kbuild: Fix instrumentation removal breakage on avr32
[wrt350n-kernel.git] / drivers / scsi / esp_scsi.c
blobbfdee596889296f3c4ef3a6db1f7201c3f30e34a
1 /* esp_scsi.c: ESP SCSI driver.
3 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
30 #include "esp_scsi.h"
32 #define DRV_MODULE_NAME "esp"
33 #define PFX DRV_MODULE_NAME ": "
34 #define DRV_VERSION "2.000"
35 #define DRV_MODULE_RELDATE "April 19, 2007"
37 /* SCSI bus reset settle time in seconds. */
38 static int esp_bus_reset_settle = 3;
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR 0x00000001
42 #define ESP_DEBUG_SCSICMD 0x00000002
43 #define ESP_DEBUG_RESET 0x00000004
44 #define ESP_DEBUG_MSGIN 0x00000008
45 #define ESP_DEBUG_MSGOUT 0x00000010
46 #define ESP_DEBUG_CMDDONE 0x00000020
47 #define ESP_DEBUG_DISCONNECT 0x00000040
48 #define ESP_DEBUG_DATASTART 0x00000080
49 #define ESP_DEBUG_DATADONE 0x00000100
50 #define ESP_DEBUG_RECONNECT 0x00000200
51 #define ESP_DEBUG_AUTOSENSE 0x00000400
53 #define esp_log_intr(f, a...) \
54 do { if (esp_debug & ESP_DEBUG_INTR) \
55 printk(f, ## a); \
56 } while (0)
58 #define esp_log_reset(f, a...) \
59 do { if (esp_debug & ESP_DEBUG_RESET) \
60 printk(f, ## a); \
61 } while (0)
63 #define esp_log_msgin(f, a...) \
64 do { if (esp_debug & ESP_DEBUG_MSGIN) \
65 printk(f, ## a); \
66 } while (0)
68 #define esp_log_msgout(f, a...) \
69 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
70 printk(f, ## a); \
71 } while (0)
73 #define esp_log_cmddone(f, a...) \
74 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
75 printk(f, ## a); \
76 } while (0)
78 #define esp_log_disconnect(f, a...) \
79 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
80 printk(f, ## a); \
81 } while (0)
83 #define esp_log_datastart(f, a...) \
84 do { if (esp_debug & ESP_DEBUG_DATASTART) \
85 printk(f, ## a); \
86 } while (0)
88 #define esp_log_datadone(f, a...) \
89 do { if (esp_debug & ESP_DEBUG_DATADONE) \
90 printk(f, ## a); \
91 } while (0)
93 #define esp_log_reconnect(f, a...) \
94 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
95 printk(f, ## a); \
96 } while (0)
98 #define esp_log_autosense(f, a...) \
99 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
100 printk(f, ## a); \
101 } while (0)
103 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
104 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
106 static void esp_log_fill_regs(struct esp *esp,
107 struct esp_event_ent *p)
109 p->sreg = esp->sreg;
110 p->seqreg = esp->seqreg;
111 p->sreg2 = esp->sreg2;
112 p->ireg = esp->ireg;
113 p->select_state = esp->select_state;
114 p->event = esp->event;
117 void scsi_esp_cmd(struct esp *esp, u8 val)
119 struct esp_event_ent *p;
120 int idx = esp->esp_event_cur;
122 p = &esp->esp_event_log[idx];
123 p->type = ESP_EVENT_TYPE_CMD;
124 p->val = val;
125 esp_log_fill_regs(esp, p);
127 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
129 esp_write8(val, ESP_CMD);
131 EXPORT_SYMBOL(scsi_esp_cmd);
133 static void esp_event(struct esp *esp, u8 val)
135 struct esp_event_ent *p;
136 int idx = esp->esp_event_cur;
138 p = &esp->esp_event_log[idx];
139 p->type = ESP_EVENT_TYPE_EVENT;
140 p->val = val;
141 esp_log_fill_regs(esp, p);
143 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
145 esp->event = val;
148 static void esp_dump_cmd_log(struct esp *esp)
150 int idx = esp->esp_event_cur;
151 int stop = idx;
153 printk(KERN_INFO PFX "esp%d: Dumping command log\n",
154 esp->host->unique_id);
155 do {
156 struct esp_event_ent *p = &esp->esp_event_log[idx];
158 printk(KERN_INFO PFX "esp%d: ent[%d] %s ",
159 esp->host->unique_id, idx,
160 p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT");
162 printk("val[%02x] sreg[%02x] seqreg[%02x] "
163 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
164 p->val, p->sreg, p->seqreg,
165 p->sreg2, p->ireg, p->select_state, p->event);
167 idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
168 } while (idx != stop);
171 static void esp_flush_fifo(struct esp *esp)
173 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
174 if (esp->rev == ESP236) {
175 int lim = 1000;
177 while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
178 if (--lim == 0) {
179 printk(KERN_ALERT PFX "esp%d: ESP_FF_BYTES "
180 "will not clear!\n",
181 esp->host->unique_id);
182 break;
184 udelay(1);
189 static void hme_read_fifo(struct esp *esp)
191 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
192 int idx = 0;
194 while (fcnt--) {
195 esp->fifo[idx++] = esp_read8(ESP_FDATA);
196 esp->fifo[idx++] = esp_read8(ESP_FDATA);
198 if (esp->sreg2 & ESP_STAT2_F1BYTE) {
199 esp_write8(0, ESP_FDATA);
200 esp->fifo[idx++] = esp_read8(ESP_FDATA);
201 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
203 esp->fifo_cnt = idx;
206 static void esp_set_all_config3(struct esp *esp, u8 val)
208 int i;
210 for (i = 0; i < ESP_MAX_TARGET; i++)
211 esp->target[i].esp_config3 = val;
214 /* Reset the ESP chip, _not_ the SCSI bus. */
215 static void esp_reset_esp(struct esp *esp)
217 u8 family_code, version;
219 /* Now reset the ESP chip */
220 scsi_esp_cmd(esp, ESP_CMD_RC);
221 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
222 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
224 /* Reload the configuration registers */
225 esp_write8(esp->cfact, ESP_CFACT);
227 esp->prev_stp = 0;
228 esp_write8(esp->prev_stp, ESP_STP);
230 esp->prev_soff = 0;
231 esp_write8(esp->prev_soff, ESP_SOFF);
233 esp_write8(esp->neg_defp, ESP_TIMEO);
235 /* This is the only point at which it is reliable to read
236 * the ID-code for a fast ESP chip variants.
238 esp->max_period = ((35 * esp->ccycle) / 1000);
239 if (esp->rev == FAST) {
240 version = esp_read8(ESP_UID);
241 family_code = (version & 0xf8) >> 3;
242 if (family_code == 0x02)
243 esp->rev = FAS236;
244 else if (family_code == 0x0a)
245 esp->rev = FASHME; /* Version is usually '5'. */
246 else
247 esp->rev = FAS100A;
248 esp->min_period = ((4 * esp->ccycle) / 1000);
249 } else {
250 esp->min_period = ((5 * esp->ccycle) / 1000);
252 esp->max_period = (esp->max_period + 3)>>2;
253 esp->min_period = (esp->min_period + 3)>>2;
255 esp_write8(esp->config1, ESP_CFG1);
256 switch (esp->rev) {
257 case ESP100:
258 /* nothing to do */
259 break;
261 case ESP100A:
262 esp_write8(esp->config2, ESP_CFG2);
263 break;
265 case ESP236:
266 /* Slow 236 */
267 esp_write8(esp->config2, ESP_CFG2);
268 esp->prev_cfg3 = esp->target[0].esp_config3;
269 esp_write8(esp->prev_cfg3, ESP_CFG3);
270 break;
272 case FASHME:
273 esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
274 /* fallthrough... */
276 case FAS236:
277 /* Fast 236 or HME */
278 esp_write8(esp->config2, ESP_CFG2);
279 if (esp->rev == FASHME) {
280 u8 cfg3 = esp->target[0].esp_config3;
282 cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
283 if (esp->scsi_id >= 8)
284 cfg3 |= ESP_CONFIG3_IDBIT3;
285 esp_set_all_config3(esp, cfg3);
286 } else {
287 u32 cfg3 = esp->target[0].esp_config3;
289 cfg3 |= ESP_CONFIG3_FCLK;
290 esp_set_all_config3(esp, cfg3);
292 esp->prev_cfg3 = esp->target[0].esp_config3;
293 esp_write8(esp->prev_cfg3, ESP_CFG3);
294 if (esp->rev == FASHME) {
295 esp->radelay = 80;
296 } else {
297 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
298 esp->radelay = 0;
299 else
300 esp->radelay = 96;
302 break;
304 case FAS100A:
305 /* Fast 100a */
306 esp_write8(esp->config2, ESP_CFG2);
307 esp_set_all_config3(esp,
308 (esp->target[0].esp_config3 |
309 ESP_CONFIG3_FCLOCK));
310 esp->prev_cfg3 = esp->target[0].esp_config3;
311 esp_write8(esp->prev_cfg3, ESP_CFG3);
312 esp->radelay = 32;
313 break;
315 default:
316 break;
319 /* Eat any bitrot in the chip */
320 esp_read8(ESP_INTRPT);
321 udelay(100);
324 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
326 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
327 struct scatterlist *sg = scsi_sglist(cmd);
328 int dir = cmd->sc_data_direction;
329 int total, i;
331 if (dir == DMA_NONE)
332 return;
334 spriv->u.num_sg = esp->ops->map_sg(esp, sg, scsi_sg_count(cmd), dir);
335 spriv->cur_residue = sg_dma_len(sg);
336 spriv->cur_sg = sg;
338 total = 0;
339 for (i = 0; i < spriv->u.num_sg; i++)
340 total += sg_dma_len(&sg[i]);
341 spriv->tot_residue = total;
344 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
345 struct scsi_cmnd *cmd)
347 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
349 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
350 return ent->sense_dma +
351 (ent->sense_ptr - cmd->sense_buffer);
354 return sg_dma_address(p->cur_sg) +
355 (sg_dma_len(p->cur_sg) -
356 p->cur_residue);
359 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
360 struct scsi_cmnd *cmd)
362 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
364 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
365 return SCSI_SENSE_BUFFERSIZE -
366 (ent->sense_ptr - cmd->sense_buffer);
368 return p->cur_residue;
371 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
372 struct scsi_cmnd *cmd, unsigned int len)
374 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
376 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
377 ent->sense_ptr += len;
378 return;
381 p->cur_residue -= len;
382 p->tot_residue -= len;
383 if (p->cur_residue < 0 || p->tot_residue < 0) {
384 printk(KERN_ERR PFX "esp%d: Data transfer overflow.\n",
385 esp->host->unique_id);
386 printk(KERN_ERR PFX "esp%d: cur_residue[%d] tot_residue[%d] "
387 "len[%u]\n",
388 esp->host->unique_id,
389 p->cur_residue, p->tot_residue, len);
390 p->cur_residue = 0;
391 p->tot_residue = 0;
393 if (!p->cur_residue && p->tot_residue) {
394 p->cur_sg++;
395 p->cur_residue = sg_dma_len(p->cur_sg);
399 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
401 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
402 int dir = cmd->sc_data_direction;
404 if (dir == DMA_NONE)
405 return;
407 esp->ops->unmap_sg(esp, scsi_sglist(cmd), spriv->u.num_sg, dir);
410 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
412 struct scsi_cmnd *cmd = ent->cmd;
413 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
415 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
416 ent->saved_sense_ptr = ent->sense_ptr;
417 return;
419 ent->saved_cur_residue = spriv->cur_residue;
420 ent->saved_cur_sg = spriv->cur_sg;
421 ent->saved_tot_residue = spriv->tot_residue;
424 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
426 struct scsi_cmnd *cmd = ent->cmd;
427 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
429 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
430 ent->sense_ptr = ent->saved_sense_ptr;
431 return;
433 spriv->cur_residue = ent->saved_cur_residue;
434 spriv->cur_sg = ent->saved_cur_sg;
435 spriv->tot_residue = ent->saved_tot_residue;
438 static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
440 if (cmd->cmd_len == 6 ||
441 cmd->cmd_len == 10 ||
442 cmd->cmd_len == 12) {
443 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
444 } else {
445 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
449 static void esp_write_tgt_config3(struct esp *esp, int tgt)
451 if (esp->rev > ESP100A) {
452 u8 val = esp->target[tgt].esp_config3;
454 if (val != esp->prev_cfg3) {
455 esp->prev_cfg3 = val;
456 esp_write8(val, ESP_CFG3);
461 static void esp_write_tgt_sync(struct esp *esp, int tgt)
463 u8 off = esp->target[tgt].esp_offset;
464 u8 per = esp->target[tgt].esp_period;
466 if (off != esp->prev_soff) {
467 esp->prev_soff = off;
468 esp_write8(off, ESP_SOFF);
470 if (per != esp->prev_stp) {
471 esp->prev_stp = per;
472 esp_write8(per, ESP_STP);
476 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
478 if (esp->rev == FASHME) {
479 /* Arbitrary segment boundaries, 24-bit counts. */
480 if (dma_len > (1U << 24))
481 dma_len = (1U << 24);
482 } else {
483 u32 base, end;
485 /* ESP chip limits other variants by 16-bits of transfer
486 * count. Actually on FAS100A and FAS236 we could get
487 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
488 * in the ESP_CFG2 register but that causes other unwanted
489 * changes so we don't use it currently.
491 if (dma_len > (1U << 16))
492 dma_len = (1U << 16);
494 /* All of the DMA variants hooked up to these chips
495 * cannot handle crossing a 24-bit address boundary.
497 base = dma_addr & ((1U << 24) - 1U);
498 end = base + dma_len;
499 if (end > (1U << 24))
500 end = (1U <<24);
501 dma_len = end - base;
503 return dma_len;
506 static int esp_need_to_nego_wide(struct esp_target_data *tp)
508 struct scsi_target *target = tp->starget;
510 return spi_width(target) != tp->nego_goal_width;
513 static int esp_need_to_nego_sync(struct esp_target_data *tp)
515 struct scsi_target *target = tp->starget;
517 /* When offset is zero, period is "don't care". */
518 if (!spi_offset(target) && !tp->nego_goal_offset)
519 return 0;
521 if (spi_offset(target) == tp->nego_goal_offset &&
522 spi_period(target) == tp->nego_goal_period)
523 return 0;
525 return 1;
528 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
529 struct esp_lun_data *lp)
531 if (!ent->tag[0]) {
532 /* Non-tagged, slot already taken? */
533 if (lp->non_tagged_cmd)
534 return -EBUSY;
536 if (lp->hold) {
537 /* We are being held by active tagged
538 * commands.
540 if (lp->num_tagged)
541 return -EBUSY;
543 /* Tagged commands completed, we can unplug
544 * the queue and run this untagged command.
546 lp->hold = 0;
547 } else if (lp->num_tagged) {
548 /* Plug the queue until num_tagged decreases
549 * to zero in esp_free_lun_tag.
551 lp->hold = 1;
552 return -EBUSY;
555 lp->non_tagged_cmd = ent;
556 return 0;
557 } else {
558 /* Tagged command, see if blocked by a
559 * non-tagged one.
561 if (lp->non_tagged_cmd || lp->hold)
562 return -EBUSY;
565 BUG_ON(lp->tagged_cmds[ent->tag[1]]);
567 lp->tagged_cmds[ent->tag[1]] = ent;
568 lp->num_tagged++;
570 return 0;
573 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
574 struct esp_lun_data *lp)
576 if (ent->tag[0]) {
577 BUG_ON(lp->tagged_cmds[ent->tag[1]] != ent);
578 lp->tagged_cmds[ent->tag[1]] = NULL;
579 lp->num_tagged--;
580 } else {
581 BUG_ON(lp->non_tagged_cmd != ent);
582 lp->non_tagged_cmd = NULL;
586 /* When a contingent allegiance conditon is created, we force feed a
587 * REQUEST_SENSE command to the device to fetch the sense data. I
588 * tried many other schemes, relying on the scsi error handling layer
589 * to send out the REQUEST_SENSE automatically, but this was difficult
590 * to get right especially in the presence of applications like smartd
591 * which use SG_IO to send out their own REQUEST_SENSE commands.
593 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
595 struct scsi_cmnd *cmd = ent->cmd;
596 struct scsi_device *dev = cmd->device;
597 int tgt, lun;
598 u8 *p, val;
600 tgt = dev->id;
601 lun = dev->lun;
604 if (!ent->sense_ptr) {
605 esp_log_autosense("esp%d: Doing auto-sense for "
606 "tgt[%d] lun[%d]\n",
607 esp->host->unique_id, tgt, lun);
609 ent->sense_ptr = cmd->sense_buffer;
610 ent->sense_dma = esp->ops->map_single(esp,
611 ent->sense_ptr,
612 SCSI_SENSE_BUFFERSIZE,
613 DMA_FROM_DEVICE);
615 ent->saved_sense_ptr = ent->sense_ptr;
617 esp->active_cmd = ent;
619 p = esp->command_block;
620 esp->msg_out_len = 0;
622 *p++ = IDENTIFY(0, lun);
623 *p++ = REQUEST_SENSE;
624 *p++ = ((dev->scsi_level <= SCSI_2) ?
625 (lun << 5) : 0);
626 *p++ = 0;
627 *p++ = 0;
628 *p++ = SCSI_SENSE_BUFFERSIZE;
629 *p++ = 0;
631 esp->select_state = ESP_SELECT_BASIC;
633 val = tgt;
634 if (esp->rev == FASHME)
635 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
636 esp_write8(val, ESP_BUSID);
638 esp_write_tgt_sync(esp, tgt);
639 esp_write_tgt_config3(esp, tgt);
641 val = (p - esp->command_block);
643 if (esp->rev == FASHME)
644 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
645 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
646 val, 16, 0, ESP_CMD_DMA | ESP_CMD_SELA);
649 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
651 struct esp_cmd_entry *ent;
653 list_for_each_entry(ent, &esp->queued_cmds, list) {
654 struct scsi_cmnd *cmd = ent->cmd;
655 struct scsi_device *dev = cmd->device;
656 struct esp_lun_data *lp = dev->hostdata;
658 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
659 ent->tag[0] = 0;
660 ent->tag[1] = 0;
661 return ent;
664 if (!scsi_populate_tag_msg(cmd, &ent->tag[0])) {
665 ent->tag[0] = 0;
666 ent->tag[1] = 0;
669 if (esp_alloc_lun_tag(ent, lp) < 0)
670 continue;
672 return ent;
675 return NULL;
678 static void esp_maybe_execute_command(struct esp *esp)
680 struct esp_target_data *tp;
681 struct esp_lun_data *lp;
682 struct scsi_device *dev;
683 struct scsi_cmnd *cmd;
684 struct esp_cmd_entry *ent;
685 int tgt, lun, i;
686 u32 val, start_cmd;
687 u8 *p;
689 if (esp->active_cmd ||
690 (esp->flags & ESP_FLAG_RESETTING))
691 return;
693 ent = find_and_prep_issuable_command(esp);
694 if (!ent)
695 return;
697 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
698 esp_autosense(esp, ent);
699 return;
702 cmd = ent->cmd;
703 dev = cmd->device;
704 tgt = dev->id;
705 lun = dev->lun;
706 tp = &esp->target[tgt];
707 lp = dev->hostdata;
709 list_del(&ent->list);
710 list_add(&ent->list, &esp->active_cmds);
712 esp->active_cmd = ent;
714 esp_map_dma(esp, cmd);
715 esp_save_pointers(esp, ent);
717 esp_check_command_len(esp, cmd);
719 p = esp->command_block;
721 esp->msg_out_len = 0;
722 if (tp->flags & ESP_TGT_CHECK_NEGO) {
723 /* Need to negotiate. If the target is broken
724 * go for synchronous transfers and non-wide.
726 if (tp->flags & ESP_TGT_BROKEN) {
727 tp->flags &= ~ESP_TGT_DISCONNECT;
728 tp->nego_goal_period = 0;
729 tp->nego_goal_offset = 0;
730 tp->nego_goal_width = 0;
731 tp->nego_goal_tags = 0;
734 /* If the settings are not changing, skip this. */
735 if (spi_width(tp->starget) == tp->nego_goal_width &&
736 spi_period(tp->starget) == tp->nego_goal_period &&
737 spi_offset(tp->starget) == tp->nego_goal_offset) {
738 tp->flags &= ~ESP_TGT_CHECK_NEGO;
739 goto build_identify;
742 if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
743 esp->msg_out_len =
744 spi_populate_width_msg(&esp->msg_out[0],
745 (tp->nego_goal_width ?
746 1 : 0));
747 tp->flags |= ESP_TGT_NEGO_WIDE;
748 } else if (esp_need_to_nego_sync(tp)) {
749 esp->msg_out_len =
750 spi_populate_sync_msg(&esp->msg_out[0],
751 tp->nego_goal_period,
752 tp->nego_goal_offset);
753 tp->flags |= ESP_TGT_NEGO_SYNC;
754 } else {
755 tp->flags &= ~ESP_TGT_CHECK_NEGO;
758 /* Process it like a slow command. */
759 if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC))
760 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
763 build_identify:
764 /* If we don't have a lun-data struct yet, we're probing
765 * so do not disconnect. Also, do not disconnect unless
766 * we have a tag on this command.
768 if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0])
769 *p++ = IDENTIFY(1, lun);
770 else
771 *p++ = IDENTIFY(0, lun);
773 if (ent->tag[0] && esp->rev == ESP100) {
774 /* ESP100 lacks select w/atn3 command, use select
775 * and stop instead.
777 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
780 if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
781 start_cmd = ESP_CMD_DMA | ESP_CMD_SELA;
782 if (ent->tag[0]) {
783 *p++ = ent->tag[0];
784 *p++ = ent->tag[1];
786 start_cmd = ESP_CMD_DMA | ESP_CMD_SA3;
789 for (i = 0; i < cmd->cmd_len; i++)
790 *p++ = cmd->cmnd[i];
792 esp->select_state = ESP_SELECT_BASIC;
793 } else {
794 esp->cmd_bytes_left = cmd->cmd_len;
795 esp->cmd_bytes_ptr = &cmd->cmnd[0];
797 if (ent->tag[0]) {
798 for (i = esp->msg_out_len - 1;
799 i >= 0; i--)
800 esp->msg_out[i + 2] = esp->msg_out[i];
801 esp->msg_out[0] = ent->tag[0];
802 esp->msg_out[1] = ent->tag[1];
803 esp->msg_out_len += 2;
806 start_cmd = ESP_CMD_DMA | ESP_CMD_SELAS;
807 esp->select_state = ESP_SELECT_MSGOUT;
809 val = tgt;
810 if (esp->rev == FASHME)
811 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
812 esp_write8(val, ESP_BUSID);
814 esp_write_tgt_sync(esp, tgt);
815 esp_write_tgt_config3(esp, tgt);
817 val = (p - esp->command_block);
819 if (esp_debug & ESP_DEBUG_SCSICMD) {
820 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
821 for (i = 0; i < cmd->cmd_len; i++)
822 printk("%02x ", cmd->cmnd[i]);
823 printk("]\n");
826 if (esp->rev == FASHME)
827 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
828 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
829 val, 16, 0, start_cmd);
832 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
834 struct list_head *head = &esp->esp_cmd_pool;
835 struct esp_cmd_entry *ret;
837 if (list_empty(head)) {
838 ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
839 } else {
840 ret = list_entry(head->next, struct esp_cmd_entry, list);
841 list_del(&ret->list);
842 memset(ret, 0, sizeof(*ret));
844 return ret;
847 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
849 list_add(&ent->list, &esp->esp_cmd_pool);
852 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
853 struct scsi_cmnd *cmd, unsigned int result)
855 struct scsi_device *dev = cmd->device;
856 int tgt = dev->id;
857 int lun = dev->lun;
859 esp->active_cmd = NULL;
860 esp_unmap_dma(esp, cmd);
861 esp_free_lun_tag(ent, dev->hostdata);
862 cmd->result = result;
864 if (ent->eh_done) {
865 complete(ent->eh_done);
866 ent->eh_done = NULL;
869 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
870 esp->ops->unmap_single(esp, ent->sense_dma,
871 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
872 ent->sense_ptr = NULL;
874 /* Restore the message/status bytes to what we actually
875 * saw originally. Also, report that we are providing
876 * the sense data.
878 cmd->result = ((DRIVER_SENSE << 24) |
879 (DID_OK << 16) |
880 (COMMAND_COMPLETE << 8) |
881 (SAM_STAT_CHECK_CONDITION << 0));
883 ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
884 if (esp_debug & ESP_DEBUG_AUTOSENSE) {
885 int i;
887 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
888 esp->host->unique_id, tgt, lun);
889 for (i = 0; i < 18; i++)
890 printk("%02x ", cmd->sense_buffer[i]);
891 printk("]\n");
895 cmd->scsi_done(cmd);
897 list_del(&ent->list);
898 esp_put_ent(esp, ent);
900 esp_maybe_execute_command(esp);
903 static unsigned int compose_result(unsigned int status, unsigned int message,
904 unsigned int driver_code)
906 return (status | (message << 8) | (driver_code << 16));
909 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
911 struct scsi_device *dev = ent->cmd->device;
912 struct esp_lun_data *lp = dev->hostdata;
914 scsi_track_queue_full(dev, lp->num_tagged - 1);
917 static int esp_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
919 struct scsi_device *dev = cmd->device;
920 struct esp *esp = shost_priv(dev->host);
921 struct esp_cmd_priv *spriv;
922 struct esp_cmd_entry *ent;
924 ent = esp_get_ent(esp);
925 if (!ent)
926 return SCSI_MLQUEUE_HOST_BUSY;
928 ent->cmd = cmd;
930 cmd->scsi_done = done;
932 spriv = ESP_CMD_PRIV(cmd);
933 spriv->u.dma_addr = ~(dma_addr_t)0x0;
935 list_add_tail(&ent->list, &esp->queued_cmds);
937 esp_maybe_execute_command(esp);
939 return 0;
942 static int esp_check_gross_error(struct esp *esp)
944 if (esp->sreg & ESP_STAT_SPAM) {
945 /* Gross Error, could be one of:
946 * - top of fifo overwritten
947 * - top of command register overwritten
948 * - DMA programmed with wrong direction
949 * - improper phase change
951 printk(KERN_ERR PFX "esp%d: Gross error sreg[%02x]\n",
952 esp->host->unique_id, esp->sreg);
953 /* XXX Reset the chip. XXX */
954 return 1;
956 return 0;
959 static int esp_check_spur_intr(struct esp *esp)
961 switch (esp->rev) {
962 case ESP100:
963 case ESP100A:
964 /* The interrupt pending bit of the status register cannot
965 * be trusted on these revisions.
967 esp->sreg &= ~ESP_STAT_INTR;
968 break;
970 default:
971 if (!(esp->sreg & ESP_STAT_INTR)) {
972 esp->ireg = esp_read8(ESP_INTRPT);
973 if (esp->ireg & ESP_INTR_SR)
974 return 1;
976 /* If the DMA is indicating interrupt pending and the
977 * ESP is not, the only possibility is a DMA error.
979 if (!esp->ops->dma_error(esp)) {
980 printk(KERN_ERR PFX "esp%d: Spurious irq, "
981 "sreg=%x.\n",
982 esp->host->unique_id, esp->sreg);
983 return -1;
986 printk(KERN_ERR PFX "esp%d: DMA error\n",
987 esp->host->unique_id);
989 /* XXX Reset the chip. XXX */
990 return -1;
992 break;
995 return 0;
998 static void esp_schedule_reset(struct esp *esp)
1000 esp_log_reset("ESP: esp_schedule_reset() from %p\n",
1001 __builtin_return_address(0));
1002 esp->flags |= ESP_FLAG_RESETTING;
1003 esp_event(esp, ESP_EVENT_RESET);
1006 /* In order to avoid having to add a special half-reconnected state
1007 * into the driver we just sit here and poll through the rest of
1008 * the reselection process to get the tag message bytes.
1010 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1011 struct esp_lun_data *lp)
1013 struct esp_cmd_entry *ent;
1014 int i;
1016 if (!lp->num_tagged) {
1017 printk(KERN_ERR PFX "esp%d: Reconnect w/num_tagged==0\n",
1018 esp->host->unique_id);
1019 return NULL;
1022 esp_log_reconnect("ESP: reconnect tag, ");
1024 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1025 if (esp->ops->irq_pending(esp))
1026 break;
1028 if (i == ESP_QUICKIRQ_LIMIT) {
1029 printk(KERN_ERR PFX "esp%d: Reconnect IRQ1 timeout\n",
1030 esp->host->unique_id);
1031 return NULL;
1034 esp->sreg = esp_read8(ESP_STATUS);
1035 esp->ireg = esp_read8(ESP_INTRPT);
1037 esp_log_reconnect("IRQ(%d:%x:%x), ",
1038 i, esp->ireg, esp->sreg);
1040 if (esp->ireg & ESP_INTR_DC) {
1041 printk(KERN_ERR PFX "esp%d: Reconnect, got disconnect.\n",
1042 esp->host->unique_id);
1043 return NULL;
1046 if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1047 printk(KERN_ERR PFX "esp%d: Reconnect, not MIP sreg[%02x].\n",
1048 esp->host->unique_id, esp->sreg);
1049 return NULL;
1052 /* DMA in the tag bytes... */
1053 esp->command_block[0] = 0xff;
1054 esp->command_block[1] = 0xff;
1055 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1056 2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1058 /* ACK the msssage. */
1059 scsi_esp_cmd(esp, ESP_CMD_MOK);
1061 for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1062 if (esp->ops->irq_pending(esp)) {
1063 esp->sreg = esp_read8(ESP_STATUS);
1064 esp->ireg = esp_read8(ESP_INTRPT);
1065 if (esp->ireg & ESP_INTR_FDONE)
1066 break;
1068 udelay(1);
1070 if (i == ESP_RESELECT_TAG_LIMIT) {
1071 printk(KERN_ERR PFX "esp%d: Reconnect IRQ2 timeout\n",
1072 esp->host->unique_id);
1073 return NULL;
1075 esp->ops->dma_drain(esp);
1076 esp->ops->dma_invalidate(esp);
1078 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1079 i, esp->ireg, esp->sreg,
1080 esp->command_block[0],
1081 esp->command_block[1]);
1083 if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1084 esp->command_block[0] > ORDERED_QUEUE_TAG) {
1085 printk(KERN_ERR PFX "esp%d: Reconnect, bad tag "
1086 "type %02x.\n",
1087 esp->host->unique_id, esp->command_block[0]);
1088 return NULL;
1091 ent = lp->tagged_cmds[esp->command_block[1]];
1092 if (!ent) {
1093 printk(KERN_ERR PFX "esp%d: Reconnect, no entry for "
1094 "tag %02x.\n",
1095 esp->host->unique_id, esp->command_block[1]);
1096 return NULL;
1099 return ent;
1102 static int esp_reconnect(struct esp *esp)
1104 struct esp_cmd_entry *ent;
1105 struct esp_target_data *tp;
1106 struct esp_lun_data *lp;
1107 struct scsi_device *dev;
1108 int target, lun;
1110 BUG_ON(esp->active_cmd);
1111 if (esp->rev == FASHME) {
1112 /* FASHME puts the target and lun numbers directly
1113 * into the fifo.
1115 target = esp->fifo[0];
1116 lun = esp->fifo[1] & 0x7;
1117 } else {
1118 u8 bits = esp_read8(ESP_FDATA);
1120 /* Older chips put the lun directly into the fifo, but
1121 * the target is given as a sample of the arbitration
1122 * lines on the bus at reselection time. So we should
1123 * see the ID of the ESP and the one reconnecting target
1124 * set in the bitmap.
1126 if (!(bits & esp->scsi_id_mask))
1127 goto do_reset;
1128 bits &= ~esp->scsi_id_mask;
1129 if (!bits || (bits & (bits - 1)))
1130 goto do_reset;
1132 target = ffs(bits) - 1;
1133 lun = (esp_read8(ESP_FDATA) & 0x7);
1135 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1136 if (esp->rev == ESP100) {
1137 u8 ireg = esp_read8(ESP_INTRPT);
1138 /* This chip has a bug during reselection that can
1139 * cause a spurious illegal-command interrupt, which
1140 * we simply ACK here. Another possibility is a bus
1141 * reset so we must check for that.
1143 if (ireg & ESP_INTR_SR)
1144 goto do_reset;
1146 scsi_esp_cmd(esp, ESP_CMD_NULL);
1149 esp_write_tgt_sync(esp, target);
1150 esp_write_tgt_config3(esp, target);
1152 scsi_esp_cmd(esp, ESP_CMD_MOK);
1154 if (esp->rev == FASHME)
1155 esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1156 ESP_BUSID);
1158 tp = &esp->target[target];
1159 dev = __scsi_device_lookup_by_target(tp->starget, lun);
1160 if (!dev) {
1161 printk(KERN_ERR PFX "esp%d: Reconnect, no lp "
1162 "tgt[%u] lun[%u]\n",
1163 esp->host->unique_id, target, lun);
1164 goto do_reset;
1166 lp = dev->hostdata;
1168 ent = lp->non_tagged_cmd;
1169 if (!ent) {
1170 ent = esp_reconnect_with_tag(esp, lp);
1171 if (!ent)
1172 goto do_reset;
1175 esp->active_cmd = ent;
1177 if (ent->flags & ESP_CMD_FLAG_ABORT) {
1178 esp->msg_out[0] = ABORT_TASK_SET;
1179 esp->msg_out_len = 1;
1180 scsi_esp_cmd(esp, ESP_CMD_SATN);
1183 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1184 esp_restore_pointers(esp, ent);
1185 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1186 return 1;
1188 do_reset:
1189 esp_schedule_reset(esp);
1190 return 0;
1193 static int esp_finish_select(struct esp *esp)
1195 struct esp_cmd_entry *ent;
1196 struct scsi_cmnd *cmd;
1197 u8 orig_select_state;
1199 orig_select_state = esp->select_state;
1201 /* No longer selecting. */
1202 esp->select_state = ESP_SELECT_NONE;
1204 esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1205 ent = esp->active_cmd;
1206 cmd = ent->cmd;
1208 if (esp->ops->dma_error(esp)) {
1209 /* If we see a DMA error during or as a result of selection,
1210 * all bets are off.
1212 esp_schedule_reset(esp);
1213 esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1214 return 0;
1217 esp->ops->dma_invalidate(esp);
1219 if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1220 struct esp_target_data *tp = &esp->target[cmd->device->id];
1222 /* Carefully back out of the selection attempt. Release
1223 * resources (such as DMA mapping & TAG) and reset state (such
1224 * as message out and command delivery variables).
1226 if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1227 esp_unmap_dma(esp, cmd);
1228 esp_free_lun_tag(ent, cmd->device->hostdata);
1229 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1230 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
1231 esp->cmd_bytes_ptr = NULL;
1232 esp->cmd_bytes_left = 0;
1233 } else {
1234 esp->ops->unmap_single(esp, ent->sense_dma,
1235 SCSI_SENSE_BUFFERSIZE,
1236 DMA_FROM_DEVICE);
1237 ent->sense_ptr = NULL;
1240 /* Now that the state is unwound properly, put back onto
1241 * the issue queue. This command is no longer active.
1243 list_del(&ent->list);
1244 list_add(&ent->list, &esp->queued_cmds);
1245 esp->active_cmd = NULL;
1247 /* Return value ignored by caller, it directly invokes
1248 * esp_reconnect().
1250 return 0;
1253 if (esp->ireg == ESP_INTR_DC) {
1254 struct scsi_device *dev = cmd->device;
1256 /* Disconnect. Make sure we re-negotiate sync and
1257 * wide parameters if this target starts responding
1258 * again in the future.
1260 esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1262 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1263 esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1264 return 1;
1267 if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1268 /* Selection successful. On pre-FAST chips we have
1269 * to do a NOP and possibly clean out the FIFO.
1271 if (esp->rev <= ESP236) {
1272 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1274 scsi_esp_cmd(esp, ESP_CMD_NULL);
1276 if (!fcnt &&
1277 (!esp->prev_soff ||
1278 ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1279 esp_flush_fifo(esp);
1282 /* If we are doing a slow command, negotiation, etc.
1283 * we'll do the right thing as we transition to the
1284 * next phase.
1286 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1287 return 0;
1290 printk("ESP: Unexpected selection completion ireg[%x].\n",
1291 esp->ireg);
1292 esp_schedule_reset(esp);
1293 return 0;
1296 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1297 struct scsi_cmnd *cmd)
1299 int fifo_cnt, ecount, bytes_sent, flush_fifo;
1301 fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1302 if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1303 fifo_cnt <<= 1;
1305 ecount = 0;
1306 if (!(esp->sreg & ESP_STAT_TCNT)) {
1307 ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1308 (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1309 if (esp->rev == FASHME)
1310 ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1313 bytes_sent = esp->data_dma_len;
1314 bytes_sent -= ecount;
1316 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1317 bytes_sent -= fifo_cnt;
1319 flush_fifo = 0;
1320 if (!esp->prev_soff) {
1321 /* Synchronous data transfer, always flush fifo. */
1322 flush_fifo = 1;
1323 } else {
1324 if (esp->rev == ESP100) {
1325 u32 fflags, phase;
1327 /* ESP100 has a chip bug where in the synchronous data
1328 * phase it can mistake a final long REQ pulse from the
1329 * target as an extra data byte. Fun.
1331 * To detect this case we resample the status register
1332 * and fifo flags. If we're still in a data phase and
1333 * we see spurious chunks in the fifo, we return error
1334 * to the caller which should reset and set things up
1335 * such that we only try future transfers to this
1336 * target in synchronous mode.
1338 esp->sreg = esp_read8(ESP_STATUS);
1339 phase = esp->sreg & ESP_STAT_PMASK;
1340 fflags = esp_read8(ESP_FFLAGS);
1342 if ((phase == ESP_DOP &&
1343 (fflags & ESP_FF_ONOTZERO)) ||
1344 (phase == ESP_DIP &&
1345 (fflags & ESP_FF_FBYTES)))
1346 return -1;
1348 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1349 flush_fifo = 1;
1352 if (flush_fifo)
1353 esp_flush_fifo(esp);
1355 return bytes_sent;
1358 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1359 u8 scsi_period, u8 scsi_offset,
1360 u8 esp_stp, u8 esp_soff)
1362 spi_period(tp->starget) = scsi_period;
1363 spi_offset(tp->starget) = scsi_offset;
1364 spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1366 if (esp_soff) {
1367 esp_stp &= 0x1f;
1368 esp_soff |= esp->radelay;
1369 if (esp->rev >= FAS236) {
1370 u8 bit = ESP_CONFIG3_FSCSI;
1371 if (esp->rev >= FAS100A)
1372 bit = ESP_CONFIG3_FAST;
1374 if (scsi_period < 50) {
1375 if (esp->rev == FASHME)
1376 esp_soff &= ~esp->radelay;
1377 tp->esp_config3 |= bit;
1378 } else {
1379 tp->esp_config3 &= ~bit;
1381 esp->prev_cfg3 = tp->esp_config3;
1382 esp_write8(esp->prev_cfg3, ESP_CFG3);
1386 tp->esp_period = esp->prev_stp = esp_stp;
1387 tp->esp_offset = esp->prev_soff = esp_soff;
1389 esp_write8(esp_soff, ESP_SOFF);
1390 esp_write8(esp_stp, ESP_STP);
1392 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1394 spi_display_xfer_agreement(tp->starget);
1397 static void esp_msgin_reject(struct esp *esp)
1399 struct esp_cmd_entry *ent = esp->active_cmd;
1400 struct scsi_cmnd *cmd = ent->cmd;
1401 struct esp_target_data *tp;
1402 int tgt;
1404 tgt = cmd->device->id;
1405 tp = &esp->target[tgt];
1407 if (tp->flags & ESP_TGT_NEGO_WIDE) {
1408 tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1410 if (!esp_need_to_nego_sync(tp)) {
1411 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1412 scsi_esp_cmd(esp, ESP_CMD_RATN);
1413 } else {
1414 esp->msg_out_len =
1415 spi_populate_sync_msg(&esp->msg_out[0],
1416 tp->nego_goal_period,
1417 tp->nego_goal_offset);
1418 tp->flags |= ESP_TGT_NEGO_SYNC;
1419 scsi_esp_cmd(esp, ESP_CMD_SATN);
1421 return;
1424 if (tp->flags & ESP_TGT_NEGO_SYNC) {
1425 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1426 tp->esp_period = 0;
1427 tp->esp_offset = 0;
1428 esp_setsync(esp, tp, 0, 0, 0, 0);
1429 scsi_esp_cmd(esp, ESP_CMD_RATN);
1430 return;
1433 esp->msg_out[0] = ABORT_TASK_SET;
1434 esp->msg_out_len = 1;
1435 scsi_esp_cmd(esp, ESP_CMD_SATN);
1438 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1440 u8 period = esp->msg_in[3];
1441 u8 offset = esp->msg_in[4];
1442 u8 stp;
1444 if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1445 goto do_reject;
1447 if (offset > 15)
1448 goto do_reject;
1450 if (offset) {
1451 int rounded_up, one_clock;
1453 if (period > esp->max_period) {
1454 period = offset = 0;
1455 goto do_sdtr;
1457 if (period < esp->min_period)
1458 goto do_reject;
1460 one_clock = esp->ccycle / 1000;
1461 rounded_up = (period << 2);
1462 rounded_up = (rounded_up + one_clock - 1) / one_clock;
1463 stp = rounded_up;
1464 if (stp && esp->rev >= FAS236) {
1465 if (stp >= 50)
1466 stp--;
1468 } else {
1469 stp = 0;
1472 esp_setsync(esp, tp, period, offset, stp, offset);
1473 return;
1475 do_reject:
1476 esp->msg_out[0] = MESSAGE_REJECT;
1477 esp->msg_out_len = 1;
1478 scsi_esp_cmd(esp, ESP_CMD_SATN);
1479 return;
1481 do_sdtr:
1482 tp->nego_goal_period = period;
1483 tp->nego_goal_offset = offset;
1484 esp->msg_out_len =
1485 spi_populate_sync_msg(&esp->msg_out[0],
1486 tp->nego_goal_period,
1487 tp->nego_goal_offset);
1488 scsi_esp_cmd(esp, ESP_CMD_SATN);
1491 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1493 int size = 8 << esp->msg_in[3];
1494 u8 cfg3;
1496 if (esp->rev != FASHME)
1497 goto do_reject;
1499 if (size != 8 && size != 16)
1500 goto do_reject;
1502 if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1503 goto do_reject;
1505 cfg3 = tp->esp_config3;
1506 if (size == 16) {
1507 tp->flags |= ESP_TGT_WIDE;
1508 cfg3 |= ESP_CONFIG3_EWIDE;
1509 } else {
1510 tp->flags &= ~ESP_TGT_WIDE;
1511 cfg3 &= ~ESP_CONFIG3_EWIDE;
1513 tp->esp_config3 = cfg3;
1514 esp->prev_cfg3 = cfg3;
1515 esp_write8(cfg3, ESP_CFG3);
1517 tp->flags &= ~ESP_TGT_NEGO_WIDE;
1519 spi_period(tp->starget) = 0;
1520 spi_offset(tp->starget) = 0;
1521 if (!esp_need_to_nego_sync(tp)) {
1522 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1523 scsi_esp_cmd(esp, ESP_CMD_RATN);
1524 } else {
1525 esp->msg_out_len =
1526 spi_populate_sync_msg(&esp->msg_out[0],
1527 tp->nego_goal_period,
1528 tp->nego_goal_offset);
1529 tp->flags |= ESP_TGT_NEGO_SYNC;
1530 scsi_esp_cmd(esp, ESP_CMD_SATN);
1532 return;
1534 do_reject:
1535 esp->msg_out[0] = MESSAGE_REJECT;
1536 esp->msg_out_len = 1;
1537 scsi_esp_cmd(esp, ESP_CMD_SATN);
1540 static void esp_msgin_extended(struct esp *esp)
1542 struct esp_cmd_entry *ent = esp->active_cmd;
1543 struct scsi_cmnd *cmd = ent->cmd;
1544 struct esp_target_data *tp;
1545 int tgt = cmd->device->id;
1547 tp = &esp->target[tgt];
1548 if (esp->msg_in[2] == EXTENDED_SDTR) {
1549 esp_msgin_sdtr(esp, tp);
1550 return;
1552 if (esp->msg_in[2] == EXTENDED_WDTR) {
1553 esp_msgin_wdtr(esp, tp);
1554 return;
1557 printk("ESP: Unexpected extended msg type %x\n",
1558 esp->msg_in[2]);
1560 esp->msg_out[0] = ABORT_TASK_SET;
1561 esp->msg_out_len = 1;
1562 scsi_esp_cmd(esp, ESP_CMD_SATN);
1565 /* Analyze msgin bytes received from target so far. Return non-zero
1566 * if there are more bytes needed to complete the message.
1568 static int esp_msgin_process(struct esp *esp)
1570 u8 msg0 = esp->msg_in[0];
1571 int len = esp->msg_in_len;
1573 if (msg0 & 0x80) {
1574 /* Identify */
1575 printk("ESP: Unexpected msgin identify\n");
1576 return 0;
1579 switch (msg0) {
1580 case EXTENDED_MESSAGE:
1581 if (len == 1)
1582 return 1;
1583 if (len < esp->msg_in[1] + 2)
1584 return 1;
1585 esp_msgin_extended(esp);
1586 return 0;
1588 case IGNORE_WIDE_RESIDUE: {
1589 struct esp_cmd_entry *ent;
1590 struct esp_cmd_priv *spriv;
1591 if (len == 1)
1592 return 1;
1594 if (esp->msg_in[1] != 1)
1595 goto do_reject;
1597 ent = esp->active_cmd;
1598 spriv = ESP_CMD_PRIV(ent->cmd);
1600 if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1601 spriv->cur_sg--;
1602 spriv->cur_residue = 1;
1603 } else
1604 spriv->cur_residue++;
1605 spriv->tot_residue++;
1606 return 0;
1608 case NOP:
1609 return 0;
1610 case RESTORE_POINTERS:
1611 esp_restore_pointers(esp, esp->active_cmd);
1612 return 0;
1613 case SAVE_POINTERS:
1614 esp_save_pointers(esp, esp->active_cmd);
1615 return 0;
1617 case COMMAND_COMPLETE:
1618 case DISCONNECT: {
1619 struct esp_cmd_entry *ent = esp->active_cmd;
1621 ent->message = msg0;
1622 esp_event(esp, ESP_EVENT_FREE_BUS);
1623 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1624 return 0;
1626 case MESSAGE_REJECT:
1627 esp_msgin_reject(esp);
1628 return 0;
1630 default:
1631 do_reject:
1632 esp->msg_out[0] = MESSAGE_REJECT;
1633 esp->msg_out_len = 1;
1634 scsi_esp_cmd(esp, ESP_CMD_SATN);
1635 return 0;
1639 static int esp_process_event(struct esp *esp)
1641 int write;
1643 again:
1644 write = 0;
1645 switch (esp->event) {
1646 case ESP_EVENT_CHECK_PHASE:
1647 switch (esp->sreg & ESP_STAT_PMASK) {
1648 case ESP_DOP:
1649 esp_event(esp, ESP_EVENT_DATA_OUT);
1650 break;
1651 case ESP_DIP:
1652 esp_event(esp, ESP_EVENT_DATA_IN);
1653 break;
1654 case ESP_STATP:
1655 esp_flush_fifo(esp);
1656 scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1657 esp_event(esp, ESP_EVENT_STATUS);
1658 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1659 return 1;
1661 case ESP_MOP:
1662 esp_event(esp, ESP_EVENT_MSGOUT);
1663 break;
1665 case ESP_MIP:
1666 esp_event(esp, ESP_EVENT_MSGIN);
1667 break;
1669 case ESP_CMDP:
1670 esp_event(esp, ESP_EVENT_CMD_START);
1671 break;
1673 default:
1674 printk("ESP: Unexpected phase, sreg=%02x\n",
1675 esp->sreg);
1676 esp_schedule_reset(esp);
1677 return 0;
1679 goto again;
1680 break;
1682 case ESP_EVENT_DATA_IN:
1683 write = 1;
1684 /* fallthru */
1686 case ESP_EVENT_DATA_OUT: {
1687 struct esp_cmd_entry *ent = esp->active_cmd;
1688 struct scsi_cmnd *cmd = ent->cmd;
1689 dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1690 unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1692 if (esp->rev == ESP100)
1693 scsi_esp_cmd(esp, ESP_CMD_NULL);
1695 if (write)
1696 ent->flags |= ESP_CMD_FLAG_WRITE;
1697 else
1698 ent->flags &= ~ESP_CMD_FLAG_WRITE;
1700 dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1701 esp->data_dma_len = dma_len;
1703 if (!dma_len) {
1704 printk(KERN_ERR PFX "esp%d: DMA length is zero!\n",
1705 esp->host->unique_id);
1706 printk(KERN_ERR PFX "esp%d: cur adr[%08llx] len[%08x]\n",
1707 esp->host->unique_id,
1708 (unsigned long long)esp_cur_dma_addr(ent, cmd),
1709 esp_cur_dma_len(ent, cmd));
1710 esp_schedule_reset(esp);
1711 return 0;
1714 esp_log_datastart("ESP: start data addr[%08llx] len[%u] "
1715 "write(%d)\n",
1716 (unsigned long long)dma_addr, dma_len, write);
1718 esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1719 write, ESP_CMD_DMA | ESP_CMD_TI);
1720 esp_event(esp, ESP_EVENT_DATA_DONE);
1721 break;
1723 case ESP_EVENT_DATA_DONE: {
1724 struct esp_cmd_entry *ent = esp->active_cmd;
1725 struct scsi_cmnd *cmd = ent->cmd;
1726 int bytes_sent;
1728 if (esp->ops->dma_error(esp)) {
1729 printk("ESP: data done, DMA error, resetting\n");
1730 esp_schedule_reset(esp);
1731 return 0;
1734 if (ent->flags & ESP_CMD_FLAG_WRITE) {
1735 /* XXX parity errors, etc. XXX */
1737 esp->ops->dma_drain(esp);
1739 esp->ops->dma_invalidate(esp);
1741 if (esp->ireg != ESP_INTR_BSERV) {
1742 /* We should always see exactly a bus-service
1743 * interrupt at the end of a successful transfer.
1745 printk("ESP: data done, not BSERV, resetting\n");
1746 esp_schedule_reset(esp);
1747 return 0;
1750 bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1752 esp_log_datadone("ESP: data done flgs[%x] sent[%d]\n",
1753 ent->flags, bytes_sent);
1755 if (bytes_sent < 0) {
1756 /* XXX force sync mode for this target XXX */
1757 esp_schedule_reset(esp);
1758 return 0;
1761 esp_advance_dma(esp, ent, cmd, bytes_sent);
1762 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1763 goto again;
1764 break;
1767 case ESP_EVENT_STATUS: {
1768 struct esp_cmd_entry *ent = esp->active_cmd;
1770 if (esp->ireg & ESP_INTR_FDONE) {
1771 ent->status = esp_read8(ESP_FDATA);
1772 ent->message = esp_read8(ESP_FDATA);
1773 scsi_esp_cmd(esp, ESP_CMD_MOK);
1774 } else if (esp->ireg == ESP_INTR_BSERV) {
1775 ent->status = esp_read8(ESP_FDATA);
1776 ent->message = 0xff;
1777 esp_event(esp, ESP_EVENT_MSGIN);
1778 return 0;
1781 if (ent->message != COMMAND_COMPLETE) {
1782 printk("ESP: Unexpected message %x in status\n",
1783 ent->message);
1784 esp_schedule_reset(esp);
1785 return 0;
1788 esp_event(esp, ESP_EVENT_FREE_BUS);
1789 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1790 break;
1792 case ESP_EVENT_FREE_BUS: {
1793 struct esp_cmd_entry *ent = esp->active_cmd;
1794 struct scsi_cmnd *cmd = ent->cmd;
1796 if (ent->message == COMMAND_COMPLETE ||
1797 ent->message == DISCONNECT)
1798 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1800 if (ent->message == COMMAND_COMPLETE) {
1801 esp_log_cmddone("ESP: Command done status[%x] "
1802 "message[%x]\n",
1803 ent->status, ent->message);
1804 if (ent->status == SAM_STAT_TASK_SET_FULL)
1805 esp_event_queue_full(esp, ent);
1807 if (ent->status == SAM_STAT_CHECK_CONDITION &&
1808 !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1809 ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1810 esp_autosense(esp, ent);
1811 } else {
1812 esp_cmd_is_done(esp, ent, cmd,
1813 compose_result(ent->status,
1814 ent->message,
1815 DID_OK));
1817 } else if (ent->message == DISCONNECT) {
1818 esp_log_disconnect("ESP: Disconnecting tgt[%d] "
1819 "tag[%x:%x]\n",
1820 cmd->device->id,
1821 ent->tag[0], ent->tag[1]);
1823 esp->active_cmd = NULL;
1824 esp_maybe_execute_command(esp);
1825 } else {
1826 printk("ESP: Unexpected message %x in freebus\n",
1827 ent->message);
1828 esp_schedule_reset(esp);
1829 return 0;
1831 if (esp->active_cmd)
1832 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1833 break;
1835 case ESP_EVENT_MSGOUT: {
1836 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1838 if (esp_debug & ESP_DEBUG_MSGOUT) {
1839 int i;
1840 printk("ESP: Sending message [ ");
1841 for (i = 0; i < esp->msg_out_len; i++)
1842 printk("%02x ", esp->msg_out[i]);
1843 printk("]\n");
1846 if (esp->rev == FASHME) {
1847 int i;
1849 /* Always use the fifo. */
1850 for (i = 0; i < esp->msg_out_len; i++) {
1851 esp_write8(esp->msg_out[i], ESP_FDATA);
1852 esp_write8(0, ESP_FDATA);
1854 scsi_esp_cmd(esp, ESP_CMD_TI);
1855 } else {
1856 if (esp->msg_out_len == 1) {
1857 esp_write8(esp->msg_out[0], ESP_FDATA);
1858 scsi_esp_cmd(esp, ESP_CMD_TI);
1859 } else {
1860 /* Use DMA. */
1861 memcpy(esp->command_block,
1862 esp->msg_out,
1863 esp->msg_out_len);
1865 esp->ops->send_dma_cmd(esp,
1866 esp->command_block_dma,
1867 esp->msg_out_len,
1868 esp->msg_out_len,
1870 ESP_CMD_DMA|ESP_CMD_TI);
1873 esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1874 break;
1876 case ESP_EVENT_MSGOUT_DONE:
1877 if (esp->rev == FASHME) {
1878 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1879 } else {
1880 if (esp->msg_out_len > 1)
1881 esp->ops->dma_invalidate(esp);
1884 if (!(esp->ireg & ESP_INTR_DC)) {
1885 if (esp->rev != FASHME)
1886 scsi_esp_cmd(esp, ESP_CMD_NULL);
1888 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1889 goto again;
1890 case ESP_EVENT_MSGIN:
1891 if (esp->ireg & ESP_INTR_BSERV) {
1892 if (esp->rev == FASHME) {
1893 if (!(esp_read8(ESP_STATUS2) &
1894 ESP_STAT2_FEMPTY))
1895 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1896 } else {
1897 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1898 if (esp->rev == ESP100)
1899 scsi_esp_cmd(esp, ESP_CMD_NULL);
1901 scsi_esp_cmd(esp, ESP_CMD_TI);
1902 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1903 return 1;
1905 if (esp->ireg & ESP_INTR_FDONE) {
1906 u8 val;
1908 if (esp->rev == FASHME)
1909 val = esp->fifo[0];
1910 else
1911 val = esp_read8(ESP_FDATA);
1912 esp->msg_in[esp->msg_in_len++] = val;
1914 esp_log_msgin("ESP: Got msgin byte %x\n", val);
1916 if (!esp_msgin_process(esp))
1917 esp->msg_in_len = 0;
1919 if (esp->rev == FASHME)
1920 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1922 scsi_esp_cmd(esp, ESP_CMD_MOK);
1924 if (esp->event != ESP_EVENT_FREE_BUS)
1925 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1926 } else {
1927 printk("ESP: MSGIN neither BSERV not FDON, resetting");
1928 esp_schedule_reset(esp);
1929 return 0;
1931 break;
1932 case ESP_EVENT_CMD_START:
1933 memcpy(esp->command_block, esp->cmd_bytes_ptr,
1934 esp->cmd_bytes_left);
1935 if (esp->rev == FASHME)
1936 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1937 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1938 esp->cmd_bytes_left, 16, 0,
1939 ESP_CMD_DMA | ESP_CMD_TI);
1940 esp_event(esp, ESP_EVENT_CMD_DONE);
1941 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1942 break;
1943 case ESP_EVENT_CMD_DONE:
1944 esp->ops->dma_invalidate(esp);
1945 if (esp->ireg & ESP_INTR_BSERV) {
1946 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1947 goto again;
1949 esp_schedule_reset(esp);
1950 return 0;
1951 break;
1953 case ESP_EVENT_RESET:
1954 scsi_esp_cmd(esp, ESP_CMD_RS);
1955 break;
1957 default:
1958 printk("ESP: Unexpected event %x, resetting\n",
1959 esp->event);
1960 esp_schedule_reset(esp);
1961 return 0;
1962 break;
1964 return 1;
1967 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
1969 struct scsi_cmnd *cmd = ent->cmd;
1971 esp_unmap_dma(esp, cmd);
1972 esp_free_lun_tag(ent, cmd->device->hostdata);
1973 cmd->result = DID_RESET << 16;
1975 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
1976 esp->ops->unmap_single(esp, ent->sense_dma,
1977 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
1978 ent->sense_ptr = NULL;
1981 cmd->scsi_done(cmd);
1982 list_del(&ent->list);
1983 esp_put_ent(esp, ent);
1986 static void esp_clear_hold(struct scsi_device *dev, void *data)
1988 struct esp_lun_data *lp = dev->hostdata;
1990 BUG_ON(lp->num_tagged);
1991 lp->hold = 0;
1994 static void esp_reset_cleanup(struct esp *esp)
1996 struct esp_cmd_entry *ent, *tmp;
1997 int i;
1999 list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2000 struct scsi_cmnd *cmd = ent->cmd;
2002 list_del(&ent->list);
2003 cmd->result = DID_RESET << 16;
2004 cmd->scsi_done(cmd);
2005 esp_put_ent(esp, ent);
2008 list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2009 if (ent == esp->active_cmd)
2010 esp->active_cmd = NULL;
2011 esp_reset_cleanup_one(esp, ent);
2014 BUG_ON(esp->active_cmd != NULL);
2016 /* Force renegotiation of sync/wide transfers. */
2017 for (i = 0; i < ESP_MAX_TARGET; i++) {
2018 struct esp_target_data *tp = &esp->target[i];
2020 tp->esp_period = 0;
2021 tp->esp_offset = 0;
2022 tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2023 ESP_CONFIG3_FSCSI |
2024 ESP_CONFIG3_FAST);
2025 tp->flags &= ~ESP_TGT_WIDE;
2026 tp->flags |= ESP_TGT_CHECK_NEGO;
2028 if (tp->starget)
2029 __starget_for_each_device(tp->starget, NULL,
2030 esp_clear_hold);
2032 esp->flags &= ~ESP_FLAG_RESETTING;
2035 /* Runs under host->lock */
2036 static void __esp_interrupt(struct esp *esp)
2038 int finish_reset, intr_done;
2039 u8 phase;
2041 esp->sreg = esp_read8(ESP_STATUS);
2043 if (esp->flags & ESP_FLAG_RESETTING) {
2044 finish_reset = 1;
2045 } else {
2046 if (esp_check_gross_error(esp))
2047 return;
2049 finish_reset = esp_check_spur_intr(esp);
2050 if (finish_reset < 0)
2051 return;
2054 esp->ireg = esp_read8(ESP_INTRPT);
2056 if (esp->ireg & ESP_INTR_SR)
2057 finish_reset = 1;
2059 if (finish_reset) {
2060 esp_reset_cleanup(esp);
2061 if (esp->eh_reset) {
2062 complete(esp->eh_reset);
2063 esp->eh_reset = NULL;
2065 return;
2068 phase = (esp->sreg & ESP_STAT_PMASK);
2069 if (esp->rev == FASHME) {
2070 if (((phase != ESP_DIP && phase != ESP_DOP) &&
2071 esp->select_state == ESP_SELECT_NONE &&
2072 esp->event != ESP_EVENT_STATUS &&
2073 esp->event != ESP_EVENT_DATA_DONE) ||
2074 (esp->ireg & ESP_INTR_RSEL)) {
2075 esp->sreg2 = esp_read8(ESP_STATUS2);
2076 if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2077 (esp->sreg2 & ESP_STAT2_F1BYTE))
2078 hme_read_fifo(esp);
2082 esp_log_intr("ESP: intr sreg[%02x] seqreg[%02x] "
2083 "sreg2[%02x] ireg[%02x]\n",
2084 esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2086 intr_done = 0;
2088 if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2089 printk("ESP: unexpected IREG %02x\n", esp->ireg);
2090 if (esp->ireg & ESP_INTR_IC)
2091 esp_dump_cmd_log(esp);
2093 esp_schedule_reset(esp);
2094 } else {
2095 if (!(esp->ireg & ESP_INTR_RSEL)) {
2096 /* Some combination of FDONE, BSERV, DC. */
2097 if (esp->select_state != ESP_SELECT_NONE)
2098 intr_done = esp_finish_select(esp);
2099 } else if (esp->ireg & ESP_INTR_RSEL) {
2100 if (esp->active_cmd)
2101 (void) esp_finish_select(esp);
2102 intr_done = esp_reconnect(esp);
2105 while (!intr_done)
2106 intr_done = esp_process_event(esp);
2109 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2111 struct esp *esp = dev_id;
2112 unsigned long flags;
2113 irqreturn_t ret;
2115 spin_lock_irqsave(esp->host->host_lock, flags);
2116 ret = IRQ_NONE;
2117 if (esp->ops->irq_pending(esp)) {
2118 ret = IRQ_HANDLED;
2119 for (;;) {
2120 int i;
2122 __esp_interrupt(esp);
2123 if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2124 break;
2125 esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2127 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2128 if (esp->ops->irq_pending(esp))
2129 break;
2131 if (i == ESP_QUICKIRQ_LIMIT)
2132 break;
2135 spin_unlock_irqrestore(esp->host->host_lock, flags);
2137 return ret;
2139 EXPORT_SYMBOL(scsi_esp_intr);
2141 static void esp_get_revision(struct esp *esp)
2143 u8 val;
2145 esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2146 esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2147 esp_write8(esp->config2, ESP_CFG2);
2149 val = esp_read8(ESP_CFG2);
2150 val &= ~ESP_CONFIG2_MAGIC;
2151 if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2152 /* If what we write to cfg2 does not come back, cfg2 is not
2153 * implemented, therefore this must be a plain esp100.
2155 esp->rev = ESP100;
2156 } else {
2157 esp->config2 = 0;
2158 esp_set_all_config3(esp, 5);
2159 esp->prev_cfg3 = 5;
2160 esp_write8(esp->config2, ESP_CFG2);
2161 esp_write8(0, ESP_CFG3);
2162 esp_write8(esp->prev_cfg3, ESP_CFG3);
2164 val = esp_read8(ESP_CFG3);
2165 if (val != 5) {
2166 /* The cfg2 register is implemented, however
2167 * cfg3 is not, must be esp100a.
2169 esp->rev = ESP100A;
2170 } else {
2171 esp_set_all_config3(esp, 0);
2172 esp->prev_cfg3 = 0;
2173 esp_write8(esp->prev_cfg3, ESP_CFG3);
2175 /* All of cfg{1,2,3} implemented, must be one of
2176 * the fas variants, figure out which one.
2178 if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2179 esp->rev = FAST;
2180 esp->sync_defp = SYNC_DEFP_FAST;
2181 } else {
2182 esp->rev = ESP236;
2184 esp->config2 = 0;
2185 esp_write8(esp->config2, ESP_CFG2);
2190 static void esp_init_swstate(struct esp *esp)
2192 int i;
2194 INIT_LIST_HEAD(&esp->queued_cmds);
2195 INIT_LIST_HEAD(&esp->active_cmds);
2196 INIT_LIST_HEAD(&esp->esp_cmd_pool);
2198 /* Start with a clear state, domain validation (via ->slave_configure,
2199 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2200 * commands.
2202 for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2203 esp->target[i].flags = 0;
2204 esp->target[i].nego_goal_period = 0;
2205 esp->target[i].nego_goal_offset = 0;
2206 esp->target[i].nego_goal_width = 0;
2207 esp->target[i].nego_goal_tags = 0;
2211 /* This places the ESP into a known state at boot time. */
2212 static void esp_bootup_reset(struct esp *esp)
2214 u8 val;
2216 /* Reset the DMA */
2217 esp->ops->reset_dma(esp);
2219 /* Reset the ESP */
2220 esp_reset_esp(esp);
2222 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2223 val = esp_read8(ESP_CFG1);
2224 val |= ESP_CONFIG1_SRRDISAB;
2225 esp_write8(val, ESP_CFG1);
2227 scsi_esp_cmd(esp, ESP_CMD_RS);
2228 udelay(400);
2230 esp_write8(esp->config1, ESP_CFG1);
2232 /* Eat any bitrot in the chip and we are done... */
2233 esp_read8(ESP_INTRPT);
2236 static void esp_set_clock_params(struct esp *esp)
2238 int fmhz;
2239 u8 ccf;
2241 /* This is getting messy but it has to be done correctly or else
2242 * you get weird behavior all over the place. We are trying to
2243 * basically figure out three pieces of information.
2245 * a) Clock Conversion Factor
2247 * This is a representation of the input crystal clock frequency
2248 * going into the ESP on this machine. Any operation whose timing
2249 * is longer than 400ns depends on this value being correct. For
2250 * example, you'll get blips for arbitration/selection during high
2251 * load or with multiple targets if this is not set correctly.
2253 * b) Selection Time-Out
2255 * The ESP isn't very bright and will arbitrate for the bus and try
2256 * to select a target forever if you let it. This value tells the
2257 * ESP when it has taken too long to negotiate and that it should
2258 * interrupt the CPU so we can see what happened. The value is
2259 * computed as follows (from NCR/Symbios chip docs).
2261 * (Time Out Period) * (Input Clock)
2262 * STO = ----------------------------------
2263 * (8192) * (Clock Conversion Factor)
2265 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2267 * c) Imperical constants for synchronous offset and transfer period
2268 * register values
2270 * This entails the smallest and largest sync period we could ever
2271 * handle on this ESP.
2273 fmhz = esp->cfreq;
2275 ccf = ((fmhz / 1000000) + 4) / 5;
2276 if (ccf == 1)
2277 ccf = 2;
2279 /* If we can't find anything reasonable, just assume 20MHZ.
2280 * This is the clock frequency of the older sun4c's where I've
2281 * been unable to find the clock-frequency PROM property. All
2282 * other machines provide useful values it seems.
2284 if (fmhz <= 5000000 || ccf < 1 || ccf > 8) {
2285 fmhz = 20000000;
2286 ccf = 4;
2289 esp->cfact = (ccf == 8 ? 0 : ccf);
2290 esp->cfreq = fmhz;
2291 esp->ccycle = ESP_MHZ_TO_CYCLE(fmhz);
2292 esp->ctick = ESP_TICK(ccf, esp->ccycle);
2293 esp->neg_defp = ESP_NEG_DEFP(fmhz, ccf);
2294 esp->sync_defp = SYNC_DEFP_SLOW;
2297 static const char *esp_chip_names[] = {
2298 "ESP100",
2299 "ESP100A",
2300 "ESP236",
2301 "FAS236",
2302 "FAS100A",
2303 "FAST",
2304 "FASHME",
2307 static struct scsi_transport_template *esp_transport_template;
2309 int scsi_esp_register(struct esp *esp, struct device *dev)
2311 static int instance;
2312 int err;
2314 esp->host->transportt = esp_transport_template;
2315 esp->host->max_lun = ESP_MAX_LUN;
2316 esp->host->cmd_per_lun = 2;
2317 esp->host->unique_id = instance;
2319 esp_set_clock_params(esp);
2321 esp_get_revision(esp);
2323 esp_init_swstate(esp);
2325 esp_bootup_reset(esp);
2327 printk(KERN_INFO PFX "esp%u, regs[%1p:%1p] irq[%u]\n",
2328 esp->host->unique_id, esp->regs, esp->dma_regs,
2329 esp->host->irq);
2330 printk(KERN_INFO PFX "esp%u is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2331 esp->host->unique_id, esp_chip_names[esp->rev],
2332 esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2334 /* Let the SCSI bus reset settle. */
2335 ssleep(esp_bus_reset_settle);
2337 err = scsi_add_host(esp->host, dev);
2338 if (err)
2339 return err;
2341 instance++;
2343 scsi_scan_host(esp->host);
2345 return 0;
2347 EXPORT_SYMBOL(scsi_esp_register);
2349 void scsi_esp_unregister(struct esp *esp)
2351 scsi_remove_host(esp->host);
2353 EXPORT_SYMBOL(scsi_esp_unregister);
2355 static int esp_slave_alloc(struct scsi_device *dev)
2357 struct esp *esp = shost_priv(dev->host);
2358 struct esp_target_data *tp = &esp->target[dev->id];
2359 struct esp_lun_data *lp;
2361 lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2362 if (!lp)
2363 return -ENOMEM;
2364 dev->hostdata = lp;
2366 tp->starget = dev->sdev_target;
2368 spi_min_period(tp->starget) = esp->min_period;
2369 spi_max_offset(tp->starget) = 15;
2371 if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2372 spi_max_width(tp->starget) = 1;
2373 else
2374 spi_max_width(tp->starget) = 0;
2376 return 0;
2379 static int esp_slave_configure(struct scsi_device *dev)
2381 struct esp *esp = shost_priv(dev->host);
2382 struct esp_target_data *tp = &esp->target[dev->id];
2383 int goal_tags, queue_depth;
2385 goal_tags = 0;
2387 if (dev->tagged_supported) {
2388 /* XXX make this configurable somehow XXX */
2389 goal_tags = ESP_DEFAULT_TAGS;
2391 if (goal_tags > ESP_MAX_TAG)
2392 goal_tags = ESP_MAX_TAG;
2395 queue_depth = goal_tags;
2396 if (queue_depth < dev->host->cmd_per_lun)
2397 queue_depth = dev->host->cmd_per_lun;
2399 if (goal_tags) {
2400 scsi_set_tag_type(dev, MSG_ORDERED_TAG);
2401 scsi_activate_tcq(dev, queue_depth);
2402 } else {
2403 scsi_deactivate_tcq(dev, queue_depth);
2405 tp->flags |= ESP_TGT_DISCONNECT;
2407 if (!spi_initial_dv(dev->sdev_target))
2408 spi_dv_device(dev);
2410 return 0;
2413 static void esp_slave_destroy(struct scsi_device *dev)
2415 struct esp_lun_data *lp = dev->hostdata;
2417 kfree(lp);
2418 dev->hostdata = NULL;
2421 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2423 struct esp *esp = shost_priv(cmd->device->host);
2424 struct esp_cmd_entry *ent, *tmp;
2425 struct completion eh_done;
2426 unsigned long flags;
2428 /* XXX This helps a lot with debugging but might be a bit
2429 * XXX much for the final driver.
2431 spin_lock_irqsave(esp->host->host_lock, flags);
2432 printk(KERN_ERR PFX "esp%d: Aborting command [%p:%02x]\n",
2433 esp->host->unique_id, cmd, cmd->cmnd[0]);
2434 ent = esp->active_cmd;
2435 if (ent)
2436 printk(KERN_ERR PFX "esp%d: Current command [%p:%02x]\n",
2437 esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2438 list_for_each_entry(ent, &esp->queued_cmds, list) {
2439 printk(KERN_ERR PFX "esp%d: Queued command [%p:%02x]\n",
2440 esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2442 list_for_each_entry(ent, &esp->active_cmds, list) {
2443 printk(KERN_ERR PFX "esp%d: Active command [%p:%02x]\n",
2444 esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2446 esp_dump_cmd_log(esp);
2447 spin_unlock_irqrestore(esp->host->host_lock, flags);
2449 spin_lock_irqsave(esp->host->host_lock, flags);
2451 ent = NULL;
2452 list_for_each_entry(tmp, &esp->queued_cmds, list) {
2453 if (tmp->cmd == cmd) {
2454 ent = tmp;
2455 break;
2459 if (ent) {
2460 /* Easiest case, we didn't even issue the command
2461 * yet so it is trivial to abort.
2463 list_del(&ent->list);
2465 cmd->result = DID_ABORT << 16;
2466 cmd->scsi_done(cmd);
2468 esp_put_ent(esp, ent);
2470 goto out_success;
2473 init_completion(&eh_done);
2475 ent = esp->active_cmd;
2476 if (ent && ent->cmd == cmd) {
2477 /* Command is the currently active command on
2478 * the bus. If we already have an output message
2479 * pending, no dice.
2481 if (esp->msg_out_len)
2482 goto out_failure;
2484 /* Send out an abort, encouraging the target to
2485 * go to MSGOUT phase by asserting ATN.
2487 esp->msg_out[0] = ABORT_TASK_SET;
2488 esp->msg_out_len = 1;
2489 ent->eh_done = &eh_done;
2491 scsi_esp_cmd(esp, ESP_CMD_SATN);
2492 } else {
2493 /* The command is disconnected. This is not easy to
2494 * abort. For now we fail and let the scsi error
2495 * handling layer go try a scsi bus reset or host
2496 * reset.
2498 * What we could do is put together a scsi command
2499 * solely for the purpose of sending an abort message
2500 * to the target. Coming up with all the code to
2501 * cook up scsi commands, special case them everywhere,
2502 * etc. is for questionable gain and it would be better
2503 * if the generic scsi error handling layer could do at
2504 * least some of that for us.
2506 * Anyways this is an area for potential future improvement
2507 * in this driver.
2509 goto out_failure;
2512 spin_unlock_irqrestore(esp->host->host_lock, flags);
2514 if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2515 spin_lock_irqsave(esp->host->host_lock, flags);
2516 ent->eh_done = NULL;
2517 spin_unlock_irqrestore(esp->host->host_lock, flags);
2519 return FAILED;
2522 return SUCCESS;
2524 out_success:
2525 spin_unlock_irqrestore(esp->host->host_lock, flags);
2526 return SUCCESS;
2528 out_failure:
2529 /* XXX This might be a good location to set ESP_TGT_BROKEN
2530 * XXX since we know which target/lun in particular is
2531 * XXX causing trouble.
2533 spin_unlock_irqrestore(esp->host->host_lock, flags);
2534 return FAILED;
2537 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2539 struct esp *esp = shost_priv(cmd->device->host);
2540 struct completion eh_reset;
2541 unsigned long flags;
2543 init_completion(&eh_reset);
2545 spin_lock_irqsave(esp->host->host_lock, flags);
2547 esp->eh_reset = &eh_reset;
2549 /* XXX This is too simple... We should add lots of
2550 * XXX checks here so that if we find that the chip is
2551 * XXX very wedged we return failure immediately so
2552 * XXX that we can perform a full chip reset.
2554 esp->flags |= ESP_FLAG_RESETTING;
2555 scsi_esp_cmd(esp, ESP_CMD_RS);
2557 spin_unlock_irqrestore(esp->host->host_lock, flags);
2559 ssleep(esp_bus_reset_settle);
2561 if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2562 spin_lock_irqsave(esp->host->host_lock, flags);
2563 esp->eh_reset = NULL;
2564 spin_unlock_irqrestore(esp->host->host_lock, flags);
2566 return FAILED;
2569 return SUCCESS;
2572 /* All bets are off, reset the entire device. */
2573 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2575 struct esp *esp = shost_priv(cmd->device->host);
2576 unsigned long flags;
2578 spin_lock_irqsave(esp->host->host_lock, flags);
2579 esp_bootup_reset(esp);
2580 esp_reset_cleanup(esp);
2581 spin_unlock_irqrestore(esp->host->host_lock, flags);
2583 ssleep(esp_bus_reset_settle);
2585 return SUCCESS;
2588 static const char *esp_info(struct Scsi_Host *host)
2590 return "esp";
2593 struct scsi_host_template scsi_esp_template = {
2594 .module = THIS_MODULE,
2595 .name = "esp",
2596 .info = esp_info,
2597 .queuecommand = esp_queuecommand,
2598 .slave_alloc = esp_slave_alloc,
2599 .slave_configure = esp_slave_configure,
2600 .slave_destroy = esp_slave_destroy,
2601 .eh_abort_handler = esp_eh_abort_handler,
2602 .eh_bus_reset_handler = esp_eh_bus_reset_handler,
2603 .eh_host_reset_handler = esp_eh_host_reset_handler,
2604 .can_queue = 7,
2605 .this_id = 7,
2606 .sg_tablesize = SG_ALL,
2607 .use_clustering = ENABLE_CLUSTERING,
2608 .max_sectors = 0xffff,
2609 .skip_settle_delay = 1,
2611 EXPORT_SYMBOL(scsi_esp_template);
2613 static void esp_get_signalling(struct Scsi_Host *host)
2615 struct esp *esp = shost_priv(host);
2616 enum spi_signal_type type;
2618 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2619 type = SPI_SIGNAL_HVD;
2620 else
2621 type = SPI_SIGNAL_SE;
2623 spi_signalling(host) = type;
2626 static void esp_set_offset(struct scsi_target *target, int offset)
2628 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2629 struct esp *esp = shost_priv(host);
2630 struct esp_target_data *tp = &esp->target[target->id];
2632 tp->nego_goal_offset = offset;
2633 tp->flags |= ESP_TGT_CHECK_NEGO;
2636 static void esp_set_period(struct scsi_target *target, int period)
2638 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2639 struct esp *esp = shost_priv(host);
2640 struct esp_target_data *tp = &esp->target[target->id];
2642 tp->nego_goal_period = period;
2643 tp->flags |= ESP_TGT_CHECK_NEGO;
2646 static void esp_set_width(struct scsi_target *target, int width)
2648 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2649 struct esp *esp = shost_priv(host);
2650 struct esp_target_data *tp = &esp->target[target->id];
2652 tp->nego_goal_width = (width ? 1 : 0);
2653 tp->flags |= ESP_TGT_CHECK_NEGO;
2656 static struct spi_function_template esp_transport_ops = {
2657 .set_offset = esp_set_offset,
2658 .show_offset = 1,
2659 .set_period = esp_set_period,
2660 .show_period = 1,
2661 .set_width = esp_set_width,
2662 .show_width = 1,
2663 .get_signalling = esp_get_signalling,
2666 static int __init esp_init(void)
2668 BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2669 sizeof(struct esp_cmd_priv));
2671 esp_transport_template = spi_attach_transport(&esp_transport_ops);
2672 if (!esp_transport_template)
2673 return -ENODEV;
2675 return 0;
2678 static void __exit esp_exit(void)
2680 spi_release_transport(esp_transport_template);
2683 MODULE_DESCRIPTION("ESP SCSI driver core");
2684 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2685 MODULE_LICENSE("GPL");
2686 MODULE_VERSION(DRV_VERSION);
2688 module_param(esp_bus_reset_settle, int, 0);
2689 MODULE_PARM_DESC(esp_bus_reset_settle,
2690 "ESP scsi bus reset delay in seconds");
2692 module_param(esp_debug, int, 0);
2693 MODULE_PARM_DESC(esp_debug,
2694 "ESP bitmapped debugging message enable value:\n"
2695 " 0x00000001 Log interrupt events\n"
2696 " 0x00000002 Log scsi commands\n"
2697 " 0x00000004 Log resets\n"
2698 " 0x00000008 Log message in events\n"
2699 " 0x00000010 Log message out events\n"
2700 " 0x00000020 Log command completion\n"
2701 " 0x00000040 Log disconnects\n"
2702 " 0x00000080 Log data start\n"
2703 " 0x00000100 Log data done\n"
2704 " 0x00000200 Log reconnects\n"
2705 " 0x00000400 Log auto-sense data\n"
2708 module_init(esp_init);
2709 module_exit(esp_exit);