2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/irq.h>
36 #include <linux/random.h>
37 #include <linux/sysrq.h>
38 #include <linux/bitops.h>
40 #include <asm/uaccess.h>
41 #include <asm/system.h>
43 #include <asm/pgtable.h>
45 #include <asm/cache.h>
47 #include <asm/ptrace.h>
48 #include <asm/machdep.h>
51 #include <asm/firmware.h>
55 static unsigned char ras_log_buf
[RTAS_ERROR_LOG_MAX
];
56 static DEFINE_SPINLOCK(ras_log_buf_lock
);
58 char mce_data_buf
[RTAS_ERROR_LOG_MAX
];
60 static int ras_get_sensor_state_token
;
61 static int ras_check_exception_token
;
63 #define EPOW_SENSOR_TOKEN 9
64 #define EPOW_SENSOR_INDEX 0
65 #define RAS_VECTOR_OFFSET 0x500
67 static irqreturn_t
ras_epow_interrupt(int irq
, void *dev_id
);
68 static irqreturn_t
ras_error_interrupt(int irq
, void *dev_id
);
73 static void request_ras_irqs(struct device_node
*np
,
74 irq_handler_t handler
,
77 int i
, index
, count
= 0;
80 unsigned int opicplen
;
81 unsigned int virqs
[16];
83 /* Check for obsolete "open-pic-interrupt" property. If present, then
84 * map those interrupts using the default interrupt host and default
87 opicprop
= of_get_property(np
, "open-pic-interrupt", &opicplen
);
89 opicplen
/= sizeof(u32
);
90 for (i
= 0; i
< opicplen
; i
++) {
93 virqs
[count
] = irq_create_mapping(NULL
, *(opicprop
++));
94 if (virqs
[count
] == NO_IRQ
)
95 printk(KERN_ERR
"Unable to allocate interrupt "
96 "number for %s\n", np
->full_name
);
102 /* Else use normal interrupt tree parsing */
104 /* First try to do a proper OF tree parsing */
105 for (index
= 0; of_irq_map_one(np
, index
, &oirq
) == 0;
109 virqs
[count
] = irq_create_of_mapping(oirq
.controller
,
112 if (virqs
[count
] == NO_IRQ
)
113 printk(KERN_ERR
"Unable to allocate interrupt "
114 "number for %s\n", np
->full_name
);
120 /* Now request them */
121 for (i
= 0; i
< count
; i
++) {
122 if (request_irq(virqs
[i
], handler
, 0, name
, NULL
)) {
123 printk(KERN_ERR
"Unable to request interrupt %d for "
124 "%s\n", virqs
[i
], np
->full_name
);
131 * Initialize handlers for the set of interrupts caused by hardware errors
132 * and power system events.
134 static int __init
init_ras_IRQ(void)
136 struct device_node
*np
;
138 ras_get_sensor_state_token
= rtas_token("get-sensor-state");
139 ras_check_exception_token
= rtas_token("check-exception");
141 /* Internal Errors */
142 np
= of_find_node_by_path("/event-sources/internal-errors");
144 request_ras_irqs(np
, ras_error_interrupt
, "RAS_ERROR");
149 np
= of_find_node_by_path("/event-sources/epow-events");
151 request_ras_irqs(np
, ras_epow_interrupt
, "RAS_EPOW");
157 __initcall(init_ras_IRQ
);
160 * Handle power subsystem events (EPOW).
162 * Presently we just log the event has occurred. This should be fixed
163 * to examine the type of power failure and take appropriate action where
164 * the time horizon permits something useful to be done.
166 static irqreturn_t
ras_epow_interrupt(int irq
, void *dev_id
)
168 int status
= 0xdeadbeef;
172 status
= rtas_call(ras_get_sensor_state_token
, 2, 2, &state
,
173 EPOW_SENSOR_TOKEN
, EPOW_SENSOR_INDEX
);
176 critical
= 1; /* Time Critical */
180 spin_lock(&ras_log_buf_lock
);
182 status
= rtas_call(ras_check_exception_token
, 6, 1, NULL
,
185 RTAS_EPOW_WARNING
| RTAS_POWERMGM_EVENTS
,
186 critical
, __pa(&ras_log_buf
),
187 rtas_get_error_log_max());
189 udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
190 *((unsigned long *)&ras_log_buf
), status
, state
);
191 printk(KERN_WARNING
"EPOW <0x%lx 0x%x 0x%x>\n",
192 *((unsigned long *)&ras_log_buf
), status
, state
);
194 /* format and print the extended information */
195 log_error(ras_log_buf
, ERR_TYPE_RTAS_LOG
, 0);
197 spin_unlock(&ras_log_buf_lock
);
202 * Handle hardware error interrupts.
204 * RTAS check-exception is called to collect data on the exception. If
205 * the error is deemed recoverable, we log a warning and return.
206 * For nonrecoverable errors, an error is logged and we stop all processing
207 * as quickly as possible in order to prevent propagation of the failure.
209 static irqreturn_t
ras_error_interrupt(int irq
, void *dev_id
)
211 struct rtas_error_log
*rtas_elog
;
212 int status
= 0xdeadbeef;
215 spin_lock(&ras_log_buf_lock
);
217 status
= rtas_call(ras_check_exception_token
, 6, 1, NULL
,
220 RTAS_INTERNAL_ERROR
, 1 /*Time Critical */,
222 rtas_get_error_log_max());
224 rtas_elog
= (struct rtas_error_log
*)ras_log_buf
;
226 if ((status
== 0) && (rtas_elog
->severity
>= RTAS_SEVERITY_ERROR_SYNC
))
231 /* format and print the extended information */
232 log_error(ras_log_buf
, ERR_TYPE_RTAS_LOG
, fatal
);
235 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
236 *((unsigned long *)&ras_log_buf
), status
);
237 printk(KERN_EMERG
"Error: Fatal hardware error <0x%lx 0x%x>\n",
238 *((unsigned long *)&ras_log_buf
), status
);
241 /* Don't actually power off when debugging so we can test
242 * without actually failing while injecting errors.
243 * Error data will not be logged to syslog.
248 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
249 *((unsigned long *)&ras_log_buf
), status
);
251 "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
252 *((unsigned long *)&ras_log_buf
), status
);
255 spin_unlock(&ras_log_buf_lock
);
259 /* Get the error information for errors coming through the
260 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
261 * the actual r3 if possible, and a ptr to the error log entry
262 * will be returned if found.
264 * The mce_data_buf does not have any locks or protection around it,
265 * if a second machine check comes in, or a system reset is done
266 * before we have logged the error, then we will get corruption in the
267 * error log. This is preferable over holding off on calling
268 * ibm,nmi-interlock which would result in us checkstopping if a
269 * second machine check did come in.
271 static struct rtas_error_log
*fwnmi_get_errinfo(struct pt_regs
*regs
)
273 unsigned long errdata
= regs
->gpr
[3];
274 struct rtas_error_log
*errhdr
= NULL
;
275 unsigned long *savep
;
277 if ((errdata
>= 0x7000 && errdata
< 0x7fff0) ||
278 (errdata
>= rtas
.base
&& errdata
< rtas
.base
+ rtas
.size
- 16)) {
279 savep
= __va(errdata
);
280 regs
->gpr
[3] = savep
[0]; /* restore original r3 */
281 memset(mce_data_buf
, 0, RTAS_ERROR_LOG_MAX
);
282 memcpy(mce_data_buf
, (char *)(savep
+ 1), RTAS_ERROR_LOG_MAX
);
283 errhdr
= (struct rtas_error_log
*)mce_data_buf
;
285 printk("FWNMI: corrupt r3\n");
290 /* Call this when done with the data returned by FWNMI_get_errinfo.
291 * It will release the saved data area for other CPUs in the
292 * partition to receive FWNMI errors.
294 static void fwnmi_release_errinfo(void)
296 int ret
= rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL
);
298 printk("FWNMI: nmi-interlock failed: %d\n", ret
);
301 int pSeries_system_reset_exception(struct pt_regs
*regs
)
304 struct rtas_error_log
*errhdr
= fwnmi_get_errinfo(regs
);
306 /* XXX Should look at FWNMI information */
308 fwnmi_release_errinfo();
310 return 0; /* need to perform reset */
314 * See if we can recover from a machine check exception.
315 * This is only called on power4 (or above) and only via
316 * the Firmware Non-Maskable Interrupts (fwnmi) handler
317 * which provides the error analysis for us.
319 * Return 1 if corrected (or delivered a signal).
320 * Return 0 if there is nothing we can do.
322 static int recover_mce(struct pt_regs
*regs
, struct rtas_error_log
* err
)
326 if (err
->disposition
== RTAS_DISP_FULLY_RECOVERED
) {
327 /* Platform corrected itself */
329 } else if ((regs
->msr
& MSR_RI
) &&
331 err
->severity
== RTAS_SEVERITY_ERROR_SYNC
&&
332 err
->disposition
== RTAS_DISP_NOT_RECOVERED
&&
333 err
->target
== RTAS_TARGET_MEMORY
&&
334 err
->type
== RTAS_TYPE_ECC_UNCORR
&&
335 !(current
->pid
== 0 || is_global_init(current
))) {
336 /* Kill off a user process with an ECC error */
337 printk(KERN_ERR
"MCE: uncorrectable ecc error for pid %d\n",
339 /* XXX something better for ECC error? */
340 _exception(SIGBUS
, regs
, BUS_ADRERR
, regs
->nip
);
344 log_error((char *)err
, ERR_TYPE_RTAS_LOG
, !nonfatal
);
350 * Handle a machine check.
352 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
353 * should be present. If so the handler which called us tells us if the
354 * error was recovered (never true if RI=0).
356 * On hardware prior to Power 4 these exceptions were asynchronous which
357 * means we can't tell exactly where it occurred and so we can't recover.
359 int pSeries_machine_check_exception(struct pt_regs
*regs
)
361 struct rtas_error_log
*errp
;
364 errp
= fwnmi_get_errinfo(regs
);
365 fwnmi_release_errinfo();
366 if (errp
&& recover_mce(regs
, errp
))