[XFS] move v_iocount from bhv_vnode to xfs_inode
[wrt350n-kernel.git] / fs / xfs / xfs_inode.c
blob0349e714dc309daf7f1ec43cd0814f2f5eca3750
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
54 kmem_zone_t *xfs_ifork_zone;
55 kmem_zone_t *xfs_inode_zone;
56 kmem_zone_t *xfs_icluster_zone;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 #ifdef DEBUG
71 * Make sure that the extents in the given memory buffer
72 * are valid.
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 xfs_exntfmt_t fmt)
80 xfs_bmbt_irec_t irec;
81 xfs_bmbt_rec_host_t rec;
82 int i;
84 for (i = 0; i < nrecs; i++) {
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
107 int i;
108 int j;
109 xfs_dinode_t *dip;
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
124 #endif
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
139 STATIC int
140 xfs_inotobp(
141 xfs_mount_t *mp,
142 xfs_trans_t *tp,
143 xfs_ino_t ino,
144 xfs_dinode_t **dipp,
145 xfs_buf_t **bpp,
146 int *offset)
148 int di_ok;
149 xfs_imap_t imap;
150 xfs_buf_t *bp;
151 int error;
152 xfs_dinode_t *dip;
155 * Call the space management code to find the location of the
156 * inode on disk.
158 imap.im_blkno = 0;
159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 if (error != 0) {
161 cmn_err(CE_WARN,
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error, mp->m_fsname);
164 return error;
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
172 if ((imap.im_blkno + imap.im_len) >
173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 cmn_err(CE_WARN,
175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
176 "of the file system %s. Returning EINVAL.",
177 (unsigned long long)imap.im_blkno,
178 imap.im_len, mp->m_fsname);
179 return XFS_ERROR(EINVAL);
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 (int)imap.im_len, XFS_BUF_LOCK, &bp);
189 if (error) {
190 cmn_err(CE_WARN,
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error, mp->m_fsname);
193 return error;
195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 di_ok =
197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 XFS_RANDOM_ITOBP_INOTOBP))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 xfs_trans_brelse(tp, bp);
203 cmn_err(CE_WARN,
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
206 return XFS_ERROR(EFSCORRUPTED);
209 xfs_inobp_check(mp, bp);
212 * Set *dipp to point to the on-disk inode in the buffer.
214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 *bpp = bp;
216 *offset = imap.im_boffset;
217 return 0;
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
226 * that buffer.
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
242 xfs_itobp(
243 xfs_mount_t *mp,
244 xfs_trans_t *tp,
245 xfs_inode_t *ip,
246 xfs_dinode_t **dipp,
247 xfs_buf_t **bpp,
248 xfs_daddr_t bno,
249 uint imap_flags)
251 xfs_imap_t imap;
252 xfs_buf_t *bp;
253 int error;
254 int i;
255 int ni;
257 if (ip->i_blkno == (xfs_daddr_t)0) {
259 * Call the space management code to find the location of the
260 * inode on disk.
262 imap.im_blkno = bno;
263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 XFS_IMAP_LOOKUP | imap_flags)))
265 return error;
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
271 * driver.
273 if ((imap.im_blkno + imap.im_len) >
274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275 #ifdef DEBUG
276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap.im_blkno,
282 (unsigned long long) imap.im_len,
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284 #endif /* DEBUG */
285 return XFS_ERROR(EINVAL);
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
292 ip->i_blkno = imap.im_blkno;
293 ip->i_len = imap.im_len;
294 ip->i_boffset = imap.im_boffset;
295 } else {
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
300 imap.im_blkno = ip->i_blkno;
301 imap.im_len = ip->i_len;
302 imap.im_boffset = ip->i_boffset;
304 ASSERT(bno == 0 || bno == imap.im_blkno);
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 (int)imap.im_len, XFS_BUF_LOCK, &bp);
312 if (error) {
313 #ifdef DEBUG
314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error, (unsigned long long) imap.im_blkno,
318 (unsigned long long) imap.im_len);
319 #endif /* DEBUG */
320 return error;
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
326 * No validation is done here in userspace (xfs_repair).
328 #if !defined(__KERNEL__)
329 ni = 0;
330 #elif defined(DEBUG)
331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
332 #else /* usual case */
333 ni = 1;
334 #endif
336 for (i = 0; i < ni; i++) {
337 int di_ok;
338 xfs_dinode_t *dip;
340 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 (i << mp->m_sb.sb_inodelog));
342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 XFS_ERRTAG_ITOBP_INOTOBP,
346 XFS_RANDOM_ITOBP_INOTOBP))) {
347 if (imap_flags & XFS_IMAP_BULKSTAT) {
348 xfs_trans_brelse(tp, bp);
349 return XFS_ERROR(EINVAL);
351 #ifdef DEBUG
352 cmn_err(CE_ALERT,
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
355 XFS_BUFTARG_NAME(mp->m_ddev_targp),
356 (unsigned long long)imap.im_blkno, i,
357 be16_to_cpu(dip->di_core.di_magic));
358 #endif
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 mp, dip);
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
366 xfs_inobp_check(mp, bp);
369 * Mark the buffer as an inode buffer now that it looks good
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
374 * Set *dipp to point to the on-disk inode in the buffer.
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
390 STATIC int
391 xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 be16_to_cpu(dip->di_core.di_anextents) >
405 be64_to_cpu(dip->di_core.di_nblocks))) {
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
408 (unsigned long long)ip->i_ino,
409 (int)(be32_to_cpu(dip->di_core.di_nextents) +
410 be16_to_cpu(dip->di_core.di_anextents)),
411 (unsigned long long)
412 be64_to_cpu(dip->di_core.di_nblocks));
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 ip->i_mount, dip);
415 return XFS_ERROR(EFSCORRUPTED);
418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
421 (unsigned long long)ip->i_ino,
422 dip->di_core.di_forkoff);
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
428 switch (ip->i_d.di_mode & S_IFMT) {
429 case S_IFIFO:
430 case S_IFCHR:
431 case S_IFBLK:
432 case S_IFSOCK:
433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
438 ip->i_d.di_size = 0;
439 ip->i_size = 0;
440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
441 break;
443 case S_IFREG:
444 case S_IFLNK:
445 case S_IFDIR:
446 switch (dip->di_core.di_format) {
447 case XFS_DINODE_FMT_LOCAL:
449 * no local regular files yet
451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 "corrupt inode %Lu "
454 "(local format for regular file).",
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 XFS_ERRLEVEL_LOW,
458 ip->i_mount, dip);
459 return XFS_ERROR(EFSCORRUPTED);
462 di_size = be64_to_cpu(dip->di_core.di_size);
463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 "corrupt inode %Lu "
466 "(bad size %Ld for local inode).",
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
489 break;
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
495 if (error) {
496 return error;
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 switch (dip->di_core.di_aformat) {
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 size = be16_to_cpu(atp->hdr.totsize);
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
525 return error;
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
538 STATIC int
539 xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
545 xfs_ifork_t *ifp;
546 int real_size;
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu "
556 "(bad size %d for local fork, size = %d).",
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 ip->i_mount, dip);
561 return XFS_ERROR(EFSCORRUPTED);
563 ifp = XFS_IFORK_PTR(ip, whichfork);
564 real_size = 0;
565 if (size == 0)
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 else {
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
575 if (size)
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
579 return 0;
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
591 STATIC int
592 xfs_iformat_extents(
593 xfs_inode_t *ip,
594 xfs_dinode_t *dip,
595 int whichfork)
597 xfs_bmbt_rec_t *dp;
598 xfs_ifork_t *ifp;
599 int nex;
600 int size;
601 int i;
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
621 ifp->if_real_bytes = 0;
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
626 else
627 xfs_iext_add(ifp, 0, nex);
629 ifp->if_bytes = size;
630 if (size) {
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
633 for (i = 0; i < nex; i++, dp++) {
634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
642 ifp, 0, nex))) {
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 XFS_ERRLEVEL_LOW,
645 ip->i_mount);
646 return XFS_ERROR(EFSCORRUPTED);
649 ifp->if_flags |= XFS_IFEXTENTS;
650 return 0;
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
661 STATIC int
662 xfs_iformat_btree(
663 xfs_inode_t *ip,
664 xfs_dinode_t *dip,
665 int whichfork)
667 xfs_bmdr_block_t *dfp;
668 xfs_ifork_t *ifp;
669 /* REFERENCED */
670 int nrecs;
671 int size;
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
683 * blocks.
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 ip->i_mount);
694 return XFS_ERROR(EFSCORRUPTED);
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
709 return 0;
712 void
713 xfs_dinode_from_disk(
714 xfs_icdinode_t *to,
715 xfs_dinode_core_t *from)
717 to->di_magic = be16_to_cpu(from->di_magic);
718 to->di_mode = be16_to_cpu(from->di_mode);
719 to->di_version = from ->di_version;
720 to->di_format = from->di_format;
721 to->di_onlink = be16_to_cpu(from->di_onlink);
722 to->di_uid = be32_to_cpu(from->di_uid);
723 to->di_gid = be32_to_cpu(from->di_gid);
724 to->di_nlink = be32_to_cpu(from->di_nlink);
725 to->di_projid = be16_to_cpu(from->di_projid);
726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 to->di_size = be64_to_cpu(from->di_size);
735 to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 to->di_extsize = be32_to_cpu(from->di_extsize);
737 to->di_nextents = be32_to_cpu(from->di_nextents);
738 to->di_anextents = be16_to_cpu(from->di_anextents);
739 to->di_forkoff = from->di_forkoff;
740 to->di_aformat = from->di_aformat;
741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
742 to->di_dmstate = be16_to_cpu(from->di_dmstate);
743 to->di_flags = be16_to_cpu(from->di_flags);
744 to->di_gen = be32_to_cpu(from->di_gen);
747 void
748 xfs_dinode_to_disk(
749 xfs_dinode_core_t *to,
750 xfs_icdinode_t *from)
752 to->di_magic = cpu_to_be16(from->di_magic);
753 to->di_mode = cpu_to_be16(from->di_mode);
754 to->di_version = from ->di_version;
755 to->di_format = from->di_format;
756 to->di_onlink = cpu_to_be16(from->di_onlink);
757 to->di_uid = cpu_to_be32(from->di_uid);
758 to->di_gid = cpu_to_be32(from->di_gid);
759 to->di_nlink = cpu_to_be32(from->di_nlink);
760 to->di_projid = cpu_to_be16(from->di_projid);
761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 to->di_size = cpu_to_be64(from->di_size);
770 to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 to->di_extsize = cpu_to_be32(from->di_extsize);
772 to->di_nextents = cpu_to_be32(from->di_nextents);
773 to->di_anextents = cpu_to_be16(from->di_anextents);
774 to->di_forkoff = from->di_forkoff;
775 to->di_aformat = from->di_aformat;
776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 to->di_flags = cpu_to_be16(from->di_flags);
779 to->di_gen = cpu_to_be32(from->di_gen);
782 STATIC uint
783 _xfs_dic2xflags(
784 __uint16_t di_flags)
786 uint flags = 0;
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
819 return flags;
822 uint
823 xfs_ip2xflags(
824 xfs_inode_t *ip)
826 xfs_icdinode_t *dic = &ip->i_d;
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
832 uint
833 xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
841 * Given a mount structure and an inode number, return a pointer
842 * to a newly allocated in-core inode corresponding to the given
843 * inode number.
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
849 xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
854 xfs_daddr_t bno,
855 uint imap_flags)
857 xfs_buf_t *bp;
858 xfs_dinode_t *dip;
859 xfs_inode_t *ip;
860 int error;
862 ASSERT(xfs_inode_zone != NULL);
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 ip->i_ino = ino;
866 ip->i_mount = mp;
867 atomic_set(&ip->i_iocount, 0);
868 spin_lock_init(&ip->i_flags_lock);
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
878 if (error) {
879 kmem_zone_free(xfs_inode_zone, ip);
880 return error;
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
887 #ifdef XFS_BMAP_TRACE
888 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
889 #endif
890 #ifdef XFS_BMBT_TRACE
891 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
892 #endif
893 #ifdef XFS_RW_TRACE
894 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
895 #endif
896 #ifdef XFS_ILOCK_TRACE
897 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
898 #endif
899 #ifdef XFS_DIR2_TRACE
900 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
901 #endif
904 * If we got something that isn't an inode it means someone
905 * (nfs or dmi) has a stale handle.
907 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
908 kmem_zone_free(xfs_inode_zone, ip);
909 xfs_trans_brelse(tp, bp);
910 #ifdef DEBUG
911 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
912 "dip->di_core.di_magic (0x%x) != "
913 "XFS_DINODE_MAGIC (0x%x)",
914 be16_to_cpu(dip->di_core.di_magic),
915 XFS_DINODE_MAGIC);
916 #endif /* DEBUG */
917 return XFS_ERROR(EINVAL);
921 * If the on-disk inode is already linked to a directory
922 * entry, copy all of the inode into the in-core inode.
923 * xfs_iformat() handles copying in the inode format
924 * specific information.
925 * Otherwise, just get the truly permanent information.
927 if (dip->di_core.di_mode) {
928 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
929 error = xfs_iformat(ip, dip);
930 if (error) {
931 kmem_zone_free(xfs_inode_zone, ip);
932 xfs_trans_brelse(tp, bp);
933 #ifdef DEBUG
934 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
935 "xfs_iformat() returned error %d",
936 error);
937 #endif /* DEBUG */
938 return error;
940 } else {
941 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
942 ip->i_d.di_version = dip->di_core.di_version;
943 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
944 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
946 * Make sure to pull in the mode here as well in
947 * case the inode is released without being used.
948 * This ensures that xfs_inactive() will see that
949 * the inode is already free and not try to mess
950 * with the uninitialized part of it.
952 ip->i_d.di_mode = 0;
954 * Initialize the per-fork minima and maxima for a new
955 * inode here. xfs_iformat will do it for old inodes.
957 ip->i_df.if_ext_max =
958 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
961 INIT_LIST_HEAD(&ip->i_reclaim);
964 * The inode format changed when we moved the link count and
965 * made it 32 bits long. If this is an old format inode,
966 * convert it in memory to look like a new one. If it gets
967 * flushed to disk we will convert back before flushing or
968 * logging it. We zero out the new projid field and the old link
969 * count field. We'll handle clearing the pad field (the remains
970 * of the old uuid field) when we actually convert the inode to
971 * the new format. We don't change the version number so that we
972 * can distinguish this from a real new format inode.
974 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
975 ip->i_d.di_nlink = ip->i_d.di_onlink;
976 ip->i_d.di_onlink = 0;
977 ip->i_d.di_projid = 0;
980 ip->i_delayed_blks = 0;
981 ip->i_size = ip->i_d.di_size;
984 * Mark the buffer containing the inode as something to keep
985 * around for a while. This helps to keep recently accessed
986 * meta-data in-core longer.
988 XFS_BUF_SET_REF(bp, XFS_INO_REF);
991 * Use xfs_trans_brelse() to release the buffer containing the
992 * on-disk inode, because it was acquired with xfs_trans_read_buf()
993 * in xfs_itobp() above. If tp is NULL, this is just a normal
994 * brelse(). If we're within a transaction, then xfs_trans_brelse()
995 * will only release the buffer if it is not dirty within the
996 * transaction. It will be OK to release the buffer in this case,
997 * because inodes on disk are never destroyed and we will be
998 * locking the new in-core inode before putting it in the hash
999 * table where other processes can find it. Thus we don't have
1000 * to worry about the inode being changed just because we released
1001 * the buffer.
1003 xfs_trans_brelse(tp, bp);
1004 *ipp = ip;
1005 return 0;
1009 * Read in extents from a btree-format inode.
1010 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1013 xfs_iread_extents(
1014 xfs_trans_t *tp,
1015 xfs_inode_t *ip,
1016 int whichfork)
1018 int error;
1019 xfs_ifork_t *ifp;
1020 xfs_extnum_t nextents;
1021 size_t size;
1023 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1024 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1025 ip->i_mount);
1026 return XFS_ERROR(EFSCORRUPTED);
1028 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1029 size = nextents * sizeof(xfs_bmbt_rec_t);
1030 ifp = XFS_IFORK_PTR(ip, whichfork);
1033 * We know that the size is valid (it's checked in iformat_btree)
1035 ifp->if_lastex = NULLEXTNUM;
1036 ifp->if_bytes = ifp->if_real_bytes = 0;
1037 ifp->if_flags |= XFS_IFEXTENTS;
1038 xfs_iext_add(ifp, 0, nextents);
1039 error = xfs_bmap_read_extents(tp, ip, whichfork);
1040 if (error) {
1041 xfs_iext_destroy(ifp);
1042 ifp->if_flags &= ~XFS_IFEXTENTS;
1043 return error;
1045 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1046 return 0;
1050 * Allocate an inode on disk and return a copy of its in-core version.
1051 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1052 * appropriately within the inode. The uid and gid for the inode are
1053 * set according to the contents of the given cred structure.
1055 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1056 * has a free inode available, call xfs_iget()
1057 * to obtain the in-core version of the allocated inode. Finally,
1058 * fill in the inode and log its initial contents. In this case,
1059 * ialloc_context would be set to NULL and call_again set to false.
1061 * If xfs_dialloc() does not have an available inode,
1062 * it will replenish its supply by doing an allocation. Since we can
1063 * only do one allocation within a transaction without deadlocks, we
1064 * must commit the current transaction before returning the inode itself.
1065 * In this case, therefore, we will set call_again to true and return.
1066 * The caller should then commit the current transaction, start a new
1067 * transaction, and call xfs_ialloc() again to actually get the inode.
1069 * To ensure that some other process does not grab the inode that
1070 * was allocated during the first call to xfs_ialloc(), this routine
1071 * also returns the [locked] bp pointing to the head of the freelist
1072 * as ialloc_context. The caller should hold this buffer across
1073 * the commit and pass it back into this routine on the second call.
1075 * If we are allocating quota inodes, we do not have a parent inode
1076 * to attach to or associate with (i.e. pip == NULL) because they
1077 * are not linked into the directory structure - they are attached
1078 * directly to the superblock - and so have no parent.
1081 xfs_ialloc(
1082 xfs_trans_t *tp,
1083 xfs_inode_t *pip,
1084 mode_t mode,
1085 xfs_nlink_t nlink,
1086 xfs_dev_t rdev,
1087 cred_t *cr,
1088 xfs_prid_t prid,
1089 int okalloc,
1090 xfs_buf_t **ialloc_context,
1091 boolean_t *call_again,
1092 xfs_inode_t **ipp)
1094 xfs_ino_t ino;
1095 xfs_inode_t *ip;
1096 bhv_vnode_t *vp;
1097 uint flags;
1098 int error;
1101 * Call the space management code to pick
1102 * the on-disk inode to be allocated.
1104 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1105 ialloc_context, call_again, &ino);
1106 if (error != 0) {
1107 return error;
1109 if (*call_again || ino == NULLFSINO) {
1110 *ipp = NULL;
1111 return 0;
1113 ASSERT(*ialloc_context == NULL);
1116 * Get the in-core inode with the lock held exclusively.
1117 * This is because we're setting fields here we need
1118 * to prevent others from looking at until we're done.
1120 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1121 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1122 if (error != 0) {
1123 return error;
1125 ASSERT(ip != NULL);
1127 vp = XFS_ITOV(ip);
1128 ip->i_d.di_mode = (__uint16_t)mode;
1129 ip->i_d.di_onlink = 0;
1130 ip->i_d.di_nlink = nlink;
1131 ASSERT(ip->i_d.di_nlink == nlink);
1132 ip->i_d.di_uid = current_fsuid(cr);
1133 ip->i_d.di_gid = current_fsgid(cr);
1134 ip->i_d.di_projid = prid;
1135 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1138 * If the superblock version is up to where we support new format
1139 * inodes and this is currently an old format inode, then change
1140 * the inode version number now. This way we only do the conversion
1141 * here rather than here and in the flush/logging code.
1143 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1144 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1145 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1147 * We've already zeroed the old link count, the projid field,
1148 * and the pad field.
1153 * Project ids won't be stored on disk if we are using a version 1 inode.
1155 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1156 xfs_bump_ino_vers2(tp, ip);
1158 if (pip && XFS_INHERIT_GID(pip, XFS_MTOVFS(pip->i_mount))) {
1159 ip->i_d.di_gid = pip->i_d.di_gid;
1160 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1161 ip->i_d.di_mode |= S_ISGID;
1166 * If the group ID of the new file does not match the effective group
1167 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1168 * (and only if the irix_sgid_inherit compatibility variable is set).
1170 if ((irix_sgid_inherit) &&
1171 (ip->i_d.di_mode & S_ISGID) &&
1172 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1173 ip->i_d.di_mode &= ~S_ISGID;
1176 ip->i_d.di_size = 0;
1177 ip->i_size = 0;
1178 ip->i_d.di_nextents = 0;
1179 ASSERT(ip->i_d.di_nblocks == 0);
1180 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1182 * di_gen will have been taken care of in xfs_iread.
1184 ip->i_d.di_extsize = 0;
1185 ip->i_d.di_dmevmask = 0;
1186 ip->i_d.di_dmstate = 0;
1187 ip->i_d.di_flags = 0;
1188 flags = XFS_ILOG_CORE;
1189 switch (mode & S_IFMT) {
1190 case S_IFIFO:
1191 case S_IFCHR:
1192 case S_IFBLK:
1193 case S_IFSOCK:
1194 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1195 ip->i_df.if_u2.if_rdev = rdev;
1196 ip->i_df.if_flags = 0;
1197 flags |= XFS_ILOG_DEV;
1198 break;
1199 case S_IFREG:
1200 if (pip && xfs_inode_is_filestream(pip)) {
1201 error = xfs_filestream_associate(pip, ip);
1202 if (error < 0)
1203 return -error;
1204 if (!error)
1205 xfs_iflags_set(ip, XFS_IFILESTREAM);
1207 /* fall through */
1208 case S_IFDIR:
1209 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1210 uint di_flags = 0;
1212 if ((mode & S_IFMT) == S_IFDIR) {
1213 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1214 di_flags |= XFS_DIFLAG_RTINHERIT;
1215 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1216 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1217 ip->i_d.di_extsize = pip->i_d.di_extsize;
1219 } else if ((mode & S_IFMT) == S_IFREG) {
1220 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1221 di_flags |= XFS_DIFLAG_REALTIME;
1222 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1224 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1225 di_flags |= XFS_DIFLAG_EXTSIZE;
1226 ip->i_d.di_extsize = pip->i_d.di_extsize;
1229 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1230 xfs_inherit_noatime)
1231 di_flags |= XFS_DIFLAG_NOATIME;
1232 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1233 xfs_inherit_nodump)
1234 di_flags |= XFS_DIFLAG_NODUMP;
1235 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1236 xfs_inherit_sync)
1237 di_flags |= XFS_DIFLAG_SYNC;
1238 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1239 xfs_inherit_nosymlinks)
1240 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1241 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1242 di_flags |= XFS_DIFLAG_PROJINHERIT;
1243 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1244 xfs_inherit_nodefrag)
1245 di_flags |= XFS_DIFLAG_NODEFRAG;
1246 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1247 di_flags |= XFS_DIFLAG_FILESTREAM;
1248 ip->i_d.di_flags |= di_flags;
1250 /* FALLTHROUGH */
1251 case S_IFLNK:
1252 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1253 ip->i_df.if_flags = XFS_IFEXTENTS;
1254 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1255 ip->i_df.if_u1.if_extents = NULL;
1256 break;
1257 default:
1258 ASSERT(0);
1261 * Attribute fork settings for new inode.
1263 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1264 ip->i_d.di_anextents = 0;
1267 * Log the new values stuffed into the inode.
1269 xfs_trans_log_inode(tp, ip, flags);
1271 /* now that we have an i_mode we can setup inode ops and unlock */
1272 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, ip, 1);
1274 *ipp = ip;
1275 return 0;
1279 * Check to make sure that there are no blocks allocated to the
1280 * file beyond the size of the file. We don't check this for
1281 * files with fixed size extents or real time extents, but we
1282 * at least do it for regular files.
1284 #ifdef DEBUG
1285 void
1286 xfs_isize_check(
1287 xfs_mount_t *mp,
1288 xfs_inode_t *ip,
1289 xfs_fsize_t isize)
1291 xfs_fileoff_t map_first;
1292 int nimaps;
1293 xfs_bmbt_irec_t imaps[2];
1295 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1296 return;
1298 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1299 return;
1301 nimaps = 2;
1302 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1304 * The filesystem could be shutting down, so bmapi may return
1305 * an error.
1307 if (xfs_bmapi(NULL, ip, map_first,
1308 (XFS_B_TO_FSB(mp,
1309 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1310 map_first),
1311 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1312 NULL, NULL))
1313 return;
1314 ASSERT(nimaps == 1);
1315 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1317 #endif /* DEBUG */
1320 * Calculate the last possible buffered byte in a file. This must
1321 * include data that was buffered beyond the EOF by the write code.
1322 * This also needs to deal with overflowing the xfs_fsize_t type
1323 * which can happen for sizes near the limit.
1325 * We also need to take into account any blocks beyond the EOF. It
1326 * may be the case that they were buffered by a write which failed.
1327 * In that case the pages will still be in memory, but the inode size
1328 * will never have been updated.
1330 xfs_fsize_t
1331 xfs_file_last_byte(
1332 xfs_inode_t *ip)
1334 xfs_mount_t *mp;
1335 xfs_fsize_t last_byte;
1336 xfs_fileoff_t last_block;
1337 xfs_fileoff_t size_last_block;
1338 int error;
1340 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1342 mp = ip->i_mount;
1344 * Only check for blocks beyond the EOF if the extents have
1345 * been read in. This eliminates the need for the inode lock,
1346 * and it also saves us from looking when it really isn't
1347 * necessary.
1349 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1350 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1351 XFS_DATA_FORK);
1352 if (error) {
1353 last_block = 0;
1355 } else {
1356 last_block = 0;
1358 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1359 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1361 last_byte = XFS_FSB_TO_B(mp, last_block);
1362 if (last_byte < 0) {
1363 return XFS_MAXIOFFSET(mp);
1365 last_byte += (1 << mp->m_writeio_log);
1366 if (last_byte < 0) {
1367 return XFS_MAXIOFFSET(mp);
1369 return last_byte;
1372 #if defined(XFS_RW_TRACE)
1373 STATIC void
1374 xfs_itrunc_trace(
1375 int tag,
1376 xfs_inode_t *ip,
1377 int flag,
1378 xfs_fsize_t new_size,
1379 xfs_off_t toss_start,
1380 xfs_off_t toss_finish)
1382 if (ip->i_rwtrace == NULL) {
1383 return;
1386 ktrace_enter(ip->i_rwtrace,
1387 (void*)((long)tag),
1388 (void*)ip,
1389 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1390 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1391 (void*)((long)flag),
1392 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1393 (void*)(unsigned long)(new_size & 0xffffffff),
1394 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1395 (void*)(unsigned long)(toss_start & 0xffffffff),
1396 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1397 (void*)(unsigned long)(toss_finish & 0xffffffff),
1398 (void*)(unsigned long)current_cpu(),
1399 (void*)(unsigned long)current_pid(),
1400 (void*)NULL,
1401 (void*)NULL,
1402 (void*)NULL);
1404 #else
1405 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1406 #endif
1409 * Start the truncation of the file to new_size. The new size
1410 * must be smaller than the current size. This routine will
1411 * clear the buffer and page caches of file data in the removed
1412 * range, and xfs_itruncate_finish() will remove the underlying
1413 * disk blocks.
1415 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1416 * must NOT have the inode lock held at all. This is because we're
1417 * calling into the buffer/page cache code and we can't hold the
1418 * inode lock when we do so.
1420 * We need to wait for any direct I/Os in flight to complete before we
1421 * proceed with the truncate. This is needed to prevent the extents
1422 * being read or written by the direct I/Os from being removed while the
1423 * I/O is in flight as there is no other method of synchronising
1424 * direct I/O with the truncate operation. Also, because we hold
1425 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1426 * started until the truncate completes and drops the lock. Essentially,
1427 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1428 * between direct I/Os and the truncate operation.
1430 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1431 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1432 * in the case that the caller is locking things out of order and
1433 * may not be able to call xfs_itruncate_finish() with the inode lock
1434 * held without dropping the I/O lock. If the caller must drop the
1435 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1436 * must be called again with all the same restrictions as the initial
1437 * call.
1440 xfs_itruncate_start(
1441 xfs_inode_t *ip,
1442 uint flags,
1443 xfs_fsize_t new_size)
1445 xfs_fsize_t last_byte;
1446 xfs_off_t toss_start;
1447 xfs_mount_t *mp;
1448 bhv_vnode_t *vp;
1449 int error = 0;
1451 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1452 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1453 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1454 (flags == XFS_ITRUNC_MAYBE));
1456 mp = ip->i_mount;
1457 vp = XFS_ITOV(ip);
1459 vn_iowait(ip); /* wait for the completion of any pending DIOs */
1462 * Call toss_pages or flushinval_pages to get rid of pages
1463 * overlapping the region being removed. We have to use
1464 * the less efficient flushinval_pages in the case that the
1465 * caller may not be able to finish the truncate without
1466 * dropping the inode's I/O lock. Make sure
1467 * to catch any pages brought in by buffers overlapping
1468 * the EOF by searching out beyond the isize by our
1469 * block size. We round new_size up to a block boundary
1470 * so that we don't toss things on the same block as
1471 * new_size but before it.
1473 * Before calling toss_page or flushinval_pages, make sure to
1474 * call remapf() over the same region if the file is mapped.
1475 * This frees up mapped file references to the pages in the
1476 * given range and for the flushinval_pages case it ensures
1477 * that we get the latest mapped changes flushed out.
1479 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1480 toss_start = XFS_FSB_TO_B(mp, toss_start);
1481 if (toss_start < 0) {
1483 * The place to start tossing is beyond our maximum
1484 * file size, so there is no way that the data extended
1485 * out there.
1487 return 0;
1489 last_byte = xfs_file_last_byte(ip);
1490 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1491 last_byte);
1492 if (last_byte > toss_start) {
1493 if (flags & XFS_ITRUNC_DEFINITE) {
1494 xfs_tosspages(ip, toss_start,
1495 -1, FI_REMAPF_LOCKED);
1496 } else {
1497 error = xfs_flushinval_pages(ip, toss_start,
1498 -1, FI_REMAPF_LOCKED);
1502 #ifdef DEBUG
1503 if (new_size == 0) {
1504 ASSERT(VN_CACHED(vp) == 0);
1506 #endif
1507 return error;
1511 * Shrink the file to the given new_size. The new
1512 * size must be smaller than the current size.
1513 * This will free up the underlying blocks
1514 * in the removed range after a call to xfs_itruncate_start()
1515 * or xfs_atruncate_start().
1517 * The transaction passed to this routine must have made
1518 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1519 * This routine may commit the given transaction and
1520 * start new ones, so make sure everything involved in
1521 * the transaction is tidy before calling here.
1522 * Some transaction will be returned to the caller to be
1523 * committed. The incoming transaction must already include
1524 * the inode, and both inode locks must be held exclusively.
1525 * The inode must also be "held" within the transaction. On
1526 * return the inode will be "held" within the returned transaction.
1527 * This routine does NOT require any disk space to be reserved
1528 * for it within the transaction.
1530 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1531 * and it indicates the fork which is to be truncated. For the
1532 * attribute fork we only support truncation to size 0.
1534 * We use the sync parameter to indicate whether or not the first
1535 * transaction we perform might have to be synchronous. For the attr fork,
1536 * it needs to be so if the unlink of the inode is not yet known to be
1537 * permanent in the log. This keeps us from freeing and reusing the
1538 * blocks of the attribute fork before the unlink of the inode becomes
1539 * permanent.
1541 * For the data fork, we normally have to run synchronously if we're
1542 * being called out of the inactive path or we're being called
1543 * out of the create path where we're truncating an existing file.
1544 * Either way, the truncate needs to be sync so blocks don't reappear
1545 * in the file with altered data in case of a crash. wsync filesystems
1546 * can run the first case async because anything that shrinks the inode
1547 * has to run sync so by the time we're called here from inactive, the
1548 * inode size is permanently set to 0.
1550 * Calls from the truncate path always need to be sync unless we're
1551 * in a wsync filesystem and the file has already been unlinked.
1553 * The caller is responsible for correctly setting the sync parameter.
1554 * It gets too hard for us to guess here which path we're being called
1555 * out of just based on inode state.
1558 xfs_itruncate_finish(
1559 xfs_trans_t **tp,
1560 xfs_inode_t *ip,
1561 xfs_fsize_t new_size,
1562 int fork,
1563 int sync)
1565 xfs_fsblock_t first_block;
1566 xfs_fileoff_t first_unmap_block;
1567 xfs_fileoff_t last_block;
1568 xfs_filblks_t unmap_len=0;
1569 xfs_mount_t *mp;
1570 xfs_trans_t *ntp;
1571 int done;
1572 int committed;
1573 xfs_bmap_free_t free_list;
1574 int error;
1576 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1577 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1578 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1579 ASSERT(*tp != NULL);
1580 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1581 ASSERT(ip->i_transp == *tp);
1582 ASSERT(ip->i_itemp != NULL);
1583 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1586 ntp = *tp;
1587 mp = (ntp)->t_mountp;
1588 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1591 * We only support truncating the entire attribute fork.
1593 if (fork == XFS_ATTR_FORK) {
1594 new_size = 0LL;
1596 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1597 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1599 * The first thing we do is set the size to new_size permanently
1600 * on disk. This way we don't have to worry about anyone ever
1601 * being able to look at the data being freed even in the face
1602 * of a crash. What we're getting around here is the case where
1603 * we free a block, it is allocated to another file, it is written
1604 * to, and then we crash. If the new data gets written to the
1605 * file but the log buffers containing the free and reallocation
1606 * don't, then we'd end up with garbage in the blocks being freed.
1607 * As long as we make the new_size permanent before actually
1608 * freeing any blocks it doesn't matter if they get writtten to.
1610 * The callers must signal into us whether or not the size
1611 * setting here must be synchronous. There are a few cases
1612 * where it doesn't have to be synchronous. Those cases
1613 * occur if the file is unlinked and we know the unlink is
1614 * permanent or if the blocks being truncated are guaranteed
1615 * to be beyond the inode eof (regardless of the link count)
1616 * and the eof value is permanent. Both of these cases occur
1617 * only on wsync-mounted filesystems. In those cases, we're
1618 * guaranteed that no user will ever see the data in the blocks
1619 * that are being truncated so the truncate can run async.
1620 * In the free beyond eof case, the file may wind up with
1621 * more blocks allocated to it than it needs if we crash
1622 * and that won't get fixed until the next time the file
1623 * is re-opened and closed but that's ok as that shouldn't
1624 * be too many blocks.
1626 * However, we can't just make all wsync xactions run async
1627 * because there's one call out of the create path that needs
1628 * to run sync where it's truncating an existing file to size
1629 * 0 whose size is > 0.
1631 * It's probably possible to come up with a test in this
1632 * routine that would correctly distinguish all the above
1633 * cases from the values of the function parameters and the
1634 * inode state but for sanity's sake, I've decided to let the
1635 * layers above just tell us. It's simpler to correctly figure
1636 * out in the layer above exactly under what conditions we
1637 * can run async and I think it's easier for others read and
1638 * follow the logic in case something has to be changed.
1639 * cscope is your friend -- rcc.
1641 * The attribute fork is much simpler.
1643 * For the attribute fork we allow the caller to tell us whether
1644 * the unlink of the inode that led to this call is yet permanent
1645 * in the on disk log. If it is not and we will be freeing extents
1646 * in this inode then we make the first transaction synchronous
1647 * to make sure that the unlink is permanent by the time we free
1648 * the blocks.
1650 if (fork == XFS_DATA_FORK) {
1651 if (ip->i_d.di_nextents > 0) {
1653 * If we are not changing the file size then do
1654 * not update the on-disk file size - we may be
1655 * called from xfs_inactive_free_eofblocks(). If we
1656 * update the on-disk file size and then the system
1657 * crashes before the contents of the file are
1658 * flushed to disk then the files may be full of
1659 * holes (ie NULL files bug).
1661 if (ip->i_size != new_size) {
1662 ip->i_d.di_size = new_size;
1663 ip->i_size = new_size;
1664 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1667 } else if (sync) {
1668 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1669 if (ip->i_d.di_anextents > 0)
1670 xfs_trans_set_sync(ntp);
1672 ASSERT(fork == XFS_DATA_FORK ||
1673 (fork == XFS_ATTR_FORK &&
1674 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1675 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1678 * Since it is possible for space to become allocated beyond
1679 * the end of the file (in a crash where the space is allocated
1680 * but the inode size is not yet updated), simply remove any
1681 * blocks which show up between the new EOF and the maximum
1682 * possible file size. If the first block to be removed is
1683 * beyond the maximum file size (ie it is the same as last_block),
1684 * then there is nothing to do.
1686 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1687 ASSERT(first_unmap_block <= last_block);
1688 done = 0;
1689 if (last_block == first_unmap_block) {
1690 done = 1;
1691 } else {
1692 unmap_len = last_block - first_unmap_block + 1;
1694 while (!done) {
1696 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1697 * will tell us whether it freed the entire range or
1698 * not. If this is a synchronous mount (wsync),
1699 * then we can tell bunmapi to keep all the
1700 * transactions asynchronous since the unlink
1701 * transaction that made this inode inactive has
1702 * already hit the disk. There's no danger of
1703 * the freed blocks being reused, there being a
1704 * crash, and the reused blocks suddenly reappearing
1705 * in this file with garbage in them once recovery
1706 * runs.
1708 XFS_BMAP_INIT(&free_list, &first_block);
1709 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1710 first_unmap_block, unmap_len,
1711 XFS_BMAPI_AFLAG(fork) |
1712 (sync ? 0 : XFS_BMAPI_ASYNC),
1713 XFS_ITRUNC_MAX_EXTENTS,
1714 &first_block, &free_list,
1715 NULL, &done);
1716 if (error) {
1718 * If the bunmapi call encounters an error,
1719 * return to the caller where the transaction
1720 * can be properly aborted. We just need to
1721 * make sure we're not holding any resources
1722 * that we were not when we came in.
1724 xfs_bmap_cancel(&free_list);
1725 return error;
1729 * Duplicate the transaction that has the permanent
1730 * reservation and commit the old transaction.
1732 error = xfs_bmap_finish(tp, &free_list, &committed);
1733 ntp = *tp;
1734 if (error) {
1736 * If the bmap finish call encounters an error,
1737 * return to the caller where the transaction
1738 * can be properly aborted. We just need to
1739 * make sure we're not holding any resources
1740 * that we were not when we came in.
1742 * Aborting from this point might lose some
1743 * blocks in the file system, but oh well.
1745 xfs_bmap_cancel(&free_list);
1746 if (committed) {
1748 * If the passed in transaction committed
1749 * in xfs_bmap_finish(), then we want to
1750 * add the inode to this one before returning.
1751 * This keeps things simple for the higher
1752 * level code, because it always knows that
1753 * the inode is locked and held in the
1754 * transaction that returns to it whether
1755 * errors occur or not. We don't mark the
1756 * inode dirty so that this transaction can
1757 * be easily aborted if possible.
1759 xfs_trans_ijoin(ntp, ip,
1760 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1761 xfs_trans_ihold(ntp, ip);
1763 return error;
1766 if (committed) {
1768 * The first xact was committed,
1769 * so add the inode to the new one.
1770 * Mark it dirty so it will be logged
1771 * and moved forward in the log as
1772 * part of every commit.
1774 xfs_trans_ijoin(ntp, ip,
1775 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1776 xfs_trans_ihold(ntp, ip);
1777 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1779 ntp = xfs_trans_dup(ntp);
1780 (void) xfs_trans_commit(*tp, 0);
1781 *tp = ntp;
1782 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1783 XFS_TRANS_PERM_LOG_RES,
1784 XFS_ITRUNCATE_LOG_COUNT);
1786 * Add the inode being truncated to the next chained
1787 * transaction.
1789 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1790 xfs_trans_ihold(ntp, ip);
1791 if (error)
1792 return (error);
1795 * Only update the size in the case of the data fork, but
1796 * always re-log the inode so that our permanent transaction
1797 * can keep on rolling it forward in the log.
1799 if (fork == XFS_DATA_FORK) {
1800 xfs_isize_check(mp, ip, new_size);
1802 * If we are not changing the file size then do
1803 * not update the on-disk file size - we may be
1804 * called from xfs_inactive_free_eofblocks(). If we
1805 * update the on-disk file size and then the system
1806 * crashes before the contents of the file are
1807 * flushed to disk then the files may be full of
1808 * holes (ie NULL files bug).
1810 if (ip->i_size != new_size) {
1811 ip->i_d.di_size = new_size;
1812 ip->i_size = new_size;
1815 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1816 ASSERT((new_size != 0) ||
1817 (fork == XFS_ATTR_FORK) ||
1818 (ip->i_delayed_blks == 0));
1819 ASSERT((new_size != 0) ||
1820 (fork == XFS_ATTR_FORK) ||
1821 (ip->i_d.di_nextents == 0));
1822 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1823 return 0;
1828 * xfs_igrow_start
1830 * Do the first part of growing a file: zero any data in the last
1831 * block that is beyond the old EOF. We need to do this before
1832 * the inode is joined to the transaction to modify the i_size.
1833 * That way we can drop the inode lock and call into the buffer
1834 * cache to get the buffer mapping the EOF.
1837 xfs_igrow_start(
1838 xfs_inode_t *ip,
1839 xfs_fsize_t new_size,
1840 cred_t *credp)
1842 int error;
1844 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1845 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1846 ASSERT(new_size > ip->i_size);
1849 * Zero any pages that may have been created by
1850 * xfs_write_file() beyond the end of the file
1851 * and any blocks between the old and new file sizes.
1853 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1854 ip->i_size);
1855 return error;
1859 * xfs_igrow_finish
1861 * This routine is called to extend the size of a file.
1862 * The inode must have both the iolock and the ilock locked
1863 * for update and it must be a part of the current transaction.
1864 * The xfs_igrow_start() function must have been called previously.
1865 * If the change_flag is not zero, the inode change timestamp will
1866 * be updated.
1868 void
1869 xfs_igrow_finish(
1870 xfs_trans_t *tp,
1871 xfs_inode_t *ip,
1872 xfs_fsize_t new_size,
1873 int change_flag)
1875 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1876 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1877 ASSERT(ip->i_transp == tp);
1878 ASSERT(new_size > ip->i_size);
1881 * Update the file size. Update the inode change timestamp
1882 * if change_flag set.
1884 ip->i_d.di_size = new_size;
1885 ip->i_size = new_size;
1886 if (change_flag)
1887 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1888 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1894 * This is called when the inode's link count goes to 0.
1895 * We place the on-disk inode on a list in the AGI. It
1896 * will be pulled from this list when the inode is freed.
1899 xfs_iunlink(
1900 xfs_trans_t *tp,
1901 xfs_inode_t *ip)
1903 xfs_mount_t *mp;
1904 xfs_agi_t *agi;
1905 xfs_dinode_t *dip;
1906 xfs_buf_t *agibp;
1907 xfs_buf_t *ibp;
1908 xfs_agnumber_t agno;
1909 xfs_daddr_t agdaddr;
1910 xfs_agino_t agino;
1911 short bucket_index;
1912 int offset;
1913 int error;
1914 int agi_ok;
1916 ASSERT(ip->i_d.di_nlink == 0);
1917 ASSERT(ip->i_d.di_mode != 0);
1918 ASSERT(ip->i_transp == tp);
1920 mp = tp->t_mountp;
1922 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1923 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1926 * Get the agi buffer first. It ensures lock ordering
1927 * on the list.
1929 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1930 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1931 if (error) {
1932 return error;
1935 * Validate the magic number of the agi block.
1937 agi = XFS_BUF_TO_AGI(agibp);
1938 agi_ok =
1939 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1940 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1941 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1942 XFS_RANDOM_IUNLINK))) {
1943 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1944 xfs_trans_brelse(tp, agibp);
1945 return XFS_ERROR(EFSCORRUPTED);
1948 * Get the index into the agi hash table for the
1949 * list this inode will go on.
1951 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1952 ASSERT(agino != 0);
1953 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1954 ASSERT(agi->agi_unlinked[bucket_index]);
1955 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1957 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1959 * There is already another inode in the bucket we need
1960 * to add ourselves to. Add us at the front of the list.
1961 * Here we put the head pointer into our next pointer,
1962 * and then we fall through to point the head at us.
1964 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1965 if (error) {
1966 return error;
1968 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1969 /* both on-disk, don't endian flip twice */
1970 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1971 offset = ip->i_boffset +
1972 offsetof(xfs_dinode_t, di_next_unlinked);
1973 xfs_trans_inode_buf(tp, ibp);
1974 xfs_trans_log_buf(tp, ibp, offset,
1975 (offset + sizeof(xfs_agino_t) - 1));
1976 xfs_inobp_check(mp, ibp);
1980 * Point the bucket head pointer at the inode being inserted.
1982 ASSERT(agino != 0);
1983 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1984 offset = offsetof(xfs_agi_t, agi_unlinked) +
1985 (sizeof(xfs_agino_t) * bucket_index);
1986 xfs_trans_log_buf(tp, agibp, offset,
1987 (offset + sizeof(xfs_agino_t) - 1));
1988 return 0;
1992 * Pull the on-disk inode from the AGI unlinked list.
1994 STATIC int
1995 xfs_iunlink_remove(
1996 xfs_trans_t *tp,
1997 xfs_inode_t *ip)
1999 xfs_ino_t next_ino;
2000 xfs_mount_t *mp;
2001 xfs_agi_t *agi;
2002 xfs_dinode_t *dip;
2003 xfs_buf_t *agibp;
2004 xfs_buf_t *ibp;
2005 xfs_agnumber_t agno;
2006 xfs_daddr_t agdaddr;
2007 xfs_agino_t agino;
2008 xfs_agino_t next_agino;
2009 xfs_buf_t *last_ibp;
2010 xfs_dinode_t *last_dip = NULL;
2011 short bucket_index;
2012 int offset, last_offset = 0;
2013 int error;
2014 int agi_ok;
2017 * First pull the on-disk inode from the AGI unlinked list.
2019 mp = tp->t_mountp;
2021 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2022 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2025 * Get the agi buffer first. It ensures lock ordering
2026 * on the list.
2028 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2029 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2030 if (error) {
2031 cmn_err(CE_WARN,
2032 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2033 error, mp->m_fsname);
2034 return error;
2037 * Validate the magic number of the agi block.
2039 agi = XFS_BUF_TO_AGI(agibp);
2040 agi_ok =
2041 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2042 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2043 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2044 XFS_RANDOM_IUNLINK_REMOVE))) {
2045 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2046 mp, agi);
2047 xfs_trans_brelse(tp, agibp);
2048 cmn_err(CE_WARN,
2049 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2050 mp->m_fsname);
2051 return XFS_ERROR(EFSCORRUPTED);
2054 * Get the index into the agi hash table for the
2055 * list this inode will go on.
2057 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058 ASSERT(agino != 0);
2059 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2060 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2061 ASSERT(agi->agi_unlinked[bucket_index]);
2063 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2065 * We're at the head of the list. Get the inode's
2066 * on-disk buffer to see if there is anyone after us
2067 * on the list. Only modify our next pointer if it
2068 * is not already NULLAGINO. This saves us the overhead
2069 * of dealing with the buffer when there is no need to
2070 * change it.
2072 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2073 if (error) {
2074 cmn_err(CE_WARN,
2075 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2076 error, mp->m_fsname);
2077 return error;
2079 next_agino = be32_to_cpu(dip->di_next_unlinked);
2080 ASSERT(next_agino != 0);
2081 if (next_agino != NULLAGINO) {
2082 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2083 offset = ip->i_boffset +
2084 offsetof(xfs_dinode_t, di_next_unlinked);
2085 xfs_trans_inode_buf(tp, ibp);
2086 xfs_trans_log_buf(tp, ibp, offset,
2087 (offset + sizeof(xfs_agino_t) - 1));
2088 xfs_inobp_check(mp, ibp);
2089 } else {
2090 xfs_trans_brelse(tp, ibp);
2093 * Point the bucket head pointer at the next inode.
2095 ASSERT(next_agino != 0);
2096 ASSERT(next_agino != agino);
2097 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2098 offset = offsetof(xfs_agi_t, agi_unlinked) +
2099 (sizeof(xfs_agino_t) * bucket_index);
2100 xfs_trans_log_buf(tp, agibp, offset,
2101 (offset + sizeof(xfs_agino_t) - 1));
2102 } else {
2104 * We need to search the list for the inode being freed.
2106 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2107 last_ibp = NULL;
2108 while (next_agino != agino) {
2110 * If the last inode wasn't the one pointing to
2111 * us, then release its buffer since we're not
2112 * going to do anything with it.
2114 if (last_ibp != NULL) {
2115 xfs_trans_brelse(tp, last_ibp);
2117 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2118 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2119 &last_ibp, &last_offset);
2120 if (error) {
2121 cmn_err(CE_WARN,
2122 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2123 error, mp->m_fsname);
2124 return error;
2126 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2127 ASSERT(next_agino != NULLAGINO);
2128 ASSERT(next_agino != 0);
2131 * Now last_ibp points to the buffer previous to us on
2132 * the unlinked list. Pull us from the list.
2134 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2135 if (error) {
2136 cmn_err(CE_WARN,
2137 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2138 error, mp->m_fsname);
2139 return error;
2141 next_agino = be32_to_cpu(dip->di_next_unlinked);
2142 ASSERT(next_agino != 0);
2143 ASSERT(next_agino != agino);
2144 if (next_agino != NULLAGINO) {
2145 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2146 offset = ip->i_boffset +
2147 offsetof(xfs_dinode_t, di_next_unlinked);
2148 xfs_trans_inode_buf(tp, ibp);
2149 xfs_trans_log_buf(tp, ibp, offset,
2150 (offset + sizeof(xfs_agino_t) - 1));
2151 xfs_inobp_check(mp, ibp);
2152 } else {
2153 xfs_trans_brelse(tp, ibp);
2156 * Point the previous inode on the list to the next inode.
2158 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2159 ASSERT(next_agino != 0);
2160 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2161 xfs_trans_inode_buf(tp, last_ibp);
2162 xfs_trans_log_buf(tp, last_ibp, offset,
2163 (offset + sizeof(xfs_agino_t) - 1));
2164 xfs_inobp_check(mp, last_ibp);
2166 return 0;
2169 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2171 return (((ip->i_itemp == NULL) ||
2172 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2173 (ip->i_update_core == 0));
2176 STATIC void
2177 xfs_ifree_cluster(
2178 xfs_inode_t *free_ip,
2179 xfs_trans_t *tp,
2180 xfs_ino_t inum)
2182 xfs_mount_t *mp = free_ip->i_mount;
2183 int blks_per_cluster;
2184 int nbufs;
2185 int ninodes;
2186 int i, j, found, pre_flushed;
2187 xfs_daddr_t blkno;
2188 xfs_buf_t *bp;
2189 xfs_inode_t *ip, **ip_found;
2190 xfs_inode_log_item_t *iip;
2191 xfs_log_item_t *lip;
2192 xfs_perag_t *pag = xfs_get_perag(mp, inum);
2193 SPLDECL(s);
2195 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2196 blks_per_cluster = 1;
2197 ninodes = mp->m_sb.sb_inopblock;
2198 nbufs = XFS_IALLOC_BLOCKS(mp);
2199 } else {
2200 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2201 mp->m_sb.sb_blocksize;
2202 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2203 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2206 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2208 for (j = 0; j < nbufs; j++, inum += ninodes) {
2209 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2210 XFS_INO_TO_AGBNO(mp, inum));
2214 * Look for each inode in memory and attempt to lock it,
2215 * we can be racing with flush and tail pushing here.
2216 * any inode we get the locks on, add to an array of
2217 * inode items to process later.
2219 * The get the buffer lock, we could beat a flush
2220 * or tail pushing thread to the lock here, in which
2221 * case they will go looking for the inode buffer
2222 * and fail, we need some other form of interlock
2223 * here.
2225 found = 0;
2226 for (i = 0; i < ninodes; i++) {
2227 read_lock(&pag->pag_ici_lock);
2228 ip = radix_tree_lookup(&pag->pag_ici_root,
2229 XFS_INO_TO_AGINO(mp, (inum + i)));
2231 /* Inode not in memory or we found it already,
2232 * nothing to do
2234 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2235 read_unlock(&pag->pag_ici_lock);
2236 continue;
2239 if (xfs_inode_clean(ip)) {
2240 read_unlock(&pag->pag_ici_lock);
2241 continue;
2244 /* If we can get the locks then add it to the
2245 * list, otherwise by the time we get the bp lock
2246 * below it will already be attached to the
2247 * inode buffer.
2250 /* This inode will already be locked - by us, lets
2251 * keep it that way.
2254 if (ip == free_ip) {
2255 if (xfs_iflock_nowait(ip)) {
2256 xfs_iflags_set(ip, XFS_ISTALE);
2257 if (xfs_inode_clean(ip)) {
2258 xfs_ifunlock(ip);
2259 } else {
2260 ip_found[found++] = ip;
2263 read_unlock(&pag->pag_ici_lock);
2264 continue;
2267 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2268 if (xfs_iflock_nowait(ip)) {
2269 xfs_iflags_set(ip, XFS_ISTALE);
2271 if (xfs_inode_clean(ip)) {
2272 xfs_ifunlock(ip);
2273 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2274 } else {
2275 ip_found[found++] = ip;
2277 } else {
2278 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2281 read_unlock(&pag->pag_ici_lock);
2284 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2285 mp->m_bsize * blks_per_cluster,
2286 XFS_BUF_LOCK);
2288 pre_flushed = 0;
2289 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2290 while (lip) {
2291 if (lip->li_type == XFS_LI_INODE) {
2292 iip = (xfs_inode_log_item_t *)lip;
2293 ASSERT(iip->ili_logged == 1);
2294 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2295 AIL_LOCK(mp,s);
2296 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2297 AIL_UNLOCK(mp, s);
2298 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2299 pre_flushed++;
2301 lip = lip->li_bio_list;
2304 for (i = 0; i < found; i++) {
2305 ip = ip_found[i];
2306 iip = ip->i_itemp;
2308 if (!iip) {
2309 ip->i_update_core = 0;
2310 xfs_ifunlock(ip);
2311 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2312 continue;
2315 iip->ili_last_fields = iip->ili_format.ilf_fields;
2316 iip->ili_format.ilf_fields = 0;
2317 iip->ili_logged = 1;
2318 AIL_LOCK(mp,s);
2319 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2320 AIL_UNLOCK(mp, s);
2322 xfs_buf_attach_iodone(bp,
2323 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2324 xfs_istale_done, (xfs_log_item_t *)iip);
2325 if (ip != free_ip) {
2326 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2330 if (found || pre_flushed)
2331 xfs_trans_stale_inode_buf(tp, bp);
2332 xfs_trans_binval(tp, bp);
2335 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2336 xfs_put_perag(mp, pag);
2340 * This is called to return an inode to the inode free list.
2341 * The inode should already be truncated to 0 length and have
2342 * no pages associated with it. This routine also assumes that
2343 * the inode is already a part of the transaction.
2345 * The on-disk copy of the inode will have been added to the list
2346 * of unlinked inodes in the AGI. We need to remove the inode from
2347 * that list atomically with respect to freeing it here.
2350 xfs_ifree(
2351 xfs_trans_t *tp,
2352 xfs_inode_t *ip,
2353 xfs_bmap_free_t *flist)
2355 int error;
2356 int delete;
2357 xfs_ino_t first_ino;
2359 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2360 ASSERT(ip->i_transp == tp);
2361 ASSERT(ip->i_d.di_nlink == 0);
2362 ASSERT(ip->i_d.di_nextents == 0);
2363 ASSERT(ip->i_d.di_anextents == 0);
2364 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2365 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2366 ASSERT(ip->i_d.di_nblocks == 0);
2369 * Pull the on-disk inode from the AGI unlinked list.
2371 error = xfs_iunlink_remove(tp, ip);
2372 if (error != 0) {
2373 return error;
2376 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2377 if (error != 0) {
2378 return error;
2380 ip->i_d.di_mode = 0; /* mark incore inode as free */
2381 ip->i_d.di_flags = 0;
2382 ip->i_d.di_dmevmask = 0;
2383 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2384 ip->i_df.if_ext_max =
2385 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2386 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2387 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2389 * Bump the generation count so no one will be confused
2390 * by reincarnations of this inode.
2392 ip->i_d.di_gen++;
2393 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2395 if (delete) {
2396 xfs_ifree_cluster(ip, tp, first_ino);
2399 return 0;
2403 * Reallocate the space for if_broot based on the number of records
2404 * being added or deleted as indicated in rec_diff. Move the records
2405 * and pointers in if_broot to fit the new size. When shrinking this
2406 * will eliminate holes between the records and pointers created by
2407 * the caller. When growing this will create holes to be filled in
2408 * by the caller.
2410 * The caller must not request to add more records than would fit in
2411 * the on-disk inode root. If the if_broot is currently NULL, then
2412 * if we adding records one will be allocated. The caller must also
2413 * not request that the number of records go below zero, although
2414 * it can go to zero.
2416 * ip -- the inode whose if_broot area is changing
2417 * ext_diff -- the change in the number of records, positive or negative,
2418 * requested for the if_broot array.
2420 void
2421 xfs_iroot_realloc(
2422 xfs_inode_t *ip,
2423 int rec_diff,
2424 int whichfork)
2426 int cur_max;
2427 xfs_ifork_t *ifp;
2428 xfs_bmbt_block_t *new_broot;
2429 int new_max;
2430 size_t new_size;
2431 char *np;
2432 char *op;
2435 * Handle the degenerate case quietly.
2437 if (rec_diff == 0) {
2438 return;
2441 ifp = XFS_IFORK_PTR(ip, whichfork);
2442 if (rec_diff > 0) {
2444 * If there wasn't any memory allocated before, just
2445 * allocate it now and get out.
2447 if (ifp->if_broot_bytes == 0) {
2448 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2449 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2450 KM_SLEEP);
2451 ifp->if_broot_bytes = (int)new_size;
2452 return;
2456 * If there is already an existing if_broot, then we need
2457 * to realloc() it and shift the pointers to their new
2458 * location. The records don't change location because
2459 * they are kept butted up against the btree block header.
2461 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2462 new_max = cur_max + rec_diff;
2463 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2464 ifp->if_broot = (xfs_bmbt_block_t *)
2465 kmem_realloc(ifp->if_broot,
2466 new_size,
2467 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2468 KM_SLEEP);
2469 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2470 ifp->if_broot_bytes);
2471 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2472 (int)new_size);
2473 ifp->if_broot_bytes = (int)new_size;
2474 ASSERT(ifp->if_broot_bytes <=
2475 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2476 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2477 return;
2481 * rec_diff is less than 0. In this case, we are shrinking the
2482 * if_broot buffer. It must already exist. If we go to zero
2483 * records, just get rid of the root and clear the status bit.
2485 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2486 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2487 new_max = cur_max + rec_diff;
2488 ASSERT(new_max >= 0);
2489 if (new_max > 0)
2490 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2491 else
2492 new_size = 0;
2493 if (new_size > 0) {
2494 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2496 * First copy over the btree block header.
2498 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2499 } else {
2500 new_broot = NULL;
2501 ifp->if_flags &= ~XFS_IFBROOT;
2505 * Only copy the records and pointers if there are any.
2507 if (new_max > 0) {
2509 * First copy the records.
2511 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2512 ifp->if_broot_bytes);
2513 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2514 (int)new_size);
2515 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2518 * Then copy the pointers.
2520 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2521 ifp->if_broot_bytes);
2522 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2523 (int)new_size);
2524 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2526 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2527 ifp->if_broot = new_broot;
2528 ifp->if_broot_bytes = (int)new_size;
2529 ASSERT(ifp->if_broot_bytes <=
2530 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2531 return;
2536 * This is called when the amount of space needed for if_data
2537 * is increased or decreased. The change in size is indicated by
2538 * the number of bytes that need to be added or deleted in the
2539 * byte_diff parameter.
2541 * If the amount of space needed has decreased below the size of the
2542 * inline buffer, then switch to using the inline buffer. Otherwise,
2543 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2544 * to what is needed.
2546 * ip -- the inode whose if_data area is changing
2547 * byte_diff -- the change in the number of bytes, positive or negative,
2548 * requested for the if_data array.
2550 void
2551 xfs_idata_realloc(
2552 xfs_inode_t *ip,
2553 int byte_diff,
2554 int whichfork)
2556 xfs_ifork_t *ifp;
2557 int new_size;
2558 int real_size;
2560 if (byte_diff == 0) {
2561 return;
2564 ifp = XFS_IFORK_PTR(ip, whichfork);
2565 new_size = (int)ifp->if_bytes + byte_diff;
2566 ASSERT(new_size >= 0);
2568 if (new_size == 0) {
2569 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2570 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2572 ifp->if_u1.if_data = NULL;
2573 real_size = 0;
2574 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2576 * If the valid extents/data can fit in if_inline_ext/data,
2577 * copy them from the malloc'd vector and free it.
2579 if (ifp->if_u1.if_data == NULL) {
2580 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2581 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2582 ASSERT(ifp->if_real_bytes != 0);
2583 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2584 new_size);
2585 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2586 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2588 real_size = 0;
2589 } else {
2591 * Stuck with malloc/realloc.
2592 * For inline data, the underlying buffer must be
2593 * a multiple of 4 bytes in size so that it can be
2594 * logged and stay on word boundaries. We enforce
2595 * that here.
2597 real_size = roundup(new_size, 4);
2598 if (ifp->if_u1.if_data == NULL) {
2599 ASSERT(ifp->if_real_bytes == 0);
2600 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2601 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2603 * Only do the realloc if the underlying size
2604 * is really changing.
2606 if (ifp->if_real_bytes != real_size) {
2607 ifp->if_u1.if_data =
2608 kmem_realloc(ifp->if_u1.if_data,
2609 real_size,
2610 ifp->if_real_bytes,
2611 KM_SLEEP);
2613 } else {
2614 ASSERT(ifp->if_real_bytes == 0);
2615 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2616 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2617 ifp->if_bytes);
2620 ifp->if_real_bytes = real_size;
2621 ifp->if_bytes = new_size;
2622 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2629 * Map inode to disk block and offset.
2631 * mp -- the mount point structure for the current file system
2632 * tp -- the current transaction
2633 * ino -- the inode number of the inode to be located
2634 * imap -- this structure is filled in with the information necessary
2635 * to retrieve the given inode from disk
2636 * flags -- flags to pass to xfs_dilocate indicating whether or not
2637 * lookups in the inode btree were OK or not
2640 xfs_imap(
2641 xfs_mount_t *mp,
2642 xfs_trans_t *tp,
2643 xfs_ino_t ino,
2644 xfs_imap_t *imap,
2645 uint flags)
2647 xfs_fsblock_t fsbno;
2648 int len;
2649 int off;
2650 int error;
2652 fsbno = imap->im_blkno ?
2653 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2654 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2655 if (error != 0) {
2656 return error;
2658 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2659 imap->im_len = XFS_FSB_TO_BB(mp, len);
2660 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2661 imap->im_ioffset = (ushort)off;
2662 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2663 return 0;
2666 void
2667 xfs_idestroy_fork(
2668 xfs_inode_t *ip,
2669 int whichfork)
2671 xfs_ifork_t *ifp;
2673 ifp = XFS_IFORK_PTR(ip, whichfork);
2674 if (ifp->if_broot != NULL) {
2675 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2676 ifp->if_broot = NULL;
2680 * If the format is local, then we can't have an extents
2681 * array so just look for an inline data array. If we're
2682 * not local then we may or may not have an extents list,
2683 * so check and free it up if we do.
2685 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2686 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2687 (ifp->if_u1.if_data != NULL)) {
2688 ASSERT(ifp->if_real_bytes != 0);
2689 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2690 ifp->if_u1.if_data = NULL;
2691 ifp->if_real_bytes = 0;
2693 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2694 ((ifp->if_flags & XFS_IFEXTIREC) ||
2695 ((ifp->if_u1.if_extents != NULL) &&
2696 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2697 ASSERT(ifp->if_real_bytes != 0);
2698 xfs_iext_destroy(ifp);
2700 ASSERT(ifp->if_u1.if_extents == NULL ||
2701 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2702 ASSERT(ifp->if_real_bytes == 0);
2703 if (whichfork == XFS_ATTR_FORK) {
2704 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2705 ip->i_afp = NULL;
2710 * This is called free all the memory associated with an inode.
2711 * It must free the inode itself and any buffers allocated for
2712 * if_extents/if_data and if_broot. It must also free the lock
2713 * associated with the inode.
2715 void
2716 xfs_idestroy(
2717 xfs_inode_t *ip)
2720 switch (ip->i_d.di_mode & S_IFMT) {
2721 case S_IFREG:
2722 case S_IFDIR:
2723 case S_IFLNK:
2724 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2725 break;
2727 if (ip->i_afp)
2728 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2729 mrfree(&ip->i_lock);
2730 mrfree(&ip->i_iolock);
2731 freesema(&ip->i_flock);
2732 #ifdef XFS_BMAP_TRACE
2733 ktrace_free(ip->i_xtrace);
2734 #endif
2735 #ifdef XFS_BMBT_TRACE
2736 ktrace_free(ip->i_btrace);
2737 #endif
2738 #ifdef XFS_RW_TRACE
2739 ktrace_free(ip->i_rwtrace);
2740 #endif
2741 #ifdef XFS_ILOCK_TRACE
2742 ktrace_free(ip->i_lock_trace);
2743 #endif
2744 #ifdef XFS_DIR2_TRACE
2745 ktrace_free(ip->i_dir_trace);
2746 #endif
2747 if (ip->i_itemp) {
2749 * Only if we are shutting down the fs will we see an
2750 * inode still in the AIL. If it is there, we should remove
2751 * it to prevent a use-after-free from occurring.
2753 xfs_mount_t *mp = ip->i_mount;
2754 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2755 int s;
2757 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2758 XFS_FORCED_SHUTDOWN(ip->i_mount));
2759 if (lip->li_flags & XFS_LI_IN_AIL) {
2760 AIL_LOCK(mp, s);
2761 if (lip->li_flags & XFS_LI_IN_AIL)
2762 xfs_trans_delete_ail(mp, lip, s);
2763 else
2764 AIL_UNLOCK(mp, s);
2766 xfs_inode_item_destroy(ip);
2768 kmem_zone_free(xfs_inode_zone, ip);
2773 * Increment the pin count of the given buffer.
2774 * This value is protected by ipinlock spinlock in the mount structure.
2776 void
2777 xfs_ipin(
2778 xfs_inode_t *ip)
2780 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2782 atomic_inc(&ip->i_pincount);
2786 * Decrement the pin count of the given inode, and wake up
2787 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2788 * inode must have been previously pinned with a call to xfs_ipin().
2790 void
2791 xfs_iunpin(
2792 xfs_inode_t *ip)
2794 ASSERT(atomic_read(&ip->i_pincount) > 0);
2796 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2799 * If the inode is currently being reclaimed, the link between
2800 * the bhv_vnode and the xfs_inode will be broken after the
2801 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2802 * set, then we can move forward and mark the linux inode dirty
2803 * knowing that it is still valid as it won't freed until after
2804 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2805 * i_flags_lock is used to synchronise the setting of the
2806 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2807 * can execute atomically w.r.t to reclaim by holding this lock
2808 * here.
2810 * However, we still need to issue the unpin wakeup call as the
2811 * inode reclaim may be blocked waiting for the inode to become
2812 * unpinned.
2815 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2816 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2817 struct inode *inode = NULL;
2819 BUG_ON(vp == NULL);
2820 inode = vn_to_inode(vp);
2821 BUG_ON(inode->i_state & I_CLEAR);
2823 /* make sync come back and flush this inode */
2824 if (!(inode->i_state & (I_NEW|I_FREEING)))
2825 mark_inode_dirty_sync(inode);
2827 spin_unlock(&ip->i_flags_lock);
2828 wake_up(&ip->i_ipin_wait);
2833 * This is called to wait for the given inode to be unpinned.
2834 * It will sleep until this happens. The caller must have the
2835 * inode locked in at least shared mode so that the buffer cannot
2836 * be subsequently pinned once someone is waiting for it to be
2837 * unpinned.
2839 STATIC void
2840 xfs_iunpin_wait(
2841 xfs_inode_t *ip)
2843 xfs_inode_log_item_t *iip;
2844 xfs_lsn_t lsn;
2846 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2848 if (atomic_read(&ip->i_pincount) == 0) {
2849 return;
2852 iip = ip->i_itemp;
2853 if (iip && iip->ili_last_lsn) {
2854 lsn = iip->ili_last_lsn;
2855 } else {
2856 lsn = (xfs_lsn_t)0;
2860 * Give the log a push so we don't wait here too long.
2862 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2864 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2869 * xfs_iextents_copy()
2871 * This is called to copy the REAL extents (as opposed to the delayed
2872 * allocation extents) from the inode into the given buffer. It
2873 * returns the number of bytes copied into the buffer.
2875 * If there are no delayed allocation extents, then we can just
2876 * memcpy() the extents into the buffer. Otherwise, we need to
2877 * examine each extent in turn and skip those which are delayed.
2880 xfs_iextents_copy(
2881 xfs_inode_t *ip,
2882 xfs_bmbt_rec_t *dp,
2883 int whichfork)
2885 int copied;
2886 int i;
2887 xfs_ifork_t *ifp;
2888 int nrecs;
2889 xfs_fsblock_t start_block;
2891 ifp = XFS_IFORK_PTR(ip, whichfork);
2892 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2893 ASSERT(ifp->if_bytes > 0);
2895 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2896 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2897 ASSERT(nrecs > 0);
2900 * There are some delayed allocation extents in the
2901 * inode, so copy the extents one at a time and skip
2902 * the delayed ones. There must be at least one
2903 * non-delayed extent.
2905 copied = 0;
2906 for (i = 0; i < nrecs; i++) {
2907 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2908 start_block = xfs_bmbt_get_startblock(ep);
2909 if (ISNULLSTARTBLOCK(start_block)) {
2911 * It's a delayed allocation extent, so skip it.
2913 continue;
2916 /* Translate to on disk format */
2917 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2918 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2919 dp++;
2920 copied++;
2922 ASSERT(copied != 0);
2923 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2925 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2929 * Each of the following cases stores data into the same region
2930 * of the on-disk inode, so only one of them can be valid at
2931 * any given time. While it is possible to have conflicting formats
2932 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2933 * in EXTENTS format, this can only happen when the fork has
2934 * changed formats after being modified but before being flushed.
2935 * In these cases, the format always takes precedence, because the
2936 * format indicates the current state of the fork.
2938 /*ARGSUSED*/
2939 STATIC int
2940 xfs_iflush_fork(
2941 xfs_inode_t *ip,
2942 xfs_dinode_t *dip,
2943 xfs_inode_log_item_t *iip,
2944 int whichfork,
2945 xfs_buf_t *bp)
2947 char *cp;
2948 xfs_ifork_t *ifp;
2949 xfs_mount_t *mp;
2950 #ifdef XFS_TRANS_DEBUG
2951 int first;
2952 #endif
2953 static const short brootflag[2] =
2954 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2955 static const short dataflag[2] =
2956 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2957 static const short extflag[2] =
2958 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2960 if (iip == NULL)
2961 return 0;
2962 ifp = XFS_IFORK_PTR(ip, whichfork);
2964 * This can happen if we gave up in iformat in an error path,
2965 * for the attribute fork.
2967 if (ifp == NULL) {
2968 ASSERT(whichfork == XFS_ATTR_FORK);
2969 return 0;
2971 cp = XFS_DFORK_PTR(dip, whichfork);
2972 mp = ip->i_mount;
2973 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2974 case XFS_DINODE_FMT_LOCAL:
2975 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2976 (ifp->if_bytes > 0)) {
2977 ASSERT(ifp->if_u1.if_data != NULL);
2978 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2979 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2981 break;
2983 case XFS_DINODE_FMT_EXTENTS:
2984 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2985 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2986 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2987 (ifp->if_bytes == 0));
2988 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2989 (ifp->if_bytes > 0));
2990 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2991 (ifp->if_bytes > 0)) {
2992 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2993 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2994 whichfork);
2996 break;
2998 case XFS_DINODE_FMT_BTREE:
2999 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3000 (ifp->if_broot_bytes > 0)) {
3001 ASSERT(ifp->if_broot != NULL);
3002 ASSERT(ifp->if_broot_bytes <=
3003 (XFS_IFORK_SIZE(ip, whichfork) +
3004 XFS_BROOT_SIZE_ADJ));
3005 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3006 (xfs_bmdr_block_t *)cp,
3007 XFS_DFORK_SIZE(dip, mp, whichfork));
3009 break;
3011 case XFS_DINODE_FMT_DEV:
3012 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3013 ASSERT(whichfork == XFS_DATA_FORK);
3014 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
3016 break;
3018 case XFS_DINODE_FMT_UUID:
3019 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3020 ASSERT(whichfork == XFS_DATA_FORK);
3021 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3022 sizeof(uuid_t));
3024 break;
3026 default:
3027 ASSERT(0);
3028 break;
3031 return 0;
3035 * xfs_iflush() will write a modified inode's changes out to the
3036 * inode's on disk home. The caller must have the inode lock held
3037 * in at least shared mode and the inode flush semaphore must be
3038 * held as well. The inode lock will still be held upon return from
3039 * the call and the caller is free to unlock it.
3040 * The inode flush lock will be unlocked when the inode reaches the disk.
3041 * The flags indicate how the inode's buffer should be written out.
3044 xfs_iflush(
3045 xfs_inode_t *ip,
3046 uint flags)
3048 xfs_inode_log_item_t *iip;
3049 xfs_buf_t *bp;
3050 xfs_dinode_t *dip;
3051 xfs_mount_t *mp;
3052 int error;
3053 /* REFERENCED */
3054 xfs_inode_t *iq;
3055 int clcount; /* count of inodes clustered */
3056 int bufwasdelwri;
3057 struct hlist_node *entry;
3058 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3060 XFS_STATS_INC(xs_iflush_count);
3062 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3063 ASSERT(issemalocked(&(ip->i_flock)));
3064 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3065 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3067 iip = ip->i_itemp;
3068 mp = ip->i_mount;
3071 * If the inode isn't dirty, then just release the inode
3072 * flush lock and do nothing.
3074 if ((ip->i_update_core == 0) &&
3075 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3076 ASSERT((iip != NULL) ?
3077 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3078 xfs_ifunlock(ip);
3079 return 0;
3083 * We can't flush the inode until it is unpinned, so
3084 * wait for it. We know noone new can pin it, because
3085 * we are holding the inode lock shared and you need
3086 * to hold it exclusively to pin the inode.
3088 xfs_iunpin_wait(ip);
3091 * This may have been unpinned because the filesystem is shutting
3092 * down forcibly. If that's the case we must not write this inode
3093 * to disk, because the log record didn't make it to disk!
3095 if (XFS_FORCED_SHUTDOWN(mp)) {
3096 ip->i_update_core = 0;
3097 if (iip)
3098 iip->ili_format.ilf_fields = 0;
3099 xfs_ifunlock(ip);
3100 return XFS_ERROR(EIO);
3104 * Get the buffer containing the on-disk inode.
3106 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3107 if (error) {
3108 xfs_ifunlock(ip);
3109 return error;
3113 * Decide how buffer will be flushed out. This is done before
3114 * the call to xfs_iflush_int because this field is zeroed by it.
3116 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3118 * Flush out the inode buffer according to the directions
3119 * of the caller. In the cases where the caller has given
3120 * us a choice choose the non-delwri case. This is because
3121 * the inode is in the AIL and we need to get it out soon.
3123 switch (flags) {
3124 case XFS_IFLUSH_SYNC:
3125 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3126 flags = 0;
3127 break;
3128 case XFS_IFLUSH_ASYNC:
3129 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3130 flags = INT_ASYNC;
3131 break;
3132 case XFS_IFLUSH_DELWRI:
3133 flags = INT_DELWRI;
3134 break;
3135 default:
3136 ASSERT(0);
3137 flags = 0;
3138 break;
3140 } else {
3141 switch (flags) {
3142 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3143 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3144 case XFS_IFLUSH_DELWRI:
3145 flags = INT_DELWRI;
3146 break;
3147 case XFS_IFLUSH_ASYNC:
3148 flags = INT_ASYNC;
3149 break;
3150 case XFS_IFLUSH_SYNC:
3151 flags = 0;
3152 break;
3153 default:
3154 ASSERT(0);
3155 flags = 0;
3156 break;
3161 * First flush out the inode that xfs_iflush was called with.
3163 error = xfs_iflush_int(ip, bp);
3164 if (error) {
3165 goto corrupt_out;
3169 * inode clustering:
3170 * see if other inodes can be gathered into this write
3172 spin_lock(&ip->i_cluster->icl_lock);
3173 ip->i_cluster->icl_buf = bp;
3175 clcount = 0;
3176 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3177 if (iq == ip)
3178 continue;
3181 * Do an un-protected check to see if the inode is dirty and
3182 * is a candidate for flushing. These checks will be repeated
3183 * later after the appropriate locks are acquired.
3185 iip = iq->i_itemp;
3186 if ((iq->i_update_core == 0) &&
3187 ((iip == NULL) ||
3188 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3189 xfs_ipincount(iq) == 0) {
3190 continue;
3194 * Try to get locks. If any are unavailable,
3195 * then this inode cannot be flushed and is skipped.
3198 /* get inode locks (just i_lock) */
3199 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3200 /* get inode flush lock */
3201 if (xfs_iflock_nowait(iq)) {
3202 /* check if pinned */
3203 if (xfs_ipincount(iq) == 0) {
3204 /* arriving here means that
3205 * this inode can be flushed.
3206 * first re-check that it's
3207 * dirty
3209 iip = iq->i_itemp;
3210 if ((iq->i_update_core != 0)||
3211 ((iip != NULL) &&
3212 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3213 clcount++;
3214 error = xfs_iflush_int(iq, bp);
3215 if (error) {
3216 xfs_iunlock(iq,
3217 XFS_ILOCK_SHARED);
3218 goto cluster_corrupt_out;
3220 } else {
3221 xfs_ifunlock(iq);
3223 } else {
3224 xfs_ifunlock(iq);
3227 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3230 spin_unlock(&ip->i_cluster->icl_lock);
3232 if (clcount) {
3233 XFS_STATS_INC(xs_icluster_flushcnt);
3234 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3238 * If the buffer is pinned then push on the log so we won't
3239 * get stuck waiting in the write for too long.
3241 if (XFS_BUF_ISPINNED(bp)){
3242 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3245 if (flags & INT_DELWRI) {
3246 xfs_bdwrite(mp, bp);
3247 } else if (flags & INT_ASYNC) {
3248 xfs_bawrite(mp, bp);
3249 } else {
3250 error = xfs_bwrite(mp, bp);
3252 return error;
3254 corrupt_out:
3255 xfs_buf_relse(bp);
3256 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3257 xfs_iflush_abort(ip);
3259 * Unlocks the flush lock
3261 return XFS_ERROR(EFSCORRUPTED);
3263 cluster_corrupt_out:
3264 /* Corruption detected in the clustering loop. Invalidate the
3265 * inode buffer and shut down the filesystem.
3267 spin_unlock(&ip->i_cluster->icl_lock);
3270 * Clean up the buffer. If it was B_DELWRI, just release it --
3271 * brelse can handle it with no problems. If not, shut down the
3272 * filesystem before releasing the buffer.
3274 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3275 xfs_buf_relse(bp);
3278 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3280 if(!bufwasdelwri) {
3282 * Just like incore_relse: if we have b_iodone functions,
3283 * mark the buffer as an error and call them. Otherwise
3284 * mark it as stale and brelse.
3286 if (XFS_BUF_IODONE_FUNC(bp)) {
3287 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3288 XFS_BUF_UNDONE(bp);
3289 XFS_BUF_STALE(bp);
3290 XFS_BUF_SHUT(bp);
3291 XFS_BUF_ERROR(bp,EIO);
3292 xfs_biodone(bp);
3293 } else {
3294 XFS_BUF_STALE(bp);
3295 xfs_buf_relse(bp);
3299 xfs_iflush_abort(iq);
3301 * Unlocks the flush lock
3303 return XFS_ERROR(EFSCORRUPTED);
3307 STATIC int
3308 xfs_iflush_int(
3309 xfs_inode_t *ip,
3310 xfs_buf_t *bp)
3312 xfs_inode_log_item_t *iip;
3313 xfs_dinode_t *dip;
3314 xfs_mount_t *mp;
3315 #ifdef XFS_TRANS_DEBUG
3316 int first;
3317 #endif
3318 SPLDECL(s);
3320 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3321 ASSERT(issemalocked(&(ip->i_flock)));
3322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3323 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3325 iip = ip->i_itemp;
3326 mp = ip->i_mount;
3330 * If the inode isn't dirty, then just release the inode
3331 * flush lock and do nothing.
3333 if ((ip->i_update_core == 0) &&
3334 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3335 xfs_ifunlock(ip);
3336 return 0;
3339 /* set *dip = inode's place in the buffer */
3340 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3343 * Clear i_update_core before copying out the data.
3344 * This is for coordination with our timestamp updates
3345 * that don't hold the inode lock. They will always
3346 * update the timestamps BEFORE setting i_update_core,
3347 * so if we clear i_update_core after they set it we
3348 * are guaranteed to see their updates to the timestamps.
3349 * I believe that this depends on strongly ordered memory
3350 * semantics, but we have that. We use the SYNCHRONIZE
3351 * macro to make sure that the compiler does not reorder
3352 * the i_update_core access below the data copy below.
3354 ip->i_update_core = 0;
3355 SYNCHRONIZE();
3358 * Make sure to get the latest atime from the Linux inode.
3360 xfs_synchronize_atime(ip);
3362 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3363 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3364 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3365 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3366 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3367 goto corrupt_out;
3369 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3370 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3371 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3372 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3373 ip->i_ino, ip, ip->i_d.di_magic);
3374 goto corrupt_out;
3376 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3377 if (XFS_TEST_ERROR(
3378 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3379 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3380 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3381 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3382 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3383 ip->i_ino, ip);
3384 goto corrupt_out;
3386 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3387 if (XFS_TEST_ERROR(
3388 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3389 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3390 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3391 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3392 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3393 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3394 ip->i_ino, ip);
3395 goto corrupt_out;
3398 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3399 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3400 XFS_RANDOM_IFLUSH_5)) {
3401 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3402 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3403 ip->i_ino,
3404 ip->i_d.di_nextents + ip->i_d.di_anextents,
3405 ip->i_d.di_nblocks,
3406 ip);
3407 goto corrupt_out;
3409 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3410 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3411 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3412 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3413 ip->i_ino, ip->i_d.di_forkoff, ip);
3414 goto corrupt_out;
3417 * bump the flush iteration count, used to detect flushes which
3418 * postdate a log record during recovery.
3421 ip->i_d.di_flushiter++;
3424 * Copy the dirty parts of the inode into the on-disk
3425 * inode. We always copy out the core of the inode,
3426 * because if the inode is dirty at all the core must
3427 * be.
3429 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3431 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3432 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3433 ip->i_d.di_flushiter = 0;
3436 * If this is really an old format inode and the superblock version
3437 * has not been updated to support only new format inodes, then
3438 * convert back to the old inode format. If the superblock version
3439 * has been updated, then make the conversion permanent.
3441 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3442 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3443 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3444 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3446 * Convert it back.
3448 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3449 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3450 } else {
3452 * The superblock version has already been bumped,
3453 * so just make the conversion to the new inode
3454 * format permanent.
3456 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3457 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3458 ip->i_d.di_onlink = 0;
3459 dip->di_core.di_onlink = 0;
3460 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3461 memset(&(dip->di_core.di_pad[0]), 0,
3462 sizeof(dip->di_core.di_pad));
3463 ASSERT(ip->i_d.di_projid == 0);
3467 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3468 goto corrupt_out;
3471 if (XFS_IFORK_Q(ip)) {
3473 * The only error from xfs_iflush_fork is on the data fork.
3475 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3477 xfs_inobp_check(mp, bp);
3480 * We've recorded everything logged in the inode, so we'd
3481 * like to clear the ilf_fields bits so we don't log and
3482 * flush things unnecessarily. However, we can't stop
3483 * logging all this information until the data we've copied
3484 * into the disk buffer is written to disk. If we did we might
3485 * overwrite the copy of the inode in the log with all the
3486 * data after re-logging only part of it, and in the face of
3487 * a crash we wouldn't have all the data we need to recover.
3489 * What we do is move the bits to the ili_last_fields field.
3490 * When logging the inode, these bits are moved back to the
3491 * ilf_fields field. In the xfs_iflush_done() routine we
3492 * clear ili_last_fields, since we know that the information
3493 * those bits represent is permanently on disk. As long as
3494 * the flush completes before the inode is logged again, then
3495 * both ilf_fields and ili_last_fields will be cleared.
3497 * We can play with the ilf_fields bits here, because the inode
3498 * lock must be held exclusively in order to set bits there
3499 * and the flush lock protects the ili_last_fields bits.
3500 * Set ili_logged so the flush done
3501 * routine can tell whether or not to look in the AIL.
3502 * Also, store the current LSN of the inode so that we can tell
3503 * whether the item has moved in the AIL from xfs_iflush_done().
3504 * In order to read the lsn we need the AIL lock, because
3505 * it is a 64 bit value that cannot be read atomically.
3507 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3508 iip->ili_last_fields = iip->ili_format.ilf_fields;
3509 iip->ili_format.ilf_fields = 0;
3510 iip->ili_logged = 1;
3512 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3513 AIL_LOCK(mp,s);
3514 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3515 AIL_UNLOCK(mp, s);
3518 * Attach the function xfs_iflush_done to the inode's
3519 * buffer. This will remove the inode from the AIL
3520 * and unlock the inode's flush lock when the inode is
3521 * completely written to disk.
3523 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3524 xfs_iflush_done, (xfs_log_item_t *)iip);
3526 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3527 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3528 } else {
3530 * We're flushing an inode which is not in the AIL and has
3531 * not been logged but has i_update_core set. For this
3532 * case we can use a B_DELWRI flush and immediately drop
3533 * the inode flush lock because we can avoid the whole
3534 * AIL state thing. It's OK to drop the flush lock now,
3535 * because we've already locked the buffer and to do anything
3536 * you really need both.
3538 if (iip != NULL) {
3539 ASSERT(iip->ili_logged == 0);
3540 ASSERT(iip->ili_last_fields == 0);
3541 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3543 xfs_ifunlock(ip);
3546 return 0;
3548 corrupt_out:
3549 return XFS_ERROR(EFSCORRUPTED);
3554 * Flush all inactive inodes in mp.
3556 void
3557 xfs_iflush_all(
3558 xfs_mount_t *mp)
3560 xfs_inode_t *ip;
3561 bhv_vnode_t *vp;
3563 again:
3564 XFS_MOUNT_ILOCK(mp);
3565 ip = mp->m_inodes;
3566 if (ip == NULL)
3567 goto out;
3569 do {
3570 /* Make sure we skip markers inserted by sync */
3571 if (ip->i_mount == NULL) {
3572 ip = ip->i_mnext;
3573 continue;
3576 vp = XFS_ITOV_NULL(ip);
3577 if (!vp) {
3578 XFS_MOUNT_IUNLOCK(mp);
3579 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3580 goto again;
3583 ASSERT(vn_count(vp) == 0);
3585 ip = ip->i_mnext;
3586 } while (ip != mp->m_inodes);
3587 out:
3588 XFS_MOUNT_IUNLOCK(mp);
3592 * xfs_iaccess: check accessibility of inode for mode.
3595 xfs_iaccess(
3596 xfs_inode_t *ip,
3597 mode_t mode,
3598 cred_t *cr)
3600 int error;
3601 mode_t orgmode = mode;
3602 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3604 if (mode & S_IWUSR) {
3605 umode_t imode = inode->i_mode;
3607 if (IS_RDONLY(inode) &&
3608 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3609 return XFS_ERROR(EROFS);
3611 if (IS_IMMUTABLE(inode))
3612 return XFS_ERROR(EACCES);
3616 * If there's an Access Control List it's used instead of
3617 * the mode bits.
3619 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3620 return error ? XFS_ERROR(error) : 0;
3622 if (current_fsuid(cr) != ip->i_d.di_uid) {
3623 mode >>= 3;
3624 if (!in_group_p((gid_t)ip->i_d.di_gid))
3625 mode >>= 3;
3629 * If the DACs are ok we don't need any capability check.
3631 if ((ip->i_d.di_mode & mode) == mode)
3632 return 0;
3634 * Read/write DACs are always overridable.
3635 * Executable DACs are overridable if at least one exec bit is set.
3637 if (!(orgmode & S_IXUSR) ||
3638 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3639 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3640 return 0;
3642 if ((orgmode == S_IRUSR) ||
3643 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3644 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3645 return 0;
3646 #ifdef NOISE
3647 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3648 #endif /* NOISE */
3649 return XFS_ERROR(EACCES);
3651 return XFS_ERROR(EACCES);
3655 * xfs_iroundup: round up argument to next power of two
3657 uint
3658 xfs_iroundup(
3659 uint v)
3661 int i;
3662 uint m;
3664 if ((v & (v - 1)) == 0)
3665 return v;
3666 ASSERT((v & 0x80000000) == 0);
3667 if ((v & (v + 1)) == 0)
3668 return v + 1;
3669 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3670 if (v & m)
3671 continue;
3672 v |= m;
3673 if ((v & (v + 1)) == 0)
3674 return v + 1;
3676 ASSERT(0);
3677 return( 0 );
3680 #ifdef XFS_ILOCK_TRACE
3681 ktrace_t *xfs_ilock_trace_buf;
3683 void
3684 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3686 ktrace_enter(ip->i_lock_trace,
3687 (void *)ip,
3688 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3689 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3690 (void *)ra, /* caller of ilock */
3691 (void *)(unsigned long)current_cpu(),
3692 (void *)(unsigned long)current_pid(),
3693 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3695 #endif
3698 * Return a pointer to the extent record at file index idx.
3700 xfs_bmbt_rec_host_t *
3701 xfs_iext_get_ext(
3702 xfs_ifork_t *ifp, /* inode fork pointer */
3703 xfs_extnum_t idx) /* index of target extent */
3705 ASSERT(idx >= 0);
3706 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3707 return ifp->if_u1.if_ext_irec->er_extbuf;
3708 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3709 xfs_ext_irec_t *erp; /* irec pointer */
3710 int erp_idx = 0; /* irec index */
3711 xfs_extnum_t page_idx = idx; /* ext index in target list */
3713 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3714 return &erp->er_extbuf[page_idx];
3715 } else if (ifp->if_bytes) {
3716 return &ifp->if_u1.if_extents[idx];
3717 } else {
3718 return NULL;
3723 * Insert new item(s) into the extent records for incore inode
3724 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3726 void
3727 xfs_iext_insert(
3728 xfs_ifork_t *ifp, /* inode fork pointer */
3729 xfs_extnum_t idx, /* starting index of new items */
3730 xfs_extnum_t count, /* number of inserted items */
3731 xfs_bmbt_irec_t *new) /* items to insert */
3733 xfs_extnum_t i; /* extent record index */
3735 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3736 xfs_iext_add(ifp, idx, count);
3737 for (i = idx; i < idx + count; i++, new++)
3738 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3742 * This is called when the amount of space required for incore file
3743 * extents needs to be increased. The ext_diff parameter stores the
3744 * number of new extents being added and the idx parameter contains
3745 * the extent index where the new extents will be added. If the new
3746 * extents are being appended, then we just need to (re)allocate and
3747 * initialize the space. Otherwise, if the new extents are being
3748 * inserted into the middle of the existing entries, a bit more work
3749 * is required to make room for the new extents to be inserted. The
3750 * caller is responsible for filling in the new extent entries upon
3751 * return.
3753 void
3754 xfs_iext_add(
3755 xfs_ifork_t *ifp, /* inode fork pointer */
3756 xfs_extnum_t idx, /* index to begin adding exts */
3757 int ext_diff) /* number of extents to add */
3759 int byte_diff; /* new bytes being added */
3760 int new_size; /* size of extents after adding */
3761 xfs_extnum_t nextents; /* number of extents in file */
3763 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3764 ASSERT((idx >= 0) && (idx <= nextents));
3765 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3766 new_size = ifp->if_bytes + byte_diff;
3768 * If the new number of extents (nextents + ext_diff)
3769 * fits inside the inode, then continue to use the inline
3770 * extent buffer.
3772 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3773 if (idx < nextents) {
3774 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3775 &ifp->if_u2.if_inline_ext[idx],
3776 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3777 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3779 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3780 ifp->if_real_bytes = 0;
3781 ifp->if_lastex = nextents + ext_diff;
3784 * Otherwise use a linear (direct) extent list.
3785 * If the extents are currently inside the inode,
3786 * xfs_iext_realloc_direct will switch us from
3787 * inline to direct extent allocation mode.
3789 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3790 xfs_iext_realloc_direct(ifp, new_size);
3791 if (idx < nextents) {
3792 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3793 &ifp->if_u1.if_extents[idx],
3794 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3795 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3798 /* Indirection array */
3799 else {
3800 xfs_ext_irec_t *erp;
3801 int erp_idx = 0;
3802 int page_idx = idx;
3804 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3805 if (ifp->if_flags & XFS_IFEXTIREC) {
3806 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3807 } else {
3808 xfs_iext_irec_init(ifp);
3809 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3810 erp = ifp->if_u1.if_ext_irec;
3812 /* Extents fit in target extent page */
3813 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3814 if (page_idx < erp->er_extcount) {
3815 memmove(&erp->er_extbuf[page_idx + ext_diff],
3816 &erp->er_extbuf[page_idx],
3817 (erp->er_extcount - page_idx) *
3818 sizeof(xfs_bmbt_rec_t));
3819 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3821 erp->er_extcount += ext_diff;
3822 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3824 /* Insert a new extent page */
3825 else if (erp) {
3826 xfs_iext_add_indirect_multi(ifp,
3827 erp_idx, page_idx, ext_diff);
3830 * If extent(s) are being appended to the last page in
3831 * the indirection array and the new extent(s) don't fit
3832 * in the page, then erp is NULL and erp_idx is set to
3833 * the next index needed in the indirection array.
3835 else {
3836 int count = ext_diff;
3838 while (count) {
3839 erp = xfs_iext_irec_new(ifp, erp_idx);
3840 erp->er_extcount = count;
3841 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3842 if (count) {
3843 erp_idx++;
3848 ifp->if_bytes = new_size;
3852 * This is called when incore extents are being added to the indirection
3853 * array and the new extents do not fit in the target extent list. The
3854 * erp_idx parameter contains the irec index for the target extent list
3855 * in the indirection array, and the idx parameter contains the extent
3856 * index within the list. The number of extents being added is stored
3857 * in the count parameter.
3859 * |-------| |-------|
3860 * | | | | idx - number of extents before idx
3861 * | idx | | count |
3862 * | | | | count - number of extents being inserted at idx
3863 * |-------| |-------|
3864 * | count | | nex2 | nex2 - number of extents after idx + count
3865 * |-------| |-------|
3867 void
3868 xfs_iext_add_indirect_multi(
3869 xfs_ifork_t *ifp, /* inode fork pointer */
3870 int erp_idx, /* target extent irec index */
3871 xfs_extnum_t idx, /* index within target list */
3872 int count) /* new extents being added */
3874 int byte_diff; /* new bytes being added */
3875 xfs_ext_irec_t *erp; /* pointer to irec entry */
3876 xfs_extnum_t ext_diff; /* number of extents to add */
3877 xfs_extnum_t ext_cnt; /* new extents still needed */
3878 xfs_extnum_t nex2; /* extents after idx + count */
3879 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3880 int nlists; /* number of irec's (lists) */
3882 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3883 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3884 nex2 = erp->er_extcount - idx;
3885 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3888 * Save second part of target extent list
3889 * (all extents past */
3890 if (nex2) {
3891 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3892 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3893 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3894 erp->er_extcount -= nex2;
3895 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3896 memset(&erp->er_extbuf[idx], 0, byte_diff);
3900 * Add the new extents to the end of the target
3901 * list, then allocate new irec record(s) and
3902 * extent buffer(s) as needed to store the rest
3903 * of the new extents.
3905 ext_cnt = count;
3906 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3907 if (ext_diff) {
3908 erp->er_extcount += ext_diff;
3909 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3910 ext_cnt -= ext_diff;
3912 while (ext_cnt) {
3913 erp_idx++;
3914 erp = xfs_iext_irec_new(ifp, erp_idx);
3915 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3916 erp->er_extcount = ext_diff;
3917 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3918 ext_cnt -= ext_diff;
3921 /* Add nex2 extents back to indirection array */
3922 if (nex2) {
3923 xfs_extnum_t ext_avail;
3924 int i;
3926 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3927 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3928 i = 0;
3930 * If nex2 extents fit in the current page, append
3931 * nex2_ep after the new extents.
3933 if (nex2 <= ext_avail) {
3934 i = erp->er_extcount;
3937 * Otherwise, check if space is available in the
3938 * next page.
3940 else if ((erp_idx < nlists - 1) &&
3941 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3942 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3943 erp_idx++;
3944 erp++;
3945 /* Create a hole for nex2 extents */
3946 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3947 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3950 * Final choice, create a new extent page for
3951 * nex2 extents.
3953 else {
3954 erp_idx++;
3955 erp = xfs_iext_irec_new(ifp, erp_idx);
3957 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3958 kmem_free(nex2_ep, byte_diff);
3959 erp->er_extcount += nex2;
3960 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3965 * This is called when the amount of space required for incore file
3966 * extents needs to be decreased. The ext_diff parameter stores the
3967 * number of extents to be removed and the idx parameter contains
3968 * the extent index where the extents will be removed from.
3970 * If the amount of space needed has decreased below the linear
3971 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3972 * extent array. Otherwise, use kmem_realloc() to adjust the
3973 * size to what is needed.
3975 void
3976 xfs_iext_remove(
3977 xfs_ifork_t *ifp, /* inode fork pointer */
3978 xfs_extnum_t idx, /* index to begin removing exts */
3979 int ext_diff) /* number of extents to remove */
3981 xfs_extnum_t nextents; /* number of extents in file */
3982 int new_size; /* size of extents after removal */
3984 ASSERT(ext_diff > 0);
3985 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3986 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3988 if (new_size == 0) {
3989 xfs_iext_destroy(ifp);
3990 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3991 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3992 } else if (ifp->if_real_bytes) {
3993 xfs_iext_remove_direct(ifp, idx, ext_diff);
3994 } else {
3995 xfs_iext_remove_inline(ifp, idx, ext_diff);
3997 ifp->if_bytes = new_size;
4001 * This removes ext_diff extents from the inline buffer, beginning
4002 * at extent index idx.
4004 void
4005 xfs_iext_remove_inline(
4006 xfs_ifork_t *ifp, /* inode fork pointer */
4007 xfs_extnum_t idx, /* index to begin removing exts */
4008 int ext_diff) /* number of extents to remove */
4010 int nextents; /* number of extents in file */
4012 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4013 ASSERT(idx < XFS_INLINE_EXTS);
4014 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4015 ASSERT(((nextents - ext_diff) > 0) &&
4016 (nextents - ext_diff) < XFS_INLINE_EXTS);
4018 if (idx + ext_diff < nextents) {
4019 memmove(&ifp->if_u2.if_inline_ext[idx],
4020 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4021 (nextents - (idx + ext_diff)) *
4022 sizeof(xfs_bmbt_rec_t));
4023 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4024 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4025 } else {
4026 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4027 ext_diff * sizeof(xfs_bmbt_rec_t));
4032 * This removes ext_diff extents from a linear (direct) extent list,
4033 * beginning at extent index idx. If the extents are being removed
4034 * from the end of the list (ie. truncate) then we just need to re-
4035 * allocate the list to remove the extra space. Otherwise, if the
4036 * extents are being removed from the middle of the existing extent
4037 * entries, then we first need to move the extent records beginning
4038 * at idx + ext_diff up in the list to overwrite the records being
4039 * removed, then remove the extra space via kmem_realloc.
4041 void
4042 xfs_iext_remove_direct(
4043 xfs_ifork_t *ifp, /* inode fork pointer */
4044 xfs_extnum_t idx, /* index to begin removing exts */
4045 int ext_diff) /* number of extents to remove */
4047 xfs_extnum_t nextents; /* number of extents in file */
4048 int new_size; /* size of extents after removal */
4050 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4051 new_size = ifp->if_bytes -
4052 (ext_diff * sizeof(xfs_bmbt_rec_t));
4053 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4055 if (new_size == 0) {
4056 xfs_iext_destroy(ifp);
4057 return;
4059 /* Move extents up in the list (if needed) */
4060 if (idx + ext_diff < nextents) {
4061 memmove(&ifp->if_u1.if_extents[idx],
4062 &ifp->if_u1.if_extents[idx + ext_diff],
4063 (nextents - (idx + ext_diff)) *
4064 sizeof(xfs_bmbt_rec_t));
4066 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4067 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4069 * Reallocate the direct extent list. If the extents
4070 * will fit inside the inode then xfs_iext_realloc_direct
4071 * will switch from direct to inline extent allocation
4072 * mode for us.
4074 xfs_iext_realloc_direct(ifp, new_size);
4075 ifp->if_bytes = new_size;
4079 * This is called when incore extents are being removed from the
4080 * indirection array and the extents being removed span multiple extent
4081 * buffers. The idx parameter contains the file extent index where we
4082 * want to begin removing extents, and the count parameter contains
4083 * how many extents need to be removed.
4085 * |-------| |-------|
4086 * | nex1 | | | nex1 - number of extents before idx
4087 * |-------| | count |
4088 * | | | | count - number of extents being removed at idx
4089 * | count | |-------|
4090 * | | | nex2 | nex2 - number of extents after idx + count
4091 * |-------| |-------|
4093 void
4094 xfs_iext_remove_indirect(
4095 xfs_ifork_t *ifp, /* inode fork pointer */
4096 xfs_extnum_t idx, /* index to begin removing extents */
4097 int count) /* number of extents to remove */
4099 xfs_ext_irec_t *erp; /* indirection array pointer */
4100 int erp_idx = 0; /* indirection array index */
4101 xfs_extnum_t ext_cnt; /* extents left to remove */
4102 xfs_extnum_t ext_diff; /* extents to remove in current list */
4103 xfs_extnum_t nex1; /* number of extents before idx */
4104 xfs_extnum_t nex2; /* extents after idx + count */
4105 int nlists; /* entries in indirection array */
4106 int page_idx = idx; /* index in target extent list */
4108 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4109 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4110 ASSERT(erp != NULL);
4111 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4112 nex1 = page_idx;
4113 ext_cnt = count;
4114 while (ext_cnt) {
4115 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4116 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4118 * Check for deletion of entire list;
4119 * xfs_iext_irec_remove() updates extent offsets.
4121 if (ext_diff == erp->er_extcount) {
4122 xfs_iext_irec_remove(ifp, erp_idx);
4123 ext_cnt -= ext_diff;
4124 nex1 = 0;
4125 if (ext_cnt) {
4126 ASSERT(erp_idx < ifp->if_real_bytes /
4127 XFS_IEXT_BUFSZ);
4128 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4129 nex1 = 0;
4130 continue;
4131 } else {
4132 break;
4135 /* Move extents up (if needed) */
4136 if (nex2) {
4137 memmove(&erp->er_extbuf[nex1],
4138 &erp->er_extbuf[nex1 + ext_diff],
4139 nex2 * sizeof(xfs_bmbt_rec_t));
4141 /* Zero out rest of page */
4142 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4143 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4144 /* Update remaining counters */
4145 erp->er_extcount -= ext_diff;
4146 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4147 ext_cnt -= ext_diff;
4148 nex1 = 0;
4149 erp_idx++;
4150 erp++;
4152 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4153 xfs_iext_irec_compact(ifp);
4157 * Create, destroy, or resize a linear (direct) block of extents.
4159 void
4160 xfs_iext_realloc_direct(
4161 xfs_ifork_t *ifp, /* inode fork pointer */
4162 int new_size) /* new size of extents */
4164 int rnew_size; /* real new size of extents */
4166 rnew_size = new_size;
4168 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4169 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4170 (new_size != ifp->if_real_bytes)));
4172 /* Free extent records */
4173 if (new_size == 0) {
4174 xfs_iext_destroy(ifp);
4176 /* Resize direct extent list and zero any new bytes */
4177 else if (ifp->if_real_bytes) {
4178 /* Check if extents will fit inside the inode */
4179 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4180 xfs_iext_direct_to_inline(ifp, new_size /
4181 (uint)sizeof(xfs_bmbt_rec_t));
4182 ifp->if_bytes = new_size;
4183 return;
4185 if (!is_power_of_2(new_size)){
4186 rnew_size = xfs_iroundup(new_size);
4188 if (rnew_size != ifp->if_real_bytes) {
4189 ifp->if_u1.if_extents =
4190 kmem_realloc(ifp->if_u1.if_extents,
4191 rnew_size,
4192 ifp->if_real_bytes,
4193 KM_SLEEP);
4195 if (rnew_size > ifp->if_real_bytes) {
4196 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4197 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4198 rnew_size - ifp->if_real_bytes);
4202 * Switch from the inline extent buffer to a direct
4203 * extent list. Be sure to include the inline extent
4204 * bytes in new_size.
4206 else {
4207 new_size += ifp->if_bytes;
4208 if (!is_power_of_2(new_size)) {
4209 rnew_size = xfs_iroundup(new_size);
4211 xfs_iext_inline_to_direct(ifp, rnew_size);
4213 ifp->if_real_bytes = rnew_size;
4214 ifp->if_bytes = new_size;
4218 * Switch from linear (direct) extent records to inline buffer.
4220 void
4221 xfs_iext_direct_to_inline(
4222 xfs_ifork_t *ifp, /* inode fork pointer */
4223 xfs_extnum_t nextents) /* number of extents in file */
4225 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4226 ASSERT(nextents <= XFS_INLINE_EXTS);
4228 * The inline buffer was zeroed when we switched
4229 * from inline to direct extent allocation mode,
4230 * so we don't need to clear it here.
4232 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4233 nextents * sizeof(xfs_bmbt_rec_t));
4234 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4235 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4236 ifp->if_real_bytes = 0;
4240 * Switch from inline buffer to linear (direct) extent records.
4241 * new_size should already be rounded up to the next power of 2
4242 * by the caller (when appropriate), so use new_size as it is.
4243 * However, since new_size may be rounded up, we can't update
4244 * if_bytes here. It is the caller's responsibility to update
4245 * if_bytes upon return.
4247 void
4248 xfs_iext_inline_to_direct(
4249 xfs_ifork_t *ifp, /* inode fork pointer */
4250 int new_size) /* number of extents in file */
4252 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4253 memset(ifp->if_u1.if_extents, 0, new_size);
4254 if (ifp->if_bytes) {
4255 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4256 ifp->if_bytes);
4257 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4258 sizeof(xfs_bmbt_rec_t));
4260 ifp->if_real_bytes = new_size;
4264 * Resize an extent indirection array to new_size bytes.
4266 void
4267 xfs_iext_realloc_indirect(
4268 xfs_ifork_t *ifp, /* inode fork pointer */
4269 int new_size) /* new indirection array size */
4271 int nlists; /* number of irec's (ex lists) */
4272 int size; /* current indirection array size */
4274 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4275 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4276 size = nlists * sizeof(xfs_ext_irec_t);
4277 ASSERT(ifp->if_real_bytes);
4278 ASSERT((new_size >= 0) && (new_size != size));
4279 if (new_size == 0) {
4280 xfs_iext_destroy(ifp);
4281 } else {
4282 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4283 kmem_realloc(ifp->if_u1.if_ext_irec,
4284 new_size, size, KM_SLEEP);
4289 * Switch from indirection array to linear (direct) extent allocations.
4291 void
4292 xfs_iext_indirect_to_direct(
4293 xfs_ifork_t *ifp) /* inode fork pointer */
4295 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4296 xfs_extnum_t nextents; /* number of extents in file */
4297 int size; /* size of file extents */
4299 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4300 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4301 ASSERT(nextents <= XFS_LINEAR_EXTS);
4302 size = nextents * sizeof(xfs_bmbt_rec_t);
4304 xfs_iext_irec_compact_full(ifp);
4305 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4307 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4308 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4309 ifp->if_flags &= ~XFS_IFEXTIREC;
4310 ifp->if_u1.if_extents = ep;
4311 ifp->if_bytes = size;
4312 if (nextents < XFS_LINEAR_EXTS) {
4313 xfs_iext_realloc_direct(ifp, size);
4318 * Free incore file extents.
4320 void
4321 xfs_iext_destroy(
4322 xfs_ifork_t *ifp) /* inode fork pointer */
4324 if (ifp->if_flags & XFS_IFEXTIREC) {
4325 int erp_idx;
4326 int nlists;
4328 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4329 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4330 xfs_iext_irec_remove(ifp, erp_idx);
4332 ifp->if_flags &= ~XFS_IFEXTIREC;
4333 } else if (ifp->if_real_bytes) {
4334 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4335 } else if (ifp->if_bytes) {
4336 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4337 sizeof(xfs_bmbt_rec_t));
4339 ifp->if_u1.if_extents = NULL;
4340 ifp->if_real_bytes = 0;
4341 ifp->if_bytes = 0;
4345 * Return a pointer to the extent record for file system block bno.
4347 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4348 xfs_iext_bno_to_ext(
4349 xfs_ifork_t *ifp, /* inode fork pointer */
4350 xfs_fileoff_t bno, /* block number to search for */
4351 xfs_extnum_t *idxp) /* index of target extent */
4353 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4354 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4355 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4356 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4357 int high; /* upper boundary in search */
4358 xfs_extnum_t idx = 0; /* index of target extent */
4359 int low; /* lower boundary in search */
4360 xfs_extnum_t nextents; /* number of file extents */
4361 xfs_fileoff_t startoff = 0; /* start offset of extent */
4363 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4364 if (nextents == 0) {
4365 *idxp = 0;
4366 return NULL;
4368 low = 0;
4369 if (ifp->if_flags & XFS_IFEXTIREC) {
4370 /* Find target extent list */
4371 int erp_idx = 0;
4372 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4373 base = erp->er_extbuf;
4374 high = erp->er_extcount - 1;
4375 } else {
4376 base = ifp->if_u1.if_extents;
4377 high = nextents - 1;
4379 /* Binary search extent records */
4380 while (low <= high) {
4381 idx = (low + high) >> 1;
4382 ep = base + idx;
4383 startoff = xfs_bmbt_get_startoff(ep);
4384 blockcount = xfs_bmbt_get_blockcount(ep);
4385 if (bno < startoff) {
4386 high = idx - 1;
4387 } else if (bno >= startoff + blockcount) {
4388 low = idx + 1;
4389 } else {
4390 /* Convert back to file-based extent index */
4391 if (ifp->if_flags & XFS_IFEXTIREC) {
4392 idx += erp->er_extoff;
4394 *idxp = idx;
4395 return ep;
4398 /* Convert back to file-based extent index */
4399 if (ifp->if_flags & XFS_IFEXTIREC) {
4400 idx += erp->er_extoff;
4402 if (bno >= startoff + blockcount) {
4403 if (++idx == nextents) {
4404 ep = NULL;
4405 } else {
4406 ep = xfs_iext_get_ext(ifp, idx);
4409 *idxp = idx;
4410 return ep;
4414 * Return a pointer to the indirection array entry containing the
4415 * extent record for filesystem block bno. Store the index of the
4416 * target irec in *erp_idxp.
4418 xfs_ext_irec_t * /* pointer to found extent record */
4419 xfs_iext_bno_to_irec(
4420 xfs_ifork_t *ifp, /* inode fork pointer */
4421 xfs_fileoff_t bno, /* block number to search for */
4422 int *erp_idxp) /* irec index of target ext list */
4424 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4425 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4426 int erp_idx; /* indirection array index */
4427 int nlists; /* number of extent irec's (lists) */
4428 int high; /* binary search upper limit */
4429 int low; /* binary search lower limit */
4431 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4432 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4433 erp_idx = 0;
4434 low = 0;
4435 high = nlists - 1;
4436 while (low <= high) {
4437 erp_idx = (low + high) >> 1;
4438 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4439 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4440 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4441 high = erp_idx - 1;
4442 } else if (erp_next && bno >=
4443 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4444 low = erp_idx + 1;
4445 } else {
4446 break;
4449 *erp_idxp = erp_idx;
4450 return erp;
4454 * Return a pointer to the indirection array entry containing the
4455 * extent record at file extent index *idxp. Store the index of the
4456 * target irec in *erp_idxp and store the page index of the target
4457 * extent record in *idxp.
4459 xfs_ext_irec_t *
4460 xfs_iext_idx_to_irec(
4461 xfs_ifork_t *ifp, /* inode fork pointer */
4462 xfs_extnum_t *idxp, /* extent index (file -> page) */
4463 int *erp_idxp, /* pointer to target irec */
4464 int realloc) /* new bytes were just added */
4466 xfs_ext_irec_t *prev; /* pointer to previous irec */
4467 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4468 int erp_idx; /* indirection array index */
4469 int nlists; /* number of irec's (ex lists) */
4470 int high; /* binary search upper limit */
4471 int low; /* binary search lower limit */
4472 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4474 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4475 ASSERT(page_idx >= 0 && page_idx <=
4476 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4477 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4478 erp_idx = 0;
4479 low = 0;
4480 high = nlists - 1;
4482 /* Binary search extent irec's */
4483 while (low <= high) {
4484 erp_idx = (low + high) >> 1;
4485 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4486 prev = erp_idx > 0 ? erp - 1 : NULL;
4487 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4488 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4489 high = erp_idx - 1;
4490 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4491 (page_idx == erp->er_extoff + erp->er_extcount &&
4492 !realloc)) {
4493 low = erp_idx + 1;
4494 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4495 erp->er_extcount == XFS_LINEAR_EXTS) {
4496 ASSERT(realloc);
4497 page_idx = 0;
4498 erp_idx++;
4499 erp = erp_idx < nlists ? erp + 1 : NULL;
4500 break;
4501 } else {
4502 page_idx -= erp->er_extoff;
4503 break;
4506 *idxp = page_idx;
4507 *erp_idxp = erp_idx;
4508 return(erp);
4512 * Allocate and initialize an indirection array once the space needed
4513 * for incore extents increases above XFS_IEXT_BUFSZ.
4515 void
4516 xfs_iext_irec_init(
4517 xfs_ifork_t *ifp) /* inode fork pointer */
4519 xfs_ext_irec_t *erp; /* indirection array pointer */
4520 xfs_extnum_t nextents; /* number of extents in file */
4522 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4523 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4524 ASSERT(nextents <= XFS_LINEAR_EXTS);
4526 erp = (xfs_ext_irec_t *)
4527 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4529 if (nextents == 0) {
4530 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4531 } else if (!ifp->if_real_bytes) {
4532 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4533 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4534 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4536 erp->er_extbuf = ifp->if_u1.if_extents;
4537 erp->er_extcount = nextents;
4538 erp->er_extoff = 0;
4540 ifp->if_flags |= XFS_IFEXTIREC;
4541 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4542 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4543 ifp->if_u1.if_ext_irec = erp;
4545 return;
4549 * Allocate and initialize a new entry in the indirection array.
4551 xfs_ext_irec_t *
4552 xfs_iext_irec_new(
4553 xfs_ifork_t *ifp, /* inode fork pointer */
4554 int erp_idx) /* index for new irec */
4556 xfs_ext_irec_t *erp; /* indirection array pointer */
4557 int i; /* loop counter */
4558 int nlists; /* number of irec's (ex lists) */
4560 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4561 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4563 /* Resize indirection array */
4564 xfs_iext_realloc_indirect(ifp, ++nlists *
4565 sizeof(xfs_ext_irec_t));
4567 * Move records down in the array so the
4568 * new page can use erp_idx.
4570 erp = ifp->if_u1.if_ext_irec;
4571 for (i = nlists - 1; i > erp_idx; i--) {
4572 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4574 ASSERT(i == erp_idx);
4576 /* Initialize new extent record */
4577 erp = ifp->if_u1.if_ext_irec;
4578 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4579 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4580 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4581 erp[erp_idx].er_extcount = 0;
4582 erp[erp_idx].er_extoff = erp_idx > 0 ?
4583 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4584 return (&erp[erp_idx]);
4588 * Remove a record from the indirection array.
4590 void
4591 xfs_iext_irec_remove(
4592 xfs_ifork_t *ifp, /* inode fork pointer */
4593 int erp_idx) /* irec index to remove */
4595 xfs_ext_irec_t *erp; /* indirection array pointer */
4596 int i; /* loop counter */
4597 int nlists; /* number of irec's (ex lists) */
4599 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4600 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4601 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4602 if (erp->er_extbuf) {
4603 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4604 -erp->er_extcount);
4605 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4607 /* Compact extent records */
4608 erp = ifp->if_u1.if_ext_irec;
4609 for (i = erp_idx; i < nlists - 1; i++) {
4610 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4613 * Manually free the last extent record from the indirection
4614 * array. A call to xfs_iext_realloc_indirect() with a size
4615 * of zero would result in a call to xfs_iext_destroy() which
4616 * would in turn call this function again, creating a nasty
4617 * infinite loop.
4619 if (--nlists) {
4620 xfs_iext_realloc_indirect(ifp,
4621 nlists * sizeof(xfs_ext_irec_t));
4622 } else {
4623 kmem_free(ifp->if_u1.if_ext_irec,
4624 sizeof(xfs_ext_irec_t));
4626 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4630 * This is called to clean up large amounts of unused memory allocated
4631 * by the indirection array. Before compacting anything though, verify
4632 * that the indirection array is still needed and switch back to the
4633 * linear extent list (or even the inline buffer) if possible. The
4634 * compaction policy is as follows:
4636 * Full Compaction: Extents fit into a single page (or inline buffer)
4637 * Full Compaction: Extents occupy less than 10% of allocated space
4638 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4639 * No Compaction: Extents occupy at least 50% of allocated space
4641 void
4642 xfs_iext_irec_compact(
4643 xfs_ifork_t *ifp) /* inode fork pointer */
4645 xfs_extnum_t nextents; /* number of extents in file */
4646 int nlists; /* number of irec's (ex lists) */
4648 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4649 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4650 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4652 if (nextents == 0) {
4653 xfs_iext_destroy(ifp);
4654 } else if (nextents <= XFS_INLINE_EXTS) {
4655 xfs_iext_indirect_to_direct(ifp);
4656 xfs_iext_direct_to_inline(ifp, nextents);
4657 } else if (nextents <= XFS_LINEAR_EXTS) {
4658 xfs_iext_indirect_to_direct(ifp);
4659 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4660 xfs_iext_irec_compact_full(ifp);
4661 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4662 xfs_iext_irec_compact_pages(ifp);
4667 * Combine extents from neighboring extent pages.
4669 void
4670 xfs_iext_irec_compact_pages(
4671 xfs_ifork_t *ifp) /* inode fork pointer */
4673 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4674 int erp_idx = 0; /* indirection array index */
4675 int nlists; /* number of irec's (ex lists) */
4677 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4678 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4679 while (erp_idx < nlists - 1) {
4680 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4681 erp_next = erp + 1;
4682 if (erp_next->er_extcount <=
4683 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4684 memmove(&erp->er_extbuf[erp->er_extcount],
4685 erp_next->er_extbuf, erp_next->er_extcount *
4686 sizeof(xfs_bmbt_rec_t));
4687 erp->er_extcount += erp_next->er_extcount;
4689 * Free page before removing extent record
4690 * so er_extoffs don't get modified in
4691 * xfs_iext_irec_remove.
4693 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4694 erp_next->er_extbuf = NULL;
4695 xfs_iext_irec_remove(ifp, erp_idx + 1);
4696 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4697 } else {
4698 erp_idx++;
4704 * Fully compact the extent records managed by the indirection array.
4706 void
4707 xfs_iext_irec_compact_full(
4708 xfs_ifork_t *ifp) /* inode fork pointer */
4710 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4711 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4712 int erp_idx = 0; /* extent irec index */
4713 int ext_avail; /* empty entries in ex list */
4714 int ext_diff; /* number of exts to add */
4715 int nlists; /* number of irec's (ex lists) */
4717 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4718 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4719 erp = ifp->if_u1.if_ext_irec;
4720 ep = &erp->er_extbuf[erp->er_extcount];
4721 erp_next = erp + 1;
4722 ep_next = erp_next->er_extbuf;
4723 while (erp_idx < nlists - 1) {
4724 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4725 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4726 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4727 erp->er_extcount += ext_diff;
4728 erp_next->er_extcount -= ext_diff;
4729 /* Remove next page */
4730 if (erp_next->er_extcount == 0) {
4732 * Free page before removing extent record
4733 * so er_extoffs don't get modified in
4734 * xfs_iext_irec_remove.
4736 kmem_free(erp_next->er_extbuf,
4737 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4738 erp_next->er_extbuf = NULL;
4739 xfs_iext_irec_remove(ifp, erp_idx + 1);
4740 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4741 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4742 /* Update next page */
4743 } else {
4744 /* Move rest of page up to become next new page */
4745 memmove(erp_next->er_extbuf, ep_next,
4746 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4747 ep_next = erp_next->er_extbuf;
4748 memset(&ep_next[erp_next->er_extcount], 0,
4749 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4750 sizeof(xfs_bmbt_rec_t));
4752 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4753 erp_idx++;
4754 if (erp_idx < nlists)
4755 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4756 else
4757 break;
4759 ep = &erp->er_extbuf[erp->er_extcount];
4760 erp_next = erp + 1;
4761 ep_next = erp_next->er_extbuf;
4766 * This is called to update the er_extoff field in the indirection
4767 * array when extents have been added or removed from one of the
4768 * extent lists. erp_idx contains the irec index to begin updating
4769 * at and ext_diff contains the number of extents that were added
4770 * or removed.
4772 void
4773 xfs_iext_irec_update_extoffs(
4774 xfs_ifork_t *ifp, /* inode fork pointer */
4775 int erp_idx, /* irec index to update */
4776 int ext_diff) /* number of new extents */
4778 int i; /* loop counter */
4779 int nlists; /* number of irec's (ex lists */
4781 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4782 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4783 for (i = erp_idx; i < nlists; i++) {
4784 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;