PCI: i386: traps, change VENDOR to DEVICE
[wrt350n-kernel.git] / arch / mips / mm / tlbex.c
blob4ec0964b8394b141f5870198e33c01499a96c345
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005,2006 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
12 * ... and the days got worse and worse and now you see
13 * I've gone completly out of my mind.
15 * They're coming to take me a away haha
16 * they're coming to take me a away hoho hihi haha
17 * to the funny farm where code is beautiful all the time ...
19 * (Condolences to Napoleon XIV)
22 #include <stdarg.h>
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
33 #include <asm/inst.h>
34 #include <asm/elf.h>
35 #include <asm/smp.h>
36 #include <asm/war.h>
38 static __init int __maybe_unused r45k_bvahwbug(void)
40 /* XXX: We should probe for the presence of this bug, but we don't. */
41 return 0;
44 static __init int __maybe_unused r4k_250MHZhwbug(void)
46 /* XXX: We should probe for the presence of this bug, but we don't. */
47 return 0;
50 static __init int __maybe_unused bcm1250_m3_war(void)
52 return BCM1250_M3_WAR;
55 static __init int __maybe_unused r10000_llsc_war(void)
57 return R10000_LLSC_WAR;
61 * A little micro-assembler, intended for TLB refill handler
62 * synthesizing. It is intentionally kept simple, does only support
63 * a subset of instructions, and does not try to hide pipeline effects
64 * like branch delay slots.
67 enum fields
69 RS = 0x001,
70 RT = 0x002,
71 RD = 0x004,
72 RE = 0x008,
73 SIMM = 0x010,
74 UIMM = 0x020,
75 BIMM = 0x040,
76 JIMM = 0x080,
77 FUNC = 0x100,
78 SET = 0x200
81 #define OP_MASK 0x2f
82 #define OP_SH 26
83 #define RS_MASK 0x1f
84 #define RS_SH 21
85 #define RT_MASK 0x1f
86 #define RT_SH 16
87 #define RD_MASK 0x1f
88 #define RD_SH 11
89 #define RE_MASK 0x1f
90 #define RE_SH 6
91 #define IMM_MASK 0xffff
92 #define IMM_SH 0
93 #define JIMM_MASK 0x3ffffff
94 #define JIMM_SH 0
95 #define FUNC_MASK 0x2f
96 #define FUNC_SH 0
97 #define SET_MASK 0x7
98 #define SET_SH 0
100 enum opcode {
101 insn_invalid,
102 insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
103 insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
104 insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
105 insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32,
106 insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
107 insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
108 insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
109 insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
110 insn_tlbwr, insn_xor, insn_xori
113 struct insn {
114 enum opcode opcode;
115 u32 match;
116 enum fields fields;
119 /* This macro sets the non-variable bits of an instruction. */
120 #define M(a, b, c, d, e, f) \
121 ((a) << OP_SH \
122 | (b) << RS_SH \
123 | (c) << RT_SH \
124 | (d) << RD_SH \
125 | (e) << RE_SH \
126 | (f) << FUNC_SH)
128 static __initdata struct insn insn_table[] = {
129 { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
130 { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
131 { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
132 { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
133 { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
134 { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
135 { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
136 { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
137 { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
138 { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
139 { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
140 { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
141 { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
142 { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
143 { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
144 { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
145 { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
146 { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
147 { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
148 { insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE },
149 { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
150 { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
151 { insn_j, M(j_op,0,0,0,0,0), JIMM },
152 { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
153 { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
154 { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
155 { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
156 { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
157 { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
158 { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
159 { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
160 { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
161 { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
162 { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
163 { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
164 { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
165 { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
166 { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
167 { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
168 { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
169 { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
170 { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
171 { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
172 { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
173 { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
174 { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
175 { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
176 { insn_invalid, 0, 0 }
179 #undef M
181 static __init u32 build_rs(u32 arg)
183 if (arg & ~RS_MASK)
184 printk(KERN_WARNING "TLB synthesizer field overflow\n");
186 return (arg & RS_MASK) << RS_SH;
189 static __init u32 build_rt(u32 arg)
191 if (arg & ~RT_MASK)
192 printk(KERN_WARNING "TLB synthesizer field overflow\n");
194 return (arg & RT_MASK) << RT_SH;
197 static __init u32 build_rd(u32 arg)
199 if (arg & ~RD_MASK)
200 printk(KERN_WARNING "TLB synthesizer field overflow\n");
202 return (arg & RD_MASK) << RD_SH;
205 static __init u32 build_re(u32 arg)
207 if (arg & ~RE_MASK)
208 printk(KERN_WARNING "TLB synthesizer field overflow\n");
210 return (arg & RE_MASK) << RE_SH;
213 static __init u32 build_simm(s32 arg)
215 if (arg > 0x7fff || arg < -0x8000)
216 printk(KERN_WARNING "TLB synthesizer field overflow\n");
218 return arg & 0xffff;
221 static __init u32 build_uimm(u32 arg)
223 if (arg & ~IMM_MASK)
224 printk(KERN_WARNING "TLB synthesizer field overflow\n");
226 return arg & IMM_MASK;
229 static __init u32 build_bimm(s32 arg)
231 if (arg > 0x1ffff || arg < -0x20000)
232 printk(KERN_WARNING "TLB synthesizer field overflow\n");
234 if (arg & 0x3)
235 printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
237 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
240 static __init u32 build_jimm(u32 arg)
242 if (arg & ~((JIMM_MASK) << 2))
243 printk(KERN_WARNING "TLB synthesizer field overflow\n");
245 return (arg >> 2) & JIMM_MASK;
248 static __init u32 build_func(u32 arg)
250 if (arg & ~FUNC_MASK)
251 printk(KERN_WARNING "TLB synthesizer field overflow\n");
253 return arg & FUNC_MASK;
256 static __init u32 build_set(u32 arg)
258 if (arg & ~SET_MASK)
259 printk(KERN_WARNING "TLB synthesizer field overflow\n");
261 return arg & SET_MASK;
265 * The order of opcode arguments is implicitly left to right,
266 * starting with RS and ending with FUNC or IMM.
268 static void __init build_insn(u32 **buf, enum opcode opc, ...)
270 struct insn *ip = NULL;
271 unsigned int i;
272 va_list ap;
273 u32 op;
275 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
276 if (insn_table[i].opcode == opc) {
277 ip = &insn_table[i];
278 break;
281 if (!ip)
282 panic("Unsupported TLB synthesizer instruction %d", opc);
284 op = ip->match;
285 va_start(ap, opc);
286 if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
287 if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
288 if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
289 if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
290 if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
291 if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
292 if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
293 if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
294 if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
295 if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
296 va_end(ap);
298 **buf = op;
299 (*buf)++;
302 #define I_u1u2u3(op) \
303 static inline void __init i##op(u32 **buf, unsigned int a, \
304 unsigned int b, unsigned int c) \
306 build_insn(buf, insn##op, a, b, c); \
309 #define I_u2u1u3(op) \
310 static inline void __init i##op(u32 **buf, unsigned int a, \
311 unsigned int b, unsigned int c) \
313 build_insn(buf, insn##op, b, a, c); \
316 #define I_u3u1u2(op) \
317 static inline void __init i##op(u32 **buf, unsigned int a, \
318 unsigned int b, unsigned int c) \
320 build_insn(buf, insn##op, b, c, a); \
323 #define I_u1u2s3(op) \
324 static inline void __init i##op(u32 **buf, unsigned int a, \
325 unsigned int b, signed int c) \
327 build_insn(buf, insn##op, a, b, c); \
330 #define I_u2s3u1(op) \
331 static inline void __init i##op(u32 **buf, unsigned int a, \
332 signed int b, unsigned int c) \
334 build_insn(buf, insn##op, c, a, b); \
337 #define I_u2u1s3(op) \
338 static inline void __init i##op(u32 **buf, unsigned int a, \
339 unsigned int b, signed int c) \
341 build_insn(buf, insn##op, b, a, c); \
344 #define I_u1u2(op) \
345 static inline void __init i##op(u32 **buf, unsigned int a, \
346 unsigned int b) \
348 build_insn(buf, insn##op, a, b); \
351 #define I_u1s2(op) \
352 static inline void __init i##op(u32 **buf, unsigned int a, \
353 signed int b) \
355 build_insn(buf, insn##op, a, b); \
358 #define I_u1(op) \
359 static inline void __init i##op(u32 **buf, unsigned int a) \
361 build_insn(buf, insn##op, a); \
364 #define I_0(op) \
365 static inline void __init i##op(u32 **buf) \
367 build_insn(buf, insn##op); \
370 I_u2u1s3(_addiu);
371 I_u3u1u2(_addu);
372 I_u2u1u3(_andi);
373 I_u3u1u2(_and);
374 I_u1u2s3(_beq);
375 I_u1u2s3(_beql);
376 I_u1s2(_bgez);
377 I_u1s2(_bgezl);
378 I_u1s2(_bltz);
379 I_u1s2(_bltzl);
380 I_u1u2s3(_bne);
381 I_u1u2u3(_dmfc0);
382 I_u1u2u3(_dmtc0);
383 I_u2u1s3(_daddiu);
384 I_u3u1u2(_daddu);
385 I_u2u1u3(_dsll);
386 I_u2u1u3(_dsll32);
387 I_u2u1u3(_dsra);
388 I_u2u1u3(_dsrl);
389 I_u2u1u3(_dsrl32);
390 I_u3u1u2(_dsubu);
391 I_0(_eret);
392 I_u1(_j);
393 I_u1(_jal);
394 I_u1(_jr);
395 I_u2s3u1(_ld);
396 I_u2s3u1(_ll);
397 I_u2s3u1(_lld);
398 I_u1s2(_lui);
399 I_u2s3u1(_lw);
400 I_u1u2u3(_mfc0);
401 I_u1u2u3(_mtc0);
402 I_u2u1u3(_ori);
403 I_0(_rfe);
404 I_u2s3u1(_sc);
405 I_u2s3u1(_scd);
406 I_u2s3u1(_sd);
407 I_u2u1u3(_sll);
408 I_u2u1u3(_sra);
409 I_u2u1u3(_srl);
410 I_u3u1u2(_subu);
411 I_u2s3u1(_sw);
412 I_0(_tlbp);
413 I_0(_tlbwi);
414 I_0(_tlbwr);
415 I_u3u1u2(_xor)
416 I_u2u1u3(_xori);
419 * handling labels
422 enum label_id {
423 label_invalid,
424 label_second_part,
425 label_leave,
426 #ifdef MODULE_START
427 label_module_alloc,
428 #endif
429 label_vmalloc,
430 label_vmalloc_done,
431 label_tlbw_hazard,
432 label_split,
433 label_nopage_tlbl,
434 label_nopage_tlbs,
435 label_nopage_tlbm,
436 label_smp_pgtable_change,
437 label_r3000_write_probe_fail,
440 struct label {
441 u32 *addr;
442 enum label_id lab;
445 static __init void build_label(struct label **lab, u32 *addr,
446 enum label_id l)
448 (*lab)->addr = addr;
449 (*lab)->lab = l;
450 (*lab)++;
453 #define L_LA(lb) \
454 static inline void l##lb(struct label **lab, u32 *addr) \
456 build_label(lab, addr, label##lb); \
459 L_LA(_second_part)
460 L_LA(_leave)
461 #ifdef MODULE_START
462 L_LA(_module_alloc)
463 #endif
464 L_LA(_vmalloc)
465 L_LA(_vmalloc_done)
466 L_LA(_tlbw_hazard)
467 L_LA(_split)
468 L_LA(_nopage_tlbl)
469 L_LA(_nopage_tlbs)
470 L_LA(_nopage_tlbm)
471 L_LA(_smp_pgtable_change)
472 L_LA(_r3000_write_probe_fail)
474 /* convenience macros for instructions */
475 #ifdef CONFIG_64BIT
476 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
477 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
478 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
479 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
480 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
481 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
482 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
483 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
484 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
485 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
486 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
487 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
488 #else
489 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
490 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
491 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
492 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
493 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
494 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
495 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
496 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
497 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
498 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
499 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
500 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
501 #endif
503 #define i_b(buf, off) i_beq(buf, 0, 0, off)
504 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
505 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
506 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
507 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
508 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
509 #define i_nop(buf) i_sll(buf, 0, 0, 0)
510 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
511 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
513 #ifdef CONFIG_64BIT
514 static __init int __maybe_unused in_compat_space_p(long addr)
516 /* Is this address in 32bit compat space? */
517 return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
520 static __init int __maybe_unused rel_highest(long val)
522 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
525 static __init int __maybe_unused rel_higher(long val)
527 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
529 #endif
531 static __init int rel_hi(long val)
533 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
536 static __init int rel_lo(long val)
538 return ((val & 0xffff) ^ 0x8000) - 0x8000;
541 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
543 #ifdef CONFIG_64BIT
544 if (!in_compat_space_p(addr)) {
545 i_lui(buf, rs, rel_highest(addr));
546 if (rel_higher(addr))
547 i_daddiu(buf, rs, rs, rel_higher(addr));
548 if (rel_hi(addr)) {
549 i_dsll(buf, rs, rs, 16);
550 i_daddiu(buf, rs, rs, rel_hi(addr));
551 i_dsll(buf, rs, rs, 16);
552 } else
553 i_dsll32(buf, rs, rs, 0);
554 } else
555 #endif
556 i_lui(buf, rs, rel_hi(addr));
559 static __init void __maybe_unused i_LA(u32 **buf, unsigned int rs,
560 long addr)
562 i_LA_mostly(buf, rs, addr);
563 if (rel_lo(addr))
564 i_ADDIU(buf, rs, rs, rel_lo(addr));
568 * handle relocations
571 struct reloc {
572 u32 *addr;
573 unsigned int type;
574 enum label_id lab;
577 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
578 enum label_id l)
580 (*rel)->addr = addr;
581 (*rel)->type = R_MIPS_PC16;
582 (*rel)->lab = l;
583 (*rel)++;
586 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
588 long laddr = (long)lab->addr;
589 long raddr = (long)rel->addr;
591 switch (rel->type) {
592 case R_MIPS_PC16:
593 *rel->addr |= build_bimm(laddr - (raddr + 4));
594 break;
596 default:
597 panic("Unsupported TLB synthesizer relocation %d",
598 rel->type);
602 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
604 struct label *l;
606 for (; rel->lab != label_invalid; rel++)
607 for (l = lab; l->lab != label_invalid; l++)
608 if (rel->lab == l->lab)
609 __resolve_relocs(rel, l);
612 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
613 long off)
615 for (; rel->lab != label_invalid; rel++)
616 if (rel->addr >= first && rel->addr < end)
617 rel->addr += off;
620 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
621 long off)
623 for (; lab->lab != label_invalid; lab++)
624 if (lab->addr >= first && lab->addr < end)
625 lab->addr += off;
628 static __init void copy_handler(struct reloc *rel, struct label *lab,
629 u32 *first, u32 *end, u32 *target)
631 long off = (long)(target - first);
633 memcpy(target, first, (end - first) * sizeof(u32));
635 move_relocs(rel, first, end, off);
636 move_labels(lab, first, end, off);
639 static __init int __maybe_unused insn_has_bdelay(struct reloc *rel,
640 u32 *addr)
642 for (; rel->lab != label_invalid; rel++) {
643 if (rel->addr == addr
644 && (rel->type == R_MIPS_PC16
645 || rel->type == R_MIPS_26))
646 return 1;
649 return 0;
652 /* convenience functions for labeled branches */
653 static void __init __maybe_unused
654 il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
656 r_mips_pc16(r, *p, l);
657 i_bltz(p, reg, 0);
660 static void __init __maybe_unused il_b(u32 **p, struct reloc **r,
661 enum label_id l)
663 r_mips_pc16(r, *p, l);
664 i_b(p, 0);
667 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
668 enum label_id l)
670 r_mips_pc16(r, *p, l);
671 i_beqz(p, reg, 0);
674 static void __init __maybe_unused
675 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
677 r_mips_pc16(r, *p, l);
678 i_beqzl(p, reg, 0);
681 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
682 enum label_id l)
684 r_mips_pc16(r, *p, l);
685 i_bnez(p, reg, 0);
688 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
689 enum label_id l)
691 r_mips_pc16(r, *p, l);
692 i_bgezl(p, reg, 0);
695 static void __init __maybe_unused
696 il_bgez(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
698 r_mips_pc16(r, *p, l);
699 i_bgez(p, reg, 0);
702 /* The only general purpose registers allowed in TLB handlers. */
703 #define K0 26
704 #define K1 27
706 /* Some CP0 registers */
707 #define C0_INDEX 0, 0
708 #define C0_ENTRYLO0 2, 0
709 #define C0_TCBIND 2, 2
710 #define C0_ENTRYLO1 3, 0
711 #define C0_CONTEXT 4, 0
712 #define C0_BADVADDR 8, 0
713 #define C0_ENTRYHI 10, 0
714 #define C0_EPC 14, 0
715 #define C0_XCONTEXT 20, 0
717 #ifdef CONFIG_64BIT
718 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
719 #else
720 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
721 #endif
723 /* The worst case length of the handler is around 18 instructions for
724 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
725 * Maximum space available is 32 instructions for R3000 and 64
726 * instructions for R4000.
728 * We deliberately chose a buffer size of 128, so we won't scribble
729 * over anything important on overflow before we panic.
731 static __initdata u32 tlb_handler[128];
733 /* simply assume worst case size for labels and relocs */
734 static __initdata struct label labels[128];
735 static __initdata struct reloc relocs[128];
738 * The R3000 TLB handler is simple.
740 static void __init build_r3000_tlb_refill_handler(void)
742 long pgdc = (long)pgd_current;
743 u32 *p;
744 int i;
746 memset(tlb_handler, 0, sizeof(tlb_handler));
747 p = tlb_handler;
749 i_mfc0(&p, K0, C0_BADVADDR);
750 i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
751 i_lw(&p, K1, rel_lo(pgdc), K1);
752 i_srl(&p, K0, K0, 22); /* load delay */
753 i_sll(&p, K0, K0, 2);
754 i_addu(&p, K1, K1, K0);
755 i_mfc0(&p, K0, C0_CONTEXT);
756 i_lw(&p, K1, 0, K1); /* cp0 delay */
757 i_andi(&p, K0, K0, 0xffc); /* load delay */
758 i_addu(&p, K1, K1, K0);
759 i_lw(&p, K0, 0, K1);
760 i_nop(&p); /* load delay */
761 i_mtc0(&p, K0, C0_ENTRYLO0);
762 i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
763 i_tlbwr(&p); /* cp0 delay */
764 i_jr(&p, K1);
765 i_rfe(&p); /* branch delay */
767 if (p > tlb_handler + 32)
768 panic("TLB refill handler space exceeded");
770 pr_info("Synthesized TLB refill handler (%u instructions).\n",
771 (unsigned int)(p - tlb_handler));
773 pr_debug("\t.set push\n");
774 pr_debug("\t.set noreorder\n");
775 for (i = 0; i < (p - tlb_handler); i++)
776 pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
777 pr_debug("\t.set pop\n");
779 memcpy((void *)ebase, tlb_handler, 0x80);
783 * The R4000 TLB handler is much more complicated. We have two
784 * consecutive handler areas with 32 instructions space each.
785 * Since they aren't used at the same time, we can overflow in the
786 * other one.To keep things simple, we first assume linear space,
787 * then we relocate it to the final handler layout as needed.
789 static __initdata u32 final_handler[64];
792 * Hazards
794 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
795 * 2. A timing hazard exists for the TLBP instruction.
797 * stalling_instruction
798 * TLBP
800 * The JTLB is being read for the TLBP throughout the stall generated by the
801 * previous instruction. This is not really correct as the stalling instruction
802 * can modify the address used to access the JTLB. The failure symptom is that
803 * the TLBP instruction will use an address created for the stalling instruction
804 * and not the address held in C0_ENHI and thus report the wrong results.
806 * The software work-around is to not allow the instruction preceding the TLBP
807 * to stall - make it an NOP or some other instruction guaranteed not to stall.
809 * Errata 2 will not be fixed. This errata is also on the R5000.
811 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
813 static __init void __maybe_unused build_tlb_probe_entry(u32 **p)
815 switch (current_cpu_data.cputype) {
816 /* Found by experiment: R4600 v2.0 needs this, too. */
817 case CPU_R4600:
818 case CPU_R5000:
819 case CPU_R5000A:
820 case CPU_NEVADA:
821 i_nop(p);
822 i_tlbp(p);
823 break;
825 default:
826 i_tlbp(p);
827 break;
832 * Write random or indexed TLB entry, and care about the hazards from
833 * the preceeding mtc0 and for the following eret.
835 enum tlb_write_entry { tlb_random, tlb_indexed };
837 static __init void build_tlb_write_entry(u32 **p, struct label **l,
838 struct reloc **r,
839 enum tlb_write_entry wmode)
841 void(*tlbw)(u32 **) = NULL;
843 switch (wmode) {
844 case tlb_random: tlbw = i_tlbwr; break;
845 case tlb_indexed: tlbw = i_tlbwi; break;
848 switch (current_cpu_data.cputype) {
849 case CPU_R4000PC:
850 case CPU_R4000SC:
851 case CPU_R4000MC:
852 case CPU_R4400PC:
853 case CPU_R4400SC:
854 case CPU_R4400MC:
856 * This branch uses up a mtc0 hazard nop slot and saves
857 * two nops after the tlbw instruction.
859 il_bgezl(p, r, 0, label_tlbw_hazard);
860 tlbw(p);
861 l_tlbw_hazard(l, *p);
862 i_nop(p);
863 break;
865 case CPU_R4600:
866 case CPU_R4700:
867 case CPU_R5000:
868 case CPU_R5000A:
869 i_nop(p);
870 tlbw(p);
871 i_nop(p);
872 break;
874 case CPU_R4300:
875 case CPU_5KC:
876 case CPU_TX49XX:
877 case CPU_AU1000:
878 case CPU_AU1100:
879 case CPU_AU1500:
880 case CPU_AU1550:
881 case CPU_AU1200:
882 case CPU_PR4450:
883 i_nop(p);
884 tlbw(p);
885 break;
887 case CPU_R10000:
888 case CPU_R12000:
889 case CPU_R14000:
890 case CPU_4KC:
891 case CPU_SB1:
892 case CPU_SB1A:
893 case CPU_4KSC:
894 case CPU_20KC:
895 case CPU_25KF:
896 case CPU_LOONGSON2:
897 tlbw(p);
898 break;
900 case CPU_NEVADA:
901 i_nop(p); /* QED specifies 2 nops hazard */
903 * This branch uses up a mtc0 hazard nop slot and saves
904 * a nop after the tlbw instruction.
906 il_bgezl(p, r, 0, label_tlbw_hazard);
907 tlbw(p);
908 l_tlbw_hazard(l, *p);
909 break;
911 case CPU_RM7000:
912 i_nop(p);
913 i_nop(p);
914 i_nop(p);
915 i_nop(p);
916 tlbw(p);
917 break;
919 case CPU_4KEC:
920 case CPU_24K:
921 case CPU_34K:
922 case CPU_74K:
923 i_ehb(p);
924 tlbw(p);
925 break;
927 case CPU_RM9000:
929 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
930 * use of the JTLB for instructions should not occur for 4
931 * cpu cycles and use for data translations should not occur
932 * for 3 cpu cycles.
934 i_ssnop(p);
935 i_ssnop(p);
936 i_ssnop(p);
937 i_ssnop(p);
938 tlbw(p);
939 i_ssnop(p);
940 i_ssnop(p);
941 i_ssnop(p);
942 i_ssnop(p);
943 break;
945 case CPU_VR4111:
946 case CPU_VR4121:
947 case CPU_VR4122:
948 case CPU_VR4181:
949 case CPU_VR4181A:
950 i_nop(p);
951 i_nop(p);
952 tlbw(p);
953 i_nop(p);
954 i_nop(p);
955 break;
957 case CPU_VR4131:
958 case CPU_VR4133:
959 case CPU_R5432:
960 i_nop(p);
961 i_nop(p);
962 tlbw(p);
963 break;
965 default:
966 panic("No TLB refill handler yet (CPU type: %d)",
967 current_cpu_data.cputype);
968 break;
972 #ifdef CONFIG_64BIT
974 * TMP and PTR are scratch.
975 * TMP will be clobbered, PTR will hold the pmd entry.
977 static __init void
978 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
979 unsigned int tmp, unsigned int ptr)
981 long pgdc = (long)pgd_current;
984 * The vmalloc handling is not in the hotpath.
986 i_dmfc0(p, tmp, C0_BADVADDR);
987 #ifdef MODULE_START
988 il_bltz(p, r, tmp, label_module_alloc);
989 #else
990 il_bltz(p, r, tmp, label_vmalloc);
991 #endif
992 /* No i_nop needed here, since the next insn doesn't touch TMP. */
994 #ifdef CONFIG_SMP
995 # ifdef CONFIG_MIPS_MT_SMTC
997 * SMTC uses TCBind value as "CPU" index
999 i_mfc0(p, ptr, C0_TCBIND);
1000 i_dsrl(p, ptr, ptr, 19);
1001 # else
1003 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
1004 * stored in CONTEXT.
1006 i_dmfc0(p, ptr, C0_CONTEXT);
1007 i_dsrl(p, ptr, ptr, 23);
1008 #endif
1009 i_LA_mostly(p, tmp, pgdc);
1010 i_daddu(p, ptr, ptr, tmp);
1011 i_dmfc0(p, tmp, C0_BADVADDR);
1012 i_ld(p, ptr, rel_lo(pgdc), ptr);
1013 #else
1014 i_LA_mostly(p, ptr, pgdc);
1015 i_ld(p, ptr, rel_lo(pgdc), ptr);
1016 #endif
1018 l_vmalloc_done(l, *p);
1020 if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
1021 i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
1022 else
1023 i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
1025 i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1026 i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1027 i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1028 i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1029 i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1030 i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1031 i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1035 * BVADDR is the faulting address, PTR is scratch.
1036 * PTR will hold the pgd for vmalloc.
1038 static __init void
1039 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1040 unsigned int bvaddr, unsigned int ptr)
1042 long swpd = (long)swapper_pg_dir;
1044 #ifdef MODULE_START
1045 long modd = (long)module_pg_dir;
1047 l_module_alloc(l, *p);
1049 * Assumption:
1050 * VMALLOC_START >= 0xc000000000000000UL
1051 * MODULE_START >= 0xe000000000000000UL
1053 i_SLL(p, ptr, bvaddr, 2);
1054 il_bgez(p, r, ptr, label_vmalloc);
1056 if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START)) {
1057 i_lui(p, ptr, rel_hi(MODULE_START)); /* delay slot */
1058 } else {
1059 /* unlikely configuration */
1060 i_nop(p); /* delay slot */
1061 i_LA(p, ptr, MODULE_START);
1063 i_dsubu(p, bvaddr, bvaddr, ptr);
1065 if (in_compat_space_p(modd) && !rel_lo(modd)) {
1066 il_b(p, r, label_vmalloc_done);
1067 i_lui(p, ptr, rel_hi(modd));
1068 } else {
1069 i_LA_mostly(p, ptr, modd);
1070 il_b(p, r, label_vmalloc_done);
1071 i_daddiu(p, ptr, ptr, rel_lo(modd));
1074 l_vmalloc(l, *p);
1075 if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START) &&
1076 MODULE_START << 32 == VMALLOC_START)
1077 i_dsll32(p, ptr, ptr, 0); /* typical case */
1078 else
1079 i_LA(p, ptr, VMALLOC_START);
1080 #else
1081 l_vmalloc(l, *p);
1082 i_LA(p, ptr, VMALLOC_START);
1083 #endif
1084 i_dsubu(p, bvaddr, bvaddr, ptr);
1086 if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1087 il_b(p, r, label_vmalloc_done);
1088 i_lui(p, ptr, rel_hi(swpd));
1089 } else {
1090 i_LA_mostly(p, ptr, swpd);
1091 il_b(p, r, label_vmalloc_done);
1092 i_daddiu(p, ptr, ptr, rel_lo(swpd));
1096 #else /* !CONFIG_64BIT */
1099 * TMP and PTR are scratch.
1100 * TMP will be clobbered, PTR will hold the pgd entry.
1102 static __init void __maybe_unused
1103 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1105 long pgdc = (long)pgd_current;
1107 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1108 #ifdef CONFIG_SMP
1109 #ifdef CONFIG_MIPS_MT_SMTC
1111 * SMTC uses TCBind value as "CPU" index
1113 i_mfc0(p, ptr, C0_TCBIND);
1114 i_LA_mostly(p, tmp, pgdc);
1115 i_srl(p, ptr, ptr, 19);
1116 #else
1118 * smp_processor_id() << 3 is stored in CONTEXT.
1120 i_mfc0(p, ptr, C0_CONTEXT);
1121 i_LA_mostly(p, tmp, pgdc);
1122 i_srl(p, ptr, ptr, 23);
1123 #endif
1124 i_addu(p, ptr, tmp, ptr);
1125 #else
1126 i_LA_mostly(p, ptr, pgdc);
1127 #endif
1128 i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1129 i_lw(p, ptr, rel_lo(pgdc), ptr);
1130 i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1131 i_sll(p, tmp, tmp, PGD_T_LOG2);
1132 i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1135 #endif /* !CONFIG_64BIT */
1137 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1139 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1140 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1142 switch (current_cpu_data.cputype) {
1143 case CPU_VR41XX:
1144 case CPU_VR4111:
1145 case CPU_VR4121:
1146 case CPU_VR4122:
1147 case CPU_VR4131:
1148 case CPU_VR4181:
1149 case CPU_VR4181A:
1150 case CPU_VR4133:
1151 shift += 2;
1152 break;
1154 default:
1155 break;
1158 if (shift)
1159 i_SRL(p, ctx, ctx, shift);
1160 i_andi(p, ctx, ctx, mask);
1163 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1166 * Bug workaround for the Nevada. It seems as if under certain
1167 * circumstances the move from cp0_context might produce a
1168 * bogus result when the mfc0 instruction and its consumer are
1169 * in a different cacheline or a load instruction, probably any
1170 * memory reference, is between them.
1172 switch (current_cpu_data.cputype) {
1173 case CPU_NEVADA:
1174 i_LW(p, ptr, 0, ptr);
1175 GET_CONTEXT(p, tmp); /* get context reg */
1176 break;
1178 default:
1179 GET_CONTEXT(p, tmp); /* get context reg */
1180 i_LW(p, ptr, 0, ptr);
1181 break;
1184 build_adjust_context(p, tmp);
1185 i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1188 static __init void build_update_entries(u32 **p, unsigned int tmp,
1189 unsigned int ptep)
1192 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1193 * Kernel is a special case. Only a few CPUs use it.
1195 #ifdef CONFIG_64BIT_PHYS_ADDR
1196 if (cpu_has_64bits) {
1197 i_ld(p, tmp, 0, ptep); /* get even pte */
1198 i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1199 i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1200 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1201 i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1202 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1203 } else {
1204 int pte_off_even = sizeof(pte_t) / 2;
1205 int pte_off_odd = pte_off_even + sizeof(pte_t);
1207 /* The pte entries are pre-shifted */
1208 i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1209 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1210 i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1211 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1213 #else
1214 i_LW(p, tmp, 0, ptep); /* get even pte */
1215 i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1216 if (r45k_bvahwbug())
1217 build_tlb_probe_entry(p);
1218 i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1219 if (r4k_250MHZhwbug())
1220 i_mtc0(p, 0, C0_ENTRYLO0);
1221 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1222 i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1223 if (r45k_bvahwbug())
1224 i_mfc0(p, tmp, C0_INDEX);
1225 if (r4k_250MHZhwbug())
1226 i_mtc0(p, 0, C0_ENTRYLO1);
1227 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1228 #endif
1231 static void __init build_r4000_tlb_refill_handler(void)
1233 u32 *p = tlb_handler;
1234 struct label *l = labels;
1235 struct reloc *r = relocs;
1236 u32 *f;
1237 unsigned int final_len;
1238 int i;
1240 memset(tlb_handler, 0, sizeof(tlb_handler));
1241 memset(labels, 0, sizeof(labels));
1242 memset(relocs, 0, sizeof(relocs));
1243 memset(final_handler, 0, sizeof(final_handler));
1246 * create the plain linear handler
1248 if (bcm1250_m3_war()) {
1249 i_MFC0(&p, K0, C0_BADVADDR);
1250 i_MFC0(&p, K1, C0_ENTRYHI);
1251 i_xor(&p, K0, K0, K1);
1252 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1253 il_bnez(&p, &r, K0, label_leave);
1254 /* No need for i_nop */
1257 #ifdef CONFIG_64BIT
1258 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1259 #else
1260 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1261 #endif
1263 build_get_ptep(&p, K0, K1);
1264 build_update_entries(&p, K0, K1);
1265 build_tlb_write_entry(&p, &l, &r, tlb_random);
1266 l_leave(&l, p);
1267 i_eret(&p); /* return from trap */
1269 #ifdef CONFIG_64BIT
1270 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1271 #endif
1274 * Overflow check: For the 64bit handler, we need at least one
1275 * free instruction slot for the wrap-around branch. In worst
1276 * case, if the intended insertion point is a delay slot, we
1277 * need three, with the second nop'ed and the third being
1278 * unused.
1280 /* Loongson2 ebase is different than r4k, we have more space */
1281 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1282 if ((p - tlb_handler) > 64)
1283 panic("TLB refill handler space exceeded");
1284 #else
1285 if (((p - tlb_handler) > 63)
1286 || (((p - tlb_handler) > 61)
1287 && insn_has_bdelay(relocs, tlb_handler + 29)))
1288 panic("TLB refill handler space exceeded");
1289 #endif
1292 * Now fold the handler in the TLB refill handler space.
1294 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1295 f = final_handler;
1296 /* Simplest case, just copy the handler. */
1297 copy_handler(relocs, labels, tlb_handler, p, f);
1298 final_len = p - tlb_handler;
1299 #else /* CONFIG_64BIT */
1300 f = final_handler + 32;
1301 if ((p - tlb_handler) <= 32) {
1302 /* Just copy the handler. */
1303 copy_handler(relocs, labels, tlb_handler, p, f);
1304 final_len = p - tlb_handler;
1305 } else {
1306 u32 *split = tlb_handler + 30;
1309 * Find the split point.
1311 if (insn_has_bdelay(relocs, split - 1))
1312 split--;
1314 /* Copy first part of the handler. */
1315 copy_handler(relocs, labels, tlb_handler, split, f);
1316 f += split - tlb_handler;
1318 /* Insert branch. */
1319 l_split(&l, final_handler);
1320 il_b(&f, &r, label_split);
1321 if (insn_has_bdelay(relocs, split))
1322 i_nop(&f);
1323 else {
1324 copy_handler(relocs, labels, split, split + 1, f);
1325 move_labels(labels, f, f + 1, -1);
1326 f++;
1327 split++;
1330 /* Copy the rest of the handler. */
1331 copy_handler(relocs, labels, split, p, final_handler);
1332 final_len = (f - (final_handler + 32)) + (p - split);
1334 #endif /* CONFIG_64BIT */
1336 resolve_relocs(relocs, labels);
1337 pr_info("Synthesized TLB refill handler (%u instructions).\n",
1338 final_len);
1340 f = final_handler;
1341 #if defined(CONFIG_64BIT) && !defined(CONFIG_CPU_LOONGSON2)
1342 if (final_len > 32)
1343 final_len = 64;
1344 else
1345 f = final_handler + 32;
1346 #endif /* CONFIG_64BIT */
1347 pr_debug("\t.set push\n");
1348 pr_debug("\t.set noreorder\n");
1349 for (i = 0; i < final_len; i++)
1350 pr_debug("\t.word 0x%08x\n", f[i]);
1351 pr_debug("\t.set pop\n");
1353 memcpy((void *)ebase, final_handler, 0x100);
1357 * TLB load/store/modify handlers.
1359 * Only the fastpath gets synthesized at runtime, the slowpath for
1360 * do_page_fault remains normal asm.
1362 extern void tlb_do_page_fault_0(void);
1363 extern void tlb_do_page_fault_1(void);
1365 #define __tlb_handler_align \
1366 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1369 * 128 instructions for the fastpath handler is generous and should
1370 * never be exceeded.
1372 #define FASTPATH_SIZE 128
1374 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1375 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1376 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1378 static void __init
1379 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1381 #ifdef CONFIG_SMP
1382 # ifdef CONFIG_64BIT_PHYS_ADDR
1383 if (cpu_has_64bits)
1384 i_lld(p, pte, 0, ptr);
1385 else
1386 # endif
1387 i_LL(p, pte, 0, ptr);
1388 #else
1389 # ifdef CONFIG_64BIT_PHYS_ADDR
1390 if (cpu_has_64bits)
1391 i_ld(p, pte, 0, ptr);
1392 else
1393 # endif
1394 i_LW(p, pte, 0, ptr);
1395 #endif
1398 static void __init
1399 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1400 unsigned int mode)
1402 #ifdef CONFIG_64BIT_PHYS_ADDR
1403 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1404 #endif
1406 i_ori(p, pte, pte, mode);
1407 #ifdef CONFIG_SMP
1408 # ifdef CONFIG_64BIT_PHYS_ADDR
1409 if (cpu_has_64bits)
1410 i_scd(p, pte, 0, ptr);
1411 else
1412 # endif
1413 i_SC(p, pte, 0, ptr);
1415 if (r10000_llsc_war())
1416 il_beqzl(p, r, pte, label_smp_pgtable_change);
1417 else
1418 il_beqz(p, r, pte, label_smp_pgtable_change);
1420 # ifdef CONFIG_64BIT_PHYS_ADDR
1421 if (!cpu_has_64bits) {
1422 /* no i_nop needed */
1423 i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1424 i_ori(p, pte, pte, hwmode);
1425 i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1426 il_beqz(p, r, pte, label_smp_pgtable_change);
1427 /* no i_nop needed */
1428 i_lw(p, pte, 0, ptr);
1429 } else
1430 i_nop(p);
1431 # else
1432 i_nop(p);
1433 # endif
1434 #else
1435 # ifdef CONFIG_64BIT_PHYS_ADDR
1436 if (cpu_has_64bits)
1437 i_sd(p, pte, 0, ptr);
1438 else
1439 # endif
1440 i_SW(p, pte, 0, ptr);
1442 # ifdef CONFIG_64BIT_PHYS_ADDR
1443 if (!cpu_has_64bits) {
1444 i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1445 i_ori(p, pte, pte, hwmode);
1446 i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1447 i_lw(p, pte, 0, ptr);
1449 # endif
1450 #endif
1454 * Check if PTE is present, if not then jump to LABEL. PTR points to
1455 * the page table where this PTE is located, PTE will be re-loaded
1456 * with it's original value.
1458 static void __init
1459 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1460 unsigned int pte, unsigned int ptr, enum label_id lid)
1462 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1463 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1464 il_bnez(p, r, pte, lid);
1465 iPTE_LW(p, l, pte, ptr);
1468 /* Make PTE valid, store result in PTR. */
1469 static void __init
1470 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1471 unsigned int ptr)
1473 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1475 iPTE_SW(p, r, pte, ptr, mode);
1479 * Check if PTE can be written to, if not branch to LABEL. Regardless
1480 * restore PTE with value from PTR when done.
1482 static void __init
1483 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1484 unsigned int pte, unsigned int ptr, enum label_id lid)
1486 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1487 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1488 il_bnez(p, r, pte, lid);
1489 iPTE_LW(p, l, pte, ptr);
1492 /* Make PTE writable, update software status bits as well, then store
1493 * at PTR.
1495 static void __init
1496 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1497 unsigned int ptr)
1499 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1500 | _PAGE_DIRTY);
1502 iPTE_SW(p, r, pte, ptr, mode);
1506 * Check if PTE can be modified, if not branch to LABEL. Regardless
1507 * restore PTE with value from PTR when done.
1509 static void __init
1510 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1511 unsigned int pte, unsigned int ptr, enum label_id lid)
1513 i_andi(p, pte, pte, _PAGE_WRITE);
1514 il_beqz(p, r, pte, lid);
1515 iPTE_LW(p, l, pte, ptr);
1519 * R3000 style TLB load/store/modify handlers.
1523 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1524 * Then it returns.
1526 static void __init
1527 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1529 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1530 i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1531 i_tlbwi(p);
1532 i_jr(p, tmp);
1533 i_rfe(p); /* branch delay */
1537 * This places the pte into ENTRYLO0 and writes it with tlbwi
1538 * or tlbwr as appropriate. This is because the index register
1539 * may have the probe fail bit set as a result of a trap on a
1540 * kseg2 access, i.e. without refill. Then it returns.
1542 static void __init
1543 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1544 unsigned int pte, unsigned int tmp)
1546 i_mfc0(p, tmp, C0_INDEX);
1547 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1548 il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1549 i_mfc0(p, tmp, C0_EPC); /* branch delay */
1550 i_tlbwi(p); /* cp0 delay */
1551 i_jr(p, tmp);
1552 i_rfe(p); /* branch delay */
1553 l_r3000_write_probe_fail(l, *p);
1554 i_tlbwr(p); /* cp0 delay */
1555 i_jr(p, tmp);
1556 i_rfe(p); /* branch delay */
1559 static void __init
1560 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1561 unsigned int ptr)
1563 long pgdc = (long)pgd_current;
1565 i_mfc0(p, pte, C0_BADVADDR);
1566 i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1567 i_lw(p, ptr, rel_lo(pgdc), ptr);
1568 i_srl(p, pte, pte, 22); /* load delay */
1569 i_sll(p, pte, pte, 2);
1570 i_addu(p, ptr, ptr, pte);
1571 i_mfc0(p, pte, C0_CONTEXT);
1572 i_lw(p, ptr, 0, ptr); /* cp0 delay */
1573 i_andi(p, pte, pte, 0xffc); /* load delay */
1574 i_addu(p, ptr, ptr, pte);
1575 i_lw(p, pte, 0, ptr);
1576 i_tlbp(p); /* load delay */
1579 static void __init build_r3000_tlb_load_handler(void)
1581 u32 *p = handle_tlbl;
1582 struct label *l = labels;
1583 struct reloc *r = relocs;
1584 int i;
1586 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1587 memset(labels, 0, sizeof(labels));
1588 memset(relocs, 0, sizeof(relocs));
1590 build_r3000_tlbchange_handler_head(&p, K0, K1);
1591 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1592 i_nop(&p); /* load delay */
1593 build_make_valid(&p, &r, K0, K1);
1594 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1596 l_nopage_tlbl(&l, p);
1597 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1598 i_nop(&p);
1600 if ((p - handle_tlbl) > FASTPATH_SIZE)
1601 panic("TLB load handler fastpath space exceeded");
1603 resolve_relocs(relocs, labels);
1604 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1605 (unsigned int)(p - handle_tlbl));
1607 pr_debug("\t.set push\n");
1608 pr_debug("\t.set noreorder\n");
1609 for (i = 0; i < (p - handle_tlbl); i++)
1610 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1611 pr_debug("\t.set pop\n");
1614 static void __init build_r3000_tlb_store_handler(void)
1616 u32 *p = handle_tlbs;
1617 struct label *l = labels;
1618 struct reloc *r = relocs;
1619 int i;
1621 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1622 memset(labels, 0, sizeof(labels));
1623 memset(relocs, 0, sizeof(relocs));
1625 build_r3000_tlbchange_handler_head(&p, K0, K1);
1626 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1627 i_nop(&p); /* load delay */
1628 build_make_write(&p, &r, K0, K1);
1629 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1631 l_nopage_tlbs(&l, p);
1632 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1633 i_nop(&p);
1635 if ((p - handle_tlbs) > FASTPATH_SIZE)
1636 panic("TLB store handler fastpath space exceeded");
1638 resolve_relocs(relocs, labels);
1639 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1640 (unsigned int)(p - handle_tlbs));
1642 pr_debug("\t.set push\n");
1643 pr_debug("\t.set noreorder\n");
1644 for (i = 0; i < (p - handle_tlbs); i++)
1645 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1646 pr_debug("\t.set pop\n");
1649 static void __init build_r3000_tlb_modify_handler(void)
1651 u32 *p = handle_tlbm;
1652 struct label *l = labels;
1653 struct reloc *r = relocs;
1654 int i;
1656 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1657 memset(labels, 0, sizeof(labels));
1658 memset(relocs, 0, sizeof(relocs));
1660 build_r3000_tlbchange_handler_head(&p, K0, K1);
1661 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1662 i_nop(&p); /* load delay */
1663 build_make_write(&p, &r, K0, K1);
1664 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1666 l_nopage_tlbm(&l, p);
1667 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1668 i_nop(&p);
1670 if ((p - handle_tlbm) > FASTPATH_SIZE)
1671 panic("TLB modify handler fastpath space exceeded");
1673 resolve_relocs(relocs, labels);
1674 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1675 (unsigned int)(p - handle_tlbm));
1677 pr_debug("\t.set push\n");
1678 pr_debug("\t.set noreorder\n");
1679 for (i = 0; i < (p - handle_tlbm); i++)
1680 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1681 pr_debug("\t.set pop\n");
1685 * R4000 style TLB load/store/modify handlers.
1687 static void __init
1688 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1689 struct reloc **r, unsigned int pte,
1690 unsigned int ptr)
1692 #ifdef CONFIG_64BIT
1693 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1694 #else
1695 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1696 #endif
1698 i_MFC0(p, pte, C0_BADVADDR);
1699 i_LW(p, ptr, 0, ptr);
1700 i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1701 i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1702 i_ADDU(p, ptr, ptr, pte);
1704 #ifdef CONFIG_SMP
1705 l_smp_pgtable_change(l, *p);
1706 # endif
1707 iPTE_LW(p, l, pte, ptr); /* get even pte */
1708 build_tlb_probe_entry(p);
1711 static void __init
1712 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1713 struct reloc **r, unsigned int tmp,
1714 unsigned int ptr)
1716 i_ori(p, ptr, ptr, sizeof(pte_t));
1717 i_xori(p, ptr, ptr, sizeof(pte_t));
1718 build_update_entries(p, tmp, ptr);
1719 build_tlb_write_entry(p, l, r, tlb_indexed);
1720 l_leave(l, *p);
1721 i_eret(p); /* return from trap */
1723 #ifdef CONFIG_64BIT
1724 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1725 #endif
1728 static void __init build_r4000_tlb_load_handler(void)
1730 u32 *p = handle_tlbl;
1731 struct label *l = labels;
1732 struct reloc *r = relocs;
1733 int i;
1735 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1736 memset(labels, 0, sizeof(labels));
1737 memset(relocs, 0, sizeof(relocs));
1739 if (bcm1250_m3_war()) {
1740 i_MFC0(&p, K0, C0_BADVADDR);
1741 i_MFC0(&p, K1, C0_ENTRYHI);
1742 i_xor(&p, K0, K0, K1);
1743 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1744 il_bnez(&p, &r, K0, label_leave);
1745 /* No need for i_nop */
1748 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1749 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1750 build_make_valid(&p, &r, K0, K1);
1751 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1753 l_nopage_tlbl(&l, p);
1754 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1755 i_nop(&p);
1757 if ((p - handle_tlbl) > FASTPATH_SIZE)
1758 panic("TLB load handler fastpath space exceeded");
1760 resolve_relocs(relocs, labels);
1761 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1762 (unsigned int)(p - handle_tlbl));
1764 pr_debug("\t.set push\n");
1765 pr_debug("\t.set noreorder\n");
1766 for (i = 0; i < (p - handle_tlbl); i++)
1767 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1768 pr_debug("\t.set pop\n");
1771 static void __init build_r4000_tlb_store_handler(void)
1773 u32 *p = handle_tlbs;
1774 struct label *l = labels;
1775 struct reloc *r = relocs;
1776 int i;
1778 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1779 memset(labels, 0, sizeof(labels));
1780 memset(relocs, 0, sizeof(relocs));
1782 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1783 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1784 build_make_write(&p, &r, K0, K1);
1785 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1787 l_nopage_tlbs(&l, p);
1788 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1789 i_nop(&p);
1791 if ((p - handle_tlbs) > FASTPATH_SIZE)
1792 panic("TLB store handler fastpath space exceeded");
1794 resolve_relocs(relocs, labels);
1795 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1796 (unsigned int)(p - handle_tlbs));
1798 pr_debug("\t.set push\n");
1799 pr_debug("\t.set noreorder\n");
1800 for (i = 0; i < (p - handle_tlbs); i++)
1801 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1802 pr_debug("\t.set pop\n");
1805 static void __init build_r4000_tlb_modify_handler(void)
1807 u32 *p = handle_tlbm;
1808 struct label *l = labels;
1809 struct reloc *r = relocs;
1810 int i;
1812 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1813 memset(labels, 0, sizeof(labels));
1814 memset(relocs, 0, sizeof(relocs));
1816 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1817 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1818 /* Present and writable bits set, set accessed and dirty bits. */
1819 build_make_write(&p, &r, K0, K1);
1820 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1822 l_nopage_tlbm(&l, p);
1823 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1824 i_nop(&p);
1826 if ((p - handle_tlbm) > FASTPATH_SIZE)
1827 panic("TLB modify handler fastpath space exceeded");
1829 resolve_relocs(relocs, labels);
1830 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1831 (unsigned int)(p - handle_tlbm));
1833 pr_debug("\t.set push\n");
1834 pr_debug("\t.set noreorder\n");
1835 for (i = 0; i < (p - handle_tlbm); i++)
1836 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1837 pr_debug("\t.set pop\n");
1840 void __init build_tlb_refill_handler(void)
1843 * The refill handler is generated per-CPU, multi-node systems
1844 * may have local storage for it. The other handlers are only
1845 * needed once.
1847 static int run_once = 0;
1849 switch (current_cpu_data.cputype) {
1850 case CPU_R2000:
1851 case CPU_R3000:
1852 case CPU_R3000A:
1853 case CPU_R3081E:
1854 case CPU_TX3912:
1855 case CPU_TX3922:
1856 case CPU_TX3927:
1857 build_r3000_tlb_refill_handler();
1858 if (!run_once) {
1859 build_r3000_tlb_load_handler();
1860 build_r3000_tlb_store_handler();
1861 build_r3000_tlb_modify_handler();
1862 run_once++;
1864 break;
1866 case CPU_R6000:
1867 case CPU_R6000A:
1868 panic("No R6000 TLB refill handler yet");
1869 break;
1871 case CPU_R8000:
1872 panic("No R8000 TLB refill handler yet");
1873 break;
1875 default:
1876 build_r4000_tlb_refill_handler();
1877 if (!run_once) {
1878 build_r4000_tlb_load_handler();
1879 build_r4000_tlb_store_handler();
1880 build_r4000_tlb_modify_handler();
1881 run_once++;
1886 void __init flush_tlb_handlers(void)
1888 flush_icache_range((unsigned long)handle_tlbl,
1889 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1890 flush_icache_range((unsigned long)handle_tlbs,
1891 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1892 flush_icache_range((unsigned long)handle_tlbm,
1893 (unsigned long)handle_tlbm + sizeof(handle_tlbm));