4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
58 int uptodate
, unsigned int nr_bytes
, int dequeue
)
64 error
= uptodate
? uptodate
: -EIO
;
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
70 if (blk_noretry_request(rq
) && error
)
71 nr_bytes
= rq
->hard_nr_sectors
<< 9;
73 if (!blk_fs_request(rq
) && error
&& !rq
->errors
)
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
80 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
85 if (!__blk_end_request(rq
, error
, nr_bytes
)) {
87 HWGROUP(drive
)->rq
= NULL
;
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
98 * @nr_sectors: number of sectors completed
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
105 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
107 unsigned int nr_bytes
= nr_sectors
<< 9;
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock
, flags
);
117 rq
= HWGROUP(drive
)->rq
;
120 if (blk_pc_request(rq
))
121 nr_bytes
= rq
->data_len
;
123 nr_bytes
= rq
->hard_cur_sectors
<< 9;
126 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_bytes
, 1);
128 spin_unlock_irqrestore(&ide_lock
, flags
);
131 EXPORT_SYMBOL(ide_end_request
);
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
140 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
143 idedisk_pm_restore_pio
= ide_pm_state_start_resume
,
148 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
150 struct request_pm_state
*pm
= rq
->data
;
152 if (drive
->media
!= ide_disk
)
155 switch (pm
->pm_step
) {
156 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
157 if (pm
->pm_state
== PM_EVENT_FREEZE
)
158 pm
->pm_step
= ide_pm_state_completed
;
160 pm
->pm_step
= idedisk_pm_standby
;
162 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
163 pm
->pm_step
= ide_pm_state_completed
;
165 case idedisk_pm_restore_pio
: /* Resume step 1 complete */
166 pm
->pm_step
= idedisk_pm_idle
;
168 case idedisk_pm_idle
: /* Resume step 2 (idle) complete */
169 pm
->pm_step
= ide_pm_restore_dma
;
174 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
176 struct request_pm_state
*pm
= rq
->data
;
177 ide_task_t
*args
= rq
->special
;
179 memset(args
, 0, sizeof(*args
));
181 switch (pm
->pm_step
) {
182 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
183 if (drive
->media
!= ide_disk
)
185 /* Not supported? Switch to next step now. */
186 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
187 ide_complete_power_step(drive
, rq
, 0, 0);
190 if (ide_id_has_flush_cache_ext(drive
->id
))
191 args
->tf
.command
= WIN_FLUSH_CACHE_EXT
;
193 args
->tf
.command
= WIN_FLUSH_CACHE
;
196 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
197 args
->tf
.command
= WIN_STANDBYNOW1
;
200 case idedisk_pm_restore_pio
: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive
);
203 * skip idedisk_pm_idle for ATAPI devices
205 if (drive
->media
!= ide_disk
)
206 pm
->pm_step
= ide_pm_restore_dma
;
208 ide_complete_power_step(drive
, rq
, 0, 0);
211 case idedisk_pm_idle
: /* Resume step 2 (idle) */
212 args
->tf
.command
= WIN_IDLEIMMEDIATE
;
215 case ide_pm_restore_dma
: /* Resume step 3 (restore DMA) */
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
221 if (drive
->hwif
->dma_host_set
== NULL
)
224 * TODO: respect ->using_dma setting
229 pm
->pm_step
= ide_pm_state_completed
;
233 args
->tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
;
234 args
->data_phase
= TASKFILE_NO_DATA
;
235 return do_rw_taskfile(drive
, args
);
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
242 * @nr_sectors: number of sectors completed
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
249 * NOTE: This path does not handle barrier, but barrier is not supported
253 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
254 int uptodate
, int nr_sectors
)
259 spin_lock_irqsave(&ide_lock
, flags
);
260 BUG_ON(!blk_rq_started(rq
));
261 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
<< 9, 0);
262 spin_unlock_irqrestore(&ide_lock
, flags
);
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
274 * This function cleans up the current PM request and stops the queue
277 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
282 printk("%s: completing PM request, %s\n", drive
->name
,
283 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
285 spin_lock_irqsave(&ide_lock
, flags
);
286 if (blk_pm_suspend_request(rq
)) {
287 blk_stop_queue(drive
->queue
);
290 blk_start_queue(drive
->queue
);
292 HWGROUP(drive
)->rq
= NULL
;
293 if (__blk_end_request(rq
, 0, 0))
295 spin_unlock_irqrestore(&ide_lock
, flags
);
298 void ide_tf_read(ide_drive_t
*drive
, ide_task_t
*task
)
300 ide_hwif_t
*hwif
= drive
->hwif
;
301 struct ide_taskfile
*tf
= &task
->tf
;
303 if (task
->tf_flags
& IDE_TFLAG_IN_DATA
) {
304 u16 data
= hwif
->INW(IDE_DATA_REG
);
306 tf
->data
= data
& 0xff;
307 tf
->hob_data
= (data
>> 8) & 0xff;
310 /* be sure we're looking at the low order bits */
311 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
313 if (task
->tf_flags
& IDE_TFLAG_IN_NSECT
)
314 tf
->nsect
= hwif
->INB(IDE_NSECTOR_REG
);
315 if (task
->tf_flags
& IDE_TFLAG_IN_LBAL
)
316 tf
->lbal
= hwif
->INB(IDE_SECTOR_REG
);
317 if (task
->tf_flags
& IDE_TFLAG_IN_LBAM
)
318 tf
->lbam
= hwif
->INB(IDE_LCYL_REG
);
319 if (task
->tf_flags
& IDE_TFLAG_IN_LBAH
)
320 tf
->lbah
= hwif
->INB(IDE_HCYL_REG
);
321 if (task
->tf_flags
& IDE_TFLAG_IN_DEVICE
)
322 tf
->device
= hwif
->INB(IDE_SELECT_REG
);
324 if (task
->tf_flags
& IDE_TFLAG_LBA48
) {
325 hwif
->OUTB(drive
->ctl
| 0x80, IDE_CONTROL_REG
);
327 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_FEATURE
)
328 tf
->hob_feature
= hwif
->INB(IDE_FEATURE_REG
);
329 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_NSECT
)
330 tf
->hob_nsect
= hwif
->INB(IDE_NSECTOR_REG
);
331 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAL
)
332 tf
->hob_lbal
= hwif
->INB(IDE_SECTOR_REG
);
333 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAM
)
334 tf
->hob_lbam
= hwif
->INB(IDE_LCYL_REG
);
335 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAH
)
336 tf
->hob_lbah
= hwif
->INB(IDE_HCYL_REG
);
341 * ide_end_drive_cmd - end an explicit drive command
346 * Clean up after success/failure of an explicit drive command.
347 * These get thrown onto the queue so they are synchronized with
348 * real I/O operations on the drive.
350 * In LBA48 mode we have to read the register set twice to get
351 * all the extra information out.
354 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
359 spin_lock_irqsave(&ide_lock
, flags
);
360 rq
= HWGROUP(drive
)->rq
;
361 spin_unlock_irqrestore(&ide_lock
, flags
);
363 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
364 ide_task_t
*args
= (ide_task_t
*) rq
->special
;
366 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
369 struct ide_taskfile
*tf
= &args
->tf
;
374 ide_tf_read(drive
, args
);
376 } else if (blk_pm_request(rq
)) {
377 struct request_pm_state
*pm
= rq
->data
;
379 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
380 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
382 ide_complete_power_step(drive
, rq
, stat
, err
);
383 if (pm
->pm_step
== ide_pm_state_completed
)
384 ide_complete_pm_request(drive
, rq
);
388 spin_lock_irqsave(&ide_lock
, flags
);
389 HWGROUP(drive
)->rq
= NULL
;
391 if (__blk_end_request(rq
, (rq
->errors
? -EIO
: 0), 0))
393 spin_unlock_irqrestore(&ide_lock
, flags
);
396 EXPORT_SYMBOL(ide_end_drive_cmd
);
399 * try_to_flush_leftover_data - flush junk
400 * @drive: drive to flush
402 * try_to_flush_leftover_data() is invoked in response to a drive
403 * unexpectedly having its DRQ_STAT bit set. As an alternative to
404 * resetting the drive, this routine tries to clear the condition
405 * by read a sector's worth of data from the drive. Of course,
406 * this may not help if the drive is *waiting* for data from *us*.
408 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
410 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
412 if (drive
->media
!= ide_disk
)
416 u32 wcount
= (i
> 16) ? 16 : i
;
419 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
423 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
428 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
429 drv
->end_request(drive
, 0, 0);
431 ide_end_request(drive
, 0, 0);
434 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
436 ide_hwif_t
*hwif
= drive
->hwif
;
438 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
439 /* other bits are useless when BUSY */
440 rq
->errors
|= ERROR_RESET
;
441 } else if (stat
& ERR_STAT
) {
442 /* err has different meaning on cdrom and tape */
443 if (err
== ABRT_ERR
) {
444 if (drive
->select
.b
.lba
&&
445 /* some newer drives don't support WIN_SPECIFY */
446 hwif
->INB(IDE_COMMAND_REG
) == WIN_SPECIFY
)
448 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
449 /* UDMA crc error, just retry the operation */
451 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
452 /* retries won't help these */
453 rq
->errors
= ERROR_MAX
;
454 } else if (err
& TRK0_ERR
) {
455 /* help it find track zero */
456 rq
->errors
|= ERROR_RECAL
;
460 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
&&
461 (hwif
->host_flags
& IDE_HFLAG_ERROR_STOPS_FIFO
) == 0)
462 try_to_flush_leftover_data(drive
);
464 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
465 ide_kill_rq(drive
, rq
);
469 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
470 rq
->errors
|= ERROR_RESET
;
472 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
474 return ide_do_reset(drive
);
477 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
478 drive
->special
.b
.recalibrate
= 1;
485 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
487 ide_hwif_t
*hwif
= drive
->hwif
;
489 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
490 /* other bits are useless when BUSY */
491 rq
->errors
|= ERROR_RESET
;
493 /* add decoding error stuff */
496 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
498 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
500 if (rq
->errors
>= ERROR_MAX
) {
501 ide_kill_rq(drive
, rq
);
503 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
505 return ide_do_reset(drive
);
514 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
516 if (drive
->media
== ide_disk
)
517 return ide_ata_error(drive
, rq
, stat
, err
);
518 return ide_atapi_error(drive
, rq
, stat
, err
);
521 EXPORT_SYMBOL_GPL(__ide_error
);
524 * ide_error - handle an error on the IDE
525 * @drive: drive the error occurred on
526 * @msg: message to report
529 * ide_error() takes action based on the error returned by the drive.
530 * For normal I/O that may well include retries. We deal with
531 * both new-style (taskfile) and old style command handling here.
532 * In the case of taskfile command handling there is work left to
536 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
541 err
= ide_dump_status(drive
, msg
, stat
);
543 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
546 /* retry only "normal" I/O: */
547 if (!blk_fs_request(rq
)) {
549 ide_end_drive_cmd(drive
, stat
, err
);
556 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
557 return drv
->error(drive
, rq
, stat
, err
);
559 return __ide_error(drive
, rq
, stat
, err
);
562 EXPORT_SYMBOL_GPL(ide_error
);
564 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
566 if (drive
->media
!= ide_disk
)
567 rq
->errors
|= ERROR_RESET
;
569 ide_kill_rq(drive
, rq
);
574 EXPORT_SYMBOL_GPL(__ide_abort
);
577 * ide_abort - abort pending IDE operations
578 * @drive: drive the error occurred on
579 * @msg: message to report
581 * ide_abort kills and cleans up when we are about to do a
582 * host initiated reset on active commands. Longer term we
583 * want handlers to have sensible abort handling themselves
585 * This differs fundamentally from ide_error because in
586 * this case the command is doing just fine when we
590 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
594 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
597 /* retry only "normal" I/O: */
598 if (!blk_fs_request(rq
)) {
600 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
607 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
608 return drv
->abort(drive
, rq
);
610 return __ide_abort(drive
, rq
);
613 static void ide_tf_set_specify_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
615 tf
->nsect
= drive
->sect
;
616 tf
->lbal
= drive
->sect
;
617 tf
->lbam
= drive
->cyl
;
618 tf
->lbah
= drive
->cyl
>> 8;
619 tf
->device
= ((drive
->head
- 1) | drive
->select
.all
) & ~ATA_LBA
;
620 tf
->command
= WIN_SPECIFY
;
623 static void ide_tf_set_restore_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
625 tf
->nsect
= drive
->sect
;
626 tf
->command
= WIN_RESTORE
;
629 static void ide_tf_set_setmult_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
631 tf
->nsect
= drive
->mult_req
;
632 tf
->command
= WIN_SETMULT
;
635 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
637 special_t
*s
= &drive
->special
;
640 memset(&args
, 0, sizeof(ide_task_t
));
641 args
.data_phase
= TASKFILE_NO_DATA
;
643 if (s
->b
.set_geometry
) {
644 s
->b
.set_geometry
= 0;
645 ide_tf_set_specify_cmd(drive
, &args
.tf
);
646 } else if (s
->b
.recalibrate
) {
647 s
->b
.recalibrate
= 0;
648 ide_tf_set_restore_cmd(drive
, &args
.tf
);
649 } else if (s
->b
.set_multmode
) {
650 s
->b
.set_multmode
= 0;
651 if (drive
->mult_req
> drive
->id
->max_multsect
)
652 drive
->mult_req
= drive
->id
->max_multsect
;
653 ide_tf_set_setmult_cmd(drive
, &args
.tf
);
655 int special
= s
->all
;
657 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
661 args
.tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
|
662 IDE_TFLAG_CUSTOM_HANDLER
;
664 do_rw_taskfile(drive
, &args
);
670 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
672 static int set_pio_mode_abuse(ide_hwif_t
*hwif
, u8 req_pio
)
681 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_DMA_MODES
) ? 1 : 0;
684 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_PREFETCH
) ? 1 : 0;
687 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_FAST_DEVSEL
) ? 1 : 0;
694 * do_special - issue some special commands
695 * @drive: drive the command is for
697 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
698 * commands to a drive. It used to do much more, but has been scaled
702 static ide_startstop_t
do_special (ide_drive_t
*drive
)
704 special_t
*s
= &drive
->special
;
707 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
710 ide_hwif_t
*hwif
= drive
->hwif
;
711 u8 req_pio
= drive
->tune_req
;
715 if (set_pio_mode_abuse(drive
->hwif
, req_pio
)) {
717 if (hwif
->set_pio_mode
== NULL
)
721 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
723 if (req_pio
== 8 || req_pio
== 9) {
726 spin_lock_irqsave(&ide_lock
, flags
);
727 hwif
->set_pio_mode(drive
, req_pio
);
728 spin_unlock_irqrestore(&ide_lock
, flags
);
730 hwif
->set_pio_mode(drive
, req_pio
);
732 int keep_dma
= drive
->using_dma
;
734 ide_set_pio(drive
, req_pio
);
736 if (hwif
->host_flags
& IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
) {
744 if (drive
->media
== ide_disk
)
745 return ide_disk_special(drive
);
753 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
755 ide_hwif_t
*hwif
= drive
->hwif
;
756 struct scatterlist
*sg
= hwif
->sg_table
;
758 if (hwif
->sg_mapped
) /* needed by ide-scsi */
761 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
762 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
764 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
769 EXPORT_SYMBOL_GPL(ide_map_sg
);
771 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
773 ide_hwif_t
*hwif
= drive
->hwif
;
775 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
780 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
783 * execute_drive_command - issue special drive command
784 * @drive: the drive to issue the command on
785 * @rq: the request structure holding the command
787 * execute_drive_cmd() issues a special drive command, usually
788 * initiated by ioctl() from the external hdparm program. The
789 * command can be a drive command, drive task or taskfile
790 * operation. Weirdly you can call it with NULL to wait for
791 * all commands to finish. Don't do this as that is due to change
794 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
797 ide_hwif_t
*hwif
= HWIF(drive
);
798 ide_task_t
*task
= rq
->special
;
801 hwif
->data_phase
= task
->data_phase
;
803 switch (hwif
->data_phase
) {
804 case TASKFILE_MULTI_OUT
:
806 case TASKFILE_MULTI_IN
:
808 ide_init_sg_cmd(drive
, rq
);
809 ide_map_sg(drive
, rq
);
814 return do_rw_taskfile(drive
, task
);
818 * NULL is actually a valid way of waiting for
819 * all current requests to be flushed from the queue.
822 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
824 ide_end_drive_cmd(drive
,
825 hwif
->INB(IDE_STATUS_REG
),
826 hwif
->INB(IDE_ERROR_REG
));
830 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
832 struct request_pm_state
*pm
= rq
->data
;
834 if (blk_pm_suspend_request(rq
) &&
835 pm
->pm_step
== ide_pm_state_start_suspend
)
836 /* Mark drive blocked when starting the suspend sequence. */
838 else if (blk_pm_resume_request(rq
) &&
839 pm
->pm_step
== ide_pm_state_start_resume
) {
841 * The first thing we do on wakeup is to wait for BSY bit to
842 * go away (with a looong timeout) as a drive on this hwif may
843 * just be POSTing itself.
844 * We do that before even selecting as the "other" device on
845 * the bus may be broken enough to walk on our toes at this
850 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
852 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
854 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
856 ide_set_irq(drive
, 1);
857 rc
= ide_wait_not_busy(HWIF(drive
), 100000);
859 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
864 * start_request - start of I/O and command issuing for IDE
866 * start_request() initiates handling of a new I/O request. It
867 * accepts commands and I/O (read/write) requests. It also does
868 * the final remapping for weird stuff like EZDrive. Once
869 * device mapper can work sector level the EZDrive stuff can go away
871 * FIXME: this function needs a rename
874 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
876 ide_startstop_t startstop
;
879 BUG_ON(!blk_rq_started(rq
));
882 printk("%s: start_request: current=0x%08lx\n",
883 HWIF(drive
)->name
, (unsigned long) rq
);
886 /* bail early if we've exceeded max_failures */
887 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
888 rq
->cmd_flags
|= REQ_FAILED
;
893 if (blk_fs_request(rq
) &&
894 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
895 block
+= drive
->sect0
;
897 /* Yecch - this will shift the entire interval,
898 possibly killing some innocent following sector */
899 if (block
== 0 && drive
->remap_0_to_1
== 1)
900 block
= 1; /* redirect MBR access to EZ-Drive partn table */
902 if (blk_pm_request(rq
))
903 ide_check_pm_state(drive
, rq
);
906 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
907 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
910 if (!drive
->special
.all
) {
914 * We reset the drive so we need to issue a SETFEATURES.
915 * Do it _after_ do_special() restored device parameters.
917 if (drive
->current_speed
== 0xff)
918 ide_config_drive_speed(drive
, drive
->desired_speed
);
920 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
921 return execute_drive_cmd(drive
, rq
);
922 else if (blk_pm_request(rq
)) {
923 struct request_pm_state
*pm
= rq
->data
;
925 printk("%s: start_power_step(step: %d)\n",
926 drive
->name
, rq
->pm
->pm_step
);
928 startstop
= ide_start_power_step(drive
, rq
);
929 if (startstop
== ide_stopped
&&
930 pm
->pm_step
== ide_pm_state_completed
)
931 ide_complete_pm_request(drive
, rq
);
935 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
936 return drv
->do_request(drive
, rq
, block
);
938 return do_special(drive
);
940 ide_kill_rq(drive
, rq
);
945 * ide_stall_queue - pause an IDE device
946 * @drive: drive to stall
947 * @timeout: time to stall for (jiffies)
949 * ide_stall_queue() can be used by a drive to give excess bandwidth back
950 * to the hwgroup by sleeping for timeout jiffies.
953 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
955 if (timeout
> WAIT_WORSTCASE
)
956 timeout
= WAIT_WORSTCASE
;
957 drive
->sleep
= timeout
+ jiffies
;
961 EXPORT_SYMBOL(ide_stall_queue
);
963 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
966 * choose_drive - select a drive to service
967 * @hwgroup: hardware group to select on
969 * choose_drive() selects the next drive which will be serviced.
970 * This is necessary because the IDE layer can't issue commands
971 * to both drives on the same cable, unlike SCSI.
974 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
976 ide_drive_t
*drive
, *best
;
980 drive
= hwgroup
->drive
;
983 * drive is doing pre-flush, ordered write, post-flush sequence. even
984 * though that is 3 requests, it must be seen as a single transaction.
985 * we must not preempt this drive until that is complete
987 if (blk_queue_flushing(drive
->queue
)) {
989 * small race where queue could get replugged during
990 * the 3-request flush cycle, just yank the plug since
991 * we want it to finish asap
993 blk_remove_plug(drive
->queue
);
998 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
999 && !elv_queue_empty(drive
->queue
)) {
1001 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1002 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1004 if (!blk_queue_plugged(drive
->queue
))
1008 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1009 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1010 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1011 if (t
>= WAIT_MIN_SLEEP
) {
1013 * We *may* have some time to spare, but first let's see if
1014 * someone can potentially benefit from our nice mood today..
1018 if (!drive
->sleeping
1019 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1020 && time_before(WAKEUP(drive
), jiffies
+ t
))
1022 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1025 } while ((drive
= drive
->next
) != best
);
1032 * Issue a new request to a drive from hwgroup
1033 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1035 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1036 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1037 * may have both interfaces in a single hwgroup to "serialize" access.
1038 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1039 * together into one hwgroup for serialized access.
1041 * Note also that several hwgroups can end up sharing a single IRQ,
1042 * possibly along with many other devices. This is especially common in
1043 * PCI-based systems with off-board IDE controller cards.
1045 * The IDE driver uses the single global ide_lock spinlock to protect
1046 * access to the request queues, and to protect the hwgroup->busy flag.
1048 * The first thread into the driver for a particular hwgroup sets the
1049 * hwgroup->busy flag to indicate that this hwgroup is now active,
1050 * and then initiates processing of the top request from the request queue.
1052 * Other threads attempting entry notice the busy setting, and will simply
1053 * queue their new requests and exit immediately. Note that hwgroup->busy
1054 * remains set even when the driver is merely awaiting the next interrupt.
1055 * Thus, the meaning is "this hwgroup is busy processing a request".
1057 * When processing of a request completes, the completing thread or IRQ-handler
1058 * will start the next request from the queue. If no more work remains,
1059 * the driver will clear the hwgroup->busy flag and exit.
1061 * The ide_lock (spinlock) is used to protect all access to the
1062 * hwgroup->busy flag, but is otherwise not needed for most processing in
1063 * the driver. This makes the driver much more friendlier to shared IRQs
1064 * than previous designs, while remaining 100% (?) SMP safe and capable.
1066 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1071 ide_startstop_t startstop
;
1074 /* for atari only: POSSIBLY BROKEN HERE(?) */
1075 ide_get_lock(ide_intr
, hwgroup
);
1077 /* caller must own ide_lock */
1078 BUG_ON(!irqs_disabled());
1080 while (!hwgroup
->busy
) {
1082 drive
= choose_drive(hwgroup
);
1083 if (drive
== NULL
) {
1085 unsigned long sleep
= 0; /* shut up, gcc */
1087 drive
= hwgroup
->drive
;
1089 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1091 sleep
= drive
->sleep
;
1093 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1096 * Take a short snooze, and then wake up this hwgroup again.
1097 * This gives other hwgroups on the same a chance to
1098 * play fairly with us, just in case there are big differences
1099 * in relative throughputs.. don't want to hog the cpu too much.
1101 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1102 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1104 if (timer_pending(&hwgroup
->timer
))
1105 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1107 /* so that ide_timer_expiry knows what to do */
1108 hwgroup
->sleeping
= 1;
1109 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1110 mod_timer(&hwgroup
->timer
, sleep
);
1111 /* we purposely leave hwgroup->busy==1
1114 /* Ugly, but how can we sleep for the lock
1115 * otherwise? perhaps from tq_disk?
1118 /* for atari only */
1123 /* no more work for this hwgroup (for now) */
1128 if (hwgroup
->hwif
->sharing_irq
&& hwif
!= hwgroup
->hwif
) {
1130 * set nIEN for previous hwif, drives in the
1131 * quirk_list may not like intr setups/cleanups
1133 if (drive
->quirk_list
!= 1)
1134 ide_set_irq(drive
, 0);
1136 hwgroup
->hwif
= hwif
;
1137 hwgroup
->drive
= drive
;
1138 drive
->sleeping
= 0;
1139 drive
->service_start
= jiffies
;
1141 if (blk_queue_plugged(drive
->queue
)) {
1142 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1147 * we know that the queue isn't empty, but this can happen
1148 * if the q->prep_rq_fn() decides to kill a request
1150 rq
= elv_next_request(drive
->queue
);
1157 * Sanity: don't accept a request that isn't a PM request
1158 * if we are currently power managed. This is very important as
1159 * blk_stop_queue() doesn't prevent the elv_next_request()
1160 * above to return us whatever is in the queue. Since we call
1161 * ide_do_request() ourselves, we end up taking requests while
1162 * the queue is blocked...
1164 * We let requests forced at head of queue with ide-preempt
1165 * though. I hope that doesn't happen too much, hopefully not
1166 * unless the subdriver triggers such a thing in its own PM
1169 * We count how many times we loop here to make sure we service
1170 * all drives in the hwgroup without looping for ever
1172 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->cmd_flags
& REQ_PREEMPT
)) {
1173 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1174 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1176 /* We clear busy, there should be no pending ATA command at this point. */
1184 * Some systems have trouble with IDE IRQs arriving while
1185 * the driver is still setting things up. So, here we disable
1186 * the IRQ used by this interface while the request is being started.
1187 * This may look bad at first, but pretty much the same thing
1188 * happens anyway when any interrupt comes in, IDE or otherwise
1189 * -- the kernel masks the IRQ while it is being handled.
1191 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1192 disable_irq_nosync(hwif
->irq
);
1193 spin_unlock(&ide_lock
);
1194 local_irq_enable_in_hardirq();
1195 /* allow other IRQs while we start this request */
1196 startstop
= start_request(drive
, rq
);
1197 spin_lock_irq(&ide_lock
);
1198 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1199 enable_irq(hwif
->irq
);
1200 if (startstop
== ide_stopped
)
1206 * Passes the stuff to ide_do_request
1208 void do_ide_request(struct request_queue
*q
)
1210 ide_drive_t
*drive
= q
->queuedata
;
1212 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1216 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1217 * retry the current request in pio mode instead of risking tossing it
1220 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1222 ide_hwif_t
*hwif
= HWIF(drive
);
1224 ide_startstop_t ret
= ide_stopped
;
1227 * end current dma transaction
1231 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1232 (void)HWIF(drive
)->ide_dma_end(drive
);
1233 ret
= ide_error(drive
, "dma timeout error",
1234 hwif
->INB(IDE_STATUS_REG
));
1236 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1237 hwif
->dma_timeout(drive
);
1241 * disable dma for now, but remember that we did so because of
1242 * a timeout -- we'll reenable after we finish this next request
1243 * (or rather the first chunk of it) in pio.
1246 drive
->state
= DMA_PIO_RETRY
;
1247 ide_dma_off_quietly(drive
);
1250 * un-busy drive etc (hwgroup->busy is cleared on return) and
1251 * make sure request is sane
1253 rq
= HWGROUP(drive
)->rq
;
1258 HWGROUP(drive
)->rq
= NULL
;
1265 rq
->sector
= rq
->bio
->bi_sector
;
1266 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1267 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1268 rq
->buffer
= bio_data(rq
->bio
);
1274 * ide_timer_expiry - handle lack of an IDE interrupt
1275 * @data: timer callback magic (hwgroup)
1277 * An IDE command has timed out before the expected drive return
1278 * occurred. At this point we attempt to clean up the current
1279 * mess. If the current handler includes an expiry handler then
1280 * we invoke the expiry handler, and providing it is happy the
1281 * work is done. If that fails we apply generic recovery rules
1282 * invoking the handler and checking the drive DMA status. We
1283 * have an excessively incestuous relationship with the DMA
1284 * logic that wants cleaning up.
1287 void ide_timer_expiry (unsigned long data
)
1289 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1290 ide_handler_t
*handler
;
1291 ide_expiry_t
*expiry
;
1292 unsigned long flags
;
1293 unsigned long wait
= -1;
1295 spin_lock_irqsave(&ide_lock
, flags
);
1297 if (((handler
= hwgroup
->handler
) == NULL
) ||
1298 (hwgroup
->req_gen
!= hwgroup
->req_gen_timer
)) {
1300 * Either a marginal timeout occurred
1301 * (got the interrupt just as timer expired),
1302 * or we were "sleeping" to give other devices a chance.
1303 * Either way, we don't really want to complain about anything.
1305 if (hwgroup
->sleeping
) {
1306 hwgroup
->sleeping
= 0;
1310 ide_drive_t
*drive
= hwgroup
->drive
;
1312 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1313 hwgroup
->handler
= NULL
;
1316 ide_startstop_t startstop
= ide_stopped
;
1317 if (!hwgroup
->busy
) {
1318 hwgroup
->busy
= 1; /* paranoia */
1319 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1321 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1323 if ((wait
= expiry(drive
)) > 0) {
1325 hwgroup
->timer
.expires
= jiffies
+ wait
;
1326 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1327 add_timer(&hwgroup
->timer
);
1328 spin_unlock_irqrestore(&ide_lock
, flags
);
1332 hwgroup
->handler
= NULL
;
1334 * We need to simulate a real interrupt when invoking
1335 * the handler() function, which means we need to
1336 * globally mask the specific IRQ:
1338 spin_unlock(&ide_lock
);
1340 /* disable_irq_nosync ?? */
1341 disable_irq(hwif
->irq
);
1343 * as if we were handling an interrupt */
1344 local_irq_disable();
1345 if (hwgroup
->polling
) {
1346 startstop
= handler(drive
);
1347 } else if (drive_is_ready(drive
)) {
1348 if (drive
->waiting_for_dma
)
1349 hwgroup
->hwif
->dma_lost_irq(drive
);
1350 (void)ide_ack_intr(hwif
);
1351 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1352 startstop
= handler(drive
);
1354 if (drive
->waiting_for_dma
) {
1355 startstop
= ide_dma_timeout_retry(drive
, wait
);
1358 ide_error(drive
, "irq timeout", hwif
->INB(IDE_STATUS_REG
));
1360 drive
->service_time
= jiffies
- drive
->service_start
;
1361 spin_lock_irq(&ide_lock
);
1362 enable_irq(hwif
->irq
);
1363 if (startstop
== ide_stopped
)
1367 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1368 spin_unlock_irqrestore(&ide_lock
, flags
);
1372 * unexpected_intr - handle an unexpected IDE interrupt
1373 * @irq: interrupt line
1374 * @hwgroup: hwgroup being processed
1376 * There's nothing really useful we can do with an unexpected interrupt,
1377 * other than reading the status register (to clear it), and logging it.
1378 * There should be no way that an irq can happen before we're ready for it,
1379 * so we needn't worry much about losing an "important" interrupt here.
1381 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1382 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1383 * looks "good", we just ignore the interrupt completely.
1385 * This routine assumes __cli() is in effect when called.
1387 * If an unexpected interrupt happens on irq15 while we are handling irq14
1388 * and if the two interfaces are "serialized" (CMD640), then it looks like
1389 * we could screw up by interfering with a new request being set up for
1392 * In reality, this is a non-issue. The new command is not sent unless
1393 * the drive is ready to accept one, in which case we know the drive is
1394 * not trying to interrupt us. And ide_set_handler() is always invoked
1395 * before completing the issuance of any new drive command, so we will not
1396 * be accidentally invoked as a result of any valid command completion
1399 * Note that we must walk the entire hwgroup here. We know which hwif
1400 * is doing the current command, but we don't know which hwif burped
1404 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1407 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1410 * handle the unexpected interrupt
1413 if (hwif
->irq
== irq
) {
1414 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1415 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1416 /* Try to not flood the console with msgs */
1417 static unsigned long last_msgtime
, count
;
1419 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1420 last_msgtime
= jiffies
;
1421 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1422 "status=0x%02x, count=%ld\n",
1424 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1428 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1432 * ide_intr - default IDE interrupt handler
1433 * @irq: interrupt number
1434 * @dev_id: hwif group
1435 * @regs: unused weirdness from the kernel irq layer
1437 * This is the default IRQ handler for the IDE layer. You should
1438 * not need to override it. If you do be aware it is subtle in
1441 * hwgroup->hwif is the interface in the group currently performing
1442 * a command. hwgroup->drive is the drive and hwgroup->handler is
1443 * the IRQ handler to call. As we issue a command the handlers
1444 * step through multiple states, reassigning the handler to the
1445 * next step in the process. Unlike a smart SCSI controller IDE
1446 * expects the main processor to sequence the various transfer
1447 * stages. We also manage a poll timer to catch up with most
1448 * timeout situations. There are still a few where the handlers
1449 * don't ever decide to give up.
1451 * The handler eventually returns ide_stopped to indicate the
1452 * request completed. At this point we issue the next request
1453 * on the hwgroup and the process begins again.
1456 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1458 unsigned long flags
;
1459 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1462 ide_handler_t
*handler
;
1463 ide_startstop_t startstop
;
1465 spin_lock_irqsave(&ide_lock
, flags
);
1466 hwif
= hwgroup
->hwif
;
1468 if (!ide_ack_intr(hwif
)) {
1469 spin_unlock_irqrestore(&ide_lock
, flags
);
1473 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1475 * Not expecting an interrupt from this drive.
1476 * That means this could be:
1477 * (1) an interrupt from another PCI device
1478 * sharing the same PCI INT# as us.
1479 * or (2) a drive just entered sleep or standby mode,
1480 * and is interrupting to let us know.
1481 * or (3) a spurious interrupt of unknown origin.
1483 * For PCI, we cannot tell the difference,
1484 * so in that case we just ignore it and hope it goes away.
1486 * FIXME: unexpected_intr should be hwif-> then we can
1487 * remove all the ifdef PCI crap
1489 #ifdef CONFIG_BLK_DEV_IDEPCI
1490 if (hwif
->chipset
!= ide_pci
)
1491 #endif /* CONFIG_BLK_DEV_IDEPCI */
1494 * Probably not a shared PCI interrupt,
1495 * so we can safely try to do something about it:
1497 unexpected_intr(irq
, hwgroup
);
1498 #ifdef CONFIG_BLK_DEV_IDEPCI
1501 * Whack the status register, just in case
1502 * we have a leftover pending IRQ.
1504 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1505 #endif /* CONFIG_BLK_DEV_IDEPCI */
1507 spin_unlock_irqrestore(&ide_lock
, flags
);
1510 drive
= hwgroup
->drive
;
1513 * This should NEVER happen, and there isn't much
1514 * we could do about it here.
1516 * [Note - this can occur if the drive is hot unplugged]
1518 spin_unlock_irqrestore(&ide_lock
, flags
);
1521 if (!drive_is_ready(drive
)) {
1523 * This happens regularly when we share a PCI IRQ with
1524 * another device. Unfortunately, it can also happen
1525 * with some buggy drives that trigger the IRQ before
1526 * their status register is up to date. Hopefully we have
1527 * enough advance overhead that the latter isn't a problem.
1529 spin_unlock_irqrestore(&ide_lock
, flags
);
1532 if (!hwgroup
->busy
) {
1533 hwgroup
->busy
= 1; /* paranoia */
1534 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1536 hwgroup
->handler
= NULL
;
1538 del_timer(&hwgroup
->timer
);
1539 spin_unlock(&ide_lock
);
1541 /* Some controllers might set DMA INTR no matter DMA or PIO;
1542 * bmdma status might need to be cleared even for
1543 * PIO interrupts to prevent spurious/lost irq.
1545 if (hwif
->ide_dma_clear_irq
&& !(drive
->waiting_for_dma
))
1546 /* ide_dma_end() needs bmdma status for error checking.
1547 * So, skip clearing bmdma status here and leave it
1548 * to ide_dma_end() if this is dma interrupt.
1550 hwif
->ide_dma_clear_irq(drive
);
1553 local_irq_enable_in_hardirq();
1554 /* service this interrupt, may set handler for next interrupt */
1555 startstop
= handler(drive
);
1556 spin_lock_irq(&ide_lock
);
1559 * Note that handler() may have set things up for another
1560 * interrupt to occur soon, but it cannot happen until
1561 * we exit from this routine, because it will be the
1562 * same irq as is currently being serviced here, and Linux
1563 * won't allow another of the same (on any CPU) until we return.
1565 drive
->service_time
= jiffies
- drive
->service_start
;
1566 if (startstop
== ide_stopped
) {
1567 if (hwgroup
->handler
== NULL
) { /* paranoia */
1569 ide_do_request(hwgroup
, hwif
->irq
);
1571 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1572 "on exit\n", drive
->name
);
1575 spin_unlock_irqrestore(&ide_lock
, flags
);
1580 * ide_init_drive_cmd - initialize a drive command request
1581 * @rq: request object
1583 * Initialize a request before we fill it in and send it down to
1584 * ide_do_drive_cmd. Commands must be set up by this function. Right
1585 * now it doesn't do a lot, but if that changes abusers will have a
1589 void ide_init_drive_cmd (struct request
*rq
)
1591 memset(rq
, 0, sizeof(*rq
));
1595 EXPORT_SYMBOL(ide_init_drive_cmd
);
1598 * ide_do_drive_cmd - issue IDE special command
1599 * @drive: device to issue command
1600 * @rq: request to issue
1601 * @action: action for processing
1603 * This function issues a special IDE device request
1604 * onto the request queue.
1606 * If action is ide_wait, then the rq is queued at the end of the
1607 * request queue, and the function sleeps until it has been processed.
1608 * This is for use when invoked from an ioctl handler.
1610 * If action is ide_preempt, then the rq is queued at the head of
1611 * the request queue, displacing the currently-being-processed
1612 * request and this function returns immediately without waiting
1613 * for the new rq to be completed. This is VERY DANGEROUS, and is
1614 * intended for careful use by the ATAPI tape/cdrom driver code.
1616 * If action is ide_end, then the rq is queued at the end of the
1617 * request queue, and the function returns immediately without waiting
1618 * for the new rq to be completed. This is again intended for careful
1619 * use by the ATAPI tape/cdrom driver code.
1622 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1624 unsigned long flags
;
1625 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1626 DECLARE_COMPLETION_ONSTACK(wait
);
1627 int where
= ELEVATOR_INSERT_BACK
, err
;
1628 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1633 * we need to hold an extra reference to request for safe inspection
1638 rq
->end_io_data
= &wait
;
1639 rq
->end_io
= blk_end_sync_rq
;
1642 spin_lock_irqsave(&ide_lock
, flags
);
1643 if (action
== ide_preempt
)
1645 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1646 where
= ELEVATOR_INSERT_FRONT
;
1647 rq
->cmd_flags
|= REQ_PREEMPT
;
1649 __elv_add_request(drive
->queue
, rq
, where
, 0);
1650 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1651 spin_unlock_irqrestore(&ide_lock
, flags
);
1655 wait_for_completion(&wait
);
1659 blk_put_request(rq
);
1665 EXPORT_SYMBOL(ide_do_drive_cmd
);
1667 void ide_pktcmd_tf_load(ide_drive_t
*drive
, u32 tf_flags
, u16 bcount
, u8 dma
)
1671 memset(&task
, 0, sizeof(task
));
1672 task
.tf_flags
= IDE_TFLAG_OUT_LBAH
| IDE_TFLAG_OUT_LBAM
|
1673 IDE_TFLAG_OUT_FEATURE
| tf_flags
;
1674 task
.tf
.feature
= dma
; /* Use PIO/DMA */
1675 task
.tf
.lbam
= bcount
& 0xff;
1676 task
.tf
.lbah
= (bcount
>> 8) & 0xff;
1678 ide_tf_load(drive
, &task
);
1681 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load
);