kbuild: Fix instrumentation removal breakage on avr32
[wrt350n-kernel.git] / drivers / ide / ide-tape.c
blobbf40d8c824adf86f36064e07735fd13bbdba7cb4
1 /*
2 * IDE ATAPI streaming tape driver.
4 * Copyright (C) 1995-1999 Gadi Oxman <gadio@netvision.net.il>
5 * Copyright (C) 2003-2005 Bartlomiej Zolnierkiewicz
7 * This driver was constructed as a student project in the software laboratory
8 * of the faculty of electrical engineering in the Technion - Israel's
9 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11 * It is hereby placed under the terms of the GNU general public license.
12 * (See linux/COPYING).
14 * For a historical changelog see
15 * Documentation/ide/ChangeLog.ide-tape.1995-2002
18 #define IDETAPE_VERSION "1.19"
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/delay.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/jiffies.h>
29 #include <linux/major.h>
30 #include <linux/errno.h>
31 #include <linux/genhd.h>
32 #include <linux/slab.h>
33 #include <linux/pci.h>
34 #include <linux/ide.h>
35 #include <linux/smp_lock.h>
36 #include <linux/completion.h>
37 #include <linux/bitops.h>
38 #include <linux/mutex.h>
39 #include <scsi/scsi.h>
41 #include <asm/byteorder.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/unaligned.h>
46 #include <linux/mtio.h>
48 /**************************** Tunable parameters *****************************/
52 * Pipelined mode parameters.
54 * We try to use the minimum number of stages which is enough to
55 * keep the tape constantly streaming. To accomplish that, we implement
56 * a feedback loop around the maximum number of stages:
58 * We start from MIN maximum stages (we will not even use MIN stages
59 * if we don't need them), increment it by RATE*(MAX-MIN)
60 * whenever we sense that the pipeline is empty, until we reach
61 * the optimum value or until we reach MAX.
63 * Setting the following parameter to 0 is illegal: the pipelined mode
64 * cannot be disabled (calculate_speeds() divides by tape->max_stages.)
66 #define IDETAPE_MIN_PIPELINE_STAGES 1
67 #define IDETAPE_MAX_PIPELINE_STAGES 400
68 #define IDETAPE_INCREASE_STAGES_RATE 20
71 * The following are used to debug the driver:
73 * Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
75 * Setting them to 0 will restore normal operation mode:
77 * 1. Disable logging normal successful operations.
78 * 2. Disable self-sanity checks.
79 * 3. Errors will still be logged, of course.
81 * All the #if DEBUG code will be removed some day, when the driver
82 * is verified to be stable enough. This will make it much more
83 * esthetic.
85 #define IDETAPE_DEBUG_LOG 0
88 * After each failed packet command we issue a request sense command
89 * and retry the packet command IDETAPE_MAX_PC_RETRIES times.
91 * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
93 #define IDETAPE_MAX_PC_RETRIES 3
96 * With each packet command, we allocate a buffer of
97 * IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
98 * commands (Not for READ/WRITE commands).
100 #define IDETAPE_PC_BUFFER_SIZE 256
103 * In various places in the driver, we need to allocate storage
104 * for packet commands and requests, which will remain valid while
105 * we leave the driver to wait for an interrupt or a timeout event.
107 #define IDETAPE_PC_STACK (10 + IDETAPE_MAX_PC_RETRIES)
110 * Some drives (for example, Seagate STT3401A Travan) require a very long
111 * timeout, because they don't return an interrupt or clear their busy bit
112 * until after the command completes (even retension commands).
114 #define IDETAPE_WAIT_CMD (900*HZ)
117 * The following parameter is used to select the point in the internal
118 * tape fifo in which we will start to refill the buffer. Decreasing
119 * the following parameter will improve the system's latency and
120 * interactive response, while using a high value might improve system
121 * throughput.
123 #define IDETAPE_FIFO_THRESHOLD 2
126 * DSC polling parameters.
128 * Polling for DSC (a single bit in the status register) is a very
129 * important function in ide-tape. There are two cases in which we
130 * poll for DSC:
132 * 1. Before a read/write packet command, to ensure that we
133 * can transfer data from/to the tape's data buffers, without
134 * causing an actual media access. In case the tape is not
135 * ready yet, we take out our request from the device
136 * request queue, so that ide.c will service requests from
137 * the other device on the same interface meanwhile.
139 * 2. After the successful initialization of a "media access
140 * packet command", which is a command which can take a long
141 * time to complete (it can be several seconds or even an hour).
143 * Again, we postpone our request in the middle to free the bus
144 * for the other device. The polling frequency here should be
145 * lower than the read/write frequency since those media access
146 * commands are slow. We start from a "fast" frequency -
147 * IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
148 * after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
149 * lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
151 * We also set a timeout for the timer, in case something goes wrong.
152 * The timeout should be longer then the maximum execution time of a
153 * tape operation.
157 * DSC timings.
159 #define IDETAPE_DSC_RW_MIN 5*HZ/100 /* 50 msec */
160 #define IDETAPE_DSC_RW_MAX 40*HZ/100 /* 400 msec */
161 #define IDETAPE_DSC_RW_TIMEOUT 2*60*HZ /* 2 minutes */
162 #define IDETAPE_DSC_MA_FAST 2*HZ /* 2 seconds */
163 #define IDETAPE_DSC_MA_THRESHOLD 5*60*HZ /* 5 minutes */
164 #define IDETAPE_DSC_MA_SLOW 30*HZ /* 30 seconds */
165 #define IDETAPE_DSC_MA_TIMEOUT 2*60*60*HZ /* 2 hours */
167 /*************************** End of tunable parameters ***********************/
170 * Read/Write error simulation
172 #define SIMULATE_ERRORS 0
175 * For general magnetic tape device compatibility.
177 typedef enum {
178 idetape_direction_none,
179 idetape_direction_read,
180 idetape_direction_write
181 } idetape_chrdev_direction_t;
183 struct idetape_bh {
184 u32 b_size;
185 atomic_t b_count;
186 struct idetape_bh *b_reqnext;
187 char *b_data;
191 * Our view of a packet command.
193 typedef struct idetape_packet_command_s {
194 u8 c[12]; /* Actual packet bytes */
195 int retries; /* On each retry, we increment retries */
196 int error; /* Error code */
197 int request_transfer; /* Bytes to transfer */
198 int actually_transferred; /* Bytes actually transferred */
199 int buffer_size; /* Size of our data buffer */
200 struct idetape_bh *bh;
201 char *b_data;
202 int b_count;
203 u8 *buffer; /* Data buffer */
204 u8 *current_position; /* Pointer into the above buffer */
205 ide_startstop_t (*callback) (ide_drive_t *); /* Called when this packet command is completed */
206 u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE]; /* Temporary buffer */
207 unsigned long flags; /* Status/Action bit flags: long for set_bit */
208 } idetape_pc_t;
211 * Packet command flag bits.
213 /* Set when an error is considered normal - We won't retry */
214 #define PC_ABORT 0
215 /* 1 When polling for DSC on a media access command */
216 #define PC_WAIT_FOR_DSC 1
217 /* 1 when we prefer to use DMA if possible */
218 #define PC_DMA_RECOMMENDED 2
219 /* 1 while DMA in progress */
220 #define PC_DMA_IN_PROGRESS 3
221 /* 1 when encountered problem during DMA */
222 #define PC_DMA_ERROR 4
223 /* Data direction */
224 #define PC_WRITING 5
227 * A pipeline stage.
229 typedef struct idetape_stage_s {
230 struct request rq; /* The corresponding request */
231 struct idetape_bh *bh; /* The data buffers */
232 struct idetape_stage_s *next; /* Pointer to the next stage */
233 } idetape_stage_t;
236 * Most of our global data which we need to save even as we leave the
237 * driver due to an interrupt or a timer event is stored in a variable
238 * of type idetape_tape_t, defined below.
240 typedef struct ide_tape_obj {
241 ide_drive_t *drive;
242 ide_driver_t *driver;
243 struct gendisk *disk;
244 struct kref kref;
247 * Since a typical character device operation requires more
248 * than one packet command, we provide here enough memory
249 * for the maximum of interconnected packet commands.
250 * The packet commands are stored in the circular array pc_stack.
251 * pc_stack_index points to the last used entry, and warps around
252 * to the start when we get to the last array entry.
254 * pc points to the current processed packet command.
256 * failed_pc points to the last failed packet command, or contains
257 * NULL if we do not need to retry any packet command. This is
258 * required since an additional packet command is needed before the
259 * retry, to get detailed information on what went wrong.
261 /* Current packet command */
262 idetape_pc_t *pc;
263 /* Last failed packet command */
264 idetape_pc_t *failed_pc;
265 /* Packet command stack */
266 idetape_pc_t pc_stack[IDETAPE_PC_STACK];
267 /* Next free packet command storage space */
268 int pc_stack_index;
269 struct request rq_stack[IDETAPE_PC_STACK];
270 /* We implement a circular array */
271 int rq_stack_index;
274 * DSC polling variables.
276 * While polling for DSC we use postponed_rq to postpone the
277 * current request so that ide.c will be able to service
278 * pending requests on the other device. Note that at most
279 * we will have only one DSC (usually data transfer) request
280 * in the device request queue. Additional requests can be
281 * queued in our internal pipeline, but they will be visible
282 * to ide.c only one at a time.
284 struct request *postponed_rq;
285 /* The time in which we started polling for DSC */
286 unsigned long dsc_polling_start;
287 /* Timer used to poll for dsc */
288 struct timer_list dsc_timer;
289 /* Read/Write dsc polling frequency */
290 unsigned long best_dsc_rw_frequency;
291 /* The current polling frequency */
292 unsigned long dsc_polling_frequency;
293 /* Maximum waiting time */
294 unsigned long dsc_timeout;
297 * Read position information
299 u8 partition;
300 /* Current block */
301 unsigned int first_frame_position;
302 unsigned int last_frame_position;
303 unsigned int blocks_in_buffer;
306 * Last error information
308 u8 sense_key, asc, ascq;
311 * Character device operation
313 unsigned int minor;
314 /* device name */
315 char name[4];
316 /* Current character device data transfer direction */
317 idetape_chrdev_direction_t chrdev_direction;
320 * Device information
322 /* Usually 512 or 1024 bytes */
323 unsigned short tape_block_size;
324 int user_bs_factor;
326 /* Copy of the tape's Capabilities and Mechanical Page */
327 u8 caps[20];
330 * Active data transfer request parameters.
332 * At most, there is only one ide-tape originated data transfer
333 * request in the device request queue. This allows ide.c to
334 * easily service requests from the other device when we
335 * postpone our active request. In the pipelined operation
336 * mode, we use our internal pipeline structure to hold
337 * more data requests.
339 * The data buffer size is chosen based on the tape's
340 * recommendation.
342 /* Pointer to the request which is waiting in the device request queue */
343 struct request *active_data_request;
344 /* Data buffer size (chosen based on the tape's recommendation */
345 int stage_size;
346 idetape_stage_t *merge_stage;
347 int merge_stage_size;
348 struct idetape_bh *bh;
349 char *b_data;
350 int b_count;
353 * Pipeline parameters.
355 * To accomplish non-pipelined mode, we simply set the following
356 * variables to zero (or NULL, where appropriate).
358 /* Number of currently used stages */
359 int nr_stages;
360 /* Number of pending stages */
361 int nr_pending_stages;
362 /* We will not allocate more than this number of stages */
363 int max_stages, min_pipeline, max_pipeline;
364 /* The first stage which will be removed from the pipeline */
365 idetape_stage_t *first_stage;
366 /* The currently active stage */
367 idetape_stage_t *active_stage;
368 /* Will be serviced after the currently active request */
369 idetape_stage_t *next_stage;
370 /* New requests will be added to the pipeline here */
371 idetape_stage_t *last_stage;
372 /* Optional free stage which we can use */
373 idetape_stage_t *cache_stage;
374 int pages_per_stage;
375 /* Wasted space in each stage */
376 int excess_bh_size;
378 /* Status/Action flags: long for set_bit */
379 unsigned long flags;
380 /* protects the ide-tape queue */
381 spinlock_t spinlock;
384 * Measures average tape speed
386 unsigned long avg_time;
387 int avg_size;
388 int avg_speed;
390 char vendor_id[10];
391 char product_id[18];
392 char firmware_revision[6];
393 int firmware_revision_num;
395 /* the door is currently locked */
396 int door_locked;
397 /* the tape hardware is write protected */
398 char drv_write_prot;
399 /* the tape is write protected (hardware or opened as read-only) */
400 char write_prot;
403 * Limit the number of times a request can
404 * be postponed, to avoid an infinite postpone
405 * deadlock.
407 /* request postpone count limit */
408 int postpone_cnt;
411 * Measures number of frames:
413 * 1. written/read to/from the driver pipeline (pipeline_head).
414 * 2. written/read to/from the tape buffers (idetape_bh).
415 * 3. written/read by the tape to/from the media (tape_head).
417 int pipeline_head;
418 int buffer_head;
419 int tape_head;
420 int last_tape_head;
423 * Speed control at the tape buffers input/output
425 unsigned long insert_time;
426 int insert_size;
427 int insert_speed;
428 int max_insert_speed;
429 int measure_insert_time;
432 * Measure tape still time, in milliseconds
434 unsigned long tape_still_time_begin;
435 int tape_still_time;
438 * Speed regulation negative feedback loop
440 int speed_control;
441 int pipeline_head_speed;
442 int controlled_pipeline_head_speed;
443 int uncontrolled_pipeline_head_speed;
444 int controlled_last_pipeline_head;
445 int uncontrolled_last_pipeline_head;
446 unsigned long uncontrolled_pipeline_head_time;
447 unsigned long controlled_pipeline_head_time;
448 int controlled_previous_pipeline_head;
449 int uncontrolled_previous_pipeline_head;
450 unsigned long controlled_previous_head_time;
451 unsigned long uncontrolled_previous_head_time;
452 int restart_speed_control_req;
455 * Debug_level determines amount of debugging output;
456 * can be changed using /proc/ide/hdx/settings
457 * 0 : almost no debugging output
458 * 1 : 0+output errors only
459 * 2 : 1+output all sensekey/asc
460 * 3 : 2+follow all chrdev related procedures
461 * 4 : 3+follow all procedures
462 * 5 : 4+include pc_stack rq_stack info
463 * 6 : 5+USE_COUNT updates
465 int debug_level;
466 } idetape_tape_t;
468 static DEFINE_MUTEX(idetape_ref_mutex);
470 static struct class *idetape_sysfs_class;
472 #define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
474 #define ide_tape_g(disk) \
475 container_of((disk)->private_data, struct ide_tape_obj, driver)
477 static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
479 struct ide_tape_obj *tape = NULL;
481 mutex_lock(&idetape_ref_mutex);
482 tape = ide_tape_g(disk);
483 if (tape)
484 kref_get(&tape->kref);
485 mutex_unlock(&idetape_ref_mutex);
486 return tape;
489 static void ide_tape_release(struct kref *);
491 static void ide_tape_put(struct ide_tape_obj *tape)
493 mutex_lock(&idetape_ref_mutex);
494 kref_put(&tape->kref, ide_tape_release);
495 mutex_unlock(&idetape_ref_mutex);
499 * Tape door status
501 #define DOOR_UNLOCKED 0
502 #define DOOR_LOCKED 1
503 #define DOOR_EXPLICITLY_LOCKED 2
506 * Tape flag bits values.
508 #define IDETAPE_IGNORE_DSC 0
509 #define IDETAPE_ADDRESS_VALID 1 /* 0 When the tape position is unknown */
510 #define IDETAPE_BUSY 2 /* Device already opened */
511 #define IDETAPE_PIPELINE_ERROR 3 /* Error detected in a pipeline stage */
512 #define IDETAPE_DETECT_BS 4 /* Attempt to auto-detect the current user block size */
513 #define IDETAPE_FILEMARK 5 /* Currently on a filemark */
514 #define IDETAPE_DRQ_INTERRUPT 6 /* DRQ interrupt device */
515 #define IDETAPE_READ_ERROR 7
516 #define IDETAPE_PIPELINE_ACTIVE 8 /* pipeline active */
517 /* 0 = no tape is loaded, so we don't rewind after ejecting */
518 #define IDETAPE_MEDIUM_PRESENT 9
521 * Some defines for the READ BUFFER command
523 #define IDETAPE_RETRIEVE_FAULTY_BLOCK 6
526 * Some defines for the SPACE command
528 #define IDETAPE_SPACE_OVER_FILEMARK 1
529 #define IDETAPE_SPACE_TO_EOD 3
532 * Some defines for the LOAD UNLOAD command
534 #define IDETAPE_LU_LOAD_MASK 1
535 #define IDETAPE_LU_RETENSION_MASK 2
536 #define IDETAPE_LU_EOT_MASK 4
539 * Special requests for our block device strategy routine.
541 * In order to service a character device command, we add special
542 * requests to the tail of our block device request queue and wait
543 * for their completion.
546 enum {
547 REQ_IDETAPE_PC1 = (1 << 0), /* packet command (first stage) */
548 REQ_IDETAPE_PC2 = (1 << 1), /* packet command (second stage) */
549 REQ_IDETAPE_READ = (1 << 2),
550 REQ_IDETAPE_WRITE = (1 << 3),
551 REQ_IDETAPE_READ_BUFFER = (1 << 4),
555 * Error codes which are returned in rq->errors to the higher part
556 * of the driver.
558 #define IDETAPE_ERROR_GENERAL 101
559 #define IDETAPE_ERROR_FILEMARK 102
560 #define IDETAPE_ERROR_EOD 103
563 * The following is used to format the general configuration word of
564 * the ATAPI IDENTIFY DEVICE command.
566 struct idetape_id_gcw {
567 unsigned packet_size :2; /* Packet Size */
568 unsigned reserved234 :3; /* Reserved */
569 unsigned drq_type :2; /* Command packet DRQ type */
570 unsigned removable :1; /* Removable media */
571 unsigned device_type :5; /* Device type */
572 unsigned reserved13 :1; /* Reserved */
573 unsigned protocol :2; /* Protocol type */
577 * READ POSITION packet command - Data Format (From Table 6-57)
579 typedef struct {
580 unsigned reserved0_10 :2; /* Reserved */
581 unsigned bpu :1; /* Block Position Unknown */
582 unsigned reserved0_543 :3; /* Reserved */
583 unsigned eop :1; /* End Of Partition */
584 unsigned bop :1; /* Beginning Of Partition */
585 u8 partition; /* Partition Number */
586 u8 reserved2, reserved3; /* Reserved */
587 u32 first_block; /* First Block Location */
588 u32 last_block; /* Last Block Location (Optional) */
589 u8 reserved12; /* Reserved */
590 u8 blocks_in_buffer[3]; /* Blocks In Buffer - (Optional) */
591 u32 bytes_in_buffer; /* Bytes In Buffer (Optional) */
592 } idetape_read_position_result_t;
594 /* Structures related to the SELECT SENSE / MODE SENSE packet commands. */
595 #define IDETAPE_BLOCK_DESCRIPTOR 0
596 #define IDETAPE_CAPABILITIES_PAGE 0x2a
599 * The variables below are used for the character device interface.
600 * Additional state variables are defined in our ide_drive_t structure.
602 static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
604 #define ide_tape_f(file) ((file)->private_data)
606 static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
608 struct ide_tape_obj *tape = NULL;
610 mutex_lock(&idetape_ref_mutex);
611 tape = idetape_devs[i];
612 if (tape)
613 kref_get(&tape->kref);
614 mutex_unlock(&idetape_ref_mutex);
615 return tape;
619 * Function declarations
622 static int idetape_chrdev_release (struct inode *inode, struct file *filp);
623 static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
626 * Too bad. The drive wants to send us data which we are not ready to accept.
627 * Just throw it away.
629 static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
631 while (bcount--)
632 (void) HWIF(drive)->INB(IDE_DATA_REG);
635 static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
637 struct idetape_bh *bh = pc->bh;
638 int count;
640 while (bcount) {
641 if (bh == NULL) {
642 printk(KERN_ERR "ide-tape: bh == NULL in "
643 "idetape_input_buffers\n");
644 idetape_discard_data(drive, bcount);
645 return;
647 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
648 HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
649 bcount -= count;
650 atomic_add(count, &bh->b_count);
651 if (atomic_read(&bh->b_count) == bh->b_size) {
652 bh = bh->b_reqnext;
653 if (bh)
654 atomic_set(&bh->b_count, 0);
657 pc->bh = bh;
660 static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
662 struct idetape_bh *bh = pc->bh;
663 int count;
665 while (bcount) {
666 if (bh == NULL) {
667 printk(KERN_ERR "ide-tape: bh == NULL in "
668 "idetape_output_buffers\n");
669 return;
671 count = min((unsigned int)pc->b_count, (unsigned int)bcount);
672 HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
673 bcount -= count;
674 pc->b_data += count;
675 pc->b_count -= count;
676 if (!pc->b_count) {
677 pc->bh = bh = bh->b_reqnext;
678 if (bh) {
679 pc->b_data = bh->b_data;
680 pc->b_count = atomic_read(&bh->b_count);
686 static void idetape_update_buffers (idetape_pc_t *pc)
688 struct idetape_bh *bh = pc->bh;
689 int count;
690 unsigned int bcount = pc->actually_transferred;
692 if (test_bit(PC_WRITING, &pc->flags))
693 return;
694 while (bcount) {
695 if (bh == NULL) {
696 printk(KERN_ERR "ide-tape: bh == NULL in "
697 "idetape_update_buffers\n");
698 return;
700 count = min((unsigned int)bh->b_size, (unsigned int)bcount);
701 atomic_set(&bh->b_count, count);
702 if (atomic_read(&bh->b_count) == bh->b_size)
703 bh = bh->b_reqnext;
704 bcount -= count;
706 pc->bh = bh;
710 * idetape_next_pc_storage returns a pointer to a place in which we can
711 * safely store a packet command, even though we intend to leave the
712 * driver. A storage space for a maximum of IDETAPE_PC_STACK packet
713 * commands is allocated at initialization time.
715 static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
717 idetape_tape_t *tape = drive->driver_data;
719 #if IDETAPE_DEBUG_LOG
720 if (tape->debug_level >= 5)
721 printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
722 tape->pc_stack_index);
723 #endif /* IDETAPE_DEBUG_LOG */
724 if (tape->pc_stack_index == IDETAPE_PC_STACK)
725 tape->pc_stack_index=0;
726 return (&tape->pc_stack[tape->pc_stack_index++]);
730 * idetape_next_rq_storage is used along with idetape_next_pc_storage.
731 * Since we queue packet commands in the request queue, we need to
732 * allocate a request, along with the allocation of a packet command.
735 /**************************************************************
737 * This should get fixed to use kmalloc(.., GFP_ATOMIC) *
738 * followed later on by kfree(). -ml *
740 **************************************************************/
742 static struct request *idetape_next_rq_storage (ide_drive_t *drive)
744 idetape_tape_t *tape = drive->driver_data;
746 #if IDETAPE_DEBUG_LOG
747 if (tape->debug_level >= 5)
748 printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
749 tape->rq_stack_index);
750 #endif /* IDETAPE_DEBUG_LOG */
751 if (tape->rq_stack_index == IDETAPE_PC_STACK)
752 tape->rq_stack_index=0;
753 return (&tape->rq_stack[tape->rq_stack_index++]);
757 * idetape_init_pc initializes a packet command.
759 static void idetape_init_pc (idetape_pc_t *pc)
761 memset(pc->c, 0, 12);
762 pc->retries = 0;
763 pc->flags = 0;
764 pc->request_transfer = 0;
765 pc->buffer = pc->pc_buffer;
766 pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
767 pc->bh = NULL;
768 pc->b_data = NULL;
772 * called on each failed packet command retry to analyze the request sense. We
773 * currently do not utilize this information.
775 static void idetape_analyze_error(ide_drive_t *drive, u8 *sense)
777 idetape_tape_t *tape = drive->driver_data;
778 idetape_pc_t *pc = tape->failed_pc;
780 tape->sense_key = sense[2] & 0xF;
781 tape->asc = sense[12];
782 tape->ascq = sense[13];
783 #if IDETAPE_DEBUG_LOG
785 * Without debugging, we only log an error if we decided to give up
786 * retrying.
788 if (tape->debug_level >= 1)
789 printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
790 "asc = %x, ascq = %x\n",
791 pc->c[0], tape->sense_key,
792 tape->asc, tape->ascq);
793 #endif /* IDETAPE_DEBUG_LOG */
795 /* Correct pc->actually_transferred by asking the tape. */
796 if (test_bit(PC_DMA_ERROR, &pc->flags)) {
797 pc->actually_transferred = pc->request_transfer -
798 tape->tape_block_size *
799 be32_to_cpu(get_unaligned((u32 *)&sense[3]));
800 idetape_update_buffers(pc);
804 * If error was the result of a zero-length read or write command,
805 * with sense key=5, asc=0x22, ascq=0, let it slide. Some drives
806 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
808 if ((pc->c[0] == READ_6 || pc->c[0] == WRITE_6)
809 /* length == 0 */
810 && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) {
811 if (tape->sense_key == 5) {
812 /* don't report an error, everything's ok */
813 pc->error = 0;
814 /* don't retry read/write */
815 set_bit(PC_ABORT, &pc->flags);
818 if (pc->c[0] == READ_6 && (sense[2] & 0x80)) {
819 pc->error = IDETAPE_ERROR_FILEMARK;
820 set_bit(PC_ABORT, &pc->flags);
822 if (pc->c[0] == WRITE_6) {
823 if ((sense[2] & 0x40) || (tape->sense_key == 0xd
824 && tape->asc == 0x0 && tape->ascq == 0x2)) {
825 pc->error = IDETAPE_ERROR_EOD;
826 set_bit(PC_ABORT, &pc->flags);
829 if (pc->c[0] == READ_6 || pc->c[0] == WRITE_6) {
830 if (tape->sense_key == 8) {
831 pc->error = IDETAPE_ERROR_EOD;
832 set_bit(PC_ABORT, &pc->flags);
834 if (!test_bit(PC_ABORT, &pc->flags) &&
835 pc->actually_transferred)
836 pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
840 static void idetape_activate_next_stage(ide_drive_t *drive)
842 idetape_tape_t *tape = drive->driver_data;
843 idetape_stage_t *stage = tape->next_stage;
844 struct request *rq = &stage->rq;
846 #if IDETAPE_DEBUG_LOG
847 if (tape->debug_level >= 4)
848 printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
849 #endif /* IDETAPE_DEBUG_LOG */
850 if (stage == NULL) {
851 printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
852 return;
855 rq->rq_disk = tape->disk;
856 rq->buffer = NULL;
857 rq->special = (void *)stage->bh;
858 tape->active_data_request = rq;
859 tape->active_stage = stage;
860 tape->next_stage = stage->next;
864 * idetape_increase_max_pipeline_stages is a part of the feedback
865 * loop which tries to find the optimum number of stages. In the
866 * feedback loop, we are starting from a minimum maximum number of
867 * stages, and if we sense that the pipeline is empty, we try to
868 * increase it, until we reach the user compile time memory limit.
870 static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
872 idetape_tape_t *tape = drive->driver_data;
873 int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
875 #if IDETAPE_DEBUG_LOG
876 if (tape->debug_level >= 4)
877 printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
878 #endif /* IDETAPE_DEBUG_LOG */
880 tape->max_stages += max(increase, 1);
881 tape->max_stages = max(tape->max_stages, tape->min_pipeline);
882 tape->max_stages = min(tape->max_stages, tape->max_pipeline);
886 * idetape_kfree_stage calls kfree to completely free a stage, along with
887 * its related buffers.
889 static void __idetape_kfree_stage (idetape_stage_t *stage)
891 struct idetape_bh *prev_bh, *bh = stage->bh;
892 int size;
894 while (bh != NULL) {
895 if (bh->b_data != NULL) {
896 size = (int) bh->b_size;
897 while (size > 0) {
898 free_page((unsigned long) bh->b_data);
899 size -= PAGE_SIZE;
900 bh->b_data += PAGE_SIZE;
903 prev_bh = bh;
904 bh = bh->b_reqnext;
905 kfree(prev_bh);
907 kfree(stage);
910 static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
912 __idetape_kfree_stage(stage);
916 * idetape_remove_stage_head removes tape->first_stage from the pipeline.
917 * The caller should avoid race conditions.
919 static void idetape_remove_stage_head (ide_drive_t *drive)
921 idetape_tape_t *tape = drive->driver_data;
922 idetape_stage_t *stage;
924 #if IDETAPE_DEBUG_LOG
925 if (tape->debug_level >= 4)
926 printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
927 #endif /* IDETAPE_DEBUG_LOG */
928 if (tape->first_stage == NULL) {
929 printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
930 return;
932 if (tape->active_stage == tape->first_stage) {
933 printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
934 return;
936 stage = tape->first_stage;
937 tape->first_stage = stage->next;
938 idetape_kfree_stage(tape, stage);
939 tape->nr_stages--;
940 if (tape->first_stage == NULL) {
941 tape->last_stage = NULL;
942 if (tape->next_stage != NULL)
943 printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
944 if (tape->nr_stages)
945 printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
950 * This will free all the pipeline stages starting from new_last_stage->next
951 * to the end of the list, and point tape->last_stage to new_last_stage.
953 static void idetape_abort_pipeline(ide_drive_t *drive,
954 idetape_stage_t *new_last_stage)
956 idetape_tape_t *tape = drive->driver_data;
957 idetape_stage_t *stage = new_last_stage->next;
958 idetape_stage_t *nstage;
960 #if IDETAPE_DEBUG_LOG
961 if (tape->debug_level >= 4)
962 printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
963 #endif
964 while (stage) {
965 nstage = stage->next;
966 idetape_kfree_stage(tape, stage);
967 --tape->nr_stages;
968 --tape->nr_pending_stages;
969 stage = nstage;
971 if (new_last_stage)
972 new_last_stage->next = NULL;
973 tape->last_stage = new_last_stage;
974 tape->next_stage = NULL;
978 * idetape_end_request is used to finish servicing a request, and to
979 * insert a pending pipeline request into the main device queue.
981 static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
983 struct request *rq = HWGROUP(drive)->rq;
984 idetape_tape_t *tape = drive->driver_data;
985 unsigned long flags;
986 int error;
987 int remove_stage = 0;
988 idetape_stage_t *active_stage;
990 #if IDETAPE_DEBUG_LOG
991 if (tape->debug_level >= 4)
992 printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
993 #endif /* IDETAPE_DEBUG_LOG */
995 switch (uptodate) {
996 case 0: error = IDETAPE_ERROR_GENERAL; break;
997 case 1: error = 0; break;
998 default: error = uptodate;
1000 rq->errors = error;
1001 if (error)
1002 tape->failed_pc = NULL;
1004 if (!blk_special_request(rq)) {
1005 ide_end_request(drive, uptodate, nr_sects);
1006 return 0;
1009 spin_lock_irqsave(&tape->spinlock, flags);
1011 /* The request was a pipelined data transfer request */
1012 if (tape->active_data_request == rq) {
1013 active_stage = tape->active_stage;
1014 tape->active_stage = NULL;
1015 tape->active_data_request = NULL;
1016 tape->nr_pending_stages--;
1017 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1018 remove_stage = 1;
1019 if (error) {
1020 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1021 if (error == IDETAPE_ERROR_EOD)
1022 idetape_abort_pipeline(drive, active_stage);
1024 } else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1025 if (error == IDETAPE_ERROR_EOD) {
1026 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1027 idetape_abort_pipeline(drive, active_stage);
1030 if (tape->next_stage != NULL) {
1031 idetape_activate_next_stage(drive);
1034 * Insert the next request into the request queue.
1036 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1037 } else if (!error) {
1038 idetape_increase_max_pipeline_stages(drive);
1041 ide_end_drive_cmd(drive, 0, 0);
1042 // blkdev_dequeue_request(rq);
1043 // drive->rq = NULL;
1044 // end_that_request_last(rq);
1046 if (remove_stage)
1047 idetape_remove_stage_head(drive);
1048 if (tape->active_data_request == NULL)
1049 clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1050 spin_unlock_irqrestore(&tape->spinlock, flags);
1051 return 0;
1054 static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1056 idetape_tape_t *tape = drive->driver_data;
1058 #if IDETAPE_DEBUG_LOG
1059 if (tape->debug_level >= 4)
1060 printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1061 #endif /* IDETAPE_DEBUG_LOG */
1062 if (!tape->pc->error) {
1063 idetape_analyze_error(drive, tape->pc->buffer);
1064 idetape_end_request(drive, 1, 0);
1065 } else {
1066 printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1067 idetape_end_request(drive, 0, 0);
1069 return ide_stopped;
1072 static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1074 idetape_init_pc(pc);
1075 pc->c[0] = REQUEST_SENSE;
1076 pc->c[4] = 20;
1077 pc->request_transfer = 20;
1078 pc->callback = &idetape_request_sense_callback;
1081 static void idetape_init_rq(struct request *rq, u8 cmd)
1083 memset(rq, 0, sizeof(*rq));
1084 rq->cmd_type = REQ_TYPE_SPECIAL;
1085 rq->cmd[0] = cmd;
1089 * idetape_queue_pc_head generates a new packet command request in front
1090 * of the request queue, before the current request, so that it will be
1091 * processed immediately, on the next pass through the driver.
1093 * idetape_queue_pc_head is called from the request handling part of
1094 * the driver (the "bottom" part). Safe storage for the request should
1095 * be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1096 * before calling idetape_queue_pc_head.
1098 * Memory for those requests is pre-allocated at initialization time, and
1099 * is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1100 * space for the maximum possible number of inter-dependent packet commands.
1102 * The higher level of the driver - The ioctl handler and the character
1103 * device handling functions should queue request to the lower level part
1104 * and wait for their completion using idetape_queue_pc_tail or
1105 * idetape_queue_rw_tail.
1107 static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1109 struct ide_tape_obj *tape = drive->driver_data;
1111 idetape_init_rq(rq, REQ_IDETAPE_PC1);
1112 rq->buffer = (char *) pc;
1113 rq->rq_disk = tape->disk;
1114 (void) ide_do_drive_cmd(drive, rq, ide_preempt);
1118 * idetape_retry_pc is called when an error was detected during the
1119 * last packet command. We queue a request sense packet command in
1120 * the head of the request list.
1122 static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1124 idetape_tape_t *tape = drive->driver_data;
1125 idetape_pc_t *pc;
1126 struct request *rq;
1128 (void)drive->hwif->INB(IDE_ERROR_REG);
1129 pc = idetape_next_pc_storage(drive);
1130 rq = idetape_next_rq_storage(drive);
1131 idetape_create_request_sense_cmd(pc);
1132 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1133 idetape_queue_pc_head(drive, pc, rq);
1134 return ide_stopped;
1138 * idetape_postpone_request postpones the current request so that
1139 * ide.c will be able to service requests from another device on
1140 * the same hwgroup while we are polling for DSC.
1142 static void idetape_postpone_request (ide_drive_t *drive)
1144 idetape_tape_t *tape = drive->driver_data;
1146 #if IDETAPE_DEBUG_LOG
1147 if (tape->debug_level >= 4)
1148 printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1149 #endif
1150 tape->postponed_rq = HWGROUP(drive)->rq;
1151 ide_stall_queue(drive, tape->dsc_polling_frequency);
1155 * idetape_pc_intr is the usual interrupt handler which will be called
1156 * during a packet command. We will transfer some of the data (as
1157 * requested by the drive) and will re-point interrupt handler to us.
1158 * When data transfer is finished, we will act according to the
1159 * algorithm described before idetape_issue_packet_command.
1162 static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1164 ide_hwif_t *hwif = drive->hwif;
1165 idetape_tape_t *tape = drive->driver_data;
1166 idetape_pc_t *pc = tape->pc;
1167 unsigned int temp;
1168 #if SIMULATE_ERRORS
1169 static int error_sim_count = 0;
1170 #endif
1171 u16 bcount;
1172 u8 stat, ireason;
1174 #if IDETAPE_DEBUG_LOG
1175 if (tape->debug_level >= 4)
1176 printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1177 "interrupt handler\n");
1178 #endif /* IDETAPE_DEBUG_LOG */
1180 /* Clear the interrupt */
1181 stat = hwif->INB(IDE_STATUS_REG);
1183 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1184 if (hwif->ide_dma_end(drive) || (stat & ERR_STAT)) {
1186 * A DMA error is sometimes expected. For example,
1187 * if the tape is crossing a filemark during a
1188 * READ command, it will issue an irq and position
1189 * itself before the filemark, so that only a partial
1190 * data transfer will occur (which causes the DMA
1191 * error). In that case, we will later ask the tape
1192 * how much bytes of the original request were
1193 * actually transferred (we can't receive that
1194 * information from the DMA engine on most chipsets).
1198 * On the contrary, a DMA error is never expected;
1199 * it usually indicates a hardware error or abort.
1200 * If the tape crosses a filemark during a READ
1201 * command, it will issue an irq and position itself
1202 * after the filemark (not before). Only a partial
1203 * data transfer will occur, but no DMA error.
1204 * (AS, 19 Apr 2001)
1206 set_bit(PC_DMA_ERROR, &pc->flags);
1207 } else {
1208 pc->actually_transferred = pc->request_transfer;
1209 idetape_update_buffers(pc);
1211 #if IDETAPE_DEBUG_LOG
1212 if (tape->debug_level >= 4)
1213 printk(KERN_INFO "ide-tape: DMA finished\n");
1214 #endif /* IDETAPE_DEBUG_LOG */
1217 /* No more interrupts */
1218 if ((stat & DRQ_STAT) == 0) {
1219 #if IDETAPE_DEBUG_LOG
1220 if (tape->debug_level >= 2)
1221 printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1222 #endif /* IDETAPE_DEBUG_LOG */
1223 clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1225 local_irq_enable();
1227 #if SIMULATE_ERRORS
1228 if ((pc->c[0] == WRITE_6 || pc->c[0] == READ_6) &&
1229 (++error_sim_count % 100) == 0) {
1230 printk(KERN_INFO "ide-tape: %s: simulating error\n",
1231 tape->name);
1232 stat |= ERR_STAT;
1234 #endif
1235 if ((stat & ERR_STAT) && pc->c[0] == REQUEST_SENSE)
1236 stat &= ~ERR_STAT;
1237 if ((stat & ERR_STAT) || test_bit(PC_DMA_ERROR, &pc->flags)) {
1238 /* Error detected */
1239 #if IDETAPE_DEBUG_LOG
1240 if (tape->debug_level >= 1)
1241 printk(KERN_INFO "ide-tape: %s: I/O error\n",
1242 tape->name);
1243 #endif /* IDETAPE_DEBUG_LOG */
1244 if (pc->c[0] == REQUEST_SENSE) {
1245 printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1246 return ide_do_reset(drive);
1248 #if IDETAPE_DEBUG_LOG
1249 if (tape->debug_level >= 1)
1250 printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1251 #endif
1252 /* Retry operation */
1253 return idetape_retry_pc(drive);
1255 pc->error = 0;
1256 if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1257 (stat & SEEK_STAT) == 0) {
1258 /* Media access command */
1259 tape->dsc_polling_start = jiffies;
1260 tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1261 tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1262 /* Allow ide.c to handle other requests */
1263 idetape_postpone_request(drive);
1264 return ide_stopped;
1266 if (tape->failed_pc == pc)
1267 tape->failed_pc = NULL;
1268 /* Command finished - Call the callback function */
1269 return pc->callback(drive);
1271 if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1272 printk(KERN_ERR "ide-tape: The tape wants to issue more "
1273 "interrupts in DMA mode\n");
1274 printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1275 ide_dma_off(drive);
1276 return ide_do_reset(drive);
1278 /* Get the number of bytes to transfer on this interrupt. */
1279 bcount = (hwif->INB(IDE_BCOUNTH_REG) << 8) |
1280 hwif->INB(IDE_BCOUNTL_REG);
1282 ireason = hwif->INB(IDE_IREASON_REG);
1284 if (ireason & CD) {
1285 printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1286 return ide_do_reset(drive);
1288 if (((ireason & IO) == IO) == test_bit(PC_WRITING, &pc->flags)) {
1289 /* Hopefully, we will never get here */
1290 printk(KERN_ERR "ide-tape: We wanted to %s, ",
1291 (ireason & IO) ? "Write" : "Read");
1292 printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1293 (ireason & IO) ? "Read" : "Write");
1294 return ide_do_reset(drive);
1296 if (!test_bit(PC_WRITING, &pc->flags)) {
1297 /* Reading - Check that we have enough space */
1298 temp = pc->actually_transferred + bcount;
1299 if (temp > pc->request_transfer) {
1300 if (temp > pc->buffer_size) {
1301 printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
1302 idetape_discard_data(drive, bcount);
1303 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1304 return ide_started;
1306 #if IDETAPE_DEBUG_LOG
1307 if (tape->debug_level >= 2)
1308 printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
1309 #endif /* IDETAPE_DEBUG_LOG */
1312 if (test_bit(PC_WRITING, &pc->flags)) {
1313 if (pc->bh != NULL)
1314 idetape_output_buffers(drive, pc, bcount);
1315 else
1316 /* Write the current buffer */
1317 hwif->atapi_output_bytes(drive, pc->current_position,
1318 bcount);
1319 } else {
1320 if (pc->bh != NULL)
1321 idetape_input_buffers(drive, pc, bcount);
1322 else
1323 /* Read the current buffer */
1324 hwif->atapi_input_bytes(drive, pc->current_position,
1325 bcount);
1327 /* Update the current position */
1328 pc->actually_transferred += bcount;
1329 pc->current_position += bcount;
1330 #if IDETAPE_DEBUG_LOG
1331 if (tape->debug_level >= 2)
1332 printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes "
1333 "on that interrupt\n", pc->c[0], bcount);
1334 #endif
1335 /* And set the interrupt handler again */
1336 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1337 return ide_started;
1341 * Packet Command Interface
1343 * The current Packet Command is available in tape->pc, and will not
1344 * change until we finish handling it. Each packet command is associated
1345 * with a callback function that will be called when the command is
1346 * finished.
1348 * The handling will be done in three stages:
1350 * 1. idetape_issue_packet_command will send the packet command to the
1351 * drive, and will set the interrupt handler to idetape_pc_intr.
1353 * 2. On each interrupt, idetape_pc_intr will be called. This step
1354 * will be repeated until the device signals us that no more
1355 * interrupts will be issued.
1357 * 3. ATAPI Tape media access commands have immediate status with a
1358 * delayed process. In case of a successful initiation of a
1359 * media access packet command, the DSC bit will be set when the
1360 * actual execution of the command is finished.
1361 * Since the tape drive will not issue an interrupt, we have to
1362 * poll for this event. In this case, we define the request as
1363 * "low priority request" by setting rq_status to
1364 * IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and exit
1365 * the driver.
1367 * ide.c will then give higher priority to requests which
1368 * originate from the other device, until will change rq_status
1369 * to RQ_ACTIVE.
1371 * 4. When the packet command is finished, it will be checked for errors.
1373 * 5. In case an error was found, we queue a request sense packet
1374 * command in front of the request queue and retry the operation
1375 * up to IDETAPE_MAX_PC_RETRIES times.
1377 * 6. In case no error was found, or we decided to give up and not
1378 * to retry again, the callback function will be called and then
1379 * we will handle the next request.
1382 static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
1384 ide_hwif_t *hwif = drive->hwif;
1385 idetape_tape_t *tape = drive->driver_data;
1386 idetape_pc_t *pc = tape->pc;
1387 int retries = 100;
1388 ide_startstop_t startstop;
1389 u8 ireason;
1391 if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
1392 printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
1393 return startstop;
1395 ireason = hwif->INB(IDE_IREASON_REG);
1396 while (retries-- && ((ireason & CD) == 0 || (ireason & IO))) {
1397 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
1398 "a packet command, retrying\n");
1399 udelay(100);
1400 ireason = hwif->INB(IDE_IREASON_REG);
1401 if (retries == 0) {
1402 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
1403 "issuing a packet command, ignoring\n");
1404 ireason |= CD;
1405 ireason &= ~IO;
1408 if ((ireason & CD) == 0 || (ireason & IO)) {
1409 printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
1410 "a packet command\n");
1411 return ide_do_reset(drive);
1413 /* Set the interrupt routine */
1414 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1415 #ifdef CONFIG_BLK_DEV_IDEDMA
1416 /* Begin DMA, if necessary */
1417 if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
1418 hwif->dma_start(drive);
1419 #endif
1420 /* Send the actual packet */
1421 HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
1422 return ide_started;
1425 static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
1427 ide_hwif_t *hwif = drive->hwif;
1428 idetape_tape_t *tape = drive->driver_data;
1429 int dma_ok = 0;
1430 u16 bcount;
1432 if (tape->pc->c[0] == REQUEST_SENSE &&
1433 pc->c[0] == REQUEST_SENSE) {
1434 printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
1435 "Two request sense in serial were issued\n");
1438 if (tape->failed_pc == NULL && pc->c[0] != REQUEST_SENSE)
1439 tape->failed_pc = pc;
1440 /* Set the current packet command */
1441 tape->pc = pc;
1443 if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
1444 test_bit(PC_ABORT, &pc->flags)) {
1446 * We will "abort" retrying a packet command in case
1447 * a legitimate error code was received (crossing a
1448 * filemark, or end of the media, for example).
1450 if (!test_bit(PC_ABORT, &pc->flags)) {
1451 if (!(pc->c[0] == TEST_UNIT_READY &&
1452 tape->sense_key == 2 && tape->asc == 4 &&
1453 (tape->ascq == 1 || tape->ascq == 8))) {
1454 printk(KERN_ERR "ide-tape: %s: I/O error, "
1455 "pc = %2x, key = %2x, "
1456 "asc = %2x, ascq = %2x\n",
1457 tape->name, pc->c[0],
1458 tape->sense_key, tape->asc,
1459 tape->ascq);
1461 /* Giving up */
1462 pc->error = IDETAPE_ERROR_GENERAL;
1464 tape->failed_pc = NULL;
1465 return pc->callback(drive);
1467 #if IDETAPE_DEBUG_LOG
1468 if (tape->debug_level >= 2)
1469 printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
1470 #endif /* IDETAPE_DEBUG_LOG */
1472 pc->retries++;
1473 /* We haven't transferred any data yet */
1474 pc->actually_transferred = 0;
1475 pc->current_position = pc->buffer;
1476 /* Request to transfer the entire buffer at once */
1477 bcount = pc->request_transfer;
1479 if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
1480 printk(KERN_WARNING "ide-tape: DMA disabled, "
1481 "reverting to PIO\n");
1482 ide_dma_off(drive);
1484 if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
1485 dma_ok = !hwif->dma_setup(drive);
1487 ide_pktcmd_tf_load(drive, IDE_TFLAG_NO_SELECT_MASK |
1488 IDE_TFLAG_OUT_DEVICE, bcount, dma_ok);
1490 if (dma_ok) /* Will begin DMA later */
1491 set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1492 if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
1493 ide_execute_command(drive, WIN_PACKETCMD, &idetape_transfer_pc,
1494 IDETAPE_WAIT_CMD, NULL);
1495 return ide_started;
1496 } else {
1497 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
1498 return idetape_transfer_pc(drive);
1503 * General packet command callback function.
1505 static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
1507 idetape_tape_t *tape = drive->driver_data;
1509 #if IDETAPE_DEBUG_LOG
1510 if (tape->debug_level >= 4)
1511 printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
1512 #endif /* IDETAPE_DEBUG_LOG */
1514 idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
1515 return ide_stopped;
1519 * A mode sense command is used to "sense" tape parameters.
1521 static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
1523 idetape_init_pc(pc);
1524 pc->c[0] = MODE_SENSE;
1525 if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
1526 pc->c[1] = 8; /* DBD = 1 - Don't return block descriptors */
1527 pc->c[2] = page_code;
1529 * Changed pc->c[3] to 0 (255 will at best return unused info).
1531 * For SCSI this byte is defined as subpage instead of high byte
1532 * of length and some IDE drives seem to interpret it this way
1533 * and return an error when 255 is used.
1535 pc->c[3] = 0;
1536 pc->c[4] = 255; /* (We will just discard data in that case) */
1537 if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
1538 pc->request_transfer = 12;
1539 else if (page_code == IDETAPE_CAPABILITIES_PAGE)
1540 pc->request_transfer = 24;
1541 else
1542 pc->request_transfer = 50;
1543 pc->callback = &idetape_pc_callback;
1546 static void calculate_speeds(ide_drive_t *drive)
1548 idetape_tape_t *tape = drive->driver_data;
1549 int full = 125, empty = 75;
1551 if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
1552 tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
1553 tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
1554 tape->controlled_last_pipeline_head = tape->pipeline_head;
1555 tape->controlled_pipeline_head_time = jiffies;
1557 if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
1558 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
1559 else if (time_after(jiffies, tape->controlled_previous_head_time))
1560 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
1562 if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
1563 /* -1 for read mode error recovery */
1564 if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
1565 tape->uncontrolled_pipeline_head_time = jiffies;
1566 tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
1568 } else {
1569 tape->uncontrolled_previous_head_time = jiffies;
1570 tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
1571 if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
1572 tape->uncontrolled_pipeline_head_time = jiffies;
1575 tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
1576 if (tape->speed_control == 0) {
1577 tape->max_insert_speed = 5000;
1578 } else if (tape->speed_control == 1) {
1579 if (tape->nr_pending_stages >= tape->max_stages / 2)
1580 tape->max_insert_speed = tape->pipeline_head_speed +
1581 (1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
1582 else
1583 tape->max_insert_speed = 500 +
1584 (tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
1585 if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
1586 tape->max_insert_speed = 5000;
1587 } else if (tape->speed_control == 2) {
1588 tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
1589 (tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
1590 } else
1591 tape->max_insert_speed = tape->speed_control;
1592 tape->max_insert_speed = max(tape->max_insert_speed, 500);
1595 static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
1597 idetape_tape_t *tape = drive->driver_data;
1598 idetape_pc_t *pc = tape->pc;
1599 u8 stat;
1601 stat = drive->hwif->INB(IDE_STATUS_REG);
1602 if (stat & SEEK_STAT) {
1603 if (stat & ERR_STAT) {
1604 /* Error detected */
1605 if (pc->c[0] != TEST_UNIT_READY)
1606 printk(KERN_ERR "ide-tape: %s: I/O error, ",
1607 tape->name);
1608 /* Retry operation */
1609 return idetape_retry_pc(drive);
1611 pc->error = 0;
1612 if (tape->failed_pc == pc)
1613 tape->failed_pc = NULL;
1614 } else {
1615 pc->error = IDETAPE_ERROR_GENERAL;
1616 tape->failed_pc = NULL;
1618 return pc->callback(drive);
1621 static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
1623 idetape_tape_t *tape = drive->driver_data;
1624 struct request *rq = HWGROUP(drive)->rq;
1625 int blocks = tape->pc->actually_transferred / tape->tape_block_size;
1627 tape->avg_size += blocks * tape->tape_block_size;
1628 tape->insert_size += blocks * tape->tape_block_size;
1629 if (tape->insert_size > 1024 * 1024)
1630 tape->measure_insert_time = 1;
1631 if (tape->measure_insert_time) {
1632 tape->measure_insert_time = 0;
1633 tape->insert_time = jiffies;
1634 tape->insert_size = 0;
1636 if (time_after(jiffies, tape->insert_time))
1637 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
1638 if (time_after_eq(jiffies, tape->avg_time + HZ)) {
1639 tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
1640 tape->avg_size = 0;
1641 tape->avg_time = jiffies;
1644 #if IDETAPE_DEBUG_LOG
1645 if (tape->debug_level >= 4)
1646 printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
1647 #endif /* IDETAPE_DEBUG_LOG */
1649 tape->first_frame_position += blocks;
1650 rq->current_nr_sectors -= blocks;
1652 if (!tape->pc->error)
1653 idetape_end_request(drive, 1, 0);
1654 else
1655 idetape_end_request(drive, tape->pc->error, 0);
1656 return ide_stopped;
1659 static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
1661 idetape_init_pc(pc);
1662 pc->c[0] = READ_6;
1663 put_unaligned(cpu_to_be32(length), (unsigned int *) &pc->c[1]);
1664 pc->c[1] = 1;
1665 pc->callback = &idetape_rw_callback;
1666 pc->bh = bh;
1667 atomic_set(&bh->b_count, 0);
1668 pc->buffer = NULL;
1669 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
1670 if (pc->request_transfer == tape->stage_size)
1671 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
1674 static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
1676 int size = 32768;
1677 struct idetape_bh *p = bh;
1679 idetape_init_pc(pc);
1680 pc->c[0] = READ_BUFFER;
1681 pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
1682 pc->c[7] = size >> 8;
1683 pc->c[8] = size & 0xff;
1684 pc->callback = &idetape_pc_callback;
1685 pc->bh = bh;
1686 atomic_set(&bh->b_count, 0);
1687 pc->buffer = NULL;
1688 while (p) {
1689 atomic_set(&p->b_count, 0);
1690 p = p->b_reqnext;
1692 pc->request_transfer = pc->buffer_size = size;
1695 static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
1697 idetape_init_pc(pc);
1698 pc->c[0] = WRITE_6;
1699 put_unaligned(cpu_to_be32(length), (unsigned int *) &pc->c[1]);
1700 pc->c[1] = 1;
1701 pc->callback = &idetape_rw_callback;
1702 set_bit(PC_WRITING, &pc->flags);
1703 pc->bh = bh;
1704 pc->b_data = bh->b_data;
1705 pc->b_count = atomic_read(&bh->b_count);
1706 pc->buffer = NULL;
1707 pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
1708 if (pc->request_transfer == tape->stage_size)
1709 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
1713 * idetape_do_request is our request handling function.
1715 static ide_startstop_t idetape_do_request(ide_drive_t *drive,
1716 struct request *rq, sector_t block)
1718 idetape_tape_t *tape = drive->driver_data;
1719 idetape_pc_t *pc = NULL;
1720 struct request *postponed_rq = tape->postponed_rq;
1721 u8 stat;
1723 #if IDETAPE_DEBUG_LOG
1724 if (tape->debug_level >= 2)
1725 printk(KERN_INFO "ide-tape: sector: %ld, "
1726 "nr_sectors: %ld, current_nr_sectors: %d\n",
1727 rq->sector, rq->nr_sectors, rq->current_nr_sectors);
1728 #endif /* IDETAPE_DEBUG_LOG */
1730 if (!blk_special_request(rq)) {
1732 * We do not support buffer cache originated requests.
1734 printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
1735 "request queue (%d)\n", drive->name, rq->cmd_type);
1736 ide_end_request(drive, 0, 0);
1737 return ide_stopped;
1741 * Retry a failed packet command
1743 if (tape->failed_pc != NULL &&
1744 tape->pc->c[0] == REQUEST_SENSE) {
1745 return idetape_issue_packet_command(drive, tape->failed_pc);
1747 if (postponed_rq != NULL)
1748 if (rq != postponed_rq) {
1749 printk(KERN_ERR "ide-tape: ide-tape.c bug - "
1750 "Two DSC requests were queued\n");
1751 idetape_end_request(drive, 0, 0);
1752 return ide_stopped;
1755 tape->postponed_rq = NULL;
1758 * If the tape is still busy, postpone our request and service
1759 * the other device meanwhile.
1761 stat = drive->hwif->INB(IDE_STATUS_REG);
1763 if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
1764 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1766 if (drive->post_reset == 1) {
1767 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1768 drive->post_reset = 0;
1771 if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
1772 tape->measure_insert_time = 1;
1773 if (time_after(jiffies, tape->insert_time))
1774 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
1775 calculate_speeds(drive);
1776 if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
1777 (stat & SEEK_STAT) == 0) {
1778 if (postponed_rq == NULL) {
1779 tape->dsc_polling_start = jiffies;
1780 tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
1781 tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
1782 } else if (time_after(jiffies, tape->dsc_timeout)) {
1783 printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
1784 tape->name);
1785 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
1786 idetape_media_access_finished(drive);
1787 return ide_stopped;
1788 } else {
1789 return ide_do_reset(drive);
1791 } else if (time_after(jiffies, tape->dsc_polling_start + IDETAPE_DSC_MA_THRESHOLD))
1792 tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
1793 idetape_postpone_request(drive);
1794 return ide_stopped;
1796 if (rq->cmd[0] & REQ_IDETAPE_READ) {
1797 tape->buffer_head++;
1798 tape->postpone_cnt = 0;
1799 pc = idetape_next_pc_storage(drive);
1800 idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
1801 goto out;
1803 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1804 tape->buffer_head++;
1805 tape->postpone_cnt = 0;
1806 pc = idetape_next_pc_storage(drive);
1807 idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
1808 goto out;
1810 if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
1811 tape->postpone_cnt = 0;
1812 pc = idetape_next_pc_storage(drive);
1813 idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
1814 goto out;
1816 if (rq->cmd[0] & REQ_IDETAPE_PC1) {
1817 pc = (idetape_pc_t *) rq->buffer;
1818 rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
1819 rq->cmd[0] |= REQ_IDETAPE_PC2;
1820 goto out;
1822 if (rq->cmd[0] & REQ_IDETAPE_PC2) {
1823 idetape_media_access_finished(drive);
1824 return ide_stopped;
1826 BUG();
1827 out:
1828 return idetape_issue_packet_command(drive, pc);
1832 * Pipeline related functions
1834 static inline int idetape_pipeline_active (idetape_tape_t *tape)
1836 int rc1, rc2;
1838 rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1839 rc2 = (tape->active_data_request != NULL);
1840 return rc1;
1844 * idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
1845 * stage, along with all the necessary small buffers which together make
1846 * a buffer of size tape->stage_size (or a bit more). We attempt to
1847 * combine sequential pages as much as possible.
1849 * Returns a pointer to the new allocated stage, or NULL if we
1850 * can't (or don't want to) allocate a stage.
1852 * Pipeline stages are optional and are used to increase performance.
1853 * If we can't allocate them, we'll manage without them.
1855 static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
1857 idetape_stage_t *stage;
1858 struct idetape_bh *prev_bh, *bh;
1859 int pages = tape->pages_per_stage;
1860 char *b_data = NULL;
1862 if ((stage = kmalloc(sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
1863 return NULL;
1864 stage->next = NULL;
1866 bh = stage->bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
1867 if (bh == NULL)
1868 goto abort;
1869 bh->b_reqnext = NULL;
1870 if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
1871 goto abort;
1872 if (clear)
1873 memset(bh->b_data, 0, PAGE_SIZE);
1874 bh->b_size = PAGE_SIZE;
1875 atomic_set(&bh->b_count, full ? bh->b_size : 0);
1877 while (--pages) {
1878 if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
1879 goto abort;
1880 if (clear)
1881 memset(b_data, 0, PAGE_SIZE);
1882 if (bh->b_data == b_data + PAGE_SIZE) {
1883 bh->b_size += PAGE_SIZE;
1884 bh->b_data -= PAGE_SIZE;
1885 if (full)
1886 atomic_add(PAGE_SIZE, &bh->b_count);
1887 continue;
1889 if (b_data == bh->b_data + bh->b_size) {
1890 bh->b_size += PAGE_SIZE;
1891 if (full)
1892 atomic_add(PAGE_SIZE, &bh->b_count);
1893 continue;
1895 prev_bh = bh;
1896 if ((bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
1897 free_page((unsigned long) b_data);
1898 goto abort;
1900 bh->b_reqnext = NULL;
1901 bh->b_data = b_data;
1902 bh->b_size = PAGE_SIZE;
1903 atomic_set(&bh->b_count, full ? bh->b_size : 0);
1904 prev_bh->b_reqnext = bh;
1906 bh->b_size -= tape->excess_bh_size;
1907 if (full)
1908 atomic_sub(tape->excess_bh_size, &bh->b_count);
1909 return stage;
1910 abort:
1911 __idetape_kfree_stage(stage);
1912 return NULL;
1915 static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
1917 idetape_stage_t *cache_stage = tape->cache_stage;
1919 #if IDETAPE_DEBUG_LOG
1920 if (tape->debug_level >= 4)
1921 printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
1922 #endif /* IDETAPE_DEBUG_LOG */
1924 if (tape->nr_stages >= tape->max_stages)
1925 return NULL;
1926 if (cache_stage != NULL) {
1927 tape->cache_stage = NULL;
1928 return cache_stage;
1930 return __idetape_kmalloc_stage(tape, 0, 0);
1933 static int idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
1935 struct idetape_bh *bh = tape->bh;
1936 int count;
1937 int ret = 0;
1939 while (n) {
1940 if (bh == NULL) {
1941 printk(KERN_ERR "ide-tape: bh == NULL in "
1942 "idetape_copy_stage_from_user\n");
1943 return 1;
1945 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
1946 if (copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count))
1947 ret = 1;
1948 n -= count;
1949 atomic_add(count, &bh->b_count);
1950 buf += count;
1951 if (atomic_read(&bh->b_count) == bh->b_size) {
1952 bh = bh->b_reqnext;
1953 if (bh)
1954 atomic_set(&bh->b_count, 0);
1957 tape->bh = bh;
1958 return ret;
1961 static int idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
1963 struct idetape_bh *bh = tape->bh;
1964 int count;
1965 int ret = 0;
1967 while (n) {
1968 if (bh == NULL) {
1969 printk(KERN_ERR "ide-tape: bh == NULL in "
1970 "idetape_copy_stage_to_user\n");
1971 return 1;
1973 count = min(tape->b_count, n);
1974 if (copy_to_user(buf, tape->b_data, count))
1975 ret = 1;
1976 n -= count;
1977 tape->b_data += count;
1978 tape->b_count -= count;
1979 buf += count;
1980 if (!tape->b_count) {
1981 tape->bh = bh = bh->b_reqnext;
1982 if (bh) {
1983 tape->b_data = bh->b_data;
1984 tape->b_count = atomic_read(&bh->b_count);
1988 return ret;
1991 static void idetape_init_merge_stage (idetape_tape_t *tape)
1993 struct idetape_bh *bh = tape->merge_stage->bh;
1995 tape->bh = bh;
1996 if (tape->chrdev_direction == idetape_direction_write)
1997 atomic_set(&bh->b_count, 0);
1998 else {
1999 tape->b_data = bh->b_data;
2000 tape->b_count = atomic_read(&bh->b_count);
2004 static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2006 struct idetape_bh *tmp;
2008 tmp = stage->bh;
2009 stage->bh = tape->merge_stage->bh;
2010 tape->merge_stage->bh = tmp;
2011 idetape_init_merge_stage(tape);
2015 * idetape_add_stage_tail adds a new stage at the end of the pipeline.
2017 static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2019 idetape_tape_t *tape = drive->driver_data;
2020 unsigned long flags;
2022 #if IDETAPE_DEBUG_LOG
2023 if (tape->debug_level >= 4)
2024 printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2025 #endif /* IDETAPE_DEBUG_LOG */
2026 spin_lock_irqsave(&tape->spinlock, flags);
2027 stage->next = NULL;
2028 if (tape->last_stage != NULL)
2029 tape->last_stage->next=stage;
2030 else
2031 tape->first_stage = tape->next_stage=stage;
2032 tape->last_stage = stage;
2033 if (tape->next_stage == NULL)
2034 tape->next_stage = tape->last_stage;
2035 tape->nr_stages++;
2036 tape->nr_pending_stages++;
2037 spin_unlock_irqrestore(&tape->spinlock, flags);
2041 * idetape_wait_for_request installs a completion in a pending request
2042 * and sleeps until it is serviced.
2044 * The caller should ensure that the request will not be serviced
2045 * before we install the completion (usually by disabling interrupts).
2047 static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2049 DECLARE_COMPLETION_ONSTACK(wait);
2050 idetape_tape_t *tape = drive->driver_data;
2052 if (rq == NULL || !blk_special_request(rq)) {
2053 printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2054 return;
2056 rq->end_io_data = &wait;
2057 rq->end_io = blk_end_sync_rq;
2058 spin_unlock_irq(&tape->spinlock);
2059 wait_for_completion(&wait);
2060 /* The stage and its struct request have been deallocated */
2061 spin_lock_irq(&tape->spinlock);
2064 static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2066 idetape_tape_t *tape = drive->driver_data;
2067 idetape_read_position_result_t *result;
2069 #if IDETAPE_DEBUG_LOG
2070 if (tape->debug_level >= 4)
2071 printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2072 #endif /* IDETAPE_DEBUG_LOG */
2074 if (!tape->pc->error) {
2075 result = (idetape_read_position_result_t *) tape->pc->buffer;
2076 #if IDETAPE_DEBUG_LOG
2077 if (tape->debug_level >= 2)
2078 printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2079 if (tape->debug_level >= 2)
2080 printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2081 #endif /* IDETAPE_DEBUG_LOG */
2082 if (result->bpu) {
2083 printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2084 clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2085 idetape_end_request(drive, 0, 0);
2086 } else {
2087 #if IDETAPE_DEBUG_LOG
2088 if (tape->debug_level >= 2)
2089 printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2090 #endif /* IDETAPE_DEBUG_LOG */
2091 tape->partition = result->partition;
2092 tape->first_frame_position = ntohl(result->first_block);
2093 tape->last_frame_position = ntohl(result->last_block);
2094 tape->blocks_in_buffer = result->blocks_in_buffer[2];
2095 set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2096 idetape_end_request(drive, 1, 0);
2098 } else {
2099 idetape_end_request(drive, 0, 0);
2101 return ide_stopped;
2105 * idetape_create_write_filemark_cmd will:
2107 * 1. Write a filemark if write_filemark=1.
2108 * 2. Flush the device buffers without writing a filemark
2109 * if write_filemark=0.
2112 static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2114 idetape_init_pc(pc);
2115 pc->c[0] = WRITE_FILEMARKS;
2116 pc->c[4] = write_filemark;
2117 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2118 pc->callback = &idetape_pc_callback;
2121 static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2123 idetape_init_pc(pc);
2124 pc->c[0] = TEST_UNIT_READY;
2125 pc->callback = &idetape_pc_callback;
2129 * idetape_queue_pc_tail is based on the following functions:
2131 * ide_do_drive_cmd from ide.c
2132 * cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2134 * We add a special packet command request to the tail of the request
2135 * queue, and wait for it to be serviced.
2137 * This is not to be called from within the request handling part
2138 * of the driver ! We allocate here data in the stack, and it is valid
2139 * until the request is finished. This is not the case for the bottom
2140 * part of the driver, where we are always leaving the functions to wait
2141 * for an interrupt or a timer event.
2143 * From the bottom part of the driver, we should allocate safe memory
2144 * using idetape_next_pc_storage and idetape_next_rq_storage, and add
2145 * the request to the request list without waiting for it to be serviced !
2146 * In that case, we usually use idetape_queue_pc_head.
2148 static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2150 struct ide_tape_obj *tape = drive->driver_data;
2151 struct request rq;
2153 idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2154 rq.buffer = (char *) pc;
2155 rq.rq_disk = tape->disk;
2156 return ide_do_drive_cmd(drive, &rq, ide_wait);
2159 static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2161 idetape_init_pc(pc);
2162 pc->c[0] = START_STOP;
2163 pc->c[4] = cmd;
2164 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2165 pc->callback = &idetape_pc_callback;
2168 static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2170 idetape_tape_t *tape = drive->driver_data;
2171 idetape_pc_t pc;
2172 int load_attempted = 0;
2175 * Wait for the tape to become ready
2177 set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2178 timeout += jiffies;
2179 while (time_before(jiffies, timeout)) {
2180 idetape_create_test_unit_ready_cmd(&pc);
2181 if (!__idetape_queue_pc_tail(drive, &pc))
2182 return 0;
2183 if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2184 || (tape->asc == 0x3A)) { /* no media */
2185 if (load_attempted)
2186 return -ENOMEDIUM;
2187 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2188 __idetape_queue_pc_tail(drive, &pc);
2189 load_attempted = 1;
2190 /* not about to be ready */
2191 } else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2192 (tape->ascq == 1 || tape->ascq == 8)))
2193 return -EIO;
2194 msleep(100);
2196 return -EIO;
2199 static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2201 return __idetape_queue_pc_tail(drive, pc);
2204 static int idetape_flush_tape_buffers (ide_drive_t *drive)
2206 idetape_pc_t pc;
2207 int rc;
2209 idetape_create_write_filemark_cmd(drive, &pc, 0);
2210 if ((rc = idetape_queue_pc_tail(drive, &pc)))
2211 return rc;
2212 idetape_wait_ready(drive, 60 * 5 * HZ);
2213 return 0;
2216 static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2218 idetape_init_pc(pc);
2219 pc->c[0] = READ_POSITION;
2220 pc->request_transfer = 20;
2221 pc->callback = &idetape_read_position_callback;
2224 static int idetape_read_position (ide_drive_t *drive)
2226 idetape_tape_t *tape = drive->driver_data;
2227 idetape_pc_t pc;
2228 int position;
2230 #if IDETAPE_DEBUG_LOG
2231 if (tape->debug_level >= 4)
2232 printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2233 #endif /* IDETAPE_DEBUG_LOG */
2235 idetape_create_read_position_cmd(&pc);
2236 if (idetape_queue_pc_tail(drive, &pc))
2237 return -1;
2238 position = tape->first_frame_position;
2239 return position;
2242 static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2244 idetape_init_pc(pc);
2245 pc->c[0] = POSITION_TO_ELEMENT;
2246 pc->c[1] = 2;
2247 put_unaligned(cpu_to_be32(block), (unsigned int *) &pc->c[3]);
2248 pc->c[8] = partition;
2249 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2250 pc->callback = &idetape_pc_callback;
2253 static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2255 idetape_tape_t *tape = drive->driver_data;
2257 /* device supports locking according to capabilities page */
2258 if (!(tape->caps[6] & 0x01))
2259 return 0;
2261 idetape_init_pc(pc);
2262 pc->c[0] = ALLOW_MEDIUM_REMOVAL;
2263 pc->c[4] = prevent;
2264 pc->callback = &idetape_pc_callback;
2265 return 1;
2268 static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2270 idetape_tape_t *tape = drive->driver_data;
2271 unsigned long flags;
2272 int cnt;
2274 if (tape->chrdev_direction != idetape_direction_read)
2275 return 0;
2277 /* Remove merge stage. */
2278 cnt = tape->merge_stage_size / tape->tape_block_size;
2279 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2280 ++cnt; /* Filemarks count as 1 sector */
2281 tape->merge_stage_size = 0;
2282 if (tape->merge_stage != NULL) {
2283 __idetape_kfree_stage(tape->merge_stage);
2284 tape->merge_stage = NULL;
2287 /* Clear pipeline flags. */
2288 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
2289 tape->chrdev_direction = idetape_direction_none;
2291 /* Remove pipeline stages. */
2292 if (tape->first_stage == NULL)
2293 return 0;
2295 spin_lock_irqsave(&tape->spinlock, flags);
2296 tape->next_stage = NULL;
2297 if (idetape_pipeline_active(tape))
2298 idetape_wait_for_request(drive, tape->active_data_request);
2299 spin_unlock_irqrestore(&tape->spinlock, flags);
2301 while (tape->first_stage != NULL) {
2302 struct request *rq_ptr = &tape->first_stage->rq;
2304 cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors;
2305 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
2306 ++cnt;
2307 idetape_remove_stage_head(drive);
2309 tape->nr_pending_stages = 0;
2310 tape->max_stages = tape->min_pipeline;
2311 return cnt;
2315 * idetape_position_tape positions the tape to the requested block
2316 * using the LOCATE packet command. A READ POSITION command is then
2317 * issued to check where we are positioned.
2319 * Like all higher level operations, we queue the commands at the tail
2320 * of the request queue and wait for their completion.
2323 static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
2325 idetape_tape_t *tape = drive->driver_data;
2326 int retval;
2327 idetape_pc_t pc;
2329 if (tape->chrdev_direction == idetape_direction_read)
2330 __idetape_discard_read_pipeline(drive);
2331 idetape_wait_ready(drive, 60 * 5 * HZ);
2332 idetape_create_locate_cmd(drive, &pc, block, partition, skip);
2333 retval = idetape_queue_pc_tail(drive, &pc);
2334 if (retval)
2335 return (retval);
2337 idetape_create_read_position_cmd(&pc);
2338 return (idetape_queue_pc_tail(drive, &pc));
2341 static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
2343 idetape_tape_t *tape = drive->driver_data;
2344 int cnt;
2345 int seek, position;
2347 cnt = __idetape_discard_read_pipeline(drive);
2348 if (restore_position) {
2349 position = idetape_read_position(drive);
2350 seek = position > cnt ? position - cnt : 0;
2351 if (idetape_position_tape(drive, seek, 0, 0)) {
2352 printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
2353 return;
2359 * idetape_queue_rw_tail generates a read/write request for the block
2360 * device interface and wait for it to be serviced.
2362 static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
2364 idetape_tape_t *tape = drive->driver_data;
2365 struct request rq;
2367 #if IDETAPE_DEBUG_LOG
2368 if (tape->debug_level >= 2)
2369 printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
2370 #endif /* IDETAPE_DEBUG_LOG */
2371 if (idetape_pipeline_active(tape)) {
2372 printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
2373 return (0);
2376 idetape_init_rq(&rq, cmd);
2377 rq.rq_disk = tape->disk;
2378 rq.special = (void *)bh;
2379 rq.sector = tape->first_frame_position;
2380 rq.nr_sectors = rq.current_nr_sectors = blocks;
2381 (void) ide_do_drive_cmd(drive, &rq, ide_wait);
2383 if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
2384 return 0;
2386 if (tape->merge_stage)
2387 idetape_init_merge_stage(tape);
2388 if (rq.errors == IDETAPE_ERROR_GENERAL)
2389 return -EIO;
2390 return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
2394 * idetape_insert_pipeline_into_queue is used to start servicing the
2395 * pipeline stages, starting from tape->next_stage.
2397 static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
2399 idetape_tape_t *tape = drive->driver_data;
2401 if (tape->next_stage == NULL)
2402 return;
2403 if (!idetape_pipeline_active(tape)) {
2404 set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2405 idetape_activate_next_stage(drive);
2406 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
2410 static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
2412 idetape_init_pc(pc);
2413 pc->c[0] = INQUIRY;
2414 pc->c[4] = pc->request_transfer = 254;
2415 pc->callback = &idetape_pc_callback;
2418 static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
2420 idetape_init_pc(pc);
2421 pc->c[0] = REZERO_UNIT;
2422 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2423 pc->callback = &idetape_pc_callback;
2426 static void idetape_create_erase_cmd (idetape_pc_t *pc)
2428 idetape_init_pc(pc);
2429 pc->c[0] = ERASE;
2430 pc->c[1] = 1;
2431 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2432 pc->callback = &idetape_pc_callback;
2435 static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
2437 idetape_init_pc(pc);
2438 pc->c[0] = SPACE;
2439 put_unaligned(cpu_to_be32(count), (unsigned int *) &pc->c[1]);
2440 pc->c[1] = cmd;
2441 set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2442 pc->callback = &idetape_pc_callback;
2445 static void idetape_wait_first_stage (ide_drive_t *drive)
2447 idetape_tape_t *tape = drive->driver_data;
2448 unsigned long flags;
2450 if (tape->first_stage == NULL)
2451 return;
2452 spin_lock_irqsave(&tape->spinlock, flags);
2453 if (tape->active_stage == tape->first_stage)
2454 idetape_wait_for_request(drive, tape->active_data_request);
2455 spin_unlock_irqrestore(&tape->spinlock, flags);
2459 * idetape_add_chrdev_write_request tries to add a character device
2460 * originated write request to our pipeline. In case we don't succeed,
2461 * we revert to non-pipelined operation mode for this request.
2463 * 1. Try to allocate a new pipeline stage.
2464 * 2. If we can't, wait for more and more requests to be serviced
2465 * and try again each time.
2466 * 3. If we still can't allocate a stage, fallback to
2467 * non-pipelined operation mode for this request.
2469 static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
2471 idetape_tape_t *tape = drive->driver_data;
2472 idetape_stage_t *new_stage;
2473 unsigned long flags;
2474 struct request *rq;
2476 #if IDETAPE_DEBUG_LOG
2477 if (tape->debug_level >= 3)
2478 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
2479 #endif /* IDETAPE_DEBUG_LOG */
2482 * Attempt to allocate a new stage.
2483 * Pay special attention to possible race conditions.
2485 while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
2486 spin_lock_irqsave(&tape->spinlock, flags);
2487 if (idetape_pipeline_active(tape)) {
2488 idetape_wait_for_request(drive, tape->active_data_request);
2489 spin_unlock_irqrestore(&tape->spinlock, flags);
2490 } else {
2491 spin_unlock_irqrestore(&tape->spinlock, flags);
2492 idetape_insert_pipeline_into_queue(drive);
2493 if (idetape_pipeline_active(tape))
2494 continue;
2496 * Linux is short on memory. Fallback to
2497 * non-pipelined operation mode for this request.
2499 return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
2502 rq = &new_stage->rq;
2503 idetape_init_rq(rq, REQ_IDETAPE_WRITE);
2504 /* Doesn't actually matter - We always assume sequential access */
2505 rq->sector = tape->first_frame_position;
2506 rq->nr_sectors = rq->current_nr_sectors = blocks;
2508 idetape_switch_buffers(tape, new_stage);
2509 idetape_add_stage_tail(drive, new_stage);
2510 tape->pipeline_head++;
2511 calculate_speeds(drive);
2514 * Estimate whether the tape has stopped writing by checking
2515 * if our write pipeline is currently empty. If we are not
2516 * writing anymore, wait for the pipeline to be full enough
2517 * (90%) before starting to service requests, so that we will
2518 * be able to keep up with the higher speeds of the tape.
2520 if (!idetape_pipeline_active(tape)) {
2521 if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
2522 tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
2523 tape->measure_insert_time = 1;
2524 tape->insert_time = jiffies;
2525 tape->insert_size = 0;
2526 tape->insert_speed = 0;
2527 idetape_insert_pipeline_into_queue(drive);
2530 if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
2531 /* Return a deferred error */
2532 return -EIO;
2533 return blocks;
2537 * idetape_wait_for_pipeline will wait until all pending pipeline
2538 * requests are serviced. Typically called on device close.
2540 static void idetape_wait_for_pipeline (ide_drive_t *drive)
2542 idetape_tape_t *tape = drive->driver_data;
2543 unsigned long flags;
2545 while (tape->next_stage || idetape_pipeline_active(tape)) {
2546 idetape_insert_pipeline_into_queue(drive);
2547 spin_lock_irqsave(&tape->spinlock, flags);
2548 if (idetape_pipeline_active(tape))
2549 idetape_wait_for_request(drive, tape->active_data_request);
2550 spin_unlock_irqrestore(&tape->spinlock, flags);
2554 static void idetape_empty_write_pipeline (ide_drive_t *drive)
2556 idetape_tape_t *tape = drive->driver_data;
2557 int blocks, min;
2558 struct idetape_bh *bh;
2560 if (tape->chrdev_direction != idetape_direction_write) {
2561 printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
2562 return;
2564 if (tape->merge_stage_size > tape->stage_size) {
2565 printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
2566 tape->merge_stage_size = tape->stage_size;
2568 if (tape->merge_stage_size) {
2569 blocks = tape->merge_stage_size / tape->tape_block_size;
2570 if (tape->merge_stage_size % tape->tape_block_size) {
2571 unsigned int i;
2573 blocks++;
2574 i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
2575 bh = tape->bh->b_reqnext;
2576 while (bh) {
2577 atomic_set(&bh->b_count, 0);
2578 bh = bh->b_reqnext;
2580 bh = tape->bh;
2581 while (i) {
2582 if (bh == NULL) {
2584 printk(KERN_INFO "ide-tape: bug, bh NULL\n");
2585 break;
2587 min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
2588 memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
2589 atomic_add(min, &bh->b_count);
2590 i -= min;
2591 bh = bh->b_reqnext;
2594 (void) idetape_add_chrdev_write_request(drive, blocks);
2595 tape->merge_stage_size = 0;
2597 idetape_wait_for_pipeline(drive);
2598 if (tape->merge_stage != NULL) {
2599 __idetape_kfree_stage(tape->merge_stage);
2600 tape->merge_stage = NULL;
2602 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
2603 tape->chrdev_direction = idetape_direction_none;
2606 * On the next backup, perform the feedback loop again.
2607 * (I don't want to keep sense information between backups,
2608 * as some systems are constantly on, and the system load
2609 * can be totally different on the next backup).
2611 tape->max_stages = tape->min_pipeline;
2612 if (tape->first_stage != NULL ||
2613 tape->next_stage != NULL ||
2614 tape->last_stage != NULL ||
2615 tape->nr_stages != 0) {
2616 printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
2617 "first_stage %p, next_stage %p, "
2618 "last_stage %p, nr_stages %d\n",
2619 tape->first_stage, tape->next_stage,
2620 tape->last_stage, tape->nr_stages);
2624 static void idetape_restart_speed_control (ide_drive_t *drive)
2626 idetape_tape_t *tape = drive->driver_data;
2628 tape->restart_speed_control_req = 0;
2629 tape->pipeline_head = 0;
2630 tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
2631 tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
2632 tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
2633 tape->uncontrolled_pipeline_head_speed = 0;
2634 tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
2635 tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
2638 static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
2640 idetape_tape_t *tape = drive->driver_data;
2641 idetape_stage_t *new_stage;
2642 struct request rq;
2643 int bytes_read;
2644 u16 blocks = *(u16 *)&tape->caps[12];
2646 /* Initialize read operation */
2647 if (tape->chrdev_direction != idetape_direction_read) {
2648 if (tape->chrdev_direction == idetape_direction_write) {
2649 idetape_empty_write_pipeline(drive);
2650 idetape_flush_tape_buffers(drive);
2652 if (tape->merge_stage || tape->merge_stage_size) {
2653 printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
2654 tape->merge_stage_size = 0;
2656 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
2657 return -ENOMEM;
2658 tape->chrdev_direction = idetape_direction_read;
2661 * Issue a read 0 command to ensure that DSC handshake
2662 * is switched from completion mode to buffer available
2663 * mode.
2664 * No point in issuing this if DSC overlap isn't supported,
2665 * some drives (Seagate STT3401A) will return an error.
2667 if (drive->dsc_overlap) {
2668 bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
2669 if (bytes_read < 0) {
2670 __idetape_kfree_stage(tape->merge_stage);
2671 tape->merge_stage = NULL;
2672 tape->chrdev_direction = idetape_direction_none;
2673 return bytes_read;
2677 if (tape->restart_speed_control_req)
2678 idetape_restart_speed_control(drive);
2679 idetape_init_rq(&rq, REQ_IDETAPE_READ);
2680 rq.sector = tape->first_frame_position;
2681 rq.nr_sectors = rq.current_nr_sectors = blocks;
2682 if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
2683 tape->nr_stages < max_stages) {
2684 new_stage = idetape_kmalloc_stage(tape);
2685 while (new_stage != NULL) {
2686 new_stage->rq = rq;
2687 idetape_add_stage_tail(drive, new_stage);
2688 if (tape->nr_stages >= max_stages)
2689 break;
2690 new_stage = idetape_kmalloc_stage(tape);
2693 if (!idetape_pipeline_active(tape)) {
2694 if (tape->nr_pending_stages >= 3 * max_stages / 4) {
2695 tape->measure_insert_time = 1;
2696 tape->insert_time = jiffies;
2697 tape->insert_size = 0;
2698 tape->insert_speed = 0;
2699 idetape_insert_pipeline_into_queue(drive);
2702 return 0;
2706 * idetape_add_chrdev_read_request is called from idetape_chrdev_read
2707 * to service a character device read request and add read-ahead
2708 * requests to our pipeline.
2710 static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
2712 idetape_tape_t *tape = drive->driver_data;
2713 unsigned long flags;
2714 struct request *rq_ptr;
2715 int bytes_read;
2717 #if IDETAPE_DEBUG_LOG
2718 if (tape->debug_level >= 4)
2719 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
2720 #endif /* IDETAPE_DEBUG_LOG */
2723 * If we are at a filemark, return a read length of 0
2725 if (test_bit(IDETAPE_FILEMARK, &tape->flags))
2726 return 0;
2729 * Wait for the next block to be available at the head
2730 * of the pipeline
2732 idetape_initiate_read(drive, tape->max_stages);
2733 if (tape->first_stage == NULL) {
2734 if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
2735 return 0;
2736 return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
2738 idetape_wait_first_stage(drive);
2739 rq_ptr = &tape->first_stage->rq;
2740 bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
2741 rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
2744 if (rq_ptr->errors == IDETAPE_ERROR_EOD)
2745 return 0;
2746 else {
2747 idetape_switch_buffers(tape, tape->first_stage);
2748 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
2749 set_bit(IDETAPE_FILEMARK, &tape->flags);
2750 spin_lock_irqsave(&tape->spinlock, flags);
2751 idetape_remove_stage_head(drive);
2752 spin_unlock_irqrestore(&tape->spinlock, flags);
2753 tape->pipeline_head++;
2754 calculate_speeds(drive);
2756 if (bytes_read > blocks * tape->tape_block_size) {
2757 printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
2758 bytes_read = blocks * tape->tape_block_size;
2760 return (bytes_read);
2763 static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
2765 idetape_tape_t *tape = drive->driver_data;
2766 struct idetape_bh *bh;
2767 int blocks;
2769 while (bcount) {
2770 unsigned int count;
2772 bh = tape->merge_stage->bh;
2773 count = min(tape->stage_size, bcount);
2774 bcount -= count;
2775 blocks = count / tape->tape_block_size;
2776 while (count) {
2777 atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
2778 memset(bh->b_data, 0, atomic_read(&bh->b_count));
2779 count -= atomic_read(&bh->b_count);
2780 bh = bh->b_reqnext;
2782 idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
2786 static int idetape_pipeline_size (ide_drive_t *drive)
2788 idetape_tape_t *tape = drive->driver_data;
2789 idetape_stage_t *stage;
2790 struct request *rq;
2791 int size = 0;
2793 idetape_wait_for_pipeline(drive);
2794 stage = tape->first_stage;
2795 while (stage != NULL) {
2796 rq = &stage->rq;
2797 size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
2798 if (rq->errors == IDETAPE_ERROR_FILEMARK)
2799 size += tape->tape_block_size;
2800 stage = stage->next;
2802 size += tape->merge_stage_size;
2803 return size;
2807 * Rewinds the tape to the Beginning Of the current Partition (BOP).
2809 * We currently support only one partition.
2811 static int idetape_rewind_tape (ide_drive_t *drive)
2813 int retval;
2814 idetape_pc_t pc;
2815 #if IDETAPE_DEBUG_LOG
2816 idetape_tape_t *tape = drive->driver_data;
2817 if (tape->debug_level >= 2)
2818 printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
2819 #endif /* IDETAPE_DEBUG_LOG */
2821 idetape_create_rewind_cmd(drive, &pc);
2822 retval = idetape_queue_pc_tail(drive, &pc);
2823 if (retval)
2824 return retval;
2826 idetape_create_read_position_cmd(&pc);
2827 retval = idetape_queue_pc_tail(drive, &pc);
2828 if (retval)
2829 return retval;
2830 return 0;
2834 * Our special ide-tape ioctl's.
2836 * Currently there aren't any ioctl's.
2837 * mtio.h compatible commands should be issued to the character device
2838 * interface.
2840 static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
2842 idetape_tape_t *tape = drive->driver_data;
2843 void __user *argp = (void __user *)arg;
2845 struct idetape_config {
2846 int dsc_rw_frequency;
2847 int dsc_media_access_frequency;
2848 int nr_stages;
2849 } config;
2851 #if IDETAPE_DEBUG_LOG
2852 if (tape->debug_level >= 4)
2853 printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
2854 #endif /* IDETAPE_DEBUG_LOG */
2855 switch (cmd) {
2856 case 0x0340:
2857 if (copy_from_user(&config, argp, sizeof(config)))
2858 return -EFAULT;
2859 tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
2860 tape->max_stages = config.nr_stages;
2861 break;
2862 case 0x0350:
2863 config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
2864 config.nr_stages = tape->max_stages;
2865 if (copy_to_user(argp, &config, sizeof(config)))
2866 return -EFAULT;
2867 break;
2868 default:
2869 return -EIO;
2871 return 0;
2875 * idetape_space_over_filemarks is now a bit more complicated than just
2876 * passing the command to the tape since we may have crossed some
2877 * filemarks during our pipelined read-ahead mode.
2879 * As a minor side effect, the pipeline enables us to support MTFSFM when
2880 * the filemark is in our internal pipeline even if the tape doesn't
2881 * support spacing over filemarks in the reverse direction.
2883 static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
2885 idetape_tape_t *tape = drive->driver_data;
2886 idetape_pc_t pc;
2887 unsigned long flags;
2888 int retval,count=0;
2889 int sprev = !!(tape->caps[4] & 0x20);
2891 if (mt_count == 0)
2892 return 0;
2893 if (MTBSF == mt_op || MTBSFM == mt_op) {
2894 if (!sprev)
2895 return -EIO;
2896 mt_count = - mt_count;
2899 if (tape->chrdev_direction == idetape_direction_read) {
2901 * We have a read-ahead buffer. Scan it for crossed
2902 * filemarks.
2904 tape->merge_stage_size = 0;
2905 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2906 ++count;
2907 while (tape->first_stage != NULL) {
2908 if (count == mt_count) {
2909 if (mt_op == MTFSFM)
2910 set_bit(IDETAPE_FILEMARK, &tape->flags);
2911 return 0;
2913 spin_lock_irqsave(&tape->spinlock, flags);
2914 if (tape->first_stage == tape->active_stage) {
2916 * We have reached the active stage in the read pipeline.
2917 * There is no point in allowing the drive to continue
2918 * reading any farther, so we stop the pipeline.
2920 * This section should be moved to a separate subroutine,
2921 * because a similar function is performed in
2922 * __idetape_discard_read_pipeline(), for example.
2924 tape->next_stage = NULL;
2925 spin_unlock_irqrestore(&tape->spinlock, flags);
2926 idetape_wait_first_stage(drive);
2927 tape->next_stage = tape->first_stage->next;
2928 } else
2929 spin_unlock_irqrestore(&tape->spinlock, flags);
2930 if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
2931 ++count;
2932 idetape_remove_stage_head(drive);
2934 idetape_discard_read_pipeline(drive, 0);
2938 * The filemark was not found in our internal pipeline.
2939 * Now we can issue the space command.
2941 switch (mt_op) {
2942 case MTFSF:
2943 case MTBSF:
2944 idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
2945 return (idetape_queue_pc_tail(drive, &pc));
2946 case MTFSFM:
2947 case MTBSFM:
2948 if (!sprev)
2949 return (-EIO);
2950 retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
2951 if (retval) return (retval);
2952 count = (MTBSFM == mt_op ? 1 : -1);
2953 return (idetape_space_over_filemarks(drive, MTFSF, count));
2954 default:
2955 printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
2956 return (-EIO);
2962 * Our character device read / write functions.
2964 * The tape is optimized to maximize throughput when it is transferring
2965 * an integral number of the "continuous transfer limit", which is
2966 * a parameter of the specific tape (26 KB on my particular tape).
2967 * (32 kB for Onstream)
2969 * As of version 1.3 of the driver, the character device provides an
2970 * abstract continuous view of the media - any mix of block sizes (even 1
2971 * byte) on the same backup/restore procedure is supported. The driver
2972 * will internally convert the requests to the recommended transfer unit,
2973 * so that an unmatch between the user's block size to the recommended
2974 * size will only result in a (slightly) increased driver overhead, but
2975 * will no longer hit performance.
2976 * This is not applicable to Onstream.
2978 static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
2979 size_t count, loff_t *ppos)
2981 struct ide_tape_obj *tape = ide_tape_f(file);
2982 ide_drive_t *drive = tape->drive;
2983 ssize_t bytes_read,temp, actually_read = 0, rc;
2984 ssize_t ret = 0;
2985 u16 ctl = *(u16 *)&tape->caps[12];
2987 #if IDETAPE_DEBUG_LOG
2988 if (tape->debug_level >= 3)
2989 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
2990 #endif /* IDETAPE_DEBUG_LOG */
2992 if (tape->chrdev_direction != idetape_direction_read) {
2993 if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
2994 if (count > tape->tape_block_size &&
2995 (count % tape->tape_block_size) == 0)
2996 tape->user_bs_factor = count / tape->tape_block_size;
2998 if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
2999 return rc;
3000 if (count == 0)
3001 return (0);
3002 if (tape->merge_stage_size) {
3003 actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
3004 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read))
3005 ret = -EFAULT;
3006 buf += actually_read;
3007 tape->merge_stage_size -= actually_read;
3008 count -= actually_read;
3010 while (count >= tape->stage_size) {
3011 bytes_read = idetape_add_chrdev_read_request(drive, ctl);
3012 if (bytes_read <= 0)
3013 goto finish;
3014 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read))
3015 ret = -EFAULT;
3016 buf += bytes_read;
3017 count -= bytes_read;
3018 actually_read += bytes_read;
3020 if (count) {
3021 bytes_read = idetape_add_chrdev_read_request(drive, ctl);
3022 if (bytes_read <= 0)
3023 goto finish;
3024 temp = min((unsigned long)count, (unsigned long)bytes_read);
3025 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp))
3026 ret = -EFAULT;
3027 actually_read += temp;
3028 tape->merge_stage_size = bytes_read-temp;
3030 finish:
3031 if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3032 #if IDETAPE_DEBUG_LOG
3033 if (tape->debug_level >= 2)
3034 printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3035 #endif
3036 idetape_space_over_filemarks(drive, MTFSF, 1);
3037 return 0;
3040 return (ret) ? ret : actually_read;
3043 static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3044 size_t count, loff_t *ppos)
3046 struct ide_tape_obj *tape = ide_tape_f(file);
3047 ide_drive_t *drive = tape->drive;
3048 ssize_t actually_written = 0;
3049 ssize_t ret = 0;
3050 u16 ctl = *(u16 *)&tape->caps[12];
3052 /* The drive is write protected. */
3053 if (tape->write_prot)
3054 return -EACCES;
3056 #if IDETAPE_DEBUG_LOG
3057 if (tape->debug_level >= 3)
3058 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3059 "count %Zd\n", count);
3060 #endif /* IDETAPE_DEBUG_LOG */
3062 /* Initialize write operation */
3063 if (tape->chrdev_direction != idetape_direction_write) {
3064 if (tape->chrdev_direction == idetape_direction_read)
3065 idetape_discard_read_pipeline(drive, 1);
3066 if (tape->merge_stage || tape->merge_stage_size) {
3067 printk(KERN_ERR "ide-tape: merge_stage_size "
3068 "should be 0 now\n");
3069 tape->merge_stage_size = 0;
3071 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3072 return -ENOMEM;
3073 tape->chrdev_direction = idetape_direction_write;
3074 idetape_init_merge_stage(tape);
3077 * Issue a write 0 command to ensure that DSC handshake
3078 * is switched from completion mode to buffer available
3079 * mode.
3080 * No point in issuing this if DSC overlap isn't supported,
3081 * some drives (Seagate STT3401A) will return an error.
3083 if (drive->dsc_overlap) {
3084 ssize_t retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
3085 if (retval < 0) {
3086 __idetape_kfree_stage(tape->merge_stage);
3087 tape->merge_stage = NULL;
3088 tape->chrdev_direction = idetape_direction_none;
3089 return retval;
3093 if (count == 0)
3094 return (0);
3095 if (tape->restart_speed_control_req)
3096 idetape_restart_speed_control(drive);
3097 if (tape->merge_stage_size) {
3098 if (tape->merge_stage_size >= tape->stage_size) {
3099 printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3100 tape->merge_stage_size = 0;
3102 actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
3103 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written))
3104 ret = -EFAULT;
3105 buf += actually_written;
3106 tape->merge_stage_size += actually_written;
3107 count -= actually_written;
3109 if (tape->merge_stage_size == tape->stage_size) {
3110 ssize_t retval;
3111 tape->merge_stage_size = 0;
3112 retval = idetape_add_chrdev_write_request(drive, ctl);
3113 if (retval <= 0)
3114 return (retval);
3117 while (count >= tape->stage_size) {
3118 ssize_t retval;
3119 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size))
3120 ret = -EFAULT;
3121 buf += tape->stage_size;
3122 count -= tape->stage_size;
3123 retval = idetape_add_chrdev_write_request(drive, ctl);
3124 actually_written += tape->stage_size;
3125 if (retval <= 0)
3126 return (retval);
3128 if (count) {
3129 actually_written += count;
3130 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count))
3131 ret = -EFAULT;
3132 tape->merge_stage_size += count;
3134 return (ret) ? ret : actually_written;
3137 static int idetape_write_filemark (ide_drive_t *drive)
3139 idetape_pc_t pc;
3141 /* Write a filemark */
3142 idetape_create_write_filemark_cmd(drive, &pc, 1);
3143 if (idetape_queue_pc_tail(drive, &pc)) {
3144 printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3145 return -EIO;
3147 return 0;
3151 * Called from idetape_chrdev_ioctl when the general mtio MTIOCTOP ioctl is
3152 * requested.
3154 * Note: MTBSF and MTBSFM are not supported when the tape doesn't support
3155 * spacing over filemarks in the reverse direction. In this case, MTFSFM is also
3156 * usually not supported (it is supported in the rare case in which we crossed
3157 * the filemark during our read-ahead pipelined operation mode).
3159 * The following commands are currently not supported:
3161 * MTFSS, MTBSS, MTWSM, MTSETDENSITY, MTSETDRVBUFFER, MT_ST_BOOLEANS,
3162 * MT_ST_WRITE_THRESHOLD.
3164 static int idetape_mtioctop(ide_drive_t *drive, short mt_op, int mt_count)
3166 idetape_tape_t *tape = drive->driver_data;
3167 idetape_pc_t pc;
3168 int i,retval;
3170 #if IDETAPE_DEBUG_LOG
3171 if (tape->debug_level >= 1)
3172 printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3173 "mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3174 #endif /* IDETAPE_DEBUG_LOG */
3176 * Commands which need our pipelined read-ahead stages.
3178 switch (mt_op) {
3179 case MTFSF:
3180 case MTFSFM:
3181 case MTBSF:
3182 case MTBSFM:
3183 if (!mt_count)
3184 return (0);
3185 return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3186 default:
3187 break;
3189 switch (mt_op) {
3190 case MTWEOF:
3191 if (tape->write_prot)
3192 return -EACCES;
3193 idetape_discard_read_pipeline(drive, 1);
3194 for (i = 0; i < mt_count; i++) {
3195 retval = idetape_write_filemark(drive);
3196 if (retval)
3197 return retval;
3199 return (0);
3200 case MTREW:
3201 idetape_discard_read_pipeline(drive, 0);
3202 if (idetape_rewind_tape(drive))
3203 return -EIO;
3204 return 0;
3205 case MTLOAD:
3206 idetape_discard_read_pipeline(drive, 0);
3207 idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3208 return (idetape_queue_pc_tail(drive, &pc));
3209 case MTUNLOAD:
3210 case MTOFFL:
3212 * If door is locked, attempt to unlock before
3213 * attempting to eject.
3215 if (tape->door_locked) {
3216 if (idetape_create_prevent_cmd(drive, &pc, 0))
3217 if (!idetape_queue_pc_tail(drive, &pc))
3218 tape->door_locked = DOOR_UNLOCKED;
3220 idetape_discard_read_pipeline(drive, 0);
3221 idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3222 retval = idetape_queue_pc_tail(drive, &pc);
3223 if (!retval)
3224 clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
3225 return retval;
3226 case MTNOP:
3227 idetape_discard_read_pipeline(drive, 0);
3228 return (idetape_flush_tape_buffers(drive));
3229 case MTRETEN:
3230 idetape_discard_read_pipeline(drive, 0);
3231 idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
3232 return (idetape_queue_pc_tail(drive, &pc));
3233 case MTEOM:
3234 idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
3235 return (idetape_queue_pc_tail(drive, &pc));
3236 case MTERASE:
3237 (void) idetape_rewind_tape(drive);
3238 idetape_create_erase_cmd(&pc);
3239 return (idetape_queue_pc_tail(drive, &pc));
3240 case MTSETBLK:
3241 if (mt_count) {
3242 if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
3243 return -EIO;
3244 tape->user_bs_factor = mt_count / tape->tape_block_size;
3245 clear_bit(IDETAPE_DETECT_BS, &tape->flags);
3246 } else
3247 set_bit(IDETAPE_DETECT_BS, &tape->flags);
3248 return 0;
3249 case MTSEEK:
3250 idetape_discard_read_pipeline(drive, 0);
3251 return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
3252 case MTSETPART:
3253 idetape_discard_read_pipeline(drive, 0);
3254 return (idetape_position_tape(drive, 0, mt_count, 0));
3255 case MTFSR:
3256 case MTBSR:
3257 case MTLOCK:
3258 if (!idetape_create_prevent_cmd(drive, &pc, 1))
3259 return 0;
3260 retval = idetape_queue_pc_tail(drive, &pc);
3261 if (retval) return retval;
3262 tape->door_locked = DOOR_EXPLICITLY_LOCKED;
3263 return 0;
3264 case MTUNLOCK:
3265 if (!idetape_create_prevent_cmd(drive, &pc, 0))
3266 return 0;
3267 retval = idetape_queue_pc_tail(drive, &pc);
3268 if (retval) return retval;
3269 tape->door_locked = DOOR_UNLOCKED;
3270 return 0;
3271 default:
3272 printk(KERN_ERR "ide-tape: MTIO operation %d not "
3273 "supported\n", mt_op);
3274 return (-EIO);
3279 * Our character device ioctls. General mtio.h magnetic io commands are
3280 * supported here, and not in the corresponding block interface. Our own
3281 * ide-tape ioctls are supported on both interfaces.
3283 static int idetape_chrdev_ioctl(struct inode *inode, struct file *file,
3284 unsigned int cmd, unsigned long arg)
3286 struct ide_tape_obj *tape = ide_tape_f(file);
3287 ide_drive_t *drive = tape->drive;
3288 struct mtop mtop;
3289 struct mtget mtget;
3290 struct mtpos mtpos;
3291 int block_offset = 0, position = tape->first_frame_position;
3292 void __user *argp = (void __user *)arg;
3294 #if IDETAPE_DEBUG_LOG
3295 if (tape->debug_level >= 3)
3296 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
3297 "cmd=%u\n", cmd);
3298 #endif /* IDETAPE_DEBUG_LOG */
3300 tape->restart_speed_control_req = 1;
3301 if (tape->chrdev_direction == idetape_direction_write) {
3302 idetape_empty_write_pipeline(drive);
3303 idetape_flush_tape_buffers(drive);
3305 if (cmd == MTIOCGET || cmd == MTIOCPOS) {
3306 block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
3307 if ((position = idetape_read_position(drive)) < 0)
3308 return -EIO;
3310 switch (cmd) {
3311 case MTIOCTOP:
3312 if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
3313 return -EFAULT;
3314 return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
3315 case MTIOCGET:
3316 memset(&mtget, 0, sizeof (struct mtget));
3317 mtget.mt_type = MT_ISSCSI2;
3318 mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
3319 mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
3320 if (tape->drv_write_prot) {
3321 mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
3323 if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
3324 return -EFAULT;
3325 return 0;
3326 case MTIOCPOS:
3327 mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
3328 if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
3329 return -EFAULT;
3330 return 0;
3331 default:
3332 if (tape->chrdev_direction == idetape_direction_read)
3333 idetape_discard_read_pipeline(drive, 1);
3334 return idetape_blkdev_ioctl(drive, cmd, arg);
3339 * Do a mode sense page 0 with block descriptor and if it succeeds set the tape
3340 * block size with the reported value.
3342 static void ide_tape_get_bsize_from_bdesc(ide_drive_t *drive)
3344 idetape_tape_t *tape = drive->driver_data;
3345 idetape_pc_t pc;
3347 idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
3348 if (idetape_queue_pc_tail(drive, &pc)) {
3349 printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
3350 if (tape->tape_block_size == 0) {
3351 printk(KERN_WARNING "ide-tape: Cannot deal with zero "
3352 "block size, assuming 32k\n");
3353 tape->tape_block_size = 32768;
3355 return;
3357 tape->tape_block_size = (pc.buffer[4 + 5] << 16) +
3358 (pc.buffer[4 + 6] << 8) +
3359 pc.buffer[4 + 7];
3360 tape->drv_write_prot = (pc.buffer[2] & 0x80) >> 7;
3364 * Our character device open function.
3366 static int idetape_chrdev_open (struct inode *inode, struct file *filp)
3368 unsigned int minor = iminor(inode), i = minor & ~0xc0;
3369 ide_drive_t *drive;
3370 idetape_tape_t *tape;
3371 idetape_pc_t pc;
3372 int retval;
3375 * We really want to do nonseekable_open(inode, filp); here, but some
3376 * versions of tar incorrectly call lseek on tapes and bail out if that
3377 * fails. So we disallow pread() and pwrite(), but permit lseeks.
3379 filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
3381 #if IDETAPE_DEBUG_LOG
3382 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
3383 #endif /* IDETAPE_DEBUG_LOG */
3385 if (i >= MAX_HWIFS * MAX_DRIVES)
3386 return -ENXIO;
3388 if (!(tape = ide_tape_chrdev_get(i)))
3389 return -ENXIO;
3391 drive = tape->drive;
3393 filp->private_data = tape;
3395 if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
3396 retval = -EBUSY;
3397 goto out_put_tape;
3400 retval = idetape_wait_ready(drive, 60 * HZ);
3401 if (retval) {
3402 clear_bit(IDETAPE_BUSY, &tape->flags);
3403 printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
3404 goto out_put_tape;
3407 idetape_read_position(drive);
3408 if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
3409 (void)idetape_rewind_tape(drive);
3411 if (tape->chrdev_direction != idetape_direction_read)
3412 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3414 /* Read block size and write protect status from drive. */
3415 ide_tape_get_bsize_from_bdesc(drive);
3417 /* Set write protect flag if device is opened as read-only. */
3418 if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
3419 tape->write_prot = 1;
3420 else
3421 tape->write_prot = tape->drv_write_prot;
3423 /* Make sure drive isn't write protected if user wants to write. */
3424 if (tape->write_prot) {
3425 if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
3426 (filp->f_flags & O_ACCMODE) == O_RDWR) {
3427 clear_bit(IDETAPE_BUSY, &tape->flags);
3428 retval = -EROFS;
3429 goto out_put_tape;
3434 * Lock the tape drive door so user can't eject.
3436 if (tape->chrdev_direction == idetape_direction_none) {
3437 if (idetape_create_prevent_cmd(drive, &pc, 1)) {
3438 if (!idetape_queue_pc_tail(drive, &pc)) {
3439 if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
3440 tape->door_locked = DOOR_LOCKED;
3444 idetape_restart_speed_control(drive);
3445 tape->restart_speed_control_req = 0;
3446 return 0;
3448 out_put_tape:
3449 ide_tape_put(tape);
3450 return retval;
3453 static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
3455 idetape_tape_t *tape = drive->driver_data;
3457 idetape_empty_write_pipeline(drive);
3458 tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
3459 if (tape->merge_stage != NULL) {
3460 idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
3461 __idetape_kfree_stage(tape->merge_stage);
3462 tape->merge_stage = NULL;
3464 idetape_write_filemark(drive);
3465 idetape_flush_tape_buffers(drive);
3466 idetape_flush_tape_buffers(drive);
3470 * Our character device release function.
3472 static int idetape_chrdev_release (struct inode *inode, struct file *filp)
3474 struct ide_tape_obj *tape = ide_tape_f(filp);
3475 ide_drive_t *drive = tape->drive;
3476 idetape_pc_t pc;
3477 unsigned int minor = iminor(inode);
3479 lock_kernel();
3480 tape = drive->driver_data;
3481 #if IDETAPE_DEBUG_LOG
3482 if (tape->debug_level >= 3)
3483 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
3484 #endif /* IDETAPE_DEBUG_LOG */
3486 if (tape->chrdev_direction == idetape_direction_write)
3487 idetape_write_release(drive, minor);
3488 if (tape->chrdev_direction == idetape_direction_read) {
3489 if (minor < 128)
3490 idetape_discard_read_pipeline(drive, 1);
3491 else
3492 idetape_wait_for_pipeline(drive);
3494 if (tape->cache_stage != NULL) {
3495 __idetape_kfree_stage(tape->cache_stage);
3496 tape->cache_stage = NULL;
3498 if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
3499 (void) idetape_rewind_tape(drive);
3500 if (tape->chrdev_direction == idetape_direction_none) {
3501 if (tape->door_locked == DOOR_LOCKED) {
3502 if (idetape_create_prevent_cmd(drive, &pc, 0)) {
3503 if (!idetape_queue_pc_tail(drive, &pc))
3504 tape->door_locked = DOOR_UNLOCKED;
3508 clear_bit(IDETAPE_BUSY, &tape->flags);
3509 ide_tape_put(tape);
3510 unlock_kernel();
3511 return 0;
3515 * idetape_identify_device is called to check the contents of the
3516 * ATAPI IDENTIFY command results. We return:
3518 * 1 If the tape can be supported by us, based on the information
3519 * we have so far.
3521 * 0 If this tape driver is not currently supported by us.
3523 static int idetape_identify_device (ide_drive_t *drive)
3525 struct idetape_id_gcw gcw;
3526 struct hd_driveid *id = drive->id;
3528 if (drive->id_read == 0)
3529 return 1;
3531 *((unsigned short *) &gcw) = id->config;
3533 /* Check that we can support this device */
3535 if (gcw.protocol != 2)
3536 printk(KERN_ERR "ide-tape: Protocol (0x%02x) is not ATAPI\n",
3537 gcw.protocol);
3538 else if (gcw.device_type != 1)
3539 printk(KERN_ERR "ide-tape: Device type (0x%02x) is not set "
3540 "to tape\n", gcw.device_type);
3541 else if (!gcw.removable)
3542 printk(KERN_ERR "ide-tape: The removable flag is not set\n");
3543 else if (gcw.packet_size != 0) {
3544 printk(KERN_ERR "ide-tape: Packet size (0x%02x) is not 12 "
3545 "bytes long\n", gcw.packet_size);
3546 } else
3547 return 1;
3548 return 0;
3551 static void idetape_get_inquiry_results(ide_drive_t *drive)
3553 char *r;
3554 idetape_tape_t *tape = drive->driver_data;
3555 idetape_pc_t pc;
3557 idetape_create_inquiry_cmd(&pc);
3558 if (idetape_queue_pc_tail(drive, &pc)) {
3559 printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n",
3560 tape->name);
3561 return;
3563 memcpy(tape->vendor_id, &pc.buffer[8], 8);
3564 memcpy(tape->product_id, &pc.buffer[16], 16);
3565 memcpy(tape->firmware_revision, &pc.buffer[32], 4);
3567 ide_fixstring(tape->vendor_id, 10, 0);
3568 ide_fixstring(tape->product_id, 18, 0);
3569 ide_fixstring(tape->firmware_revision, 6, 0);
3570 r = tape->firmware_revision;
3571 if (*(r + 1) == '.')
3572 tape->firmware_revision_num = (*r - '0') * 100 +
3573 (*(r + 2) - '0') * 10 + *(r + 3) - '0';
3574 printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n",
3575 drive->name, tape->name, tape->vendor_id,
3576 tape->product_id, tape->firmware_revision);
3580 * Ask the tape about its various parameters. In particular, we will adjust our
3581 * data transfer buffer size to the recommended value as returned by the tape.
3583 static void idetape_get_mode_sense_results (ide_drive_t *drive)
3585 idetape_tape_t *tape = drive->driver_data;
3586 idetape_pc_t pc;
3587 u8 *caps;
3588 u8 speed, max_speed;
3590 idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
3591 if (idetape_queue_pc_tail(drive, &pc)) {
3592 printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming"
3593 " some default values\n");
3594 tape->tape_block_size = 512;
3595 put_unaligned(52, (u16 *)&tape->caps[12]);
3596 put_unaligned(540, (u16 *)&tape->caps[14]);
3597 put_unaligned(6*52, (u16 *)&tape->caps[16]);
3598 return;
3600 caps = pc.buffer + 4 + pc.buffer[3];
3602 /* convert to host order and save for later use */
3603 speed = be16_to_cpu(*(u16 *)&caps[14]);
3604 max_speed = be16_to_cpu(*(u16 *)&caps[8]);
3606 put_unaligned(max_speed, (u16 *)&caps[8]);
3607 put_unaligned(be16_to_cpu(*(u16 *)&caps[12]), (u16 *)&caps[12]);
3608 put_unaligned(speed, (u16 *)&caps[14]);
3609 put_unaligned(be16_to_cpu(*(u16 *)&caps[16]), (u16 *)&caps[16]);
3611 if (!speed) {
3612 printk(KERN_INFO "ide-tape: %s: invalid tape speed "
3613 "(assuming 650KB/sec)\n", drive->name);
3614 put_unaligned(650, (u16 *)&caps[14]);
3616 if (!max_speed) {
3617 printk(KERN_INFO "ide-tape: %s: invalid max_speed "
3618 "(assuming 650KB/sec)\n", drive->name);
3619 put_unaligned(650, (u16 *)&caps[8]);
3622 memcpy(&tape->caps, caps, 20);
3623 if (caps[7] & 0x02)
3624 tape->tape_block_size = 512;
3625 else if (caps[7] & 0x04)
3626 tape->tape_block_size = 1024;
3629 #ifdef CONFIG_IDE_PROC_FS
3630 static void idetape_add_settings (ide_drive_t *drive)
3632 idetape_tape_t *tape = drive->driver_data;
3635 * drive setting name read/write data type min max mul_factor div_factor data pointer set function
3637 ide_add_setting(drive, "buffer", SETTING_READ, TYPE_SHORT, 0, 0xffff,
3638 1, 2, (u16 *)&tape->caps[16], NULL);
3639 ide_add_setting(drive, "pipeline_min", SETTING_RW, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->min_pipeline, NULL);
3640 ide_add_setting(drive, "pipeline", SETTING_RW, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_stages, NULL);
3641 ide_add_setting(drive, "pipeline_max", SETTING_RW, TYPE_INT, 1, 0xffff, tape->stage_size / 1024, 1, &tape->max_pipeline, NULL);
3642 ide_add_setting(drive, "pipeline_used", SETTING_READ, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_stages, NULL);
3643 ide_add_setting(drive, "pipeline_pending", SETTING_READ, TYPE_INT, 0, 0xffff, tape->stage_size / 1024, 1, &tape->nr_pending_stages, NULL);
3644 ide_add_setting(drive, "speed", SETTING_READ, TYPE_SHORT, 0, 0xffff,
3645 1, 1, (u16 *)&tape->caps[14], NULL);
3646 ide_add_setting(drive, "stage", SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1024, &tape->stage_size, NULL);
3647 ide_add_setting(drive, "tdsc", SETTING_RW, TYPE_INT, IDETAPE_DSC_RW_MIN, IDETAPE_DSC_RW_MAX, 1000, HZ, &tape->best_dsc_rw_frequency, NULL);
3648 ide_add_setting(drive, "dsc_overlap", SETTING_RW, TYPE_BYTE, 0, 1, 1, 1, &drive->dsc_overlap, NULL);
3649 ide_add_setting(drive, "pipeline_head_speed_c",SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1, &tape->controlled_pipeline_head_speed, NULL);
3650 ide_add_setting(drive, "pipeline_head_speed_u",SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1, &tape->uncontrolled_pipeline_head_speed,NULL);
3651 ide_add_setting(drive, "avg_speed", SETTING_READ, TYPE_INT, 0, 0xffff, 1, 1, &tape->avg_speed, NULL);
3652 ide_add_setting(drive, "debug_level", SETTING_RW, TYPE_INT, 0, 0xffff, 1, 1, &tape->debug_level, NULL);
3654 #else
3655 static inline void idetape_add_settings(ide_drive_t *drive) { ; }
3656 #endif
3659 * ide_setup is called to:
3661 * 1. Initialize our various state variables.
3662 * 2. Ask the tape for its capabilities.
3663 * 3. Allocate a buffer which will be used for data
3664 * transfer. The buffer size is chosen based on
3665 * the recommendation which we received in step (2).
3667 * Note that at this point ide.c already assigned us an irq, so that
3668 * we can queue requests here and wait for their completion.
3670 static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
3672 unsigned long t1, tmid, tn, t;
3673 int speed;
3674 struct idetape_id_gcw gcw;
3675 int stage_size;
3676 struct sysinfo si;
3677 u16 *ctl = (u16 *)&tape->caps[12];
3679 spin_lock_init(&tape->spinlock);
3680 drive->dsc_overlap = 1;
3681 if (drive->hwif->host_flags & IDE_HFLAG_NO_DSC) {
3682 printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n",
3683 tape->name);
3684 drive->dsc_overlap = 0;
3686 /* Seagate Travan drives do not support DSC overlap. */
3687 if (strstr(drive->id->model, "Seagate STT3401"))
3688 drive->dsc_overlap = 0;
3689 tape->minor = minor;
3690 tape->name[0] = 'h';
3691 tape->name[1] = 't';
3692 tape->name[2] = '0' + minor;
3693 tape->chrdev_direction = idetape_direction_none;
3694 tape->pc = tape->pc_stack;
3695 tape->max_insert_speed = 10000;
3696 tape->speed_control = 1;
3697 *((unsigned short *) &gcw) = drive->id->config;
3698 if (gcw.drq_type == 1)
3699 set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
3701 tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
3703 idetape_get_inquiry_results(drive);
3704 idetape_get_mode_sense_results(drive);
3705 ide_tape_get_bsize_from_bdesc(drive);
3706 tape->user_bs_factor = 1;
3707 tape->stage_size = *ctl * tape->tape_block_size;
3708 while (tape->stage_size > 0xffff) {
3709 printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
3710 *ctl /= 2;
3711 tape->stage_size = *ctl * tape->tape_block_size;
3713 stage_size = tape->stage_size;
3714 tape->pages_per_stage = stage_size / PAGE_SIZE;
3715 if (stage_size % PAGE_SIZE) {
3716 tape->pages_per_stage++;
3717 tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
3720 /* Select the "best" DSC read/write polling freq and pipeline size. */
3721 speed = max(*(u16 *)&tape->caps[14], *(u16 *)&tape->caps[8]);
3723 tape->max_stages = speed * 1000 * 10 / tape->stage_size;
3726 * Limit memory use for pipeline to 10% of physical memory
3728 si_meminfo(&si);
3729 if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
3730 tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
3731 tape->max_stages = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
3732 tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
3733 tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
3734 if (tape->max_stages == 0)
3735 tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
3737 t1 = (tape->stage_size * HZ) / (speed * 1000);
3738 tmid = (*(u16 *)&tape->caps[16] * 32 * HZ) / (speed * 125);
3739 tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
3741 if (tape->max_stages)
3742 t = tn;
3743 else
3744 t = t1;
3747 * Ensure that the number we got makes sense; limit
3748 * it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
3750 tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
3751 printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
3752 "%dkB pipeline, %lums tDSC%s\n",
3753 drive->name, tape->name, *(u16 *)&tape->caps[14],
3754 (*(u16 *)&tape->caps[16] * 512) / tape->stage_size,
3755 tape->stage_size / 1024,
3756 tape->max_stages * tape->stage_size / 1024,
3757 tape->best_dsc_rw_frequency * 1000 / HZ,
3758 drive->using_dma ? ", DMA":"");
3760 idetape_add_settings(drive);
3763 static void ide_tape_remove(ide_drive_t *drive)
3765 idetape_tape_t *tape = drive->driver_data;
3767 ide_proc_unregister_driver(drive, tape->driver);
3769 ide_unregister_region(tape->disk);
3771 ide_tape_put(tape);
3774 static void ide_tape_release(struct kref *kref)
3776 struct ide_tape_obj *tape = to_ide_tape(kref);
3777 ide_drive_t *drive = tape->drive;
3778 struct gendisk *g = tape->disk;
3780 BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
3782 drive->dsc_overlap = 0;
3783 drive->driver_data = NULL;
3784 device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor));
3785 device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor + 128));
3786 idetape_devs[tape->minor] = NULL;
3787 g->private_data = NULL;
3788 put_disk(g);
3789 kfree(tape);
3792 #ifdef CONFIG_IDE_PROC_FS
3793 static int proc_idetape_read_name
3794 (char *page, char **start, off_t off, int count, int *eof, void *data)
3796 ide_drive_t *drive = (ide_drive_t *) data;
3797 idetape_tape_t *tape = drive->driver_data;
3798 char *out = page;
3799 int len;
3801 len = sprintf(out, "%s\n", tape->name);
3802 PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
3805 static ide_proc_entry_t idetape_proc[] = {
3806 { "capacity", S_IFREG|S_IRUGO, proc_ide_read_capacity, NULL },
3807 { "name", S_IFREG|S_IRUGO, proc_idetape_read_name, NULL },
3808 { NULL, 0, NULL, NULL }
3810 #endif
3812 static int ide_tape_probe(ide_drive_t *);
3814 static ide_driver_t idetape_driver = {
3815 .gen_driver = {
3816 .owner = THIS_MODULE,
3817 .name = "ide-tape",
3818 .bus = &ide_bus_type,
3820 .probe = ide_tape_probe,
3821 .remove = ide_tape_remove,
3822 .version = IDETAPE_VERSION,
3823 .media = ide_tape,
3824 .supports_dsc_overlap = 1,
3825 .do_request = idetape_do_request,
3826 .end_request = idetape_end_request,
3827 .error = __ide_error,
3828 .abort = __ide_abort,
3829 #ifdef CONFIG_IDE_PROC_FS
3830 .proc = idetape_proc,
3831 #endif
3835 * Our character device supporting functions, passed to register_chrdev.
3837 static const struct file_operations idetape_fops = {
3838 .owner = THIS_MODULE,
3839 .read = idetape_chrdev_read,
3840 .write = idetape_chrdev_write,
3841 .ioctl = idetape_chrdev_ioctl,
3842 .open = idetape_chrdev_open,
3843 .release = idetape_chrdev_release,
3846 static int idetape_open(struct inode *inode, struct file *filp)
3848 struct gendisk *disk = inode->i_bdev->bd_disk;
3849 struct ide_tape_obj *tape;
3851 if (!(tape = ide_tape_get(disk)))
3852 return -ENXIO;
3854 return 0;
3857 static int idetape_release(struct inode *inode, struct file *filp)
3859 struct gendisk *disk = inode->i_bdev->bd_disk;
3860 struct ide_tape_obj *tape = ide_tape_g(disk);
3862 ide_tape_put(tape);
3864 return 0;
3867 static int idetape_ioctl(struct inode *inode, struct file *file,
3868 unsigned int cmd, unsigned long arg)
3870 struct block_device *bdev = inode->i_bdev;
3871 struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
3872 ide_drive_t *drive = tape->drive;
3873 int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
3874 if (err == -EINVAL)
3875 err = idetape_blkdev_ioctl(drive, cmd, arg);
3876 return err;
3879 static struct block_device_operations idetape_block_ops = {
3880 .owner = THIS_MODULE,
3881 .open = idetape_open,
3882 .release = idetape_release,
3883 .ioctl = idetape_ioctl,
3886 static int ide_tape_probe(ide_drive_t *drive)
3888 idetape_tape_t *tape;
3889 struct gendisk *g;
3890 int minor;
3892 if (!strstr("ide-tape", drive->driver_req))
3893 goto failed;
3894 if (!drive->present)
3895 goto failed;
3896 if (drive->media != ide_tape)
3897 goto failed;
3898 if (!idetape_identify_device (drive)) {
3899 printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
3900 goto failed;
3902 if (drive->scsi) {
3903 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
3904 goto failed;
3906 if (strstr(drive->id->model, "OnStream DI-")) {
3907 printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
3908 printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
3910 tape = kzalloc(sizeof (idetape_tape_t), GFP_KERNEL);
3911 if (tape == NULL) {
3912 printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
3913 goto failed;
3916 g = alloc_disk(1 << PARTN_BITS);
3917 if (!g)
3918 goto out_free_tape;
3920 ide_init_disk(g, drive);
3922 ide_proc_register_driver(drive, &idetape_driver);
3924 kref_init(&tape->kref);
3926 tape->drive = drive;
3927 tape->driver = &idetape_driver;
3928 tape->disk = g;
3930 g->private_data = &tape->driver;
3932 drive->driver_data = tape;
3934 mutex_lock(&idetape_ref_mutex);
3935 for (minor = 0; idetape_devs[minor]; minor++)
3937 idetape_devs[minor] = tape;
3938 mutex_unlock(&idetape_ref_mutex);
3940 idetape_setup(drive, tape, minor);
3942 device_create(idetape_sysfs_class, &drive->gendev,
3943 MKDEV(IDETAPE_MAJOR, minor), "%s", tape->name);
3944 device_create(idetape_sysfs_class, &drive->gendev,
3945 MKDEV(IDETAPE_MAJOR, minor + 128), "n%s", tape->name);
3947 g->fops = &idetape_block_ops;
3948 ide_register_region(g);
3950 return 0;
3952 out_free_tape:
3953 kfree(tape);
3954 failed:
3955 return -ENODEV;
3958 MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
3959 MODULE_LICENSE("GPL");
3961 static void __exit idetape_exit (void)
3963 driver_unregister(&idetape_driver.gen_driver);
3964 class_destroy(idetape_sysfs_class);
3965 unregister_chrdev(IDETAPE_MAJOR, "ht");
3968 static int __init idetape_init(void)
3970 int error = 1;
3971 idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
3972 if (IS_ERR(idetape_sysfs_class)) {
3973 idetape_sysfs_class = NULL;
3974 printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
3975 error = -EBUSY;
3976 goto out;
3979 if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
3980 printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
3981 error = -EBUSY;
3982 goto out_free_class;
3985 error = driver_register(&idetape_driver.gen_driver);
3986 if (error)
3987 goto out_free_driver;
3989 return 0;
3991 out_free_driver:
3992 driver_unregister(&idetape_driver.gen_driver);
3993 out_free_class:
3994 class_destroy(idetape_sysfs_class);
3995 out:
3996 return error;
3999 MODULE_ALIAS("ide:*m-tape*");
4000 module_init(idetape_init);
4001 module_exit(idetape_exit);
4002 MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);