kbuild: Fix instrumentation removal breakage on avr32
[wrt350n-kernel.git] / drivers / ide / ide-io.c
blob4bddef0c0b965b341c5c96a16bc9d5d036ce9efc
1 /*
2 * IDE I/O functions
4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
60 int ret = 1;
61 int error = 0;
63 if (uptodate <= 0)
64 error = uptodate ? uptodate : -EIO;
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
70 if (blk_noretry_request(rq) && error)
71 nr_bytes = rq->hard_nr_sectors << 9;
73 if (!blk_fs_request(rq) && error && !rq->errors)
74 rq->errors = -EIO;
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81 drive->state = 0;
82 ide_dma_on(drive);
85 if (!__blk_end_request(rq, error, nr_bytes)) {
86 if (dequeue)
87 HWGROUP(drive)->rq = NULL;
88 ret = 0;
91 return ret;
94 /**
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
97 * @uptodate:
98 * @nr_sectors: number of sectors completed
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 unsigned int nr_bytes = nr_sectors << 9;
108 struct request *rq;
109 unsigned long flags;
110 int ret = 1;
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock, flags);
117 rq = HWGROUP(drive)->rq;
119 if (!nr_bytes) {
120 if (blk_pc_request(rq))
121 nr_bytes = rq->data_len;
122 else
123 nr_bytes = rq->hard_cur_sectors << 9;
126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128 spin_unlock_irqrestore(&ide_lock, flags);
129 return ret;
131 EXPORT_SYMBOL(ide_end_request);
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
139 enum {
140 ide_pm_flush_cache = ide_pm_state_start_suspend,
141 idedisk_pm_standby,
143 idedisk_pm_restore_pio = ide_pm_state_start_resume,
144 idedisk_pm_idle,
145 ide_pm_restore_dma,
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 struct request_pm_state *pm = rq->data;
152 if (drive->media != ide_disk)
153 return;
155 switch (pm->pm_step) {
156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
157 if (pm->pm_state == PM_EVENT_FREEZE)
158 pm->pm_step = ide_pm_state_completed;
159 else
160 pm->pm_step = idedisk_pm_standby;
161 break;
162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
163 pm->pm_step = ide_pm_state_completed;
164 break;
165 case idedisk_pm_restore_pio: /* Resume step 1 complete */
166 pm->pm_step = idedisk_pm_idle;
167 break;
168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
169 pm->pm_step = ide_pm_restore_dma;
170 break;
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 struct request_pm_state *pm = rq->data;
177 ide_task_t *args = rq->special;
179 memset(args, 0, sizeof(*args));
181 switch (pm->pm_step) {
182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
183 if (drive->media != ide_disk)
184 break;
185 /* Not supported? Switch to next step now. */
186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187 ide_complete_power_step(drive, rq, 0, 0);
188 return ide_stopped;
190 if (ide_id_has_flush_cache_ext(drive->id))
191 args->tf.command = WIN_FLUSH_CACHE_EXT;
192 else
193 args->tf.command = WIN_FLUSH_CACHE;
194 goto out_do_tf;
196 case idedisk_pm_standby: /* Suspend step 2 (standby) */
197 args->tf.command = WIN_STANDBYNOW1;
198 goto out_do_tf;
200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive);
203 * skip idedisk_pm_idle for ATAPI devices
205 if (drive->media != ide_disk)
206 pm->pm_step = ide_pm_restore_dma;
207 else
208 ide_complete_power_step(drive, rq, 0, 0);
209 return ide_stopped;
211 case idedisk_pm_idle: /* Resume step 2 (idle) */
212 args->tf.command = WIN_IDLEIMMEDIATE;
213 goto out_do_tf;
215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
221 if (drive->hwif->dma_host_set == NULL)
222 break;
224 * TODO: respect ->using_dma setting
226 ide_set_dma(drive);
227 break;
229 pm->pm_step = ide_pm_state_completed;
230 return ide_stopped;
232 out_do_tf:
233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234 args->data_phase = TASKFILE_NO_DATA;
235 return do_rw_taskfile(drive, args);
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
241 * @uptodate:
242 * @nr_sectors: number of sectors completed
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
249 * NOTE: This path does not handle barrier, but barrier is not supported
250 * on ide-cd anyway.
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254 int uptodate, int nr_sectors)
256 unsigned long flags;
257 int ret;
259 spin_lock_irqsave(&ide_lock, flags);
260 BUG_ON(!blk_rq_started(rq));
261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262 spin_unlock_irqrestore(&ide_lock, flags);
264 return ret;
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
272 * @rq: request
274 * This function cleans up the current PM request and stops the queue
275 * if necessary.
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279 unsigned long flags;
281 #ifdef DEBUG_PM
282 printk("%s: completing PM request, %s\n", drive->name,
283 blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285 spin_lock_irqsave(&ide_lock, flags);
286 if (blk_pm_suspend_request(rq)) {
287 blk_stop_queue(drive->queue);
288 } else {
289 drive->blocked = 0;
290 blk_start_queue(drive->queue);
292 HWGROUP(drive)->rq = NULL;
293 if (__blk_end_request(rq, 0, 0))
294 BUG();
295 spin_unlock_irqrestore(&ide_lock, flags);
298 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300 ide_hwif_t *hwif = drive->hwif;
301 struct ide_taskfile *tf = &task->tf;
303 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
304 u16 data = hwif->INW(IDE_DATA_REG);
306 tf->data = data & 0xff;
307 tf->hob_data = (data >> 8) & 0xff;
310 /* be sure we're looking at the low order bits */
311 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
314 tf->nsect = hwif->INB(IDE_NSECTOR_REG);
315 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
316 tf->lbal = hwif->INB(IDE_SECTOR_REG);
317 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
318 tf->lbam = hwif->INB(IDE_LCYL_REG);
319 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
320 tf->lbah = hwif->INB(IDE_HCYL_REG);
321 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
322 tf->device = hwif->INB(IDE_SELECT_REG);
324 if (task->tf_flags & IDE_TFLAG_LBA48) {
325 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
328 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
329 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
330 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
331 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
332 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
333 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
334 tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
335 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
336 tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
341 * ide_end_drive_cmd - end an explicit drive command
342 * @drive: command
343 * @stat: status bits
344 * @err: error bits
346 * Clean up after success/failure of an explicit drive command.
347 * These get thrown onto the queue so they are synchronized with
348 * real I/O operations on the drive.
350 * In LBA48 mode we have to read the register set twice to get
351 * all the extra information out.
354 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 unsigned long flags;
357 struct request *rq;
359 spin_lock_irqsave(&ide_lock, flags);
360 rq = HWGROUP(drive)->rq;
361 spin_unlock_irqrestore(&ide_lock, flags);
363 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
364 ide_task_t *args = (ide_task_t *) rq->special;
365 if (rq->errors == 0)
366 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
368 if (args) {
369 struct ide_taskfile *tf = &args->tf;
371 tf->error = err;
372 tf->status = stat;
374 ide_tf_read(drive, args);
376 } else if (blk_pm_request(rq)) {
377 struct request_pm_state *pm = rq->data;
378 #ifdef DEBUG_PM
379 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
380 drive->name, rq->pm->pm_step, stat, err);
381 #endif
382 ide_complete_power_step(drive, rq, stat, err);
383 if (pm->pm_step == ide_pm_state_completed)
384 ide_complete_pm_request(drive, rq);
385 return;
388 spin_lock_irqsave(&ide_lock, flags);
389 HWGROUP(drive)->rq = NULL;
390 rq->errors = err;
391 if (__blk_end_request(rq, (rq->errors ? -EIO : 0), 0))
392 BUG();
393 spin_unlock_irqrestore(&ide_lock, flags);
396 EXPORT_SYMBOL(ide_end_drive_cmd);
399 * try_to_flush_leftover_data - flush junk
400 * @drive: drive to flush
402 * try_to_flush_leftover_data() is invoked in response to a drive
403 * unexpectedly having its DRQ_STAT bit set. As an alternative to
404 * resetting the drive, this routine tries to clear the condition
405 * by read a sector's worth of data from the drive. Of course,
406 * this may not help if the drive is *waiting* for data from *us*.
408 static void try_to_flush_leftover_data (ide_drive_t *drive)
410 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
412 if (drive->media != ide_disk)
413 return;
414 while (i > 0) {
415 u32 buffer[16];
416 u32 wcount = (i > 16) ? 16 : i;
418 i -= wcount;
419 HWIF(drive)->ata_input_data(drive, buffer, wcount);
423 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
425 if (rq->rq_disk) {
426 ide_driver_t *drv;
428 drv = *(ide_driver_t **)rq->rq_disk->private_data;
429 drv->end_request(drive, 0, 0);
430 } else
431 ide_end_request(drive, 0, 0);
434 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
436 ide_hwif_t *hwif = drive->hwif;
438 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
439 /* other bits are useless when BUSY */
440 rq->errors |= ERROR_RESET;
441 } else if (stat & ERR_STAT) {
442 /* err has different meaning on cdrom and tape */
443 if (err == ABRT_ERR) {
444 if (drive->select.b.lba &&
445 /* some newer drives don't support WIN_SPECIFY */
446 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
447 return ide_stopped;
448 } else if ((err & BAD_CRC) == BAD_CRC) {
449 /* UDMA crc error, just retry the operation */
450 drive->crc_count++;
451 } else if (err & (BBD_ERR | ECC_ERR)) {
452 /* retries won't help these */
453 rq->errors = ERROR_MAX;
454 } else if (err & TRK0_ERR) {
455 /* help it find track zero */
456 rq->errors |= ERROR_RECAL;
460 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
461 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
462 try_to_flush_leftover_data(drive);
464 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
465 ide_kill_rq(drive, rq);
466 return ide_stopped;
469 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
470 rq->errors |= ERROR_RESET;
472 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
473 ++rq->errors;
474 return ide_do_reset(drive);
477 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
478 drive->special.b.recalibrate = 1;
480 ++rq->errors;
482 return ide_stopped;
485 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
487 ide_hwif_t *hwif = drive->hwif;
489 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
490 /* other bits are useless when BUSY */
491 rq->errors |= ERROR_RESET;
492 } else {
493 /* add decoding error stuff */
496 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
497 /* force an abort */
498 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
500 if (rq->errors >= ERROR_MAX) {
501 ide_kill_rq(drive, rq);
502 } else {
503 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
504 ++rq->errors;
505 return ide_do_reset(drive);
507 ++rq->errors;
510 return ide_stopped;
513 ide_startstop_t
514 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
516 if (drive->media == ide_disk)
517 return ide_ata_error(drive, rq, stat, err);
518 return ide_atapi_error(drive, rq, stat, err);
521 EXPORT_SYMBOL_GPL(__ide_error);
524 * ide_error - handle an error on the IDE
525 * @drive: drive the error occurred on
526 * @msg: message to report
527 * @stat: status bits
529 * ide_error() takes action based on the error returned by the drive.
530 * For normal I/O that may well include retries. We deal with
531 * both new-style (taskfile) and old style command handling here.
532 * In the case of taskfile command handling there is work left to
533 * do
536 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
538 struct request *rq;
539 u8 err;
541 err = ide_dump_status(drive, msg, stat);
543 if ((rq = HWGROUP(drive)->rq) == NULL)
544 return ide_stopped;
546 /* retry only "normal" I/O: */
547 if (!blk_fs_request(rq)) {
548 rq->errors = 1;
549 ide_end_drive_cmd(drive, stat, err);
550 return ide_stopped;
553 if (rq->rq_disk) {
554 ide_driver_t *drv;
556 drv = *(ide_driver_t **)rq->rq_disk->private_data;
557 return drv->error(drive, rq, stat, err);
558 } else
559 return __ide_error(drive, rq, stat, err);
562 EXPORT_SYMBOL_GPL(ide_error);
564 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
566 if (drive->media != ide_disk)
567 rq->errors |= ERROR_RESET;
569 ide_kill_rq(drive, rq);
571 return ide_stopped;
574 EXPORT_SYMBOL_GPL(__ide_abort);
577 * ide_abort - abort pending IDE operations
578 * @drive: drive the error occurred on
579 * @msg: message to report
581 * ide_abort kills and cleans up when we are about to do a
582 * host initiated reset on active commands. Longer term we
583 * want handlers to have sensible abort handling themselves
585 * This differs fundamentally from ide_error because in
586 * this case the command is doing just fine when we
587 * blow it away.
590 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
592 struct request *rq;
594 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
595 return ide_stopped;
597 /* retry only "normal" I/O: */
598 if (!blk_fs_request(rq)) {
599 rq->errors = 1;
600 ide_end_drive_cmd(drive, BUSY_STAT, 0);
601 return ide_stopped;
604 if (rq->rq_disk) {
605 ide_driver_t *drv;
607 drv = *(ide_driver_t **)rq->rq_disk->private_data;
608 return drv->abort(drive, rq);
609 } else
610 return __ide_abort(drive, rq);
613 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
615 tf->nsect = drive->sect;
616 tf->lbal = drive->sect;
617 tf->lbam = drive->cyl;
618 tf->lbah = drive->cyl >> 8;
619 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
620 tf->command = WIN_SPECIFY;
623 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
625 tf->nsect = drive->sect;
626 tf->command = WIN_RESTORE;
629 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
631 tf->nsect = drive->mult_req;
632 tf->command = WIN_SETMULT;
635 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
637 special_t *s = &drive->special;
638 ide_task_t args;
640 memset(&args, 0, sizeof(ide_task_t));
641 args.data_phase = TASKFILE_NO_DATA;
643 if (s->b.set_geometry) {
644 s->b.set_geometry = 0;
645 ide_tf_set_specify_cmd(drive, &args.tf);
646 } else if (s->b.recalibrate) {
647 s->b.recalibrate = 0;
648 ide_tf_set_restore_cmd(drive, &args.tf);
649 } else if (s->b.set_multmode) {
650 s->b.set_multmode = 0;
651 if (drive->mult_req > drive->id->max_multsect)
652 drive->mult_req = drive->id->max_multsect;
653 ide_tf_set_setmult_cmd(drive, &args.tf);
654 } else if (s->all) {
655 int special = s->all;
656 s->all = 0;
657 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
658 return ide_stopped;
661 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
662 IDE_TFLAG_CUSTOM_HANDLER;
664 do_rw_taskfile(drive, &args);
666 return ide_started;
670 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
672 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
674 switch (req_pio) {
675 case 202:
676 case 201:
677 case 200:
678 case 102:
679 case 101:
680 case 100:
681 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
682 case 9:
683 case 8:
684 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
685 case 7:
686 case 6:
687 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
688 default:
689 return 0;
694 * do_special - issue some special commands
695 * @drive: drive the command is for
697 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
698 * commands to a drive. It used to do much more, but has been scaled
699 * back.
702 static ide_startstop_t do_special (ide_drive_t *drive)
704 special_t *s = &drive->special;
706 #ifdef DEBUG
707 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
708 #endif
709 if (s->b.set_tune) {
710 ide_hwif_t *hwif = drive->hwif;
711 u8 req_pio = drive->tune_req;
713 s->b.set_tune = 0;
715 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
717 if (hwif->set_pio_mode == NULL)
718 return ide_stopped;
721 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
723 if (req_pio == 8 || req_pio == 9) {
724 unsigned long flags;
726 spin_lock_irqsave(&ide_lock, flags);
727 hwif->set_pio_mode(drive, req_pio);
728 spin_unlock_irqrestore(&ide_lock, flags);
729 } else
730 hwif->set_pio_mode(drive, req_pio);
731 } else {
732 int keep_dma = drive->using_dma;
734 ide_set_pio(drive, req_pio);
736 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
737 if (keep_dma)
738 ide_dma_on(drive);
742 return ide_stopped;
743 } else {
744 if (drive->media == ide_disk)
745 return ide_disk_special(drive);
747 s->all = 0;
748 drive->mult_req = 0;
749 return ide_stopped;
753 void ide_map_sg(ide_drive_t *drive, struct request *rq)
755 ide_hwif_t *hwif = drive->hwif;
756 struct scatterlist *sg = hwif->sg_table;
758 if (hwif->sg_mapped) /* needed by ide-scsi */
759 return;
761 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
762 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
763 } else {
764 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
765 hwif->sg_nents = 1;
769 EXPORT_SYMBOL_GPL(ide_map_sg);
771 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
773 ide_hwif_t *hwif = drive->hwif;
775 hwif->nsect = hwif->nleft = rq->nr_sectors;
776 hwif->cursg_ofs = 0;
777 hwif->cursg = NULL;
780 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
783 * execute_drive_command - issue special drive command
784 * @drive: the drive to issue the command on
785 * @rq: the request structure holding the command
787 * execute_drive_cmd() issues a special drive command, usually
788 * initiated by ioctl() from the external hdparm program. The
789 * command can be a drive command, drive task or taskfile
790 * operation. Weirdly you can call it with NULL to wait for
791 * all commands to finish. Don't do this as that is due to change
794 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
795 struct request *rq)
797 ide_hwif_t *hwif = HWIF(drive);
798 ide_task_t *task = rq->special;
800 if (task) {
801 hwif->data_phase = task->data_phase;
803 switch (hwif->data_phase) {
804 case TASKFILE_MULTI_OUT:
805 case TASKFILE_OUT:
806 case TASKFILE_MULTI_IN:
807 case TASKFILE_IN:
808 ide_init_sg_cmd(drive, rq);
809 ide_map_sg(drive, rq);
810 default:
811 break;
814 return do_rw_taskfile(drive, task);
818 * NULL is actually a valid way of waiting for
819 * all current requests to be flushed from the queue.
821 #ifdef DEBUG
822 printk("%s: DRIVE_CMD (null)\n", drive->name);
823 #endif
824 ide_end_drive_cmd(drive,
825 hwif->INB(IDE_STATUS_REG),
826 hwif->INB(IDE_ERROR_REG));
827 return ide_stopped;
830 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
832 struct request_pm_state *pm = rq->data;
834 if (blk_pm_suspend_request(rq) &&
835 pm->pm_step == ide_pm_state_start_suspend)
836 /* Mark drive blocked when starting the suspend sequence. */
837 drive->blocked = 1;
838 else if (blk_pm_resume_request(rq) &&
839 pm->pm_step == ide_pm_state_start_resume) {
841 * The first thing we do on wakeup is to wait for BSY bit to
842 * go away (with a looong timeout) as a drive on this hwif may
843 * just be POSTing itself.
844 * We do that before even selecting as the "other" device on
845 * the bus may be broken enough to walk on our toes at this
846 * point.
848 int rc;
849 #ifdef DEBUG_PM
850 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
851 #endif
852 rc = ide_wait_not_busy(HWIF(drive), 35000);
853 if (rc)
854 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
855 SELECT_DRIVE(drive);
856 ide_set_irq(drive, 1);
857 rc = ide_wait_not_busy(HWIF(drive), 100000);
858 if (rc)
859 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
864 * start_request - start of I/O and command issuing for IDE
866 * start_request() initiates handling of a new I/O request. It
867 * accepts commands and I/O (read/write) requests. It also does
868 * the final remapping for weird stuff like EZDrive. Once
869 * device mapper can work sector level the EZDrive stuff can go away
871 * FIXME: this function needs a rename
874 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
876 ide_startstop_t startstop;
877 sector_t block;
879 BUG_ON(!blk_rq_started(rq));
881 #ifdef DEBUG
882 printk("%s: start_request: current=0x%08lx\n",
883 HWIF(drive)->name, (unsigned long) rq);
884 #endif
886 /* bail early if we've exceeded max_failures */
887 if (drive->max_failures && (drive->failures > drive->max_failures)) {
888 rq->cmd_flags |= REQ_FAILED;
889 goto kill_rq;
892 block = rq->sector;
893 if (blk_fs_request(rq) &&
894 (drive->media == ide_disk || drive->media == ide_floppy)) {
895 block += drive->sect0;
897 /* Yecch - this will shift the entire interval,
898 possibly killing some innocent following sector */
899 if (block == 0 && drive->remap_0_to_1 == 1)
900 block = 1; /* redirect MBR access to EZ-Drive partn table */
902 if (blk_pm_request(rq))
903 ide_check_pm_state(drive, rq);
905 SELECT_DRIVE(drive);
906 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
907 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
908 return startstop;
910 if (!drive->special.all) {
911 ide_driver_t *drv;
914 * We reset the drive so we need to issue a SETFEATURES.
915 * Do it _after_ do_special() restored device parameters.
917 if (drive->current_speed == 0xff)
918 ide_config_drive_speed(drive, drive->desired_speed);
920 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
921 return execute_drive_cmd(drive, rq);
922 else if (blk_pm_request(rq)) {
923 struct request_pm_state *pm = rq->data;
924 #ifdef DEBUG_PM
925 printk("%s: start_power_step(step: %d)\n",
926 drive->name, rq->pm->pm_step);
927 #endif
928 startstop = ide_start_power_step(drive, rq);
929 if (startstop == ide_stopped &&
930 pm->pm_step == ide_pm_state_completed)
931 ide_complete_pm_request(drive, rq);
932 return startstop;
935 drv = *(ide_driver_t **)rq->rq_disk->private_data;
936 return drv->do_request(drive, rq, block);
938 return do_special(drive);
939 kill_rq:
940 ide_kill_rq(drive, rq);
941 return ide_stopped;
945 * ide_stall_queue - pause an IDE device
946 * @drive: drive to stall
947 * @timeout: time to stall for (jiffies)
949 * ide_stall_queue() can be used by a drive to give excess bandwidth back
950 * to the hwgroup by sleeping for timeout jiffies.
953 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
955 if (timeout > WAIT_WORSTCASE)
956 timeout = WAIT_WORSTCASE;
957 drive->sleep = timeout + jiffies;
958 drive->sleeping = 1;
961 EXPORT_SYMBOL(ide_stall_queue);
963 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
966 * choose_drive - select a drive to service
967 * @hwgroup: hardware group to select on
969 * choose_drive() selects the next drive which will be serviced.
970 * This is necessary because the IDE layer can't issue commands
971 * to both drives on the same cable, unlike SCSI.
974 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
976 ide_drive_t *drive, *best;
978 repeat:
979 best = NULL;
980 drive = hwgroup->drive;
983 * drive is doing pre-flush, ordered write, post-flush sequence. even
984 * though that is 3 requests, it must be seen as a single transaction.
985 * we must not preempt this drive until that is complete
987 if (blk_queue_flushing(drive->queue)) {
989 * small race where queue could get replugged during
990 * the 3-request flush cycle, just yank the plug since
991 * we want it to finish asap
993 blk_remove_plug(drive->queue);
994 return drive;
997 do {
998 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
999 && !elv_queue_empty(drive->queue)) {
1000 if (!best
1001 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1002 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1004 if (!blk_queue_plugged(drive->queue))
1005 best = drive;
1008 } while ((drive = drive->next) != hwgroup->drive);
1009 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1010 long t = (signed long)(WAKEUP(best) - jiffies);
1011 if (t >= WAIT_MIN_SLEEP) {
1013 * We *may* have some time to spare, but first let's see if
1014 * someone can potentially benefit from our nice mood today..
1016 drive = best->next;
1017 do {
1018 if (!drive->sleeping
1019 && time_before(jiffies - best->service_time, WAKEUP(drive))
1020 && time_before(WAKEUP(drive), jiffies + t))
1022 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1023 goto repeat;
1025 } while ((drive = drive->next) != best);
1028 return best;
1032 * Issue a new request to a drive from hwgroup
1033 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1035 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1036 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1037 * may have both interfaces in a single hwgroup to "serialize" access.
1038 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1039 * together into one hwgroup for serialized access.
1041 * Note also that several hwgroups can end up sharing a single IRQ,
1042 * possibly along with many other devices. This is especially common in
1043 * PCI-based systems with off-board IDE controller cards.
1045 * The IDE driver uses the single global ide_lock spinlock to protect
1046 * access to the request queues, and to protect the hwgroup->busy flag.
1048 * The first thread into the driver for a particular hwgroup sets the
1049 * hwgroup->busy flag to indicate that this hwgroup is now active,
1050 * and then initiates processing of the top request from the request queue.
1052 * Other threads attempting entry notice the busy setting, and will simply
1053 * queue their new requests and exit immediately. Note that hwgroup->busy
1054 * remains set even when the driver is merely awaiting the next interrupt.
1055 * Thus, the meaning is "this hwgroup is busy processing a request".
1057 * When processing of a request completes, the completing thread or IRQ-handler
1058 * will start the next request from the queue. If no more work remains,
1059 * the driver will clear the hwgroup->busy flag and exit.
1061 * The ide_lock (spinlock) is used to protect all access to the
1062 * hwgroup->busy flag, but is otherwise not needed for most processing in
1063 * the driver. This makes the driver much more friendlier to shared IRQs
1064 * than previous designs, while remaining 100% (?) SMP safe and capable.
1066 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1068 ide_drive_t *drive;
1069 ide_hwif_t *hwif;
1070 struct request *rq;
1071 ide_startstop_t startstop;
1072 int loops = 0;
1074 /* for atari only: POSSIBLY BROKEN HERE(?) */
1075 ide_get_lock(ide_intr, hwgroup);
1077 /* caller must own ide_lock */
1078 BUG_ON(!irqs_disabled());
1080 while (!hwgroup->busy) {
1081 hwgroup->busy = 1;
1082 drive = choose_drive(hwgroup);
1083 if (drive == NULL) {
1084 int sleeping = 0;
1085 unsigned long sleep = 0; /* shut up, gcc */
1086 hwgroup->rq = NULL;
1087 drive = hwgroup->drive;
1088 do {
1089 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1090 sleeping = 1;
1091 sleep = drive->sleep;
1093 } while ((drive = drive->next) != hwgroup->drive);
1094 if (sleeping) {
1096 * Take a short snooze, and then wake up this hwgroup again.
1097 * This gives other hwgroups on the same a chance to
1098 * play fairly with us, just in case there are big differences
1099 * in relative throughputs.. don't want to hog the cpu too much.
1101 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1102 sleep = jiffies + WAIT_MIN_SLEEP;
1103 #if 1
1104 if (timer_pending(&hwgroup->timer))
1105 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1106 #endif
1107 /* so that ide_timer_expiry knows what to do */
1108 hwgroup->sleeping = 1;
1109 hwgroup->req_gen_timer = hwgroup->req_gen;
1110 mod_timer(&hwgroup->timer, sleep);
1111 /* we purposely leave hwgroup->busy==1
1112 * while sleeping */
1113 } else {
1114 /* Ugly, but how can we sleep for the lock
1115 * otherwise? perhaps from tq_disk?
1118 /* for atari only */
1119 ide_release_lock();
1120 hwgroup->busy = 0;
1123 /* no more work for this hwgroup (for now) */
1124 return;
1126 again:
1127 hwif = HWIF(drive);
1128 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1130 * set nIEN for previous hwif, drives in the
1131 * quirk_list may not like intr setups/cleanups
1133 if (drive->quirk_list != 1)
1134 ide_set_irq(drive, 0);
1136 hwgroup->hwif = hwif;
1137 hwgroup->drive = drive;
1138 drive->sleeping = 0;
1139 drive->service_start = jiffies;
1141 if (blk_queue_plugged(drive->queue)) {
1142 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1143 break;
1147 * we know that the queue isn't empty, but this can happen
1148 * if the q->prep_rq_fn() decides to kill a request
1150 rq = elv_next_request(drive->queue);
1151 if (!rq) {
1152 hwgroup->busy = 0;
1153 break;
1157 * Sanity: don't accept a request that isn't a PM request
1158 * if we are currently power managed. This is very important as
1159 * blk_stop_queue() doesn't prevent the elv_next_request()
1160 * above to return us whatever is in the queue. Since we call
1161 * ide_do_request() ourselves, we end up taking requests while
1162 * the queue is blocked...
1164 * We let requests forced at head of queue with ide-preempt
1165 * though. I hope that doesn't happen too much, hopefully not
1166 * unless the subdriver triggers such a thing in its own PM
1167 * state machine.
1169 * We count how many times we loop here to make sure we service
1170 * all drives in the hwgroup without looping for ever
1172 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1173 drive = drive->next ? drive->next : hwgroup->drive;
1174 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1175 goto again;
1176 /* We clear busy, there should be no pending ATA command at this point. */
1177 hwgroup->busy = 0;
1178 break;
1181 hwgroup->rq = rq;
1184 * Some systems have trouble with IDE IRQs arriving while
1185 * the driver is still setting things up. So, here we disable
1186 * the IRQ used by this interface while the request is being started.
1187 * This may look bad at first, but pretty much the same thing
1188 * happens anyway when any interrupt comes in, IDE or otherwise
1189 * -- the kernel masks the IRQ while it is being handled.
1191 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1192 disable_irq_nosync(hwif->irq);
1193 spin_unlock(&ide_lock);
1194 local_irq_enable_in_hardirq();
1195 /* allow other IRQs while we start this request */
1196 startstop = start_request(drive, rq);
1197 spin_lock_irq(&ide_lock);
1198 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1199 enable_irq(hwif->irq);
1200 if (startstop == ide_stopped)
1201 hwgroup->busy = 0;
1206 * Passes the stuff to ide_do_request
1208 void do_ide_request(struct request_queue *q)
1210 ide_drive_t *drive = q->queuedata;
1212 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1216 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1217 * retry the current request in pio mode instead of risking tossing it
1218 * all away
1220 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1222 ide_hwif_t *hwif = HWIF(drive);
1223 struct request *rq;
1224 ide_startstop_t ret = ide_stopped;
1227 * end current dma transaction
1230 if (error < 0) {
1231 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1232 (void)HWIF(drive)->ide_dma_end(drive);
1233 ret = ide_error(drive, "dma timeout error",
1234 hwif->INB(IDE_STATUS_REG));
1235 } else {
1236 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1237 hwif->dma_timeout(drive);
1241 * disable dma for now, but remember that we did so because of
1242 * a timeout -- we'll reenable after we finish this next request
1243 * (or rather the first chunk of it) in pio.
1245 drive->retry_pio++;
1246 drive->state = DMA_PIO_RETRY;
1247 ide_dma_off_quietly(drive);
1250 * un-busy drive etc (hwgroup->busy is cleared on return) and
1251 * make sure request is sane
1253 rq = HWGROUP(drive)->rq;
1255 if (!rq)
1256 goto out;
1258 HWGROUP(drive)->rq = NULL;
1260 rq->errors = 0;
1262 if (!rq->bio)
1263 goto out;
1265 rq->sector = rq->bio->bi_sector;
1266 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1267 rq->hard_cur_sectors = rq->current_nr_sectors;
1268 rq->buffer = bio_data(rq->bio);
1269 out:
1270 return ret;
1274 * ide_timer_expiry - handle lack of an IDE interrupt
1275 * @data: timer callback magic (hwgroup)
1277 * An IDE command has timed out before the expected drive return
1278 * occurred. At this point we attempt to clean up the current
1279 * mess. If the current handler includes an expiry handler then
1280 * we invoke the expiry handler, and providing it is happy the
1281 * work is done. If that fails we apply generic recovery rules
1282 * invoking the handler and checking the drive DMA status. We
1283 * have an excessively incestuous relationship with the DMA
1284 * logic that wants cleaning up.
1287 void ide_timer_expiry (unsigned long data)
1289 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1290 ide_handler_t *handler;
1291 ide_expiry_t *expiry;
1292 unsigned long flags;
1293 unsigned long wait = -1;
1295 spin_lock_irqsave(&ide_lock, flags);
1297 if (((handler = hwgroup->handler) == NULL) ||
1298 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1300 * Either a marginal timeout occurred
1301 * (got the interrupt just as timer expired),
1302 * or we were "sleeping" to give other devices a chance.
1303 * Either way, we don't really want to complain about anything.
1305 if (hwgroup->sleeping) {
1306 hwgroup->sleeping = 0;
1307 hwgroup->busy = 0;
1309 } else {
1310 ide_drive_t *drive = hwgroup->drive;
1311 if (!drive) {
1312 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1313 hwgroup->handler = NULL;
1314 } else {
1315 ide_hwif_t *hwif;
1316 ide_startstop_t startstop = ide_stopped;
1317 if (!hwgroup->busy) {
1318 hwgroup->busy = 1; /* paranoia */
1319 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1321 if ((expiry = hwgroup->expiry) != NULL) {
1322 /* continue */
1323 if ((wait = expiry(drive)) > 0) {
1324 /* reset timer */
1325 hwgroup->timer.expires = jiffies + wait;
1326 hwgroup->req_gen_timer = hwgroup->req_gen;
1327 add_timer(&hwgroup->timer);
1328 spin_unlock_irqrestore(&ide_lock, flags);
1329 return;
1332 hwgroup->handler = NULL;
1334 * We need to simulate a real interrupt when invoking
1335 * the handler() function, which means we need to
1336 * globally mask the specific IRQ:
1338 spin_unlock(&ide_lock);
1339 hwif = HWIF(drive);
1340 /* disable_irq_nosync ?? */
1341 disable_irq(hwif->irq);
1342 /* local CPU only,
1343 * as if we were handling an interrupt */
1344 local_irq_disable();
1345 if (hwgroup->polling) {
1346 startstop = handler(drive);
1347 } else if (drive_is_ready(drive)) {
1348 if (drive->waiting_for_dma)
1349 hwgroup->hwif->dma_lost_irq(drive);
1350 (void)ide_ack_intr(hwif);
1351 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1352 startstop = handler(drive);
1353 } else {
1354 if (drive->waiting_for_dma) {
1355 startstop = ide_dma_timeout_retry(drive, wait);
1356 } else
1357 startstop =
1358 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1360 drive->service_time = jiffies - drive->service_start;
1361 spin_lock_irq(&ide_lock);
1362 enable_irq(hwif->irq);
1363 if (startstop == ide_stopped)
1364 hwgroup->busy = 0;
1367 ide_do_request(hwgroup, IDE_NO_IRQ);
1368 spin_unlock_irqrestore(&ide_lock, flags);
1372 * unexpected_intr - handle an unexpected IDE interrupt
1373 * @irq: interrupt line
1374 * @hwgroup: hwgroup being processed
1376 * There's nothing really useful we can do with an unexpected interrupt,
1377 * other than reading the status register (to clear it), and logging it.
1378 * There should be no way that an irq can happen before we're ready for it,
1379 * so we needn't worry much about losing an "important" interrupt here.
1381 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1382 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1383 * looks "good", we just ignore the interrupt completely.
1385 * This routine assumes __cli() is in effect when called.
1387 * If an unexpected interrupt happens on irq15 while we are handling irq14
1388 * and if the two interfaces are "serialized" (CMD640), then it looks like
1389 * we could screw up by interfering with a new request being set up for
1390 * irq15.
1392 * In reality, this is a non-issue. The new command is not sent unless
1393 * the drive is ready to accept one, in which case we know the drive is
1394 * not trying to interrupt us. And ide_set_handler() is always invoked
1395 * before completing the issuance of any new drive command, so we will not
1396 * be accidentally invoked as a result of any valid command completion
1397 * interrupt.
1399 * Note that we must walk the entire hwgroup here. We know which hwif
1400 * is doing the current command, but we don't know which hwif burped
1401 * mysteriously.
1404 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1406 u8 stat;
1407 ide_hwif_t *hwif = hwgroup->hwif;
1410 * handle the unexpected interrupt
1412 do {
1413 if (hwif->irq == irq) {
1414 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1415 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1416 /* Try to not flood the console with msgs */
1417 static unsigned long last_msgtime, count;
1418 ++count;
1419 if (time_after(jiffies, last_msgtime + HZ)) {
1420 last_msgtime = jiffies;
1421 printk(KERN_ERR "%s%s: unexpected interrupt, "
1422 "status=0x%02x, count=%ld\n",
1423 hwif->name,
1424 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1428 } while ((hwif = hwif->next) != hwgroup->hwif);
1432 * ide_intr - default IDE interrupt handler
1433 * @irq: interrupt number
1434 * @dev_id: hwif group
1435 * @regs: unused weirdness from the kernel irq layer
1437 * This is the default IRQ handler for the IDE layer. You should
1438 * not need to override it. If you do be aware it is subtle in
1439 * places
1441 * hwgroup->hwif is the interface in the group currently performing
1442 * a command. hwgroup->drive is the drive and hwgroup->handler is
1443 * the IRQ handler to call. As we issue a command the handlers
1444 * step through multiple states, reassigning the handler to the
1445 * next step in the process. Unlike a smart SCSI controller IDE
1446 * expects the main processor to sequence the various transfer
1447 * stages. We also manage a poll timer to catch up with most
1448 * timeout situations. There are still a few where the handlers
1449 * don't ever decide to give up.
1451 * The handler eventually returns ide_stopped to indicate the
1452 * request completed. At this point we issue the next request
1453 * on the hwgroup and the process begins again.
1456 irqreturn_t ide_intr (int irq, void *dev_id)
1458 unsigned long flags;
1459 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1460 ide_hwif_t *hwif;
1461 ide_drive_t *drive;
1462 ide_handler_t *handler;
1463 ide_startstop_t startstop;
1465 spin_lock_irqsave(&ide_lock, flags);
1466 hwif = hwgroup->hwif;
1468 if (!ide_ack_intr(hwif)) {
1469 spin_unlock_irqrestore(&ide_lock, flags);
1470 return IRQ_NONE;
1473 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1475 * Not expecting an interrupt from this drive.
1476 * That means this could be:
1477 * (1) an interrupt from another PCI device
1478 * sharing the same PCI INT# as us.
1479 * or (2) a drive just entered sleep or standby mode,
1480 * and is interrupting to let us know.
1481 * or (3) a spurious interrupt of unknown origin.
1483 * For PCI, we cannot tell the difference,
1484 * so in that case we just ignore it and hope it goes away.
1486 * FIXME: unexpected_intr should be hwif-> then we can
1487 * remove all the ifdef PCI crap
1489 #ifdef CONFIG_BLK_DEV_IDEPCI
1490 if (hwif->chipset != ide_pci)
1491 #endif /* CONFIG_BLK_DEV_IDEPCI */
1494 * Probably not a shared PCI interrupt,
1495 * so we can safely try to do something about it:
1497 unexpected_intr(irq, hwgroup);
1498 #ifdef CONFIG_BLK_DEV_IDEPCI
1499 } else {
1501 * Whack the status register, just in case
1502 * we have a leftover pending IRQ.
1504 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1505 #endif /* CONFIG_BLK_DEV_IDEPCI */
1507 spin_unlock_irqrestore(&ide_lock, flags);
1508 return IRQ_NONE;
1510 drive = hwgroup->drive;
1511 if (!drive) {
1513 * This should NEVER happen, and there isn't much
1514 * we could do about it here.
1516 * [Note - this can occur if the drive is hot unplugged]
1518 spin_unlock_irqrestore(&ide_lock, flags);
1519 return IRQ_HANDLED;
1521 if (!drive_is_ready(drive)) {
1523 * This happens regularly when we share a PCI IRQ with
1524 * another device. Unfortunately, it can also happen
1525 * with some buggy drives that trigger the IRQ before
1526 * their status register is up to date. Hopefully we have
1527 * enough advance overhead that the latter isn't a problem.
1529 spin_unlock_irqrestore(&ide_lock, flags);
1530 return IRQ_NONE;
1532 if (!hwgroup->busy) {
1533 hwgroup->busy = 1; /* paranoia */
1534 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1536 hwgroup->handler = NULL;
1537 hwgroup->req_gen++;
1538 del_timer(&hwgroup->timer);
1539 spin_unlock(&ide_lock);
1541 /* Some controllers might set DMA INTR no matter DMA or PIO;
1542 * bmdma status might need to be cleared even for
1543 * PIO interrupts to prevent spurious/lost irq.
1545 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1546 /* ide_dma_end() needs bmdma status for error checking.
1547 * So, skip clearing bmdma status here and leave it
1548 * to ide_dma_end() if this is dma interrupt.
1550 hwif->ide_dma_clear_irq(drive);
1552 if (drive->unmask)
1553 local_irq_enable_in_hardirq();
1554 /* service this interrupt, may set handler for next interrupt */
1555 startstop = handler(drive);
1556 spin_lock_irq(&ide_lock);
1559 * Note that handler() may have set things up for another
1560 * interrupt to occur soon, but it cannot happen until
1561 * we exit from this routine, because it will be the
1562 * same irq as is currently being serviced here, and Linux
1563 * won't allow another of the same (on any CPU) until we return.
1565 drive->service_time = jiffies - drive->service_start;
1566 if (startstop == ide_stopped) {
1567 if (hwgroup->handler == NULL) { /* paranoia */
1568 hwgroup->busy = 0;
1569 ide_do_request(hwgroup, hwif->irq);
1570 } else {
1571 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1572 "on exit\n", drive->name);
1575 spin_unlock_irqrestore(&ide_lock, flags);
1576 return IRQ_HANDLED;
1580 * ide_init_drive_cmd - initialize a drive command request
1581 * @rq: request object
1583 * Initialize a request before we fill it in and send it down to
1584 * ide_do_drive_cmd. Commands must be set up by this function. Right
1585 * now it doesn't do a lot, but if that changes abusers will have a
1586 * nasty surprise.
1589 void ide_init_drive_cmd (struct request *rq)
1591 memset(rq, 0, sizeof(*rq));
1592 rq->ref_count = 1;
1595 EXPORT_SYMBOL(ide_init_drive_cmd);
1598 * ide_do_drive_cmd - issue IDE special command
1599 * @drive: device to issue command
1600 * @rq: request to issue
1601 * @action: action for processing
1603 * This function issues a special IDE device request
1604 * onto the request queue.
1606 * If action is ide_wait, then the rq is queued at the end of the
1607 * request queue, and the function sleeps until it has been processed.
1608 * This is for use when invoked from an ioctl handler.
1610 * If action is ide_preempt, then the rq is queued at the head of
1611 * the request queue, displacing the currently-being-processed
1612 * request and this function returns immediately without waiting
1613 * for the new rq to be completed. This is VERY DANGEROUS, and is
1614 * intended for careful use by the ATAPI tape/cdrom driver code.
1616 * If action is ide_end, then the rq is queued at the end of the
1617 * request queue, and the function returns immediately without waiting
1618 * for the new rq to be completed. This is again intended for careful
1619 * use by the ATAPI tape/cdrom driver code.
1622 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1624 unsigned long flags;
1625 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1626 DECLARE_COMPLETION_ONSTACK(wait);
1627 int where = ELEVATOR_INSERT_BACK, err;
1628 int must_wait = (action == ide_wait || action == ide_head_wait);
1630 rq->errors = 0;
1633 * we need to hold an extra reference to request for safe inspection
1634 * after completion
1636 if (must_wait) {
1637 rq->ref_count++;
1638 rq->end_io_data = &wait;
1639 rq->end_io = blk_end_sync_rq;
1642 spin_lock_irqsave(&ide_lock, flags);
1643 if (action == ide_preempt)
1644 hwgroup->rq = NULL;
1645 if (action == ide_preempt || action == ide_head_wait) {
1646 where = ELEVATOR_INSERT_FRONT;
1647 rq->cmd_flags |= REQ_PREEMPT;
1649 __elv_add_request(drive->queue, rq, where, 0);
1650 ide_do_request(hwgroup, IDE_NO_IRQ);
1651 spin_unlock_irqrestore(&ide_lock, flags);
1653 err = 0;
1654 if (must_wait) {
1655 wait_for_completion(&wait);
1656 if (rq->errors)
1657 err = -EIO;
1659 blk_put_request(rq);
1662 return err;
1665 EXPORT_SYMBOL(ide_do_drive_cmd);
1667 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1669 ide_task_t task;
1671 memset(&task, 0, sizeof(task));
1672 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1673 IDE_TFLAG_OUT_FEATURE | tf_flags;
1674 task.tf.feature = dma; /* Use PIO/DMA */
1675 task.tf.lbam = bcount & 0xff;
1676 task.tf.lbah = (bcount >> 8) & 0xff;
1678 ide_tf_load(drive, &task);
1681 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);