret
= spu_acquire_saved(ctx
);
1906 lscsa
->event_mask
.slot
[0] = (u32
) val
;
1907 spu_release_saved(ctx
);
1912 static u64
spufs_event_mask_get(struct spu_context
*ctx
)
1914 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1915 return lscsa
->event_mask
.slot
[0];
1918 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops
, spufs_event_mask_get
,
1919 spufs_event_mask_set
, "0x%llx\n",
1920 SPU_ATTR_ACQUIRE_SAVED
);
1922 static u64
spufs_event_status_get(struct spu_context
*ctx
)
1924 struct spu_state
*state
= &ctx
->csa
;
1926 stat
= state
->spu_chnlcnt_RW
[0];
1928 return state
->spu_chnldata_RW
[0];
1931 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops
, spufs_event_status_get
,
1932 NULL
, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED
)
1934 static int spufs_srr0_set(void *data
, u64 val
)
1936 struct spu_context
*ctx
= data
;
1937 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1940 ret
= spu_acquire_saved(ctx
);
1943 lscsa
->srr0
.slot
[0] = (u32
) val
;
1944 spu_release_saved(ctx
);
1949 static u64
spufs_srr0_get(struct spu_context
*ctx
)
1951 struct spu_lscsa
*lscsa
= ctx
->csa
.lscsa
;
1952 return lscsa
->srr0
.slot
[0];
1954 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops
, spufs_srr0_get
, spufs_srr0_set
,
1955 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED
)
1957 static u64
spufs_id_get(struct spu_context
*ctx
)
1961 if (ctx
->state
== SPU_STATE_RUNNABLE
)
1962 num
= ctx
->spu
->number
;
1964 num
= (unsigned int)-1;
1968 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops
, spufs_id_get
, NULL
, "0x%llx\n",
1971 static u64
spufs_object_id_get(struct spu_context
*ctx
)
1973 /* FIXME: Should there really be no locking here? */
1974 return ctx
->object_id
;
1977 static int spufs_object_id_set(void *data
, u64 id
)
1979 struct spu_context
*ctx
= data
;
1980 ctx
->object_id
= id
;
1985 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops
, spufs_object_id_get
,
1986 spufs_object_id_set
, "0x%llx\n", SPU_ATTR_NOACQUIRE
);
1988 static u64
spufs_lslr_get(struct spu_context
*ctx
)
1990 return ctx
->csa
.priv2
.spu_lslr_RW
;
1992 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops
, spufs_lslr_get
, NULL
, "0x%llx\n",
1993 SPU_ATTR_ACQUIRE_SAVED
);
1995 static int spufs_info_open(struct inode
*inode
, struct file
*file
)
1997 struct spufs_inode_info
*i
= SPUFS_I(inode
);
1998 struct spu_context
*ctx
= i
->i_ctx
;
1999 file
->private_data
= ctx
;
2003 static int spufs_caps_show(struct seq_file
*s
, void *private)
2005 struct spu_context
*ctx
= s
->private;
2007 if (!(ctx
->flags
& SPU_CREATE_NOSCHED
))
2008 seq_puts(s
, "sched\n");
2009 if (!(ctx
->flags
& SPU_CREATE_ISOLATE
))
2010 seq_puts(s
, "step\n");
2014 static int spufs_caps_open(struct inode
*inode
, struct file
*file
)
2016 return single_open(file
, spufs_caps_show
, SPUFS_I(inode
)->i_ctx
);
2019 static const struct file_operations spufs_caps_fops
= {
2020 .open
= spufs_caps_open
,
2022 .llseek
= seq_lseek
,
2023 .release
= single_release
,
2026 static ssize_t
__spufs_mbox_info_read(struct spu_context
*ctx
,
2027 char __user
*buf
, size_t len
, loff_t
*pos
)
2031 /* EOF if there's no entry in the mbox */
2032 if (!(ctx
->csa
.prob
.mb_stat_R
& 0x0000ff))
2035 data
= ctx
->csa
.prob
.pu_mb_R
;
2037 return simple_read_from_buffer(buf
, len
, pos
, &data
, sizeof data
);
2040 static ssize_t
spufs_mbox_info_read(struct file
*file
, char __user
*buf
,
2041 size_t len
, loff_t
*pos
)
2044 struct spu_context
*ctx
= file
->private_data
;
2046 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2049 ret
= spu_acquire_saved(ctx
);
2052 spin_lock(&ctx
->csa
.register_lock
);
2053 ret
= __spufs_mbox_info_read(ctx
, buf
, len
, pos
);
2054 spin_unlock(&ctx
->csa
.register_lock
);
2055 spu_release_saved(ctx
);
2060 static const struct file_operations spufs_mbox_info_fops
= {
2061 .open
= spufs_info_open
,
2062 .read
= spufs_mbox_info_read
,
2063 .llseek
= generic_file_llseek
,
2066 static ssize_t
__spufs_ibox_info_read(struct spu_context
*ctx
,
2067 char __user
*buf
, size_t len
, loff_t
*pos
)
2071 /* EOF if there's no entry in the ibox */
2072 if (!(ctx
->csa
.prob
.mb_stat_R
& 0xff0000))
2075 data
= ctx
->csa
.priv2
.puint_mb_R
;
2077 return simple_read_from_buffer(buf
, len
, pos
, &data
, sizeof data
);
2080 static ssize_t
spufs_ibox_info_read(struct file
*file
, char __user
*buf
,
2081 size_t len
, loff_t
*pos
)
2083 struct spu_context
*ctx
= file
->private_data
;
2086 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2089 ret
= spu_acquire_saved(ctx
);
2092 spin_lock(&ctx
->csa
.register_lock
);
2093 ret
= __spufs_ibox_info_read(ctx
, buf
, len
, pos
);
2094 spin_unlock(&ctx
->csa
.register_lock
);
2095 spu_release_saved(ctx
);
2100 static const struct file_operations spufs_ibox_info_fops
= {
2101 .open
= spufs_info_open
,
2102 .read
= spufs_ibox_info_read
,
2103 .llseek
= generic_file_llseek
,
2106 static ssize_t
__spufs_wbox_info_read(struct spu_context
*ctx
,
2107 char __user
*buf
, size_t len
, loff_t
*pos
)
2113 wbox_stat
= ctx
->csa
.prob
.mb_stat_R
;
2114 cnt
= 4 - ((wbox_stat
& 0x00ff00) >> 8);
2115 for (i
= 0; i
< cnt
; i
++) {
2116 data
[i
] = ctx
->csa
.spu_mailbox_data
[i
];
2119 return simple_read_from_buffer(buf
, len
, pos
, &data
,
2123 static ssize_t
spufs_wbox_info_read(struct file
*file
, char __user
*buf
,
2124 size_t len
, loff_t
*pos
)
2126 struct spu_context
*ctx
= file
->private_data
;
2129 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2132 ret
= spu_acquire_saved(ctx
);
2135 spin_lock(&ctx
->csa
.register_lock
);
2136 ret
= __spufs_wbox_info_read(ctx
, buf
, len
, pos
);
2137 spin_unlock(&ctx
->csa
.register_lock
);
2138 spu_release_saved(ctx
);
2143 static const struct file_operations spufs_wbox_info_fops
= {
2144 .open
= spufs_info_open
,
2145 .read
= spufs_wbox_info_read
,
2146 .llseek
= generic_file_llseek
,
2149 static ssize_t
__spufs_dma_info_read(struct spu_context
*ctx
,
2150 char __user
*buf
, size_t len
, loff_t
*pos
)
2152 struct spu_dma_info info
;
2153 struct mfc_cq_sr
*qp
, *spuqp
;
2156 info
.dma_info_type
= ctx
->csa
.priv2
.spu_tag_status_query_RW
;
2157 info
.dma_info_mask
= ctx
->csa
.lscsa
->tag_mask
.slot
[0];
2158 info
.dma_info_status
= ctx
->csa
.spu_chnldata_RW
[24];
2159 info
.dma_info_stall_and_notify
= ctx
->csa
.spu_chnldata_RW
[25];
2160 info
.dma_info_atomic_command_status
= ctx
->csa
.spu_chnldata_RW
[27];
2161 for (i
= 0; i
< 16; i
++) {
2162 qp
= &info
.dma_info_command_data
[i
];
2163 spuqp
= &ctx
->csa
.priv2
.spuq
[i
];
2165 qp
->mfc_cq_data0_RW
= spuqp
->mfc_cq_data0_RW
;
2166 qp
->mfc_cq_data1_RW
= spuqp
->mfc_cq_data1_RW
;
2167 qp
->mfc_cq_data2_RW
= spuqp
->mfc_cq_data2_RW
;
2168 qp
->mfc_cq_data3_RW
= spuqp
->mfc_cq_data3_RW
;
2171 return simple_read_from_buffer(buf
, len
, pos
, &info
,
2175 static ssize_t
spufs_dma_info_read(struct file
*file
, char __user
*buf
,
2176 size_t len
, loff_t
*pos
)
2178 struct spu_context
*ctx
= file
->private_data
;
2181 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2184 ret
= spu_acquire_saved(ctx
);
2187 spin_lock(&ctx
->csa
.register_lock
);
2188 ret
= __spufs_dma_info_read(ctx
, buf
, len
, pos
);
2189 spin_unlock(&ctx
->csa
.register_lock
);
2190 spu_release_saved(ctx
);
2195 static const struct file_operations spufs_dma_info_fops
= {
2196 .open
= spufs_info_open
,
2197 .read
= spufs_dma_info_read
,
2200 static ssize_t
__spufs_proxydma_info_read(struct spu_context
*ctx
,
2201 char __user
*buf
, size_t len
, loff_t
*pos
)
2203 struct spu_proxydma_info info
;
2204 struct mfc_cq_sr
*qp
, *puqp
;
2205 int ret
= sizeof info
;
2211 if (!access_ok(VERIFY_WRITE
, buf
, len
))
2214 info
.proxydma_info_type
= ctx
->csa
.prob
.dma_querytype_RW
;
2215 info
.proxydma_info_mask
= ctx
->csa
.prob
.dma_querymask_RW
;
2216 info
.proxydma_info_status
= ctx
->csa
.prob
.dma_tagstatus_R
;
2217 for (i
= 0; i
< 8; i
++) {
2218 qp
= &info
.proxydma_info_command_data
[i
];
2219 puqp
= &ctx
->csa
.priv2
.puq
[i
];
2221 qp
->mfc_cq_data0_RW
= puqp
->mfc_cq_data0_RW
;
2222 qp
->mfc_cq_data1_RW
= puqp
->mfc_cq_data1_RW
;
2223 qp
->mfc_cq_data2_RW
= puqp
->mfc_cq_data2_RW
;
2224 qp
->mfc_cq_data3_RW
= puqp
->mfc_cq_data3_RW
;
2227 return simple_read_from_buffer(buf
, len
, pos
, &info
,
2231 static ssize_t
spufs_proxydma_info_read(struct file
*file
, char __user
*buf
,
2232 size_t len
, loff_t
*pos
)
2234 struct spu_context
*ctx
= file
->private_data
;
2237 ret
= spu_acquire_saved(ctx
);
2240 spin_lock(&ctx
->csa
.register_lock
);
2241 ret
= __spufs_proxydma_info_read(ctx
, buf
, len
, pos
);
2242 spin_unlock(&ctx
->csa
.register_lock
);
2243 spu_release_saved(ctx
);
2248 static const struct file_operations spufs_proxydma_info_fops
= {
2249 .open
= spufs_info_open
,
2250 .read
= spufs_proxydma_info_read
,
2253 static int spufs_show_tid(struct seq_file
*s
, void *private)
2255 struct spu_context
*ctx
= s
->private;
2257 seq_printf(s
, "%d\n", ctx
->tid
);
2261 static int spufs_tid_open(struct inode
*inode
, struct file
*file
)
2263 return single_open(file
, spufs_show_tid
, SPUFS_I(inode
)->i_ctx
);
2266 static const struct file_operations spufs_tid_fops
= {
2267 .open
= spufs_tid_open
,
2269 .llseek
= seq_lseek
,
2270 .release
= single_release
,
2273 static const char *ctx_state_names
[] = {
2274 "user", "system", "iowait", "loaded"
2277 static unsigned long long spufs_acct_time(struct spu_context
*ctx
,
2278 enum spu_utilization_state state
)
2281 unsigned long long time
= ctx
->stats
.times
[state
];
2284 * In general, utilization statistics are updated by the controlling
2285 * thread as the spu context moves through various well defined
2286 * state transitions, but if the context is lazily loaded its
2287 * utilization statistics are not updated as the controlling thread
2288 * is not tightly coupled with the execution of the spu context. We
2289 * calculate and apply the time delta from the last recorded state
2290 * of the spu context.
2292 if (ctx
->spu
&& ctx
->stats
.util_state
== state
) {
2294 time
+= timespec_to_ns(&ts
) - ctx
->stats
.tstamp
;
2297 return time
/ NSEC_PER_MSEC
;
2300 static unsigned long long spufs_slb_flts(struct spu_context
*ctx
)
2302 unsigned long long slb_flts
= ctx
->stats
.slb_flt
;
2304 if (ctx
->state
== SPU_STATE_RUNNABLE
) {
2305 slb_flts
+= (ctx
->spu
->stats
.slb_flt
-
2306 ctx
->stats
.slb_flt_base
);
2312 static unsigned long long spufs_class2_intrs(struct spu_context
*ctx
)
2314 unsigned long long class2_intrs
= ctx
->stats
.class2_intr
;
2316 if (ctx
->state
== SPU_STATE_RUNNABLE
) {
2317 class2_intrs
+= (ctx
->spu
->stats
.class2_intr
-
2318 ctx
->stats
.class2_intr_base
);
2321 return class2_intrs
;
2325 static int spufs_show_stat(struct seq_file
*s
, void *private)
2327 struct spu_context
*ctx
= s
->private;
2330 ret
= spu_acquire(ctx
);
2334 seq_printf(s
, "%s %llu %llu %llu %llu "
2335 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2336 ctx_state_names
[ctx
->stats
.util_state
],
2337 spufs_acct_time(ctx
, SPU_UTIL_USER
),
2338 spufs_acct_time(ctx
, SPU_UTIL_SYSTEM
),
2339 spufs_acct_time(ctx
, SPU_UTIL_IOWAIT
),
2340 spufs_acct_time(ctx
, SPU_UTIL_IDLE_LOADED
),
2341 ctx
->stats
.vol_ctx_switch
,
2342 ctx
->stats
.invol_ctx_switch
,
2343 spufs_slb_flts(ctx
),
2344 ctx
->stats
.hash_flt
,
2347 spufs_class2_intrs(ctx
),
2348 ctx
->stats
.libassist
);
2353 static int spufs_stat_open(struct inode
*inode
, struct file
*file
)
2355 return single_open(file
, spufs_show_stat
, SPUFS_I(inode
)->i_ctx
);
2358 static const struct file_operations spufs_stat_fops
= {
2359 .open
= spufs_stat_open
,
2361 .llseek
= seq_lseek
,
2362 .release
= single_release
,
2366 struct tree_descr spufs_dir_contents
[] = {
2367 { "capabilities", &spufs_caps_fops
, 0444, },
2368 { "mem", &spufs_mem_fops
, 0666, },
2369 { "regs", &spufs_regs_fops
, 0666, },
2370 { "mbox", &spufs_mbox_fops
, 0444, },
2371 { "ibox", &spufs_ibox_fops
, 0444, },
2372 { "wbox", &spufs_wbox_fops
, 0222, },
2373 { "mbox_stat", &spufs_mbox_stat_fops
, 0444, },
2374 { "ibox_stat", &spufs_ibox_stat_fops
, 0444, },
2375 { "wbox_stat", &spufs_wbox_stat_fops
, 0444, },
2376 { "signal1", &spufs_signal1_fops
, 0666, },
2377 { "signal2", &spufs_signal2_fops
, 0666, },
2378 { "signal1_type", &spufs_signal1_type
, 0666, },
2379 { "signal2_type", &spufs_signal2_type
, 0666, },
2380 { "cntl", &spufs_cntl_fops
, 0666, },
2381 { "fpcr", &spufs_fpcr_fops
, 0666, },
2382 { "lslr", &spufs_lslr_ops
, 0444, },
2383 { "mfc", &spufs_mfc_fops
, 0666, },
2384 { "mss", &spufs_mss_fops
, 0666, },
2385 { "npc", &spufs_npc_ops
, 0666, },
2386 { "srr0", &spufs_srr0_ops
, 0666, },
2387 { "decr", &spufs_decr_ops
, 0666, },
2388 { "decr_status", &spufs_decr_status_ops
, 0666, },
2389 { "event_mask", &spufs_event_mask_ops
, 0666, },
2390 { "event_status", &spufs_event_status_ops
, 0444, },
2391 { "psmap", &spufs_psmap_fops
, 0666, },
2392 { "phys-id", &spufs_id_ops
, 0666, },
2393 { "object-id", &spufs_object_id_ops
, 0666, },
2394 { "mbox_info", &spufs_mbox_info_fops
, 0444, },
2395 { "ibox_info", &spufs_ibox_info_fops
, 0444, },
2396 { "wbox_info", &spufs_wbox_info_fops
, 0444, },
2397 { "dma_info", &spufs_dma_info_fops
, 0444, },
2398 { "proxydma_info", &spufs_proxydma_info_fops
, 0444, },
2399 { "tid", &spufs_tid_fops
, 0444, },
2400 { "stat", &spufs_stat_fops
, 0444, },
2404 struct tree_descr spufs_dir_nosched_contents
[] = {
2405 { "capabilities", &spufs_caps_fops
, 0444, },
2406 { "mem", &spufs_mem_fops
, 0666, },
2407 { "mbox", &spufs_mbox_fops
, 0444, },
2408 { "ibox", &spufs_ibox_fops
, 0444, },
2409 { "wbox", &spufs_wbox_fops
, 0222, },
2410 { "mbox_stat", &spufs_mbox_stat_fops
, 0444, },
2411 { "ibox_stat", &spufs_ibox_stat_fops
, 0444, },
2412 { "wbox_stat", &spufs_wbox_stat_fops
, 0444, },
2413 { "signal1", &spufs_signal1_nosched_fops
, 0222, },
2414 { "signal2", &spufs_signal2_nosched_fops
, 0222, },
2415 { "signal1_type", &spufs_signal1_type
, 0666, },
2416 { "signal2_type", &spufs_signal2_type
, 0666, },
2417 { "mss", &spufs_mss_fops
, 0666, },
2418 { "mfc", &spufs_mfc_fops
, 0666, },
2419 { "cntl", &spufs_cntl_fops
, 0666, },
2420 { "npc", &spufs_npc_ops
, 0666, },
2421 { "psmap", &spufs_psmap_fops
, 0666, },
2422 { "phys-id", &spufs_id_ops
, 0666, },
2423 { "object-id", &spufs_object_id_ops
, 0666, },
2424 { "tid", &spufs_tid_fops
, 0444, },
2425 { "stat", &spufs_stat_fops
, 0444, },
2429 struct spufs_coredump_reader spufs_coredump_read
[] = {
2430 { "regs", __spufs_regs_read
, NULL
, sizeof(struct spu_reg128
[128])},
2431 { "fpcr", __spufs_fpcr_read
, NULL
, sizeof(struct spu_reg128
) },
2432 { "lslr", NULL
, spufs_lslr_get
, 19 },
2433 { "decr", NULL
, spufs_decr_get
, 19 },
2434 { "decr_status", NULL
, spufs_decr_status_get
, 19 },
2435 { "mem", __spufs_mem_read
, NULL
, LS_SIZE
, },
2436 { "signal1", __spufs_signal1_read
, NULL
, sizeof(u32
) },
2437 { "signal1_type", NULL
, spufs_signal1_type_get
, 19 },
2438 { "signal2", __spufs_signal2_read
, NULL
, sizeof(u32
) },
2439 { "signal2_type", NULL
, spufs_signal2_type_get
, 19 },
2440 { "event_mask", NULL
, spufs_event_mask_get
, 19 },
2441 { "event_status", NULL
, spufs_event_status_get
, 19 },
2442 { "mbox_info", __spufs_mbox_info_read
, NULL
, sizeof(u32
) },
2443 { "ibox_info", __spufs_ibox_info_read
, NULL
, sizeof(u32
) },
2444 { "wbox_info", __spufs_wbox_info_read
, NULL
, 4 * sizeof(u32
)},
2445 { "dma_info", __spufs_dma_info_read
, NULL
, sizeof(struct spu_dma_info
)},
2446 { "proxydma_info", __spufs_proxydma_info_read
,
2447 NULL
, sizeof(struct spu_proxydma_info
)},
2448 { "object-id", NULL
, spufs_object_id_get
, 19 },
2449 { "npc", NULL
, spufs_npc_get
, 19 },