2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum.
35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36 * erased, and the updated volume table is written back to LEB 0. Then same for
37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
39 * In this UBI implementation the on-flash volume table does not contain any
40 * information about how many data static volumes contain. This information may
41 * be found from the scanning data.
43 * But it would still be beneficial to store this information in the volume
44 * table. For example, suppose we have a static volume X, and all its physical
45 * eraseblocks became bad for some reasons. Suppose we are attaching the
46 * corresponding MTD device, the scanning has found no logical eraseblocks
47 * corresponding to the volume X. According to the volume table volume X does
48 * exist. So we don't know whether it is just empty or all its physical
49 * eraseblocks went bad. So we cannot alarm the user about this corruption.
51 * The volume table also stores so-called "update marker", which is used for
52 * volume updates. Before updating the volume, the update marker is set, and
53 * after the update operation is finished, the update marker is cleared. So if
54 * the update operation was interrupted (e.g. by an unclean reboot) - the
55 * update marker is still there and we know that the volume's contents is
59 #include <linux/crc32.h>
60 #include <linux/err.h>
61 #include <asm/div64.h>
64 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
65 static void paranoid_vtbl_check(const struct ubi_device
*ubi
);
67 #define paranoid_vtbl_check(ubi)
70 /* Empty volume table record */
71 static struct ubi_vtbl_record empty_vtbl_record
;
74 * ubi_change_vtbl_record - change volume table record.
75 * @ubi: UBI device description object
76 * @idx: table index to change
77 * @vtbl_rec: new volume table record
79 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
80 * volume table record is written. The caller does not have to calculate CRC of
81 * the record as it is done by this function. Returns zero in case of success
82 * and a negative error code in case of failure.
84 int ubi_change_vtbl_record(struct ubi_device
*ubi
, int idx
,
85 struct ubi_vtbl_record
*vtbl_rec
)
90 ubi_assert(idx
>= 0 && idx
< ubi
->vtbl_slots
);
93 vtbl_rec
= &empty_vtbl_record
;
95 crc
= crc32(UBI_CRC32_INIT
, vtbl_rec
, UBI_VTBL_RECORD_SIZE_CRC
);
96 vtbl_rec
->crc
= cpu_to_be32(crc
);
99 mutex_lock(&ubi
->vtbl_mutex
);
100 memcpy(&ubi
->vtbl
[idx
], vtbl_rec
, sizeof(struct ubi_vtbl_record
));
101 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
102 err
= ubi_eba_unmap_leb(ubi
, UBI_LAYOUT_VOL_ID
, i
);
104 mutex_unlock(&ubi
->vtbl_mutex
);
107 err
= ubi_eba_write_leb(ubi
, UBI_LAYOUT_VOL_ID
, i
, ubi
->vtbl
, 0,
108 ubi
->vtbl_size
, UBI_LONGTERM
);
110 mutex_unlock(&ubi
->vtbl_mutex
);
115 paranoid_vtbl_check(ubi
);
116 mutex_unlock(&ubi
->vtbl_mutex
);
117 return ubi_wl_flush(ubi
);
121 * vol_til_check - check if volume table is not corrupted and contains sensible
124 * @ubi: UBI device description object
125 * @vtbl: volume table
127 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
128 * and %-EINVAL if it contains inconsistent data.
130 static int vtbl_check(const struct ubi_device
*ubi
,
131 const struct ubi_vtbl_record
*vtbl
)
133 int i
, n
, reserved_pebs
, alignment
, data_pad
, vol_type
, name_len
;
138 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
141 reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
142 alignment
= be32_to_cpu(vtbl
[i
].alignment
);
143 data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
144 upd_marker
= vtbl
[i
].upd_marker
;
145 vol_type
= vtbl
[i
].vol_type
;
146 name_len
= be16_to_cpu(vtbl
[i
].name_len
);
147 name
= &vtbl
[i
].name
[0];
149 crc
= crc32(UBI_CRC32_INIT
, &vtbl
[i
], UBI_VTBL_RECORD_SIZE_CRC
);
150 if (be32_to_cpu(vtbl
[i
].crc
) != crc
) {
151 ubi_err("bad CRC at record %u: %#08x, not %#08x",
152 i
, crc
, be32_to_cpu(vtbl
[i
].crc
));
153 ubi_dbg_dump_vtbl_record(&vtbl
[i
], i
);
157 if (reserved_pebs
== 0) {
158 if (memcmp(&vtbl
[i
], &empty_vtbl_record
,
159 UBI_VTBL_RECORD_SIZE
)) {
160 dbg_err("bad empty record");
166 if (reserved_pebs
< 0 || alignment
< 0 || data_pad
< 0 ||
168 dbg_err("negative values");
172 if (alignment
> ubi
->leb_size
|| alignment
== 0) {
173 dbg_err("bad alignment");
177 n
= alignment
% ubi
->min_io_size
;
178 if (alignment
!= 1 && n
) {
179 dbg_err("alignment is not multiple of min I/O unit");
183 n
= ubi
->leb_size
% alignment
;
185 dbg_err("bad data_pad, has to be %d", n
);
189 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
190 dbg_err("bad vol_type");
194 if (upd_marker
!= 0 && upd_marker
!= 1) {
195 dbg_err("bad upd_marker");
199 if (reserved_pebs
> ubi
->good_peb_count
) {
200 dbg_err("too large reserved_pebs, good PEBs %d",
201 ubi
->good_peb_count
);
205 if (name_len
> UBI_VOL_NAME_MAX
) {
206 dbg_err("too long volume name, max %d",
211 if (name
[0] == '\0') {
212 dbg_err("NULL volume name");
216 if (name_len
!= strnlen(name
, name_len
+ 1)) {
217 dbg_err("bad name_len");
222 /* Checks that all names are unique */
223 for (i
= 0; i
< ubi
->vtbl_slots
- 1; i
++) {
224 for (n
= i
+ 1; n
< ubi
->vtbl_slots
; n
++) {
225 int len1
= be16_to_cpu(vtbl
[i
].name_len
);
226 int len2
= be16_to_cpu(vtbl
[n
].name_len
);
228 if (len1
> 0 && len1
== len2
&&
229 !strncmp(vtbl
[i
].name
, vtbl
[n
].name
, len1
)) {
230 ubi_err("volumes %d and %d have the same name"
231 " \"%s\"", i
, n
, vtbl
[i
].name
);
232 ubi_dbg_dump_vtbl_record(&vtbl
[i
], i
);
233 ubi_dbg_dump_vtbl_record(&vtbl
[n
], n
);
242 ubi_err("volume table check failed, record %d", i
);
243 ubi_dbg_dump_vtbl_record(&vtbl
[i
], i
);
248 * create_vtbl - create a copy of volume table.
249 * @ubi: UBI device description object
250 * @si: scanning information
251 * @copy: number of the volume table copy
252 * @vtbl: contents of the volume table
254 * This function returns zero in case of success and a negative error code in
257 static int create_vtbl(struct ubi_device
*ubi
, struct ubi_scan_info
*si
,
258 int copy
, void *vtbl
)
261 static struct ubi_vid_hdr
*vid_hdr
;
262 struct ubi_scan_volume
*sv
;
263 struct ubi_scan_leb
*new_seb
, *old_seb
= NULL
;
265 ubi_msg("create volume table (copy #%d)", copy
+ 1);
267 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_KERNEL
);
272 * Check if there is a logical eraseblock which would have to contain
273 * this volume table copy was found during scanning. It has to be wiped
276 sv
= ubi_scan_find_sv(si
, UBI_LAYOUT_VOL_ID
);
278 old_seb
= ubi_scan_find_seb(sv
, copy
);
281 new_seb
= ubi_scan_get_free_peb(ubi
, si
);
282 if (IS_ERR(new_seb
)) {
283 err
= PTR_ERR(new_seb
);
287 vid_hdr
->vol_type
= UBI_VID_DYNAMIC
;
288 vid_hdr
->vol_id
= cpu_to_be32(UBI_LAYOUT_VOL_ID
);
289 vid_hdr
->compat
= UBI_LAYOUT_VOLUME_COMPAT
;
290 vid_hdr
->data_size
= vid_hdr
->used_ebs
=
291 vid_hdr
->data_pad
= cpu_to_be32(0);
292 vid_hdr
->lnum
= cpu_to_be32(copy
);
293 vid_hdr
->sqnum
= cpu_to_be64(++si
->max_sqnum
);
294 vid_hdr
->leb_ver
= cpu_to_be32(old_seb
? old_seb
->leb_ver
+ 1: 0);
296 /* The EC header is already there, write the VID header */
297 err
= ubi_io_write_vid_hdr(ubi
, new_seb
->pnum
, vid_hdr
);
301 /* Write the layout volume contents */
302 err
= ubi_io_write_data(ubi
, vtbl
, new_seb
->pnum
, 0, ubi
->vtbl_size
);
307 * And add it to the scanning information. Don't delete the old
308 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
310 err
= ubi_scan_add_used(ubi
, si
, new_seb
->pnum
, new_seb
->ec
,
313 ubi_free_vid_hdr(ubi
, vid_hdr
);
317 if (err
== -EIO
&& ++tries
<= 5) {
319 * Probably this physical eraseblock went bad, try to pick
322 list_add_tail(&new_seb
->u
.list
, &si
->corr
);
327 ubi_free_vid_hdr(ubi
, vid_hdr
);
333 * process_lvol - process the layout volume.
334 * @ubi: UBI device description object
335 * @si: scanning information
336 * @sv: layout volume scanning information
338 * This function is responsible for reading the layout volume, ensuring it is
339 * not corrupted, and recovering from corruptions if needed. Returns volume
340 * table in case of success and a negative error code in case of failure.
342 static struct ubi_vtbl_record
*process_lvol(struct ubi_device
*ubi
,
343 struct ubi_scan_info
*si
,
344 struct ubi_scan_volume
*sv
)
348 struct ubi_scan_leb
*seb
;
349 struct ubi_vtbl_record
*leb
[UBI_LAYOUT_VOLUME_EBS
] = { NULL
, NULL
};
350 int leb_corrupted
[UBI_LAYOUT_VOLUME_EBS
] = {1, 1};
353 * UBI goes through the following steps when it changes the layout
356 * b. write new data to LEB 0;
358 * d. write new data to LEB 1.
360 * Before the change, both LEBs contain the same data.
362 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
363 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
364 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
365 * finally, unclean reboots may result in a situation when neither LEB
366 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
367 * 0 contains more recent information.
369 * So the plan is to first check LEB 0. Then
370 * a. if LEB 0 is OK, it must be containing the most resent data; then
371 * we compare it with LEB 1, and if they are different, we copy LEB
373 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
377 dbg_msg("check layout volume");
379 /* Read both LEB 0 and LEB 1 into memory */
380 ubi_rb_for_each_entry(rb
, seb
, &sv
->root
, u
.rb
) {
381 leb
[seb
->lnum
] = vmalloc(ubi
->vtbl_size
);
382 if (!leb
[seb
->lnum
]) {
386 memset(leb
[seb
->lnum
], 0, ubi
->vtbl_size
);
388 err
= ubi_io_read_data(ubi
, leb
[seb
->lnum
], seb
->pnum
, 0,
390 if (err
== UBI_IO_BITFLIPS
|| err
== -EBADMSG
)
391 /* Scrub the PEB later */
399 leb_corrupted
[0] = vtbl_check(ubi
, leb
[0]);
400 if (leb_corrupted
[0] < 0)
404 if (!leb_corrupted
[0]) {
407 leb_corrupted
[1] = memcmp(leb
[0], leb
[1], ubi
->vtbl_size
);
408 if (leb_corrupted
[1]) {
409 ubi_warn("volume table copy #2 is corrupted");
410 err
= create_vtbl(ubi
, si
, 1, leb
[0]);
413 ubi_msg("volume table was restored");
416 /* Both LEB 1 and LEB 2 are OK and consistent */
420 /* LEB 0 is corrupted or does not exist */
422 leb_corrupted
[1] = vtbl_check(ubi
, leb
[1]);
423 if (leb_corrupted
[1] < 0)
426 if (leb_corrupted
[1]) {
427 /* Both LEB 0 and LEB 1 are corrupted */
428 ubi_err("both volume tables are corrupted");
432 ubi_warn("volume table copy #1 is corrupted");
433 err
= create_vtbl(ubi
, si
, 0, leb
[1]);
436 ubi_msg("volume table was restored");
449 * create_empty_lvol - create empty layout volume.
450 * @ubi: UBI device description object
451 * @si: scanning information
453 * This function returns volume table contents in case of success and a
454 * negative error code in case of failure.
456 static struct ubi_vtbl_record
*create_empty_lvol(struct ubi_device
*ubi
,
457 struct ubi_scan_info
*si
)
460 struct ubi_vtbl_record
*vtbl
;
462 vtbl
= vmalloc(ubi
->vtbl_size
);
464 return ERR_PTR(-ENOMEM
);
465 memset(vtbl
, 0, ubi
->vtbl_size
);
467 for (i
= 0; i
< ubi
->vtbl_slots
; i
++)
468 memcpy(&vtbl
[i
], &empty_vtbl_record
, UBI_VTBL_RECORD_SIZE
);
470 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
473 err
= create_vtbl(ubi
, si
, i
, vtbl
);
484 * init_volumes - initialize volume information for existing volumes.
485 * @ubi: UBI device description object
486 * @si: scanning information
487 * @vtbl: volume table
489 * This function allocates volume description objects for existing volumes.
490 * Returns zero in case of success and a negative error code in case of
493 static int init_volumes(struct ubi_device
*ubi
, const struct ubi_scan_info
*si
,
494 const struct ubi_vtbl_record
*vtbl
)
496 int i
, reserved_pebs
= 0;
497 struct ubi_scan_volume
*sv
;
498 struct ubi_volume
*vol
;
500 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
503 if (be32_to_cpu(vtbl
[i
].reserved_pebs
) == 0)
504 continue; /* Empty record */
506 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
510 vol
->reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
511 vol
->alignment
= be32_to_cpu(vtbl
[i
].alignment
);
512 vol
->data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
513 vol
->vol_type
= vtbl
[i
].vol_type
== UBI_VID_DYNAMIC
?
514 UBI_DYNAMIC_VOLUME
: UBI_STATIC_VOLUME
;
515 vol
->name_len
= be16_to_cpu(vtbl
[i
].name_len
);
516 vol
->usable_leb_size
= ubi
->leb_size
- vol
->data_pad
;
517 memcpy(vol
->name
, vtbl
[i
].name
, vol
->name_len
);
518 vol
->name
[vol
->name_len
] = '\0';
521 ubi_assert(!ubi
->volumes
[i
]);
522 ubi
->volumes
[i
] = vol
;
525 reserved_pebs
+= vol
->reserved_pebs
;
528 * In case of dynamic volume UBI knows nothing about how many
529 * data is stored there. So assume the whole volume is used.
531 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
) {
532 vol
->used_ebs
= vol
->reserved_pebs
;
533 vol
->last_eb_bytes
= vol
->usable_leb_size
;
535 (long long)vol
->used_ebs
* vol
->usable_leb_size
;
539 /* Static volumes only */
540 sv
= ubi_scan_find_sv(si
, i
);
543 * No eraseblocks belonging to this volume found. We
544 * don't actually know whether this static volume is
545 * completely corrupted or just contains no data. And
546 * we cannot know this as long as data size is not
547 * stored on flash. So we just assume the volume is
548 * empty. FIXME: this should be handled.
553 if (sv
->leb_count
!= sv
->used_ebs
) {
555 * We found a static volume which misses several
556 * eraseblocks. Treat it as corrupted.
558 ubi_warn("static volume %d misses %d LEBs - corrupted",
559 sv
->vol_id
, sv
->used_ebs
- sv
->leb_count
);
564 vol
->used_ebs
= sv
->used_ebs
;
566 (long long)(vol
->used_ebs
- 1) * vol
->usable_leb_size
;
567 vol
->used_bytes
+= sv
->last_data_size
;
568 vol
->last_eb_bytes
= sv
->last_data_size
;
571 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
575 vol
->reserved_pebs
= UBI_LAYOUT_VOLUME_EBS
;
577 vol
->vol_type
= UBI_DYNAMIC_VOLUME
;
578 vol
->name_len
= sizeof(UBI_LAYOUT_VOLUME_NAME
) - 1;
579 memcpy(vol
->name
, UBI_LAYOUT_VOLUME_NAME
, vol
->name_len
+ 1);
580 vol
->usable_leb_size
= ubi
->leb_size
;
581 vol
->used_ebs
= vol
->reserved_pebs
;
582 vol
->last_eb_bytes
= vol
->reserved_pebs
;
584 (long long)vol
->used_ebs
* (ubi
->leb_size
- vol
->data_pad
);
585 vol
->vol_id
= UBI_LAYOUT_VOL_ID
;
587 ubi_assert(!ubi
->volumes
[i
]);
588 ubi
->volumes
[vol_id2idx(ubi
, vol
->vol_id
)] = vol
;
589 reserved_pebs
+= vol
->reserved_pebs
;
593 if (reserved_pebs
> ubi
->avail_pebs
)
594 ubi_err("not enough PEBs, required %d, available %d",
595 reserved_pebs
, ubi
->avail_pebs
);
596 ubi
->rsvd_pebs
+= reserved_pebs
;
597 ubi
->avail_pebs
-= reserved_pebs
;
603 * check_sv - check volume scanning information.
604 * @vol: UBI volume description object
605 * @sv: volume scanning information
607 * This function returns zero if the volume scanning information is consistent
608 * to the data read from the volume tabla, and %-EINVAL if not.
610 static int check_sv(const struct ubi_volume
*vol
,
611 const struct ubi_scan_volume
*sv
)
613 if (sv
->highest_lnum
>= vol
->reserved_pebs
) {
614 dbg_err("bad highest_lnum");
617 if (sv
->leb_count
> vol
->reserved_pebs
) {
618 dbg_err("bad leb_count");
621 if (sv
->vol_type
!= vol
->vol_type
) {
622 dbg_err("bad vol_type");
625 if (sv
->used_ebs
> vol
->reserved_pebs
) {
626 dbg_err("bad used_ebs");
629 if (sv
->data_pad
!= vol
->data_pad
) {
630 dbg_err("bad data_pad");
636 ubi_err("bad scanning information");
638 ubi_dbg_dump_vol_info(vol
);
643 * check_scanning_info - check that scanning information.
644 * @ubi: UBI device description object
645 * @si: scanning information
647 * Even though we protect on-flash data by CRC checksums, we still don't trust
648 * the media. This function ensures that scanning information is consistent to
649 * the information read from the volume table. Returns zero if the scanning
650 * information is OK and %-EINVAL if it is not.
652 static int check_scanning_info(const struct ubi_device
*ubi
,
653 struct ubi_scan_info
*si
)
656 struct ubi_scan_volume
*sv
;
657 struct ubi_volume
*vol
;
659 if (si
->vols_found
> UBI_INT_VOL_COUNT
+ ubi
->vtbl_slots
) {
660 ubi_err("scanning found %d volumes, maximum is %d + %d",
661 si
->vols_found
, UBI_INT_VOL_COUNT
, ubi
->vtbl_slots
);
665 if (si
->highest_vol_id
>= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
&&
666 si
->highest_vol_id
< UBI_INTERNAL_VOL_START
) {
667 ubi_err("too large volume ID %d found by scanning",
673 for (i
= 0; i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++) {
676 sv
= ubi_scan_find_sv(si
, i
);
677 vol
= ubi
->volumes
[i
];
680 ubi_scan_rm_volume(si
, sv
);
684 if (vol
->reserved_pebs
== 0) {
685 ubi_assert(i
< ubi
->vtbl_slots
);
691 * During scanning we found a volume which does not
692 * exist according to the information in the volume
693 * table. This must have happened due to an unclean
694 * reboot while the volume was being removed. Discard
697 ubi_msg("finish volume %d removal", sv
->vol_id
);
698 ubi_scan_rm_volume(si
, sv
);
700 err
= check_sv(vol
, sv
);
710 * ubi_read_volume_table - read volume table.
712 * @ubi: UBI device description object
713 * @si: scanning information
715 * This function reads volume table, checks it, recover from errors if needed,
716 * or creates it if needed. Returns zero in case of success and a negative
717 * error code in case of failure.
719 int ubi_read_volume_table(struct ubi_device
*ubi
, struct ubi_scan_info
*si
)
722 struct ubi_scan_volume
*sv
;
724 empty_vtbl_record
.crc
= cpu_to_be32(0xf116c36b);
727 * The number of supported volumes is limited by the eraseblock size
728 * and by the UBI_MAX_VOLUMES constant.
730 ubi
->vtbl_slots
= ubi
->leb_size
/ UBI_VTBL_RECORD_SIZE
;
731 if (ubi
->vtbl_slots
> UBI_MAX_VOLUMES
)
732 ubi
->vtbl_slots
= UBI_MAX_VOLUMES
;
734 ubi
->vtbl_size
= ubi
->vtbl_slots
* UBI_VTBL_RECORD_SIZE
;
735 ubi
->vtbl_size
= ALIGN(ubi
->vtbl_size
, ubi
->min_io_size
);
737 sv
= ubi_scan_find_sv(si
, UBI_LAYOUT_VOL_ID
);
740 * No logical eraseblocks belonging to the layout volume were
741 * found. This could mean that the flash is just empty. In
742 * this case we create empty layout volume.
744 * But if flash is not empty this must be a corruption or the
745 * MTD device just contains garbage.
748 ubi
->vtbl
= create_empty_lvol(ubi
, si
);
749 if (IS_ERR(ubi
->vtbl
))
750 return PTR_ERR(ubi
->vtbl
);
752 ubi_err("the layout volume was not found");
756 if (sv
->leb_count
> UBI_LAYOUT_VOLUME_EBS
) {
757 /* This must not happen with proper UBI images */
758 dbg_err("too many LEBs (%d) in layout volume",
763 ubi
->vtbl
= process_lvol(ubi
, si
, sv
);
764 if (IS_ERR(ubi
->vtbl
))
765 return PTR_ERR(ubi
->vtbl
);
768 ubi
->avail_pebs
= ubi
->good_peb_count
;
771 * The layout volume is OK, initialize the corresponding in-RAM data
774 err
= init_volumes(ubi
, si
, ubi
->vtbl
);
779 * Get sure that the scanning information is consistent to the
780 * information stored in the volume table.
782 err
= check_scanning_info(ubi
, si
);
790 for (i
= 0; i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++)
791 if (ubi
->volumes
[i
]) {
792 kfree(ubi
->volumes
[i
]);
793 ubi
->volumes
[i
] = NULL
;
798 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
801 * paranoid_vtbl_check - check volume table.
802 * @ubi: UBI device description object
804 static void paranoid_vtbl_check(const struct ubi_device
*ubi
)
806 if (vtbl_check(ubi
, ubi
->vtbl
)) {
807 ubi_err("paranoid check failed");
812 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */