x86: pit_clockevent can be static
[wrt350n-kernel.git] / include / asm-powerpc / io.h
blob7be26f615755ad5a80c84aa3867facf781f3db03
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
5 /*
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 /* Check of existence of legacy devices */
13 extern int check_legacy_ioport(unsigned long base_port);
14 #define I8042_DATA_REG 0x60
15 #define FDC_BASE 0x3f0
16 /* only relevant for PReP */
17 #define _PIDXR 0x279
18 #define _PNPWRP 0xa79
19 #define PNPBIOS_BASE 0xf000
21 #include <linux/compiler.h>
22 #include <asm/page.h>
23 #include <asm/byteorder.h>
24 #include <asm/synch.h>
25 #include <asm/delay.h>
26 #include <asm/mmu.h>
28 #include <asm-generic/iomap.h>
30 #ifdef CONFIG_PPC64
31 #include <asm/paca.h>
32 #endif
34 #define SIO_CONFIG_RA 0x398
35 #define SIO_CONFIG_RD 0x399
37 #define SLOW_DOWN_IO
39 /* 32 bits uses slightly different variables for the various IO
40 * bases. Most of this file only uses _IO_BASE though which we
41 * define properly based on the platform
43 #ifndef CONFIG_PCI
44 #define _IO_BASE 0
45 #define _ISA_MEM_BASE 0
46 #define PCI_DRAM_OFFSET 0
47 #elif defined(CONFIG_PPC32)
48 #define _IO_BASE isa_io_base
49 #define _ISA_MEM_BASE isa_mem_base
50 #define PCI_DRAM_OFFSET pci_dram_offset
51 #else
52 #define _IO_BASE pci_io_base
53 #define _ISA_MEM_BASE isa_mem_base
54 #define PCI_DRAM_OFFSET 0
55 #endif
57 extern unsigned long isa_io_base;
58 extern unsigned long pci_io_base;
59 extern unsigned long pci_dram_offset;
61 extern resource_size_t isa_mem_base;
63 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO)
64 #error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits
65 #endif
69 * Low level MMIO accessors
71 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
72 * specific and thus shouldn't be used in generic code. The accessors
73 * provided here are:
75 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
76 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
77 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
79 * Those operate directly on a kernel virtual address. Note that the prototype
80 * for the out_* accessors has the arguments in opposite order from the usual
81 * linux PCI accessors. Unlike those, they take the address first and the value
82 * next.
84 * Note: I might drop the _ns suffix on the stream operations soon as it is
85 * simply normal for stream operations to not swap in the first place.
89 #ifdef CONFIG_PPC64
90 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
91 #else
92 #define IO_SET_SYNC_FLAG()
93 #endif
95 #define DEF_MMIO_IN(name, type, insn) \
96 static inline type name(const volatile type __iomem *addr) \
97 { \
98 type ret; \
99 __asm__ __volatile__("sync;" insn ";twi 0,%0,0;isync" \
100 : "=r" (ret) : "r" (addr), "m" (*addr)); \
101 return ret; \
104 #define DEF_MMIO_OUT(name, type, insn) \
105 static inline void name(volatile type __iomem *addr, type val) \
107 __asm__ __volatile__("sync;" insn \
108 : "=m" (*addr) : "r" (val), "r" (addr)); \
109 IO_SET_SYNC_FLAG(); \
113 #define DEF_MMIO_IN_BE(name, size, insn) \
114 DEF_MMIO_IN(name, u##size, __stringify(insn)"%U2%X2 %0,%2")
115 #define DEF_MMIO_IN_LE(name, size, insn) \
116 DEF_MMIO_IN(name, u##size, __stringify(insn)" %0,0,%1")
118 #define DEF_MMIO_OUT_BE(name, size, insn) \
119 DEF_MMIO_OUT(name, u##size, __stringify(insn)"%U0%X0 %1,%0")
120 #define DEF_MMIO_OUT_LE(name, size, insn) \
121 DEF_MMIO_OUT(name, u##size, __stringify(insn)" %1,0,%2")
123 DEF_MMIO_IN_BE(in_8, 8, lbz);
124 DEF_MMIO_IN_BE(in_be16, 16, lhz);
125 DEF_MMIO_IN_BE(in_be32, 32, lwz);
126 DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
127 DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
129 DEF_MMIO_OUT_BE(out_8, 8, stb);
130 DEF_MMIO_OUT_BE(out_be16, 16, sth);
131 DEF_MMIO_OUT_BE(out_be32, 32, stw);
132 DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
133 DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
135 #ifdef __powerpc64__
136 DEF_MMIO_OUT_BE(out_be64, 64, std);
137 DEF_MMIO_IN_BE(in_be64, 64, ld);
139 /* There is no asm instructions for 64 bits reverse loads and stores */
140 static inline u64 in_le64(const volatile u64 __iomem *addr)
142 return swab64(in_be64(addr));
145 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
147 out_be64(addr, swab64(val));
149 #endif /* __powerpc64__ */
152 * Low level IO stream instructions are defined out of line for now
154 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
155 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
156 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
157 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
158 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
159 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
161 /* The _ns naming is historical and will be removed. For now, just #define
162 * the non _ns equivalent names
164 #define _insw _insw_ns
165 #define _insl _insl_ns
166 #define _outsw _outsw_ns
167 #define _outsl _outsl_ns
171 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
174 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
175 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
176 unsigned long n);
177 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
178 unsigned long n);
182 * PCI and standard ISA accessors
184 * Those are globally defined linux accessors for devices on PCI or ISA
185 * busses. They follow the Linux defined semantics. The current implementation
186 * for PowerPC is as close as possible to the x86 version of these, and thus
187 * provides fairly heavy weight barriers for the non-raw versions
189 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
190 * allowing the platform to provide its own implementation of some or all
191 * of the accessors.
195 * Include the EEH definitions when EEH is enabled only so they don't get
196 * in the way when building for 32 bits
198 #ifdef CONFIG_EEH
199 #include <asm/eeh.h>
200 #endif
202 /* Shortcut to the MMIO argument pointer */
203 #define PCI_IO_ADDR volatile void __iomem *
205 /* Indirect IO address tokens:
207 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
208 * on all IOs. (Note that this is all 64 bits only for now)
210 * To help platforms who may need to differenciate MMIO addresses in
211 * their hooks, a bitfield is reserved for use by the platform near the
212 * top of MMIO addresses (not PIO, those have to cope the hard way).
214 * This bit field is 12 bits and is at the top of the IO virtual
215 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
217 * The kernel virtual space is thus:
219 * 0xD000000000000000 : vmalloc
220 * 0xD000080000000000 : PCI PHB IO space
221 * 0xD000080080000000 : ioremap
222 * 0xD0000fffffffffff : end of ioremap region
224 * Since the top 4 bits are reserved as the region ID, we use thus
225 * the next 12 bits and keep 4 bits available for the future if the
226 * virtual address space is ever to be extended.
228 * The direct IO mapping operations will then mask off those bits
229 * before doing the actual access, though that only happen when
230 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
231 * mechanism
234 #ifdef CONFIG_PPC_INDIRECT_IO
235 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
236 #define PCI_IO_IND_TOKEN_SHIFT 48
237 #define PCI_FIX_ADDR(addr) \
238 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
239 #define PCI_GET_ADDR_TOKEN(addr) \
240 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
241 PCI_IO_IND_TOKEN_SHIFT)
242 #define PCI_SET_ADDR_TOKEN(addr, token) \
243 do { \
244 unsigned long __a = (unsigned long)(addr); \
245 __a &= ~PCI_IO_IND_TOKEN_MASK; \
246 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
247 (addr) = (void __iomem *)__a; \
248 } while(0)
249 #else
250 #define PCI_FIX_ADDR(addr) (addr)
251 #endif
255 * Non ordered and non-swapping "raw" accessors
258 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
260 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
262 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
264 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
266 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
268 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
270 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
272 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
274 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
276 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
278 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
280 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
283 #ifdef __powerpc64__
284 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
286 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
288 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
290 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
292 #endif /* __powerpc64__ */
296 * PCI PIO and MMIO accessors.
299 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
300 * machine checks (which they occasionally do when probing non existing
301 * IO ports on some platforms, like PowerMac and 8xx).
302 * I always found it to be of dubious reliability and I am tempted to get
303 * rid of it one of these days. So if you think it's important to keep it,
304 * please voice up asap. We never had it for 64 bits and I do not intend
305 * to port it over
308 #ifdef CONFIG_PPC32
310 #define __do_in_asm(name, op) \
311 static inline unsigned int name(unsigned int port) \
313 unsigned int x; \
314 __asm__ __volatile__( \
315 "sync\n" \
316 "0:" op " %0,0,%1\n" \
317 "1: twi 0,%0,0\n" \
318 "2: isync\n" \
319 "3: nop\n" \
320 "4:\n" \
321 ".section .fixup,\"ax\"\n" \
322 "5: li %0,-1\n" \
323 " b 4b\n" \
324 ".previous\n" \
325 ".section __ex_table,\"a\"\n" \
326 " .align 2\n" \
327 " .long 0b,5b\n" \
328 " .long 1b,5b\n" \
329 " .long 2b,5b\n" \
330 " .long 3b,5b\n" \
331 ".previous" \
332 : "=&r" (x) \
333 : "r" (port + _IO_BASE)); \
334 return x; \
337 #define __do_out_asm(name, op) \
338 static inline void name(unsigned int val, unsigned int port) \
340 __asm__ __volatile__( \
341 "sync\n" \
342 "0:" op " %0,0,%1\n" \
343 "1: sync\n" \
344 "2:\n" \
345 ".section __ex_table,\"a\"\n" \
346 " .align 2\n" \
347 " .long 0b,2b\n" \
348 " .long 1b,2b\n" \
349 ".previous" \
350 : : "r" (val), "r" (port + _IO_BASE)); \
353 __do_in_asm(_rec_inb, "lbzx")
354 __do_in_asm(_rec_inw, "lhbrx")
355 __do_in_asm(_rec_inl, "lwbrx")
356 __do_out_asm(_rec_outb, "stbx")
357 __do_out_asm(_rec_outw, "sthbrx")
358 __do_out_asm(_rec_outl, "stwbrx")
360 #endif /* CONFIG_PPC32 */
362 /* The "__do_*" operations below provide the actual "base" implementation
363 * for each of the defined acccessor. Some of them use the out_* functions
364 * directly, some of them still use EEH, though we might change that in the
365 * future. Those macros below provide the necessary argument swapping and
366 * handling of the IO base for PIO.
368 * They are themselves used by the macros that define the actual accessors
369 * and can be used by the hooks if any.
371 * Note that PIO operations are always defined in terms of their corresonding
372 * MMIO operations. That allows platforms like iSeries who want to modify the
373 * behaviour of both to only hook on the MMIO version and get both. It's also
374 * possible to hook directly at the toplevel PIO operation if they have to
375 * be handled differently
377 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
378 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
379 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
380 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
381 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
382 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
383 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
385 #ifdef CONFIG_EEH
386 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
387 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
388 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
389 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
390 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
391 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
392 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
393 #else /* CONFIG_EEH */
394 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
395 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
396 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
397 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
398 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
399 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
400 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
401 #endif /* !defined(CONFIG_EEH) */
403 #ifdef CONFIG_PPC32
404 #define __do_outb(val, port) _rec_outb(val, port)
405 #define __do_outw(val, port) _rec_outw(val, port)
406 #define __do_outl(val, port) _rec_outl(val, port)
407 #define __do_inb(port) _rec_inb(port)
408 #define __do_inw(port) _rec_inw(port)
409 #define __do_inl(port) _rec_inl(port)
410 #else /* CONFIG_PPC32 */
411 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
412 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
413 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
414 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
415 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
416 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
417 #endif /* !CONFIG_PPC32 */
419 #ifdef CONFIG_EEH
420 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
421 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
422 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
423 #else /* CONFIG_EEH */
424 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
425 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
426 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
427 #endif /* !CONFIG_EEH */
428 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
429 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
430 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
432 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
433 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
434 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
435 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
436 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
437 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
439 #define __do_memset_io(addr, c, n) \
440 _memset_io(PCI_FIX_ADDR(addr), c, n)
441 #define __do_memcpy_toio(dst, src, n) \
442 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
444 #ifdef CONFIG_EEH
445 #define __do_memcpy_fromio(dst, src, n) \
446 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
447 #else /* CONFIG_EEH */
448 #define __do_memcpy_fromio(dst, src, n) \
449 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
450 #endif /* !CONFIG_EEH */
452 #ifdef CONFIG_PPC_INDIRECT_IO
453 #define DEF_PCI_HOOK(x) x
454 #else
455 #define DEF_PCI_HOOK(x) NULL
456 #endif
458 /* Structure containing all the hooks */
459 extern struct ppc_pci_io {
461 #define DEF_PCI_AC_RET(name, ret, at, al) ret (*name) at;
462 #define DEF_PCI_AC_NORET(name, at, al) void (*name) at;
464 #include <asm/io-defs.h>
466 #undef DEF_PCI_AC_RET
467 #undef DEF_PCI_AC_NORET
469 } ppc_pci_io;
471 /* The inline wrappers */
472 #define DEF_PCI_AC_RET(name, ret, at, al) \
473 static inline ret name at \
475 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
476 return ppc_pci_io.name al; \
477 return __do_##name al; \
480 #define DEF_PCI_AC_NORET(name, at, al) \
481 static inline void name at \
483 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
484 ppc_pci_io.name al; \
485 else \
486 __do_##name al; \
489 #include <asm/io-defs.h>
491 #undef DEF_PCI_AC_RET
492 #undef DEF_PCI_AC_NORET
494 /* Some drivers check for the presence of readq & writeq with
495 * a #ifdef, so we make them happy here.
497 #ifdef __powerpc64__
498 #define readq readq
499 #define writeq writeq
500 #endif
503 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
504 * access
506 #define xlate_dev_mem_ptr(p) __va(p)
509 * Convert a virtual cached pointer to an uncached pointer
511 #define xlate_dev_kmem_ptr(p) p
514 * We don't do relaxed operations yet, at least not with this semantic
516 #define readb_relaxed(addr) readb(addr)
517 #define readw_relaxed(addr) readw(addr)
518 #define readl_relaxed(addr) readl(addr)
519 #define readq_relaxed(addr) readq(addr)
521 #ifdef CONFIG_PPC32
522 #define mmiowb()
523 #else
525 * Enforce synchronisation of stores vs. spin_unlock
526 * (this does it explicitly, though our implementation of spin_unlock
527 * does it implicitely too)
529 static inline void mmiowb(void)
531 unsigned long tmp;
533 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
534 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
535 : "memory");
537 #endif /* !CONFIG_PPC32 */
539 static inline void iosync(void)
541 __asm__ __volatile__ ("sync" : : : "memory");
544 /* Enforce in-order execution of data I/O.
545 * No distinction between read/write on PPC; use eieio for all three.
546 * Those are fairly week though. They don't provide a barrier between
547 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
548 * they only provide barriers between 2 __raw MMIO operations and
549 * possibly break write combining.
551 #define iobarrier_rw() eieio()
552 #define iobarrier_r() eieio()
553 #define iobarrier_w() eieio()
557 * output pause versions need a delay at least for the
558 * w83c105 ide controller in a p610.
560 #define inb_p(port) inb(port)
561 #define outb_p(val, port) (udelay(1), outb((val), (port)))
562 #define inw_p(port) inw(port)
563 #define outw_p(val, port) (udelay(1), outw((val), (port)))
564 #define inl_p(port) inl(port)
565 #define outl_p(val, port) (udelay(1), outl((val), (port)))
568 #define IO_SPACE_LIMIT ~(0UL)
572 * ioremap - map bus memory into CPU space
573 * @address: bus address of the memory
574 * @size: size of the resource to map
576 * ioremap performs a platform specific sequence of operations to
577 * make bus memory CPU accessible via the readb/readw/readl/writeb/
578 * writew/writel functions and the other mmio helpers. The returned
579 * address is not guaranteed to be usable directly as a virtual
580 * address.
582 * We provide a few variations of it:
584 * * ioremap is the standard one and provides non-cacheable guarded mappings
585 * and can be hooked by the platform via ppc_md
587 * * ioremap_flags allows to specify the page flags as an argument and can
588 * also be hooked by the platform via ppc_md
590 * * ioremap_nocache is identical to ioremap
592 * * iounmap undoes such a mapping and can be hooked
594 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
595 * create hand-made mappings for use only by the PCI code and cannot
596 * currently be hooked. Must be page aligned.
598 * * __ioremap is the low level implementation used by ioremap and
599 * ioremap_flags and cannot be hooked (but can be used by a hook on one
600 * of the previous ones)
602 * * __iounmap, is the low level implementation used by iounmap and cannot
603 * be hooked (but can be used by a hook on iounmap)
606 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
607 extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size,
608 unsigned long flags);
609 #define ioremap_nocache(addr, size) ioremap((addr), (size))
610 extern void iounmap(volatile void __iomem *addr);
612 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
613 unsigned long flags);
614 extern void __iounmap(volatile void __iomem *addr);
616 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
617 unsigned long size, unsigned long flags);
618 extern void __iounmap_at(void *ea, unsigned long size);
621 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
622 * which needs some additional definitions here. They basically allow PIO
623 * space overall to be 1GB. This will work as long as we never try to use
624 * iomap to map MMIO below 1GB which should be fine on ppc64
626 #define HAVE_ARCH_PIO_SIZE 1
627 #define PIO_OFFSET 0x00000000UL
628 #define PIO_MASK (FULL_IO_SIZE - 1)
629 #define PIO_RESERVED (FULL_IO_SIZE)
631 #define mmio_read16be(addr) readw_be(addr)
632 #define mmio_read32be(addr) readl_be(addr)
633 #define mmio_write16be(val, addr) writew_be(val, addr)
634 #define mmio_write32be(val, addr) writel_be(val, addr)
635 #define mmio_insb(addr, dst, count) readsb(addr, dst, count)
636 #define mmio_insw(addr, dst, count) readsw(addr, dst, count)
637 #define mmio_insl(addr, dst, count) readsl(addr, dst, count)
638 #define mmio_outsb(addr, src, count) writesb(addr, src, count)
639 #define mmio_outsw(addr, src, count) writesw(addr, src, count)
640 #define mmio_outsl(addr, src, count) writesl(addr, src, count)
643 * virt_to_phys - map virtual addresses to physical
644 * @address: address to remap
646 * The returned physical address is the physical (CPU) mapping for
647 * the memory address given. It is only valid to use this function on
648 * addresses directly mapped or allocated via kmalloc.
650 * This function does not give bus mappings for DMA transfers. In
651 * almost all conceivable cases a device driver should not be using
652 * this function
654 static inline unsigned long virt_to_phys(volatile void * address)
656 return __pa((unsigned long)address);
660 * phys_to_virt - map physical address to virtual
661 * @address: address to remap
663 * The returned virtual address is a current CPU mapping for
664 * the memory address given. It is only valid to use this function on
665 * addresses that have a kernel mapping
667 * This function does not handle bus mappings for DMA transfers. In
668 * almost all conceivable cases a device driver should not be using
669 * this function
671 static inline void * phys_to_virt(unsigned long address)
673 return (void *)__va(address);
677 * Change "struct page" to physical address.
679 #define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT)
681 /* We do NOT want virtual merging, it would put too much pressure on
682 * our iommu allocator. Instead, we want drivers to be smart enough
683 * to coalesce sglists that happen to have been mapped in a contiguous
684 * way by the iommu
686 #define BIO_VMERGE_BOUNDARY 0
689 * 32 bits still uses virt_to_bus() for it's implementation of DMA
690 * mappings se we have to keep it defined here. We also have some old
691 * drivers (shame shame shame) that use bus_to_virt() and haven't been
692 * fixed yet so I need to define it here.
694 #ifdef CONFIG_PPC32
696 static inline unsigned long virt_to_bus(volatile void * address)
698 if (address == NULL)
699 return 0;
700 return __pa(address) + PCI_DRAM_OFFSET;
703 static inline void * bus_to_virt(unsigned long address)
705 if (address == 0)
706 return NULL;
707 return __va(address - PCI_DRAM_OFFSET);
710 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
712 #endif /* CONFIG_PPC32 */
714 /* access ports */
715 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
716 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
718 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
719 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
721 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
722 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
724 /* Clear and set bits in one shot. These macros can be used to clear and
725 * set multiple bits in a register using a single read-modify-write. These
726 * macros can also be used to set a multiple-bit bit pattern using a mask,
727 * by specifying the mask in the 'clear' parameter and the new bit pattern
728 * in the 'set' parameter.
731 #define clrsetbits(type, addr, clear, set) \
732 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
734 #ifdef __powerpc64__
735 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
736 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
737 #endif
739 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
740 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
742 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
743 #define clrsetbits_le16(addr, clear, set) clrsetbits(le32, addr, clear, set)
745 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
747 #endif /* __KERNEL__ */
749 #endif /* _ASM_POWERPC_IO_H */