Blackfin serial driver: pending a unique anomaly id, tie the break flood issue to...
[wrt350n-kernel.git] / drivers / edac / edac_core.h
blobe80af67664cc72829fbd0caad82a7ba50c60c5c2
1 /*
2 * Defines, structures, APIs for edac_core module
4 * (C) 2007 Linux Networx (http://lnxi.com)
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
8 * Written by Thayne Harbaugh
9 * Based on work by Dan Hollis <goemon at anime dot net> and others.
10 * http://www.anime.net/~goemon/linux-ecc/
12 * NMI handling support added by
13 * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
15 * Refactored for multi-source files:
16 * Doug Thompson <norsk5@xmission.com>
20 #ifndef _EDAC_CORE_H_
21 #define _EDAC_CORE_H_
23 #include <linux/kernel.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/spinlock.h>
27 #include <linux/smp.h>
28 #include <linux/pci.h>
29 #include <linux/time.h>
30 #include <linux/nmi.h>
31 #include <linux/rcupdate.h>
32 #include <linux/completion.h>
33 #include <linux/kobject.h>
34 #include <linux/platform_device.h>
35 #include <linux/sysdev.h>
36 #include <linux/workqueue.h>
37 #include <linux/version.h>
39 #define EDAC_MC_LABEL_LEN 31
40 #define EDAC_DEVICE_NAME_LEN 31
41 #define EDAC_ATTRIB_VALUE_LEN 15
42 #define MC_PROC_NAME_MAX_LEN 7
44 #if PAGE_SHIFT < 20
45 #define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) )
46 #else /* PAGE_SHIFT > 20 */
47 #define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) )
48 #endif
50 #define edac_printk(level, prefix, fmt, arg...) \
51 printk(level "EDAC " prefix ": " fmt, ##arg)
53 #define edac_mc_printk(mci, level, fmt, arg...) \
54 printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
56 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
57 printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
59 /* edac_device printk */
60 #define edac_device_printk(ctl, level, fmt, arg...) \
61 printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)
63 /* edac_pci printk */
64 #define edac_pci_printk(ctl, level, fmt, arg...) \
65 printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg)
67 /* prefixes for edac_printk() and edac_mc_printk() */
68 #define EDAC_MC "MC"
69 #define EDAC_PCI "PCI"
70 #define EDAC_DEBUG "DEBUG"
72 #ifdef CONFIG_EDAC_DEBUG
73 extern int edac_debug_level;
75 #define edac_debug_printk(level, fmt, arg...) \
76 do { \
77 if (level <= edac_debug_level) \
78 edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
79 } while(0)
81 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
82 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
83 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
84 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
85 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
87 #else /* !CONFIG_EDAC_DEBUG */
89 #define debugf0( ... )
90 #define debugf1( ... )
91 #define debugf2( ... )
92 #define debugf3( ... )
93 #define debugf4( ... )
95 #endif /* !CONFIG_EDAC_DEBUG */
97 #define BIT(x) (1 << (x))
99 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
100 PCI_DEVICE_ID_ ## vend ## _ ## dev
102 #define dev_name(dev) (dev)->dev_name
104 /* memory devices */
105 enum dev_type {
106 DEV_UNKNOWN = 0,
107 DEV_X1,
108 DEV_X2,
109 DEV_X4,
110 DEV_X8,
111 DEV_X16,
112 DEV_X32, /* Do these parts exist? */
113 DEV_X64 /* Do these parts exist? */
116 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
117 #define DEV_FLAG_X1 BIT(DEV_X1)
118 #define DEV_FLAG_X2 BIT(DEV_X2)
119 #define DEV_FLAG_X4 BIT(DEV_X4)
120 #define DEV_FLAG_X8 BIT(DEV_X8)
121 #define DEV_FLAG_X16 BIT(DEV_X16)
122 #define DEV_FLAG_X32 BIT(DEV_X32)
123 #define DEV_FLAG_X64 BIT(DEV_X64)
125 /* memory types */
126 enum mem_type {
127 MEM_EMPTY = 0, /* Empty csrow */
128 MEM_RESERVED, /* Reserved csrow type */
129 MEM_UNKNOWN, /* Unknown csrow type */
130 MEM_FPM, /* Fast page mode */
131 MEM_EDO, /* Extended data out */
132 MEM_BEDO, /* Burst Extended data out */
133 MEM_SDR, /* Single data rate SDRAM */
134 MEM_RDR, /* Registered single data rate SDRAM */
135 MEM_DDR, /* Double data rate SDRAM */
136 MEM_RDDR, /* Registered Double data rate SDRAM */
137 MEM_RMBS, /* Rambus DRAM */
138 MEM_DDR2, /* DDR2 RAM */
139 MEM_FB_DDR2, /* fully buffered DDR2 */
140 MEM_RDDR2, /* Registered DDR2 RAM */
143 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
144 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
145 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
146 #define MEM_FLAG_FPM BIT(MEM_FPM)
147 #define MEM_FLAG_EDO BIT(MEM_EDO)
148 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
149 #define MEM_FLAG_SDR BIT(MEM_SDR)
150 #define MEM_FLAG_RDR BIT(MEM_RDR)
151 #define MEM_FLAG_DDR BIT(MEM_DDR)
152 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
153 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
154 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
155 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
156 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
158 /* chipset Error Detection and Correction capabilities and mode */
159 enum edac_type {
160 EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
161 EDAC_NONE, /* Doesnt support ECC */
162 EDAC_RESERVED, /* Reserved ECC type */
163 EDAC_PARITY, /* Detects parity errors */
164 EDAC_EC, /* Error Checking - no correction */
165 EDAC_SECDED, /* Single bit error correction, Double detection */
166 EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
167 EDAC_S4ECD4ED, /* Chipkill x4 devices */
168 EDAC_S8ECD8ED, /* Chipkill x8 devices */
169 EDAC_S16ECD16ED, /* Chipkill x16 devices */
172 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
173 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
174 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
175 #define EDAC_FLAG_EC BIT(EDAC_EC)
176 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
177 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
178 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
179 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
180 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
182 /* scrubbing capabilities */
183 enum scrub_type {
184 SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
185 SCRUB_NONE, /* No scrubber */
186 SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
187 SCRUB_SW_SRC, /* Software scrub only errors */
188 SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
189 SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
190 SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
191 SCRUB_HW_SRC, /* Hardware scrub only errors */
192 SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
193 SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
196 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
197 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
198 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
199 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
200 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
201 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
202 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
203 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
205 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
207 /* EDAC internal operation states */
208 #define OP_ALLOC 0x100
209 #define OP_RUNNING_POLL 0x201
210 #define OP_RUNNING_INTERRUPT 0x202
211 #define OP_RUNNING_POLL_INTR 0x203
212 #define OP_OFFLINE 0x300
215 * There are several things to be aware of that aren't at all obvious:
218 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
220 * These are some of the many terms that are thrown about that don't always
221 * mean what people think they mean (Inconceivable!). In the interest of
222 * creating a common ground for discussion, terms and their definitions
223 * will be established.
225 * Memory devices: The individual chip on a memory stick. These devices
226 * commonly output 4 and 8 bits each. Grouping several
227 * of these in parallel provides 64 bits which is common
228 * for a memory stick.
230 * Memory Stick: A printed circuit board that agregates multiple
231 * memory devices in parallel. This is the atomic
232 * memory component that is purchaseable by Joe consumer
233 * and loaded into a memory socket.
235 * Socket: A physical connector on the motherboard that accepts
236 * a single memory stick.
238 * Channel: Set of memory devices on a memory stick that must be
239 * grouped in parallel with one or more additional
240 * channels from other memory sticks. This parallel
241 * grouping of the output from multiple channels are
242 * necessary for the smallest granularity of memory access.
243 * Some memory controllers are capable of single channel -
244 * which means that memory sticks can be loaded
245 * individually. Other memory controllers are only
246 * capable of dual channel - which means that memory
247 * sticks must be loaded as pairs (see "socket set").
249 * Chip-select row: All of the memory devices that are selected together.
250 * for a single, minimum grain of memory access.
251 * This selects all of the parallel memory devices across
252 * all of the parallel channels. Common chip-select rows
253 * for single channel are 64 bits, for dual channel 128
254 * bits.
256 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
257 * Motherboards commonly drive two chip-select pins to
258 * a memory stick. A single-ranked stick, will occupy
259 * only one of those rows. The other will be unused.
261 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
262 * access different sets of memory devices. The two
263 * rows cannot be accessed concurrently.
265 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
266 * A double-sided stick has two chip-select rows which
267 * access different sets of memory devices. The two
268 * rows cannot be accessed concurrently. "Double-sided"
269 * is irrespective of the memory devices being mounted
270 * on both sides of the memory stick.
272 * Socket set: All of the memory sticks that are required for for
273 * a single memory access or all of the memory sticks
274 * spanned by a chip-select row. A single socket set
275 * has two chip-select rows and if double-sided sticks
276 * are used these will occupy those chip-select rows.
278 * Bank: This term is avoided because it is unclear when
279 * needing to distinguish between chip-select rows and
280 * socket sets.
282 * Controller pages:
284 * Physical pages:
286 * Virtual pages:
289 * STRUCTURE ORGANIZATION AND CHOICES
293 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
296 struct channel_info {
297 int chan_idx; /* channel index */
298 u32 ce_count; /* Correctable Errors for this CHANNEL */
299 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
300 struct csrow_info *csrow; /* the parent */
303 struct csrow_info {
304 unsigned long first_page; /* first page number in dimm */
305 unsigned long last_page; /* last page number in dimm */
306 unsigned long page_mask; /* used for interleaving -
307 * 0UL for non intlv
309 u32 nr_pages; /* number of pages in csrow */
310 u32 grain; /* granularity of reported error in bytes */
311 int csrow_idx; /* the chip-select row */
312 enum dev_type dtype; /* memory device type */
313 u32 ue_count; /* Uncorrectable Errors for this csrow */
314 u32 ce_count; /* Correctable Errors for this csrow */
315 enum mem_type mtype; /* memory csrow type */
316 enum edac_type edac_mode; /* EDAC mode for this csrow */
317 struct mem_ctl_info *mci; /* the parent */
319 struct kobject kobj; /* sysfs kobject for this csrow */
321 /* channel information for this csrow */
322 u32 nr_channels;
323 struct channel_info *channels;
326 /* mcidev_sysfs_attribute structure
327 * used for driver sysfs attributes and in mem_ctl_info
328 * sysfs top level entries
330 struct mcidev_sysfs_attribute {
331 struct attribute attr;
332 ssize_t (*show)(struct mem_ctl_info *,char *);
333 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
336 /* MEMORY controller information structure
338 struct mem_ctl_info {
339 struct list_head link; /* for global list of mem_ctl_info structs */
341 struct module *owner; /* Module owner of this control struct */
343 unsigned long mtype_cap; /* memory types supported by mc */
344 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
345 unsigned long edac_cap; /* configuration capabilities - this is
346 * closely related to edac_ctl_cap. The
347 * difference is that the controller may be
348 * capable of s4ecd4ed which would be listed
349 * in edac_ctl_cap, but if channels aren't
350 * capable of s4ecd4ed then the edac_cap would
351 * not have that capability.
353 unsigned long scrub_cap; /* chipset scrub capabilities */
354 enum scrub_type scrub_mode; /* current scrub mode */
356 /* Translates sdram memory scrub rate given in bytes/sec to the
357 internal representation and configures whatever else needs
358 to be configured.
360 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);
362 /* Get the current sdram memory scrub rate from the internal
363 representation and converts it to the closest matching
364 bandwith in bytes/sec.
366 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);
369 /* pointer to edac checking routine */
370 void (*edac_check) (struct mem_ctl_info * mci);
373 * Remaps memory pages: controller pages to physical pages.
374 * For most MC's, this will be NULL.
376 /* FIXME - why not send the phys page to begin with? */
377 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
378 unsigned long page);
379 int mc_idx;
380 int nr_csrows;
381 struct csrow_info *csrows;
383 * FIXME - what about controllers on other busses? - IDs must be
384 * unique. dev pointer should be sufficiently unique, but
385 * BUS:SLOT.FUNC numbers may not be unique.
387 struct device *dev;
388 const char *mod_name;
389 const char *mod_ver;
390 const char *ctl_name;
391 const char *dev_name;
392 char proc_name[MC_PROC_NAME_MAX_LEN + 1];
393 void *pvt_info;
394 u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
395 u32 ce_noinfo_count; /* Correctable Errors w/o info */
396 u32 ue_count; /* Total Uncorrectable Errors for this MC */
397 u32 ce_count; /* Total Correctable Errors for this MC */
398 unsigned long start_time; /* mci load start time (in jiffies) */
400 /* this stuff is for safe removal of mc devices from global list while
401 * NMI handlers may be traversing list
403 struct rcu_head rcu;
404 struct completion complete;
406 /* edac sysfs device control */
407 struct kobject edac_mci_kobj;
409 /* Additional top controller level attributes, but specified
410 * by the low level driver.
412 * Set by the low level driver to provide attributes at the
413 * controller level, same level as 'ue_count' and 'ce_count' above.
414 * An array of structures, NULL terminated
416 * If attributes are desired, then set to array of attributes
417 * If no attributes are desired, leave NULL
419 struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
421 /* work struct for this MC */
422 struct delayed_work work;
424 /* the internal state of this controller instance */
425 int op_state;
429 * The following are the structures to provide for a generic
430 * or abstract 'edac_device'. This set of structures and the
431 * code that implements the APIs for the same, provide for
432 * registering EDAC type devices which are NOT standard memory.
434 * CPU caches (L1 and L2)
435 * DMA engines
436 * Core CPU swithces
437 * Fabric switch units
438 * PCIe interface controllers
439 * other EDAC/ECC type devices that can be monitored for
440 * errors, etc.
442 * It allows for a 2 level set of hiearchry. For example:
444 * cache could be composed of L1, L2 and L3 levels of cache.
445 * Each CPU core would have its own L1 cache, while sharing
446 * L2 and maybe L3 caches.
448 * View them arranged, via the sysfs presentation:
449 * /sys/devices/system/edac/..
451 * mc/ <existing memory device directory>
452 * cpu/cpu0/.. <L1 and L2 block directory>
453 * /L1-cache/ce_count
454 * /ue_count
455 * /L2-cache/ce_count
456 * /ue_count
457 * cpu/cpu1/.. <L1 and L2 block directory>
458 * /L1-cache/ce_count
459 * /ue_count
460 * /L2-cache/ce_count
461 * /ue_count
462 * ...
464 * the L1 and L2 directories would be "edac_device_block's"
467 struct edac_device_counter {
468 u32 ue_count;
469 u32 ce_count;
472 /* forward reference */
473 struct edac_device_ctl_info;
474 struct edac_device_block;
476 /* edac_dev_sysfs_attribute structure
477 * used for driver sysfs attributes in mem_ctl_info
478 * for extra controls and attributes:
479 * like high level error Injection controls
481 struct edac_dev_sysfs_attribute {
482 struct attribute attr;
483 ssize_t (*show)(struct edac_device_ctl_info *, char *);
484 ssize_t (*store)(struct edac_device_ctl_info *, const char *, size_t);
487 /* edac_dev_sysfs_block_attribute structure
489 * used in leaf 'block' nodes for adding controls/attributes
491 * each block in each instance of the containing control structure
492 * can have an array of the following. The show and store functions
493 * will be filled in with the show/store function in the
494 * low level driver.
496 * The 'value' field will be the actual value field used for
497 * counting
499 struct edac_dev_sysfs_block_attribute {
500 struct attribute attr;
501 ssize_t (*show)(struct kobject *, struct attribute *, char *);
502 ssize_t (*store)(struct kobject *, struct attribute *,
503 const char *, size_t);
504 struct edac_device_block *block;
506 unsigned int value;
509 /* device block control structure */
510 struct edac_device_block {
511 struct edac_device_instance *instance; /* Up Pointer */
512 char name[EDAC_DEVICE_NAME_LEN + 1];
514 struct edac_device_counter counters; /* basic UE and CE counters */
516 int nr_attribs; /* how many attributes */
518 /* this block's attributes, could be NULL */
519 struct edac_dev_sysfs_block_attribute *block_attributes;
521 /* edac sysfs device control */
522 struct kobject kobj;
525 /* device instance control structure */
526 struct edac_device_instance {
527 struct edac_device_ctl_info *ctl; /* Up pointer */
528 char name[EDAC_DEVICE_NAME_LEN + 4];
530 struct edac_device_counter counters; /* instance counters */
532 u32 nr_blocks; /* how many blocks */
533 struct edac_device_block *blocks; /* block array */
535 /* edac sysfs device control */
536 struct kobject kobj;
541 * Abstract edac_device control info structure
544 struct edac_device_ctl_info {
545 /* for global list of edac_device_ctl_info structs */
546 struct list_head link;
548 struct module *owner; /* Module owner of this control struct */
550 int dev_idx;
552 /* Per instance controls for this edac_device */
553 int log_ue; /* boolean for logging UEs */
554 int log_ce; /* boolean for logging CEs */
555 int panic_on_ue; /* boolean for panic'ing on an UE */
556 unsigned poll_msec; /* number of milliseconds to poll interval */
557 unsigned long delay; /* number of jiffies for poll_msec */
559 /* Additional top controller level attributes, but specified
560 * by the low level driver.
562 * Set by the low level driver to provide attributes at the
563 * controller level, same level as 'ue_count' and 'ce_count' above.
564 * An array of structures, NULL terminated
566 * If attributes are desired, then set to array of attributes
567 * If no attributes are desired, leave NULL
569 struct edac_dev_sysfs_attribute *sysfs_attributes;
571 /* pointer to main 'edac' class in sysfs */
572 struct sysdev_class *edac_class;
574 /* the internal state of this controller instance */
575 int op_state;
576 /* work struct for this instance */
577 struct delayed_work work;
579 /* pointer to edac polling checking routine:
580 * If NOT NULL: points to polling check routine
581 * If NULL: Then assumes INTERRUPT operation, where
582 * MC driver will receive events
584 void (*edac_check) (struct edac_device_ctl_info * edac_dev);
586 struct device *dev; /* pointer to device structure */
588 const char *mod_name; /* module name */
589 const char *ctl_name; /* edac controller name */
590 const char *dev_name; /* pci/platform/etc... name */
592 void *pvt_info; /* pointer to 'private driver' info */
594 unsigned long start_time; /* edac_device load start time (jiffies) */
596 /* these are for safe removal of mc devices from global list while
597 * NMI handlers may be traversing list
599 struct rcu_head rcu;
600 struct completion removal_complete;
602 /* sysfs top name under 'edac' directory
603 * and instance name:
604 * cpu/cpu0/...
605 * cpu/cpu1/...
606 * cpu/cpu2/...
607 * ...
609 char name[EDAC_DEVICE_NAME_LEN + 1];
611 /* Number of instances supported on this control structure
612 * and the array of those instances
614 u32 nr_instances;
615 struct edac_device_instance *instances;
617 /* Event counters for the this whole EDAC Device */
618 struct edac_device_counter counters;
620 /* edac sysfs device control for the 'name'
621 * device this structure controls
623 struct kobject kobj;
626 /* To get from the instance's wq to the beginning of the ctl structure */
627 #define to_edac_mem_ctl_work(w) \
628 container_of(w, struct mem_ctl_info, work)
630 #define to_edac_device_ctl_work(w) \
631 container_of(w,struct edac_device_ctl_info,work)
634 * The alloc() and free() functions for the 'edac_device' control info
635 * structure. A MC driver will allocate one of these for each edac_device
636 * it is going to control/register with the EDAC CORE.
638 extern struct edac_device_ctl_info *edac_device_alloc_ctl_info(
639 unsigned sizeof_private,
640 char *edac_device_name, unsigned nr_instances,
641 char *edac_block_name, unsigned nr_blocks,
642 unsigned offset_value,
643 struct edac_dev_sysfs_block_attribute *block_attributes,
644 unsigned nr_attribs,
645 int device_index);
647 /* The offset value can be:
648 * -1 indicating no offset value
649 * 0 for zero-based block numbers
650 * 1 for 1-based block number
651 * other for other-based block number
653 #define BLOCK_OFFSET_VALUE_OFF ((unsigned) -1)
655 extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info);
657 #ifdef CONFIG_PCI
659 struct edac_pci_counter {
660 atomic_t pe_count;
661 atomic_t npe_count;
665 * Abstract edac_pci control info structure
668 struct edac_pci_ctl_info {
669 /* for global list of edac_pci_ctl_info structs */
670 struct list_head link;
672 int pci_idx;
674 struct sysdev_class *edac_class; /* pointer to class */
676 /* the internal state of this controller instance */
677 int op_state;
678 /* work struct for this instance */
679 struct delayed_work work;
681 /* pointer to edac polling checking routine:
682 * If NOT NULL: points to polling check routine
683 * If NULL: Then assumes INTERRUPT operation, where
684 * MC driver will receive events
686 void (*edac_check) (struct edac_pci_ctl_info * edac_dev);
688 struct device *dev; /* pointer to device structure */
690 const char *mod_name; /* module name */
691 const char *ctl_name; /* edac controller name */
692 const char *dev_name; /* pci/platform/etc... name */
694 void *pvt_info; /* pointer to 'private driver' info */
696 unsigned long start_time; /* edac_pci load start time (jiffies) */
698 /* these are for safe removal of devices from global list while
699 * NMI handlers may be traversing list
701 struct rcu_head rcu;
702 struct completion complete;
704 /* sysfs top name under 'edac' directory
705 * and instance name:
706 * cpu/cpu0/...
707 * cpu/cpu1/...
708 * cpu/cpu2/...
709 * ...
711 char name[EDAC_DEVICE_NAME_LEN + 1];
713 /* Event counters for the this whole EDAC Device */
714 struct edac_pci_counter counters;
716 /* edac sysfs device control for the 'name'
717 * device this structure controls
719 struct kobject kobj;
720 struct completion kobj_complete;
723 #define to_edac_pci_ctl_work(w) \
724 container_of(w, struct edac_pci_ctl_info,work)
726 /* write all or some bits in a byte-register*/
727 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
728 u8 mask)
730 if (mask != 0xff) {
731 u8 buf;
733 pci_read_config_byte(pdev, offset, &buf);
734 value &= mask;
735 buf &= ~mask;
736 value |= buf;
739 pci_write_config_byte(pdev, offset, value);
742 /* write all or some bits in a word-register*/
743 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
744 u16 value, u16 mask)
746 if (mask != 0xffff) {
747 u16 buf;
749 pci_read_config_word(pdev, offset, &buf);
750 value &= mask;
751 buf &= ~mask;
752 value |= buf;
755 pci_write_config_word(pdev, offset, value);
758 /* write all or some bits in a dword-register*/
759 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
760 u32 value, u32 mask)
762 if (mask != 0xffff) {
763 u32 buf;
765 pci_read_config_dword(pdev, offset, &buf);
766 value &= mask;
767 buf &= ~mask;
768 value |= buf;
771 pci_write_config_dword(pdev, offset, value);
774 #endif /* CONFIG_PCI */
776 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
777 unsigned nr_chans, int edac_index);
778 extern int edac_mc_add_mc(struct mem_ctl_info *mci);
779 extern void edac_mc_free(struct mem_ctl_info *mci);
780 extern struct mem_ctl_info *edac_mc_find(int idx);
781 extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev);
782 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
783 unsigned long page);
786 * The no info errors are used when error overflows are reported.
787 * There are a limited number of error logging registers that can
788 * be exausted. When all registers are exhausted and an additional
789 * error occurs then an error overflow register records that an
790 * error occured and the type of error, but doesn't have any
791 * further information. The ce/ue versions make for cleaner
792 * reporting logic and function interface - reduces conditional
793 * statement clutter and extra function arguments.
795 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
796 unsigned long page_frame_number,
797 unsigned long offset_in_page,
798 unsigned long syndrome, int row, int channel,
799 const char *msg);
800 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
801 const char *msg);
802 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
803 unsigned long page_frame_number,
804 unsigned long offset_in_page, int row,
805 const char *msg);
806 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
807 const char *msg);
808 extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, unsigned int csrow,
809 unsigned int channel0, unsigned int channel1,
810 char *msg);
811 extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, unsigned int csrow,
812 unsigned int channel, char *msg);
815 * edac_device APIs
817 extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev);
818 extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev);
819 extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
820 int inst_nr, int block_nr, const char *msg);
821 extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
822 int inst_nr, int block_nr, const char *msg);
825 * edac_pci APIs
827 extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt,
828 const char *edac_pci_name);
830 extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci);
832 extern void edac_pci_reset_delay_period(struct edac_pci_ctl_info *pci,
833 unsigned long value);
835 extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx);
836 extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev);
838 extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl(
839 struct device *dev,
840 const char *mod_name);
842 extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci);
843 extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci);
844 extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci);
847 * edac misc APIs
849 extern char *edac_op_state_to_string(int op_state);
851 #endif /* _EDAC_CORE_H_ */