1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
32 #include <linux/seq_file.h>
34 #include <asm/uaccess.h>
36 struct cgroup_subsys mem_cgroup_subsys
;
37 static const int MEM_CGROUP_RECLAIM_RETRIES
= 5;
40 * Statistics for memory cgroup.
42 enum mem_cgroup_stat_index
{
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
46 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
49 MEM_CGROUP_STAT_NSTATS
,
52 struct mem_cgroup_stat_cpu
{
53 s64 count
[MEM_CGROUP_STAT_NSTATS
];
54 } ____cacheline_aligned_in_smp
;
56 struct mem_cgroup_stat
{
57 struct mem_cgroup_stat_cpu cpustat
[NR_CPUS
];
61 * For accounting under irq disable, no need for increment preempt count.
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat
*stat
,
64 enum mem_cgroup_stat_index idx
, int val
)
66 int cpu
= smp_processor_id();
67 stat
->cpustat
[cpu
].count
[idx
] += val
;
70 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
71 enum mem_cgroup_stat_index idx
)
75 for_each_possible_cpu(cpu
)
76 ret
+= stat
->cpustat
[cpu
].count
[idx
];
81 * per-zone information in memory controller.
84 enum mem_cgroup_zstat_index
{
85 MEM_CGROUP_ZSTAT_ACTIVE
,
86 MEM_CGROUP_ZSTAT_INACTIVE
,
91 struct mem_cgroup_per_zone
{
93 * spin_lock to protect the per cgroup LRU
96 struct list_head active_list
;
97 struct list_head inactive_list
;
98 unsigned long count
[NR_MEM_CGROUP_ZSTAT
];
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
103 struct mem_cgroup_per_node
{
104 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
107 struct mem_cgroup_lru_info
{
108 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
123 struct cgroup_subsys_state css
;
125 * the counter to account for memory usage
127 struct res_counter res
;
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
132 struct mem_cgroup_lru_info info
;
134 int prev_priority
; /* for recording reclaim priority */
138 struct mem_cgroup_stat stat
;
140 static struct mem_cgroup init_mem_cgroup
;
143 * We use the lower bit of the page->page_cgroup pointer as a bit spin
144 * lock. We need to ensure that page->page_cgroup is at least two
145 * byte aligned (based on comments from Nick Piggin). But since
146 * bit_spin_lock doesn't actually set that lock bit in a non-debug
147 * uniprocessor kernel, we should avoid setting it here too.
149 #define PAGE_CGROUP_LOCK_BIT 0x0
150 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
151 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
153 #define PAGE_CGROUP_LOCK 0x0
157 * A page_cgroup page is associated with every page descriptor. The
158 * page_cgroup helps us identify information about the cgroup
161 struct list_head lru
; /* per cgroup LRU list */
163 struct mem_cgroup
*mem_cgroup
;
164 int ref_cnt
; /* cached, mapped, migrating */
167 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
168 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
170 static int page_cgroup_nid(struct page_cgroup
*pc
)
172 return page_to_nid(pc
->page
);
175 static enum zone_type
page_cgroup_zid(struct page_cgroup
*pc
)
177 return page_zonenum(pc
->page
);
181 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
182 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
186 * Always modified under lru lock. Then, not necessary to preempt_disable()
188 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
, int flags
,
191 int val
= (charge
)? 1 : -1;
192 struct mem_cgroup_stat
*stat
= &mem
->stat
;
194 VM_BUG_ON(!irqs_disabled());
195 if (flags
& PAGE_CGROUP_FLAG_CACHE
)
196 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_CACHE
, val
);
198 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_RSS
, val
);
201 static struct mem_cgroup_per_zone
*
202 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
204 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
207 static struct mem_cgroup_per_zone
*
208 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
210 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
211 int nid
= page_cgroup_nid(pc
);
212 int zid
= page_cgroup_zid(pc
);
214 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
217 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup
*mem
,
218 enum mem_cgroup_zstat_index idx
)
221 struct mem_cgroup_per_zone
*mz
;
224 for_each_online_node(nid
)
225 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
226 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
227 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
232 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
234 return container_of(cgroup_subsys_state(cont
,
235 mem_cgroup_subsys_id
), struct mem_cgroup
,
239 static struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
241 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
242 struct mem_cgroup
, css
);
245 void mm_init_cgroup(struct mm_struct
*mm
, struct task_struct
*p
)
247 struct mem_cgroup
*mem
;
249 mem
= mem_cgroup_from_task(p
);
251 mm
->mem_cgroup
= mem
;
254 void mm_free_cgroup(struct mm_struct
*mm
)
256 css_put(&mm
->mem_cgroup
->css
);
259 static inline int page_cgroup_locked(struct page
*page
)
261 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
264 static void page_assign_page_cgroup(struct page
*page
, struct page_cgroup
*pc
)
266 VM_BUG_ON(!page_cgroup_locked(page
));
267 page
->page_cgroup
= ((unsigned long)pc
| PAGE_CGROUP_LOCK
);
270 struct page_cgroup
*page_get_page_cgroup(struct page
*page
)
272 return (struct page_cgroup
*) (page
->page_cgroup
& ~PAGE_CGROUP_LOCK
);
275 static void lock_page_cgroup(struct page
*page
)
277 bit_spin_lock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
280 static void unlock_page_cgroup(struct page
*page
)
282 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
285 static void __mem_cgroup_remove_list(struct page_cgroup
*pc
)
287 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
288 struct mem_cgroup_per_zone
*mz
= page_cgroup_zoneinfo(pc
);
291 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
293 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
295 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, false);
296 list_del_init(&pc
->lru
);
299 static void __mem_cgroup_add_list(struct page_cgroup
*pc
)
301 int to
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
302 struct mem_cgroup_per_zone
*mz
= page_cgroup_zoneinfo(pc
);
305 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
306 list_add(&pc
->lru
, &mz
->inactive_list
);
308 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
309 list_add(&pc
->lru
, &mz
->active_list
);
311 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, true);
314 static void __mem_cgroup_move_lists(struct page_cgroup
*pc
, bool active
)
316 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
317 struct mem_cgroup_per_zone
*mz
= page_cgroup_zoneinfo(pc
);
320 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
322 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
325 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
326 pc
->flags
|= PAGE_CGROUP_FLAG_ACTIVE
;
327 list_move(&pc
->lru
, &mz
->active_list
);
329 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
330 pc
->flags
&= ~PAGE_CGROUP_FLAG_ACTIVE
;
331 list_move(&pc
->lru
, &mz
->inactive_list
);
335 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
340 ret
= task
->mm
&& mm_match_cgroup(task
->mm
, mem
);
346 * This routine assumes that the appropriate zone's lru lock is already held
348 void mem_cgroup_move_lists(struct page
*page
, bool active
)
350 struct page_cgroup
*pc
;
351 struct mem_cgroup_per_zone
*mz
;
354 pc
= page_get_page_cgroup(page
);
358 mz
= page_cgroup_zoneinfo(pc
);
359 spin_lock_irqsave(&mz
->lru_lock
, flags
);
360 __mem_cgroup_move_lists(pc
, active
);
361 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
365 * Calculate mapped_ratio under memory controller. This will be used in
366 * vmscan.c for deteremining we have to reclaim mapped pages.
368 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup
*mem
)
373 * usage is recorded in bytes. But, here, we assume the number of
374 * physical pages can be represented by "long" on any arch.
376 total
= (long) (mem
->res
.usage
>> PAGE_SHIFT
) + 1L;
377 rss
= (long)mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
378 return (int)((rss
* 100L) / total
);
382 * This function is called from vmscan.c. In page reclaiming loop. balance
383 * between active and inactive list is calculated. For memory controller
384 * page reclaiming, we should use using mem_cgroup's imbalance rather than
385 * zone's global lru imbalance.
387 long mem_cgroup_reclaim_imbalance(struct mem_cgroup
*mem
)
389 unsigned long active
, inactive
;
390 /* active and inactive are the number of pages. 'long' is ok.*/
391 active
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_ACTIVE
);
392 inactive
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_INACTIVE
);
393 return (long) (active
/ (inactive
+ 1));
397 * prev_priority control...this will be used in memory reclaim path.
399 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
401 return mem
->prev_priority
;
404 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
406 if (priority
< mem
->prev_priority
)
407 mem
->prev_priority
= priority
;
410 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
412 mem
->prev_priority
= priority
;
416 * Calculate # of pages to be scanned in this priority/zone.
419 * priority starts from "DEF_PRIORITY" and decremented in each loop.
420 * (see include/linux/mmzone.h)
423 long mem_cgroup_calc_reclaim_active(struct mem_cgroup
*mem
,
424 struct zone
*zone
, int priority
)
427 int nid
= zone
->zone_pgdat
->node_id
;
428 int zid
= zone_idx(zone
);
429 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
431 nr_active
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
);
432 return (nr_active
>> priority
);
435 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup
*mem
,
436 struct zone
*zone
, int priority
)
439 int nid
= zone
->zone_pgdat
->node_id
;
440 int zid
= zone_idx(zone
);
441 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
443 nr_inactive
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
);
444 return (nr_inactive
>> priority
);
447 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
448 struct list_head
*dst
,
449 unsigned long *scanned
, int order
,
450 int mode
, struct zone
*z
,
451 struct mem_cgroup
*mem_cont
,
454 unsigned long nr_taken
= 0;
458 struct list_head
*src
;
459 struct page_cgroup
*pc
, *tmp
;
460 int nid
= z
->zone_pgdat
->node_id
;
461 int zid
= zone_idx(z
);
462 struct mem_cgroup_per_zone
*mz
;
464 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
466 src
= &mz
->active_list
;
468 src
= &mz
->inactive_list
;
471 spin_lock(&mz
->lru_lock
);
473 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
474 if (scan
>= nr_to_scan
)
478 if (unlikely(!PageLRU(page
)))
481 if (PageActive(page
) && !active
) {
482 __mem_cgroup_move_lists(pc
, true);
485 if (!PageActive(page
) && active
) {
486 __mem_cgroup_move_lists(pc
, false);
491 list_move(&pc
->lru
, &pc_list
);
493 if (__isolate_lru_page(page
, mode
) == 0) {
494 list_move(&page
->lru
, dst
);
499 list_splice(&pc_list
, src
);
500 spin_unlock(&mz
->lru_lock
);
507 * Charge the memory controller for page usage.
509 * 0 if the charge was successful
510 * < 0 if the cgroup is over its limit
512 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
513 gfp_t gfp_mask
, enum charge_type ctype
)
515 struct mem_cgroup
*mem
;
516 struct page_cgroup
*pc
;
518 unsigned long nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
519 struct mem_cgroup_per_zone
*mz
;
522 * Should page_cgroup's go to their own slab?
523 * One could optimize the performance of the charging routine
524 * by saving a bit in the page_flags and using it as a lock
525 * to see if the cgroup page already has a page_cgroup associated
529 lock_page_cgroup(page
);
530 pc
= page_get_page_cgroup(page
);
532 * The page_cgroup exists and
533 * the page has already been accounted.
536 VM_BUG_ON(pc
->page
!= page
);
537 VM_BUG_ON(pc
->ref_cnt
<= 0);
540 unlock_page_cgroup(page
);
543 unlock_page_cgroup(page
);
545 pc
= kzalloc(sizeof(struct page_cgroup
), gfp_mask
);
550 * We always charge the cgroup the mm_struct belongs to.
551 * The mm_struct's mem_cgroup changes on task migration if the
552 * thread group leader migrates. It's possible that mm is not
553 * set, if so charge the init_mm (happens for pagecache usage).
559 mem
= rcu_dereference(mm
->mem_cgroup
);
561 * For every charge from the cgroup, increment reference count
566 while (res_counter_charge(&mem
->res
, PAGE_SIZE
)) {
567 if (!(gfp_mask
& __GFP_WAIT
))
570 if (try_to_free_mem_cgroup_pages(mem
, gfp_mask
))
574 * try_to_free_mem_cgroup_pages() might not give us a full
575 * picture of reclaim. Some pages are reclaimed and might be
576 * moved to swap cache or just unmapped from the cgroup.
577 * Check the limit again to see if the reclaim reduced the
578 * current usage of the cgroup before giving up
580 if (res_counter_check_under_limit(&mem
->res
))
584 mem_cgroup_out_of_memory(mem
, gfp_mask
);
587 congestion_wait(WRITE
, HZ
/10);
591 pc
->mem_cgroup
= mem
;
593 pc
->flags
= PAGE_CGROUP_FLAG_ACTIVE
;
594 if (ctype
== MEM_CGROUP_CHARGE_TYPE_CACHE
)
595 pc
->flags
|= PAGE_CGROUP_FLAG_CACHE
;
597 lock_page_cgroup(page
);
598 if (page_get_page_cgroup(page
)) {
599 unlock_page_cgroup(page
);
601 * Another charge has been added to this page already.
602 * We take lock_page_cgroup(page) again and read
603 * page->cgroup, increment refcnt.... just retry is OK.
605 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
610 page_assign_page_cgroup(page
, pc
);
611 unlock_page_cgroup(page
);
613 mz
= page_cgroup_zoneinfo(pc
);
614 spin_lock_irqsave(&mz
->lru_lock
, flags
);
615 __mem_cgroup_add_list(pc
);
616 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
627 int mem_cgroup_charge(struct page
*page
, struct mm_struct
*mm
, gfp_t gfp_mask
)
629 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
630 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
633 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
638 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
639 MEM_CGROUP_CHARGE_TYPE_CACHE
);
643 * Uncharging is always a welcome operation, we never complain, simply
646 void mem_cgroup_uncharge_page(struct page
*page
)
648 struct page_cgroup
*pc
;
649 struct mem_cgroup
*mem
;
650 struct mem_cgroup_per_zone
*mz
;
654 * Check if our page_cgroup is valid
656 lock_page_cgroup(page
);
657 pc
= page_get_page_cgroup(page
);
661 VM_BUG_ON(pc
->page
!= page
);
662 VM_BUG_ON(pc
->ref_cnt
<= 0);
664 if (--(pc
->ref_cnt
) == 0) {
665 page_assign_page_cgroup(page
, NULL
);
666 unlock_page_cgroup(page
);
668 mem
= pc
->mem_cgroup
;
670 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
672 mz
= page_cgroup_zoneinfo(pc
);
673 spin_lock_irqsave(&mz
->lru_lock
, flags
);
674 __mem_cgroup_remove_list(pc
);
675 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
682 unlock_page_cgroup(page
);
686 * Returns non-zero if a page (under migration) has valid page_cgroup member.
687 * Refcnt of page_cgroup is incremented.
689 int mem_cgroup_prepare_migration(struct page
*page
)
691 struct page_cgroup
*pc
;
693 lock_page_cgroup(page
);
694 pc
= page_get_page_cgroup(page
);
697 unlock_page_cgroup(page
);
701 void mem_cgroup_end_migration(struct page
*page
)
703 mem_cgroup_uncharge_page(page
);
707 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
708 * And no race with uncharge() routines because page_cgroup for *page*
709 * has extra one reference by mem_cgroup_prepare_migration.
711 void mem_cgroup_page_migration(struct page
*page
, struct page
*newpage
)
713 struct page_cgroup
*pc
;
714 struct mem_cgroup_per_zone
*mz
;
717 lock_page_cgroup(page
);
718 pc
= page_get_page_cgroup(page
);
720 unlock_page_cgroup(page
);
724 page_assign_page_cgroup(page
, NULL
);
725 unlock_page_cgroup(page
);
727 mz
= page_cgroup_zoneinfo(pc
);
728 spin_lock_irqsave(&mz
->lru_lock
, flags
);
729 __mem_cgroup_remove_list(pc
);
730 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
733 lock_page_cgroup(newpage
);
734 page_assign_page_cgroup(newpage
, pc
);
735 unlock_page_cgroup(newpage
);
737 mz
= page_cgroup_zoneinfo(pc
);
738 spin_lock_irqsave(&mz
->lru_lock
, flags
);
739 __mem_cgroup_add_list(pc
);
740 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
744 * This routine traverse page_cgroup in given list and drop them all.
745 * This routine ignores page_cgroup->ref_cnt.
746 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
748 #define FORCE_UNCHARGE_BATCH (128)
749 static void mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
750 struct mem_cgroup_per_zone
*mz
,
753 struct page_cgroup
*pc
;
757 struct list_head
*list
;
760 list
= &mz
->active_list
;
762 list
= &mz
->inactive_list
;
764 if (list_empty(list
))
767 count
= FORCE_UNCHARGE_BATCH
;
768 spin_lock_irqsave(&mz
->lru_lock
, flags
);
770 while (--count
&& !list_empty(list
)) {
771 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
773 lock_page_cgroup(page
);
774 if (page_get_page_cgroup(page
) == pc
) {
775 page_assign_page_cgroup(page
, NULL
);
776 unlock_page_cgroup(page
);
778 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
779 __mem_cgroup_remove_list(pc
);
782 /* racing uncharge: let page go then retry */
783 unlock_page_cgroup(page
);
788 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
789 if (!list_empty(list
)) {
796 * make mem_cgroup's charge to be 0 if there is no task.
797 * This enables deleting this mem_cgroup.
799 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
)
806 * page reclaim code (kswapd etc..) will move pages between
807 * active_list <-> inactive_list while we don't take a lock.
808 * So, we have to do loop here until all lists are empty.
810 while (mem
->res
.usage
> 0) {
811 if (atomic_read(&mem
->css
.cgroup
->count
) > 0)
813 for_each_node_state(node
, N_POSSIBLE
)
814 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
815 struct mem_cgroup_per_zone
*mz
;
816 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
817 /* drop all page_cgroup in active_list */
818 mem_cgroup_force_empty_list(mem
, mz
, 1);
819 /* drop all page_cgroup in inactive_list */
820 mem_cgroup_force_empty_list(mem
, mz
, 0);
829 static int mem_cgroup_write_strategy(char *buf
, unsigned long long *tmp
)
831 *tmp
= memparse(buf
, &buf
);
836 * Round up the value to the closest page size
838 *tmp
= ((*tmp
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
) << PAGE_SHIFT
;
842 static ssize_t
mem_cgroup_read(struct cgroup
*cont
,
843 struct cftype
*cft
, struct file
*file
,
844 char __user
*userbuf
, size_t nbytes
, loff_t
*ppos
)
846 return res_counter_read(&mem_cgroup_from_cont(cont
)->res
,
847 cft
->private, userbuf
, nbytes
, ppos
,
851 static ssize_t
mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
852 struct file
*file
, const char __user
*userbuf
,
853 size_t nbytes
, loff_t
*ppos
)
855 return res_counter_write(&mem_cgroup_from_cont(cont
)->res
,
856 cft
->private, userbuf
, nbytes
, ppos
,
857 mem_cgroup_write_strategy
);
860 static ssize_t
mem_force_empty_write(struct cgroup
*cont
,
861 struct cftype
*cft
, struct file
*file
,
862 const char __user
*userbuf
,
863 size_t nbytes
, loff_t
*ppos
)
865 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
866 int ret
= mem_cgroup_force_empty(mem
);
873 * Note: This should be removed if cgroup supports write-only file.
875 static ssize_t
mem_force_empty_read(struct cgroup
*cont
,
877 struct file
*file
, char __user
*userbuf
,
878 size_t nbytes
, loff_t
*ppos
)
883 static const struct mem_cgroup_stat_desc
{
886 } mem_cgroup_stat_desc
[] = {
887 [MEM_CGROUP_STAT_CACHE
] = { "cache", PAGE_SIZE
, },
888 [MEM_CGROUP_STAT_RSS
] = { "rss", PAGE_SIZE
, },
891 static int mem_control_stat_show(struct seq_file
*m
, void *arg
)
893 struct cgroup
*cont
= m
->private;
894 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
895 struct mem_cgroup_stat
*stat
= &mem_cont
->stat
;
898 for (i
= 0; i
< ARRAY_SIZE(stat
->cpustat
[0].count
); i
++) {
901 val
= mem_cgroup_read_stat(stat
, i
);
902 val
*= mem_cgroup_stat_desc
[i
].unit
;
903 seq_printf(m
, "%s %lld\n", mem_cgroup_stat_desc
[i
].msg
,
906 /* showing # of active pages */
908 unsigned long active
, inactive
;
910 inactive
= mem_cgroup_get_all_zonestat(mem_cont
,
911 MEM_CGROUP_ZSTAT_INACTIVE
);
912 active
= mem_cgroup_get_all_zonestat(mem_cont
,
913 MEM_CGROUP_ZSTAT_ACTIVE
);
914 seq_printf(m
, "active %ld\n", (active
) * PAGE_SIZE
);
915 seq_printf(m
, "inactive %ld\n", (inactive
) * PAGE_SIZE
);
920 static const struct file_operations mem_control_stat_file_operations
= {
923 .release
= single_release
,
926 static int mem_control_stat_open(struct inode
*unused
, struct file
*file
)
929 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
931 file
->f_op
= &mem_control_stat_file_operations
;
932 return single_open(file
, mem_control_stat_show
, cont
);
935 static struct cftype mem_cgroup_files
[] = {
937 .name
= "usage_in_bytes",
938 .private = RES_USAGE
,
939 .read
= mem_cgroup_read
,
942 .name
= "limit_in_bytes",
943 .private = RES_LIMIT
,
944 .write
= mem_cgroup_write
,
945 .read
= mem_cgroup_read
,
949 .private = RES_FAILCNT
,
950 .read
= mem_cgroup_read
,
953 .name
= "force_empty",
954 .write
= mem_force_empty_write
,
955 .read
= mem_force_empty_read
,
959 .open
= mem_control_stat_open
,
963 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
965 struct mem_cgroup_per_node
*pn
;
966 struct mem_cgroup_per_zone
*mz
;
969 * This routine is called against possible nodes.
970 * But it's BUG to call kmalloc() against offline node.
972 * TODO: this routine can waste much memory for nodes which will
973 * never be onlined. It's better to use memory hotplug callback
976 if (node_state(node
, N_HIGH_MEMORY
))
977 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, node
);
979 pn
= kmalloc(sizeof(*pn
), GFP_KERNEL
);
983 mem
->info
.nodeinfo
[node
] = pn
;
984 memset(pn
, 0, sizeof(*pn
));
986 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
987 mz
= &pn
->zoneinfo
[zone
];
988 INIT_LIST_HEAD(&mz
->active_list
);
989 INIT_LIST_HEAD(&mz
->inactive_list
);
990 spin_lock_init(&mz
->lru_lock
);
995 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
997 kfree(mem
->info
.nodeinfo
[node
]);
1000 static struct cgroup_subsys_state
*
1001 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1003 struct mem_cgroup
*mem
;
1006 if (unlikely((cont
->parent
) == NULL
)) {
1007 mem
= &init_mem_cgroup
;
1008 init_mm
.mem_cgroup
= mem
;
1010 mem
= kzalloc(sizeof(struct mem_cgroup
), GFP_KERNEL
);
1013 return ERR_PTR(-ENOMEM
);
1015 res_counter_init(&mem
->res
);
1017 memset(&mem
->info
, 0, sizeof(mem
->info
));
1019 for_each_node_state(node
, N_POSSIBLE
)
1020 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
1025 for_each_node_state(node
, N_POSSIBLE
)
1026 free_mem_cgroup_per_zone_info(mem
, node
);
1027 if (cont
->parent
!= NULL
)
1029 return ERR_PTR(-ENOMEM
);
1032 static void mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
1033 struct cgroup
*cont
)
1035 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1036 mem_cgroup_force_empty(mem
);
1039 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
1040 struct cgroup
*cont
)
1043 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1045 for_each_node_state(node
, N_POSSIBLE
)
1046 free_mem_cgroup_per_zone_info(mem
, node
);
1048 kfree(mem_cgroup_from_cont(cont
));
1051 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
1052 struct cgroup
*cont
)
1054 return cgroup_add_files(cont
, ss
, mem_cgroup_files
,
1055 ARRAY_SIZE(mem_cgroup_files
));
1058 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
1059 struct cgroup
*cont
,
1060 struct cgroup
*old_cont
,
1061 struct task_struct
*p
)
1063 struct mm_struct
*mm
;
1064 struct mem_cgroup
*mem
, *old_mem
;
1066 mm
= get_task_mm(p
);
1070 mem
= mem_cgroup_from_cont(cont
);
1071 old_mem
= mem_cgroup_from_cont(old_cont
);
1077 * Only thread group leaders are allowed to migrate, the mm_struct is
1078 * in effect owned by the leader
1080 if (p
->tgid
!= p
->pid
)
1084 rcu_assign_pointer(mm
->mem_cgroup
, mem
);
1085 css_put(&old_mem
->css
);
1091 struct cgroup_subsys mem_cgroup_subsys
= {
1093 .subsys_id
= mem_cgroup_subsys_id
,
1094 .create
= mem_cgroup_create
,
1095 .pre_destroy
= mem_cgroup_pre_destroy
,
1096 .destroy
= mem_cgroup_destroy
,
1097 .populate
= mem_cgroup_populate
,
1098 .attach
= mem_cgroup_move_task
,