2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save
) (void) __read_mostly
;
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
78 static unsigned int max_cstate __read_mostly
= ACPI_PROCESSOR_MAX_POWER
;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate
, uint
, 0000);
82 module_param(max_cstate
, uint
, 0644);
84 static unsigned int nocst __read_mostly
;
85 module_param(nocst
, uint
, 0000);
87 #ifndef CONFIG_CPU_IDLE
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
95 static unsigned int bm_history __read_mostly
=
96 (HZ
>= 800 ? 0xFFFFFFFF : ((1U << (HZ
/ 25)) - 1));
97 module_param(bm_history
, uint
, 0644);
99 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
);
101 #else /* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly
= 2;
103 module_param(latency_factor
, uint
, 0644);
107 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108 * For now disable this. Probably a bug somewhere else.
110 * To skip this limit, boot/load with a large max_cstate limit.
112 static int set_max_cstate(const struct dmi_system_id
*id
)
114 if (max_cstate
> ACPI_PROCESSOR_MAX_POWER
)
117 printk(KERN_NOTICE PREFIX
"%s detected - limiting to C%ld max_cstate."
118 " Override with \"processor.max_cstate=%d\"\n", id
->ident
,
119 (long)id
->driver_data
, ACPI_PROCESSOR_MAX_POWER
+ 1);
121 max_cstate
= (long)id
->driver_data
;
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127 callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table
[] = {
129 { set_max_cstate
, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION
,"1SET70WW")}, (void *)1},
132 { set_max_cstate
, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW")}, (void *)1},
135 { set_max_cstate
, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION
,"1SET43WW") }, (void*)1},
138 { set_max_cstate
, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION
,"1SET45WW") }, (void*)1},
141 { set_max_cstate
, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION
,"1SET47WW") }, (void*)1},
144 { set_max_cstate
, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION
,"1SET50WW") }, (void*)1},
147 { set_max_cstate
, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION
,"1SET52WW") }, (void*)1},
150 { set_max_cstate
, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION
,"1SET55WW") }, (void*)1},
153 { set_max_cstate
, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION
,"1SET56WW") }, (void*)1},
156 { set_max_cstate
, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION
,"1SET59WW") }, (void*)1},
159 { set_max_cstate
, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW") }, (void*)1},
162 { set_max_cstate
, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION
,"1SET61WW") }, (void*)1},
165 { set_max_cstate
, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION
,"1SET62WW") }, (void*)1},
168 { set_max_cstate
, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION
,"1SET64WW") }, (void*)1},
171 { set_max_cstate
, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION
,"1SET65WW") }, (void*)1},
174 { set_max_cstate
, "IBM ThinkPad R40e", {
175 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
176 DMI_MATCH(DMI_BIOS_VERSION
,"1SET68WW") }, (void*)1},
177 { set_max_cstate
, "Medion 41700", {
178 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION
,"R01-A1J")}, (void *)1},
180 { set_max_cstate
, "Clevo 5600D", {
181 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
182 DMI_MATCH(DMI_BIOS_VERSION
,"SHE845M0.86C.0013.D.0302131307")},
187 static inline u32
ticks_elapsed(u32 t1
, u32 t2
)
191 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
192 return (((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
194 return ((0xFFFFFFFF - t1
) + t2
);
197 static inline u32
ticks_elapsed_in_us(u32 t1
, u32 t2
)
200 return PM_TIMER_TICKS_TO_US(t2
- t1
);
201 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
202 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
204 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1
) + t2
);
208 * Callers should disable interrupts before the call and enable
209 * interrupts after return.
211 static void acpi_safe_halt(void)
213 current_thread_info()->status
&= ~TS_POLLING
;
215 * TS_POLLING-cleared state must be visible before we
221 current_thread_info()->status
|= TS_POLLING
;
224 #ifndef CONFIG_CPU_IDLE
227 acpi_processor_power_activate(struct acpi_processor
*pr
,
228 struct acpi_processor_cx
*new)
230 struct acpi_processor_cx
*old
;
235 old
= pr
->power
.state
;
238 old
->promotion
.count
= 0;
239 new->demotion
.count
= 0;
241 /* Cleanup from old state. */
245 /* Disable bus master reload */
246 if (new->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
247 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
252 /* Prepare to use new state. */
255 /* Enable bus master reload */
256 if (old
->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
257 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
261 pr
->power
.state
= new;
266 static atomic_t c3_cpu_count
;
268 /* Common C-state entry for C2, C3, .. */
269 static void acpi_cstate_enter(struct acpi_processor_cx
*cstate
)
271 if (cstate
->entry_method
== ACPI_CSTATE_FFH
) {
272 /* Call into architectural FFH based C-state */
273 acpi_processor_ffh_cstate_enter(cstate
);
276 /* IO port based C-state */
277 inb(cstate
->address
);
278 /* Dummy wait op - must do something useless after P_LVL2 read
279 because chipsets cannot guarantee that STPCLK# signal
280 gets asserted in time to freeze execution properly. */
281 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
284 #endif /* !CONFIG_CPU_IDLE */
286 #ifdef ARCH_APICTIMER_STOPS_ON_C3
289 * Some BIOS implementations switch to C3 in the published C2 state.
290 * This seems to be a common problem on AMD boxen, but other vendors
291 * are affected too. We pick the most conservative approach: we assume
292 * that the local APIC stops in both C2 and C3.
294 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
295 struct acpi_processor_cx
*cx
)
297 struct acpi_processor_power
*pwr
= &pr
->power
;
298 u8 type
= local_apic_timer_c2_ok
? ACPI_STATE_C3
: ACPI_STATE_C2
;
301 * Check, if one of the previous states already marked the lapic
304 if (pwr
->timer_broadcast_on_state
< state
)
307 if (cx
->type
>= type
)
308 pr
->power
.timer_broadcast_on_state
= state
;
311 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
)
313 unsigned long reason
;
315 reason
= pr
->power
.timer_broadcast_on_state
< INT_MAX
?
316 CLOCK_EVT_NOTIFY_BROADCAST_ON
: CLOCK_EVT_NOTIFY_BROADCAST_OFF
;
318 clockevents_notify(reason
, &pr
->id
);
321 /* Power(C) State timer broadcast control */
322 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
323 struct acpi_processor_cx
*cx
,
326 int state
= cx
- pr
->power
.states
;
328 if (state
>= pr
->power
.timer_broadcast_on_state
) {
329 unsigned long reason
;
331 reason
= broadcast
? CLOCK_EVT_NOTIFY_BROADCAST_ENTER
:
332 CLOCK_EVT_NOTIFY_BROADCAST_EXIT
;
333 clockevents_notify(reason
, &pr
->id
);
339 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
340 struct acpi_processor_cx
*cstate
) { }
341 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
) { }
342 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
343 struct acpi_processor_cx
*cx
,
351 * Suspend / resume control
353 static int acpi_idle_suspend
;
355 int acpi_processor_suspend(struct acpi_device
* device
, pm_message_t state
)
357 acpi_idle_suspend
= 1;
361 int acpi_processor_resume(struct acpi_device
* device
)
363 acpi_idle_suspend
= 0;
367 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
368 static int tsc_halts_in_c(int state
)
370 switch (boot_cpu_data
.x86_vendor
) {
373 * AMD Fam10h TSC will tick in all
374 * C/P/S0/S1 states when this bit is set.
376 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
379 case X86_VENDOR_INTEL
:
380 /* Several cases known where TSC halts in C2 too */
382 return state
> ACPI_STATE_C1
;
387 #ifndef CONFIG_CPU_IDLE
388 static void acpi_processor_idle(void)
390 struct acpi_processor
*pr
= NULL
;
391 struct acpi_processor_cx
*cx
= NULL
;
392 struct acpi_processor_cx
*next_state
= NULL
;
397 * Interrupts must be disabled during bus mastering calculations and
398 * for C2/C3 transitions.
402 pr
= processors
[smp_processor_id()];
409 * Check whether we truly need to go idle, or should
412 if (unlikely(need_resched())) {
417 cx
= pr
->power
.state
;
418 if (!cx
|| acpi_idle_suspend
) {
431 * Check for bus mastering activity (if required), record, and check
434 if (pr
->flags
.bm_check
) {
436 unsigned long diff
= jiffies
- pr
->power
.bm_check_timestamp
;
441 pr
->power
.bm_activity
<<= diff
;
443 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
445 pr
->power
.bm_activity
|= 0x1;
446 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
449 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
450 * the true state of bus mastering activity; forcing us to
451 * manually check the BMIDEA bit of each IDE channel.
453 else if (errata
.piix4
.bmisx
) {
454 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
455 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
456 pr
->power
.bm_activity
|= 0x1;
459 pr
->power
.bm_check_timestamp
= jiffies
;
462 * If bus mastering is or was active this jiffy, demote
463 * to avoid a faulty transition. Note that the processor
464 * won't enter a low-power state during this call (to this
465 * function) but should upon the next.
467 * TBD: A better policy might be to fallback to the demotion
468 * state (use it for this quantum only) istead of
469 * demoting -- and rely on duration as our sole demotion
470 * qualification. This may, however, introduce DMA
471 * issues (e.g. floppy DMA transfer overrun/underrun).
473 if ((pr
->power
.bm_activity
& 0x1) &&
474 cx
->demotion
.threshold
.bm
) {
476 next_state
= cx
->demotion
.state
;
481 #ifdef CONFIG_HOTPLUG_CPU
483 * Check for P_LVL2_UP flag before entering C2 and above on
484 * an SMP system. We do it here instead of doing it at _CST/P_LVL
485 * detection phase, to work cleanly with logical CPU hotplug.
487 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
488 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
489 cx
= &pr
->power
.states
[ACPI_STATE_C1
];
495 * Invoke the current Cx state to put the processor to sleep.
497 if (cx
->type
== ACPI_STATE_C2
|| cx
->type
== ACPI_STATE_C3
) {
498 current_thread_info()->status
&= ~TS_POLLING
;
500 * TS_POLLING-cleared state must be visible before we
504 if (need_resched()) {
505 current_thread_info()->status
|= TS_POLLING
;
516 * Use the appropriate idle routine, the one that would
517 * be used without acpi C-states.
525 * TBD: Can't get time duration while in C1, as resumes
526 * go to an ISR rather than here. Need to instrument
527 * base interrupt handler.
529 * Note: the TSC better not stop in C1, sched_clock() will
532 sleep_ticks
= 0xFFFFFFFF;
537 /* Get start time (ticks) */
538 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
539 /* Tell the scheduler that we are going deep-idle: */
540 sched_clock_idle_sleep_event();
542 acpi_state_timer_broadcast(pr
, cx
, 1);
543 acpi_cstate_enter(cx
);
544 /* Get end time (ticks) */
545 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
547 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
548 /* TSC halts in C2, so notify users */
549 if (tsc_halts_in_c(ACPI_STATE_C2
))
550 mark_tsc_unstable("possible TSC halt in C2");
552 /* Compute time (ticks) that we were actually asleep */
553 sleep_ticks
= ticks_elapsed(t1
, t2
);
555 /* Tell the scheduler how much we idled: */
556 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
558 /* Re-enable interrupts */
560 /* Do not account our idle-switching overhead: */
561 sleep_ticks
-= cx
->latency_ticks
+ C2_OVERHEAD
;
563 current_thread_info()->status
|= TS_POLLING
;
564 acpi_state_timer_broadcast(pr
, cx
, 0);
568 acpi_unlazy_tlb(smp_processor_id());
570 * Must be done before busmaster disable as we might
571 * need to access HPET !
573 acpi_state_timer_broadcast(pr
, cx
, 1);
576 * bm_check implies we need ARB_DIS
577 * !bm_check implies we need cache flush
578 * bm_control implies whether we can do ARB_DIS
580 * That leaves a case where bm_check is set and bm_control is
581 * not set. In that case we cannot do much, we enter C3
582 * without doing anything.
584 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
585 if (atomic_inc_return(&c3_cpu_count
) ==
588 * All CPUs are trying to go to C3
589 * Disable bus master arbitration
591 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
593 } else if (!pr
->flags
.bm_check
) {
594 /* SMP with no shared cache... Invalidate cache */
595 ACPI_FLUSH_CPU_CACHE();
598 /* Get start time (ticks) */
599 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
601 /* Tell the scheduler that we are going deep-idle: */
602 sched_clock_idle_sleep_event();
603 acpi_cstate_enter(cx
);
604 /* Get end time (ticks) */
605 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
606 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
607 /* Enable bus master arbitration */
608 atomic_dec(&c3_cpu_count
);
609 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
612 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
613 /* TSC halts in C3, so notify users */
614 if (tsc_halts_in_c(ACPI_STATE_C3
))
615 mark_tsc_unstable("TSC halts in C3");
617 /* Compute time (ticks) that we were actually asleep */
618 sleep_ticks
= ticks_elapsed(t1
, t2
);
619 /* Tell the scheduler how much we idled: */
620 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
622 /* Re-enable interrupts */
624 /* Do not account our idle-switching overhead: */
625 sleep_ticks
-= cx
->latency_ticks
+ C3_OVERHEAD
;
627 current_thread_info()->status
|= TS_POLLING
;
628 acpi_state_timer_broadcast(pr
, cx
, 0);
636 if ((cx
->type
!= ACPI_STATE_C1
) && (sleep_ticks
> 0))
637 cx
->time
+= sleep_ticks
;
639 next_state
= pr
->power
.state
;
641 #ifdef CONFIG_HOTPLUG_CPU
642 /* Don't do promotion/demotion */
643 if ((cx
->type
== ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
644 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
)) {
653 * Track the number of longs (time asleep is greater than threshold)
654 * and promote when the count threshold is reached. Note that bus
655 * mastering activity may prevent promotions.
656 * Do not promote above max_cstate.
658 if (cx
->promotion
.state
&&
659 ((cx
->promotion
.state
- pr
->power
.states
) <= max_cstate
)) {
660 if (sleep_ticks
> cx
->promotion
.threshold
.ticks
&&
661 cx
->promotion
.state
->latency
<=
662 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
)) {
663 cx
->promotion
.count
++;
664 cx
->demotion
.count
= 0;
665 if (cx
->promotion
.count
>=
666 cx
->promotion
.threshold
.count
) {
667 if (pr
->flags
.bm_check
) {
669 (pr
->power
.bm_activity
& cx
->
670 promotion
.threshold
.bm
)) {
676 next_state
= cx
->promotion
.state
;
686 * Track the number of shorts (time asleep is less than time threshold)
687 * and demote when the usage threshold is reached.
689 if (cx
->demotion
.state
) {
690 if (sleep_ticks
< cx
->demotion
.threshold
.ticks
) {
691 cx
->demotion
.count
++;
692 cx
->promotion
.count
= 0;
693 if (cx
->demotion
.count
>= cx
->demotion
.threshold
.count
) {
694 next_state
= cx
->demotion
.state
;
702 * Demote if current state exceeds max_cstate
703 * or if the latency of the current state is unacceptable
705 if ((pr
->power
.state
- pr
->power
.states
) > max_cstate
||
706 pr
->power
.state
->latency
>
707 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
)) {
708 if (cx
->demotion
.state
)
709 next_state
= cx
->demotion
.state
;
715 * If we're going to start using a new Cx state we must clean up
716 * from the previous and prepare to use the new.
718 if (next_state
!= pr
->power
.state
)
719 acpi_processor_power_activate(pr
, next_state
);
722 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
)
725 unsigned int state_is_set
= 0;
726 struct acpi_processor_cx
*lower
= NULL
;
727 struct acpi_processor_cx
*higher
= NULL
;
728 struct acpi_processor_cx
*cx
;
735 * This function sets the default Cx state policy (OS idle handler).
736 * Our scheme is to promote quickly to C2 but more conservatively
737 * to C3. We're favoring C2 for its characteristics of low latency
738 * (quick response), good power savings, and ability to allow bus
739 * mastering activity. Note that the Cx state policy is completely
740 * customizable and can be altered dynamically.
744 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
745 cx
= &pr
->power
.states
[i
];
750 pr
->power
.state
= cx
;
759 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
760 cx
= &pr
->power
.states
[i
];
765 cx
->demotion
.state
= lower
;
766 cx
->demotion
.threshold
.ticks
= cx
->latency_ticks
;
767 cx
->demotion
.threshold
.count
= 1;
768 if (cx
->type
== ACPI_STATE_C3
)
769 cx
->demotion
.threshold
.bm
= bm_history
;
776 for (i
= (ACPI_PROCESSOR_MAX_POWER
- 1); i
> 0; i
--) {
777 cx
= &pr
->power
.states
[i
];
782 cx
->promotion
.state
= higher
;
783 cx
->promotion
.threshold
.ticks
= cx
->latency_ticks
;
784 if (cx
->type
>= ACPI_STATE_C2
)
785 cx
->promotion
.threshold
.count
= 4;
787 cx
->promotion
.threshold
.count
= 10;
788 if (higher
->type
== ACPI_STATE_C3
)
789 cx
->promotion
.threshold
.bm
= bm_history
;
797 #endif /* !CONFIG_CPU_IDLE */
799 static int acpi_processor_get_power_info_fadt(struct acpi_processor
*pr
)
808 /* if info is obtained from pblk/fadt, type equals state */
809 pr
->power
.states
[ACPI_STATE_C2
].type
= ACPI_STATE_C2
;
810 pr
->power
.states
[ACPI_STATE_C3
].type
= ACPI_STATE_C3
;
812 #ifndef CONFIG_HOTPLUG_CPU
814 * Check for P_LVL2_UP flag before entering C2 and above on
817 if ((num_online_cpus() > 1) &&
818 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
822 /* determine C2 and C3 address from pblk */
823 pr
->power
.states
[ACPI_STATE_C2
].address
= pr
->pblk
+ 4;
824 pr
->power
.states
[ACPI_STATE_C3
].address
= pr
->pblk
+ 5;
826 /* determine latencies from FADT */
827 pr
->power
.states
[ACPI_STATE_C2
].latency
= acpi_gbl_FADT
.C2latency
;
828 pr
->power
.states
[ACPI_STATE_C3
].latency
= acpi_gbl_FADT
.C3latency
;
830 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
831 "lvl2[0x%08x] lvl3[0x%08x]\n",
832 pr
->power
.states
[ACPI_STATE_C2
].address
,
833 pr
->power
.states
[ACPI_STATE_C3
].address
));
838 static int acpi_processor_get_power_info_default(struct acpi_processor
*pr
)
840 if (!pr
->power
.states
[ACPI_STATE_C1
].valid
) {
841 /* set the first C-State to C1 */
842 /* all processors need to support C1 */
843 pr
->power
.states
[ACPI_STATE_C1
].type
= ACPI_STATE_C1
;
844 pr
->power
.states
[ACPI_STATE_C1
].valid
= 1;
846 /* the C0 state only exists as a filler in our array */
847 pr
->power
.states
[ACPI_STATE_C0
].valid
= 1;
851 static int acpi_processor_get_power_info_cst(struct acpi_processor
*pr
)
853 acpi_status status
= 0;
857 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
858 union acpi_object
*cst
;
866 status
= acpi_evaluate_object(pr
->handle
, "_CST", NULL
, &buffer
);
867 if (ACPI_FAILURE(status
)) {
868 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "No _CST, giving up\n"));
872 cst
= buffer
.pointer
;
874 /* There must be at least 2 elements */
875 if (!cst
|| (cst
->type
!= ACPI_TYPE_PACKAGE
) || cst
->package
.count
< 2) {
876 printk(KERN_ERR PREFIX
"not enough elements in _CST\n");
881 count
= cst
->package
.elements
[0].integer
.value
;
883 /* Validate number of power states. */
884 if (count
< 1 || count
!= cst
->package
.count
- 1) {
885 printk(KERN_ERR PREFIX
"count given by _CST is not valid\n");
890 /* Tell driver that at least _CST is supported. */
891 pr
->flags
.has_cst
= 1;
893 for (i
= 1; i
<= count
; i
++) {
894 union acpi_object
*element
;
895 union acpi_object
*obj
;
896 struct acpi_power_register
*reg
;
897 struct acpi_processor_cx cx
;
899 memset(&cx
, 0, sizeof(cx
));
901 element
= &(cst
->package
.elements
[i
]);
902 if (element
->type
!= ACPI_TYPE_PACKAGE
)
905 if (element
->package
.count
!= 4)
908 obj
= &(element
->package
.elements
[0]);
910 if (obj
->type
!= ACPI_TYPE_BUFFER
)
913 reg
= (struct acpi_power_register
*)obj
->buffer
.pointer
;
915 if (reg
->space_id
!= ACPI_ADR_SPACE_SYSTEM_IO
&&
916 (reg
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
))
919 /* There should be an easy way to extract an integer... */
920 obj
= &(element
->package
.elements
[1]);
921 if (obj
->type
!= ACPI_TYPE_INTEGER
)
924 cx
.type
= obj
->integer
.value
;
926 * Some buggy BIOSes won't list C1 in _CST -
927 * Let acpi_processor_get_power_info_default() handle them later
929 if (i
== 1 && cx
.type
!= ACPI_STATE_C1
)
932 cx
.address
= reg
->address
;
933 cx
.index
= current_count
+ 1;
935 cx
.entry_method
= ACPI_CSTATE_SYSTEMIO
;
936 if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
) {
937 if (acpi_processor_ffh_cstate_probe
938 (pr
->id
, &cx
, reg
) == 0) {
939 cx
.entry_method
= ACPI_CSTATE_FFH
;
940 } else if (cx
.type
== ACPI_STATE_C1
) {
942 * C1 is a special case where FIXED_HARDWARE
943 * can be handled in non-MWAIT way as well.
944 * In that case, save this _CST entry info.
945 * Otherwise, ignore this info and continue.
947 cx
.entry_method
= ACPI_CSTATE_HALT
;
948 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI HLT");
953 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI IOPORT 0x%x",
958 obj
= &(element
->package
.elements
[2]);
959 if (obj
->type
!= ACPI_TYPE_INTEGER
)
962 cx
.latency
= obj
->integer
.value
;
964 obj
= &(element
->package
.elements
[3]);
965 if (obj
->type
!= ACPI_TYPE_INTEGER
)
968 cx
.power
= obj
->integer
.value
;
971 memcpy(&(pr
->power
.states
[current_count
]), &cx
, sizeof(cx
));
974 * We support total ACPI_PROCESSOR_MAX_POWER - 1
975 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
977 if (current_count
>= (ACPI_PROCESSOR_MAX_POWER
- 1)) {
979 "Limiting number of power states to max (%d)\n",
980 ACPI_PROCESSOR_MAX_POWER
);
982 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
987 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "Found %d power states\n",
990 /* Validate number of power states discovered */
991 if (current_count
< 2)
995 kfree(buffer
.pointer
);
1000 static void acpi_processor_power_verify_c2(struct acpi_processor_cx
*cx
)
1007 * C2 latency must be less than or equal to 100
1010 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C2_LATENCY
) {
1011 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1012 "latency too large [%d]\n", cx
->latency
));
1017 * Otherwise we've met all of our C2 requirements.
1018 * Normalize the C2 latency to expidite policy
1022 #ifndef CONFIG_CPU_IDLE
1023 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1025 cx
->latency_ticks
= cx
->latency
;
1031 static void acpi_processor_power_verify_c3(struct acpi_processor
*pr
,
1032 struct acpi_processor_cx
*cx
)
1034 static int bm_check_flag
;
1041 * C3 latency must be less than or equal to 1000
1044 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C3_LATENCY
) {
1045 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1046 "latency too large [%d]\n", cx
->latency
));
1051 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1052 * DMA transfers are used by any ISA device to avoid livelock.
1053 * Note that we could disable Type-F DMA (as recommended by
1054 * the erratum), but this is known to disrupt certain ISA
1055 * devices thus we take the conservative approach.
1057 else if (errata
.piix4
.fdma
) {
1058 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1059 "C3 not supported on PIIX4 with Type-F DMA\n"));
1063 /* All the logic here assumes flags.bm_check is same across all CPUs */
1064 if (!bm_check_flag
) {
1065 /* Determine whether bm_check is needed based on CPU */
1066 acpi_processor_power_init_bm_check(&(pr
->flags
), pr
->id
);
1067 bm_check_flag
= pr
->flags
.bm_check
;
1069 pr
->flags
.bm_check
= bm_check_flag
;
1072 if (pr
->flags
.bm_check
) {
1073 if (!pr
->flags
.bm_control
) {
1074 if (pr
->flags
.has_cst
!= 1) {
1075 /* bus mastering control is necessary */
1076 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1077 "C3 support requires BM control\n"));
1080 /* Here we enter C3 without bus mastering */
1081 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1082 "C3 support without BM control\n"));
1087 * WBINVD should be set in fadt, for C3 state to be
1088 * supported on when bm_check is not required.
1090 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_WBINVD
)) {
1091 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1092 "Cache invalidation should work properly"
1093 " for C3 to be enabled on SMP systems\n"));
1096 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1100 * Otherwise we've met all of our C3 requirements.
1101 * Normalize the C3 latency to expidite policy. Enable
1102 * checking of bus mastering status (bm_check) so we can
1103 * use this in our C3 policy
1107 #ifndef CONFIG_CPU_IDLE
1108 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1110 cx
->latency_ticks
= cx
->latency
;
1116 static int acpi_processor_power_verify(struct acpi_processor
*pr
)
1119 unsigned int working
= 0;
1121 pr
->power
.timer_broadcast_on_state
= INT_MAX
;
1123 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1124 struct acpi_processor_cx
*cx
= &pr
->power
.states
[i
];
1132 acpi_processor_power_verify_c2(cx
);
1134 acpi_timer_check_state(i
, pr
, cx
);
1138 acpi_processor_power_verify_c3(pr
, cx
);
1140 acpi_timer_check_state(i
, pr
, cx
);
1148 acpi_propagate_timer_broadcast(pr
);
1153 static int acpi_processor_get_power_info(struct acpi_processor
*pr
)
1159 /* NOTE: the idle thread may not be running while calling
1162 /* Zero initialize all the C-states info. */
1163 memset(pr
->power
.states
, 0, sizeof(pr
->power
.states
));
1165 result
= acpi_processor_get_power_info_cst(pr
);
1166 if (result
== -ENODEV
)
1167 result
= acpi_processor_get_power_info_fadt(pr
);
1172 acpi_processor_get_power_info_default(pr
);
1174 pr
->power
.count
= acpi_processor_power_verify(pr
);
1176 #ifndef CONFIG_CPU_IDLE
1178 * Set Default Policy
1179 * ------------------
1180 * Now that we know which states are supported, set the default
1181 * policy. Note that this policy can be changed dynamically
1182 * (e.g. encourage deeper sleeps to conserve battery life when
1185 result
= acpi_processor_set_power_policy(pr
);
1191 * if one state of type C2 or C3 is available, mark this
1192 * CPU as being "idle manageable"
1194 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1195 if (pr
->power
.states
[i
].valid
) {
1196 pr
->power
.count
= i
;
1197 if (pr
->power
.states
[i
].type
>= ACPI_STATE_C2
)
1198 pr
->flags
.power
= 1;
1205 static int acpi_processor_power_seq_show(struct seq_file
*seq
, void *offset
)
1207 struct acpi_processor
*pr
= seq
->private;
1214 seq_printf(seq
, "active state: C%zd\n"
1216 "bus master activity: %08x\n"
1217 "maximum allowed latency: %d usec\n",
1218 pr
->power
.state
? pr
->power
.state
- pr
->power
.states
: 0,
1219 max_cstate
, (unsigned)pr
->power
.bm_activity
,
1220 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
));
1222 seq_puts(seq
, "states:\n");
1224 for (i
= 1; i
<= pr
->power
.count
; i
++) {
1225 seq_printf(seq
, " %cC%d: ",
1226 (&pr
->power
.states
[i
] ==
1227 pr
->power
.state
? '*' : ' '), i
);
1229 if (!pr
->power
.states
[i
].valid
) {
1230 seq_puts(seq
, "<not supported>\n");
1234 switch (pr
->power
.states
[i
].type
) {
1236 seq_printf(seq
, "type[C1] ");
1239 seq_printf(seq
, "type[C2] ");
1242 seq_printf(seq
, "type[C3] ");
1245 seq_printf(seq
, "type[--] ");
1249 if (pr
->power
.states
[i
].promotion
.state
)
1250 seq_printf(seq
, "promotion[C%zd] ",
1251 (pr
->power
.states
[i
].promotion
.state
-
1254 seq_puts(seq
, "promotion[--] ");
1256 if (pr
->power
.states
[i
].demotion
.state
)
1257 seq_printf(seq
, "demotion[C%zd] ",
1258 (pr
->power
.states
[i
].demotion
.state
-
1261 seq_puts(seq
, "demotion[--] ");
1263 seq_printf(seq
, "latency[%03d] usage[%08d] duration[%020llu]\n",
1264 pr
->power
.states
[i
].latency
,
1265 pr
->power
.states
[i
].usage
,
1266 (unsigned long long)pr
->power
.states
[i
].time
);
1273 static int acpi_processor_power_open_fs(struct inode
*inode
, struct file
*file
)
1275 return single_open(file
, acpi_processor_power_seq_show
,
1279 static const struct file_operations acpi_processor_power_fops
= {
1280 .open
= acpi_processor_power_open_fs
,
1282 .llseek
= seq_lseek
,
1283 .release
= single_release
,
1286 #ifndef CONFIG_CPU_IDLE
1288 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1300 if (!pr
->flags
.power_setup_done
)
1303 /* Fall back to the default idle loop */
1304 pm_idle
= pm_idle_save
;
1305 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1307 pr
->flags
.power
= 0;
1308 result
= acpi_processor_get_power_info(pr
);
1309 if ((pr
->flags
.power
== 1) && (pr
->flags
.power_setup_done
))
1310 pm_idle
= acpi_processor_idle
;
1316 static void smp_callback(void *v
)
1318 /* we already woke the CPU up, nothing more to do */
1322 * This function gets called when a part of the kernel has a new latency
1323 * requirement. This means we need to get all processors out of their C-state,
1324 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1325 * wakes them all right up.
1327 static int acpi_processor_latency_notify(struct notifier_block
*b
,
1328 unsigned long l
, void *v
)
1330 smp_call_function(smp_callback
, NULL
, 0, 1);
1334 static struct notifier_block acpi_processor_latency_notifier
= {
1335 .notifier_call
= acpi_processor_latency_notify
,
1340 #else /* CONFIG_CPU_IDLE */
1343 * acpi_idle_bm_check - checks if bus master activity was detected
1345 static int acpi_idle_bm_check(void)
1349 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
1351 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
1353 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1354 * the true state of bus mastering activity; forcing us to
1355 * manually check the BMIDEA bit of each IDE channel.
1357 else if (errata
.piix4
.bmisx
) {
1358 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
1359 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
1366 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1367 * @pr: the processor
1368 * @target: the new target state
1370 static inline void acpi_idle_update_bm_rld(struct acpi_processor
*pr
,
1371 struct acpi_processor_cx
*target
)
1373 if (pr
->flags
.bm_rld_set
&& target
->type
!= ACPI_STATE_C3
) {
1374 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1375 pr
->flags
.bm_rld_set
= 0;
1378 if (!pr
->flags
.bm_rld_set
&& target
->type
== ACPI_STATE_C3
) {
1379 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
1380 pr
->flags
.bm_rld_set
= 1;
1385 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1388 * Caller disables interrupt before call and enables interrupt after return.
1390 static inline void acpi_idle_do_entry(struct acpi_processor_cx
*cx
)
1392 if (cx
->entry_method
== ACPI_CSTATE_FFH
) {
1393 /* Call into architectural FFH based C-state */
1394 acpi_processor_ffh_cstate_enter(cx
);
1395 } else if (cx
->entry_method
== ACPI_CSTATE_HALT
) {
1399 /* IO port based C-state */
1401 /* Dummy wait op - must do something useless after P_LVL2 read
1402 because chipsets cannot guarantee that STPCLK# signal
1403 gets asserted in time to freeze execution properly. */
1404 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1409 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1410 * @dev: the target CPU
1411 * @state: the state data
1413 * This is equivalent to the HALT instruction.
1415 static int acpi_idle_enter_c1(struct cpuidle_device
*dev
,
1416 struct cpuidle_state
*state
)
1419 struct acpi_processor
*pr
;
1420 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1422 pr
= processors
[smp_processor_id()];
1427 local_irq_disable();
1429 /* Do not access any ACPI IO ports in suspend path */
1430 if (acpi_idle_suspend
) {
1436 if (pr
->flags
.bm_check
)
1437 acpi_idle_update_bm_rld(pr
, cx
);
1439 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1440 acpi_idle_do_entry(cx
);
1441 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1446 return ticks_elapsed_in_us(t1
, t2
);
1450 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1451 * @dev: the target CPU
1452 * @state: the state data
1454 static int acpi_idle_enter_simple(struct cpuidle_device
*dev
,
1455 struct cpuidle_state
*state
)
1457 struct acpi_processor
*pr
;
1458 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1460 int sleep_ticks
= 0;
1462 pr
= processors
[smp_processor_id()];
1467 if (acpi_idle_suspend
)
1468 return(acpi_idle_enter_c1(dev
, state
));
1470 local_irq_disable();
1471 current_thread_info()->status
&= ~TS_POLLING
;
1473 * TS_POLLING-cleared state must be visible before we test
1478 if (unlikely(need_resched())) {
1479 current_thread_info()->status
|= TS_POLLING
;
1484 acpi_unlazy_tlb(smp_processor_id());
1486 * Must be done before busmaster disable as we might need to
1489 acpi_state_timer_broadcast(pr
, cx
, 1);
1491 if (pr
->flags
.bm_check
)
1492 acpi_idle_update_bm_rld(pr
, cx
);
1494 if (cx
->type
== ACPI_STATE_C3
)
1495 ACPI_FLUSH_CPU_CACHE();
1497 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1498 /* Tell the scheduler that we are going deep-idle: */
1499 sched_clock_idle_sleep_event();
1500 acpi_idle_do_entry(cx
);
1501 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1503 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1504 /* TSC could halt in idle, so notify users */
1505 if (tsc_halts_in_c(cx
->type
))
1506 mark_tsc_unstable("TSC halts in idle");;
1508 sleep_ticks
= ticks_elapsed(t1
, t2
);
1510 /* Tell the scheduler how much we idled: */
1511 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1514 current_thread_info()->status
|= TS_POLLING
;
1518 acpi_state_timer_broadcast(pr
, cx
, 0);
1519 cx
->time
+= sleep_ticks
;
1520 return ticks_elapsed_in_us(t1
, t2
);
1523 static int c3_cpu_count
;
1524 static DEFINE_SPINLOCK(c3_lock
);
1527 * acpi_idle_enter_bm - enters C3 with proper BM handling
1528 * @dev: the target CPU
1529 * @state: the state data
1531 * If BM is detected, the deepest non-C3 idle state is entered instead.
1533 static int acpi_idle_enter_bm(struct cpuidle_device
*dev
,
1534 struct cpuidle_state
*state
)
1536 struct acpi_processor
*pr
;
1537 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1539 int sleep_ticks
= 0;
1541 pr
= processors
[smp_processor_id()];
1546 if (acpi_idle_suspend
)
1547 return(acpi_idle_enter_c1(dev
, state
));
1549 if (acpi_idle_bm_check()) {
1550 if (dev
->safe_state
) {
1551 return dev
->safe_state
->enter(dev
, dev
->safe_state
);
1553 local_irq_disable();
1560 local_irq_disable();
1561 current_thread_info()->status
&= ~TS_POLLING
;
1563 * TS_POLLING-cleared state must be visible before we test
1568 if (unlikely(need_resched())) {
1569 current_thread_info()->status
|= TS_POLLING
;
1574 /* Tell the scheduler that we are going deep-idle: */
1575 sched_clock_idle_sleep_event();
1577 * Must be done before busmaster disable as we might need to
1580 acpi_state_timer_broadcast(pr
, cx
, 1);
1582 acpi_idle_update_bm_rld(pr
, cx
);
1585 * disable bus master
1586 * bm_check implies we need ARB_DIS
1587 * !bm_check implies we need cache flush
1588 * bm_control implies whether we can do ARB_DIS
1590 * That leaves a case where bm_check is set and bm_control is
1591 * not set. In that case we cannot do much, we enter C3
1592 * without doing anything.
1594 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1595 spin_lock(&c3_lock
);
1597 /* Disable bus master arbitration when all CPUs are in C3 */
1598 if (c3_cpu_count
== num_online_cpus())
1599 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
1600 spin_unlock(&c3_lock
);
1601 } else if (!pr
->flags
.bm_check
) {
1602 ACPI_FLUSH_CPU_CACHE();
1605 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1606 acpi_idle_do_entry(cx
);
1607 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1609 /* Re-enable bus master arbitration */
1610 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1611 spin_lock(&c3_lock
);
1612 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
1614 spin_unlock(&c3_lock
);
1617 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1618 /* TSC could halt in idle, so notify users */
1619 if (tsc_halts_in_c(ACPI_STATE_C3
))
1620 mark_tsc_unstable("TSC halts in idle");
1622 sleep_ticks
= ticks_elapsed(t1
, t2
);
1623 /* Tell the scheduler how much we idled: */
1624 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1627 current_thread_info()->status
|= TS_POLLING
;
1631 acpi_state_timer_broadcast(pr
, cx
, 0);
1632 cx
->time
+= sleep_ticks
;
1633 return ticks_elapsed_in_us(t1
, t2
);
1636 struct cpuidle_driver acpi_idle_driver
= {
1637 .name
= "acpi_idle",
1638 .owner
= THIS_MODULE
,
1642 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1643 * @pr: the ACPI processor
1645 static int acpi_processor_setup_cpuidle(struct acpi_processor
*pr
)
1647 int i
, count
= CPUIDLE_DRIVER_STATE_START
;
1648 struct acpi_processor_cx
*cx
;
1649 struct cpuidle_state
*state
;
1650 struct cpuidle_device
*dev
= &pr
->power
.dev
;
1652 if (!pr
->flags
.power_setup_done
)
1655 if (pr
->flags
.power
== 0) {
1659 for (i
= 0; i
< CPUIDLE_STATE_MAX
; i
++) {
1660 dev
->states
[i
].name
[0] = '\0';
1661 dev
->states
[i
].desc
[0] = '\0';
1664 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
1665 cx
= &pr
->power
.states
[i
];
1666 state
= &dev
->states
[count
];
1671 #ifdef CONFIG_HOTPLUG_CPU
1672 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
1673 !pr
->flags
.has_cst
&&
1674 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
1677 cpuidle_set_statedata(state
, cx
);
1679 snprintf(state
->name
, CPUIDLE_NAME_LEN
, "C%d", i
);
1680 strncpy(state
->desc
, cx
->desc
, CPUIDLE_DESC_LEN
);
1681 state
->exit_latency
= cx
->latency
;
1682 state
->target_residency
= cx
->latency
* latency_factor
;
1683 state
->power_usage
= cx
->power
;
1688 state
->flags
|= CPUIDLE_FLAG_SHALLOW
;
1689 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1690 state
->enter
= acpi_idle_enter_c1
;
1691 dev
->safe_state
= state
;
1695 state
->flags
|= CPUIDLE_FLAG_BALANCED
;
1696 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1697 state
->enter
= acpi_idle_enter_simple
;
1698 dev
->safe_state
= state
;
1702 state
->flags
|= CPUIDLE_FLAG_DEEP
;
1703 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1704 state
->flags
|= CPUIDLE_FLAG_CHECK_BM
;
1705 state
->enter
= pr
->flags
.bm_check
?
1706 acpi_idle_enter_bm
:
1707 acpi_idle_enter_simple
;
1712 if (count
== CPUIDLE_STATE_MAX
)
1716 dev
->state_count
= count
;
1724 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1735 if (!pr
->flags
.power_setup_done
)
1738 cpuidle_pause_and_lock();
1739 cpuidle_disable_device(&pr
->power
.dev
);
1740 acpi_processor_get_power_info(pr
);
1741 acpi_processor_setup_cpuidle(pr
);
1742 ret
= cpuidle_enable_device(&pr
->power
.dev
);
1743 cpuidle_resume_and_unlock();
1748 #endif /* CONFIG_CPU_IDLE */
1750 int __cpuinit
acpi_processor_power_init(struct acpi_processor
*pr
,
1751 struct acpi_device
*device
)
1753 acpi_status status
= 0;
1754 static int first_run
;
1755 struct proc_dir_entry
*entry
= NULL
;
1760 dmi_check_system(processor_power_dmi_table
);
1761 max_cstate
= acpi_processor_cstate_check(max_cstate
);
1762 if (max_cstate
< ACPI_C_STATES_MAX
)
1764 "ACPI: processor limited to max C-state %d\n",
1767 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1768 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY
,
1769 &acpi_processor_latency_notifier
);
1776 if (acpi_gbl_FADT
.cst_control
&& !nocst
) {
1778 acpi_os_write_port(acpi_gbl_FADT
.smi_command
, acpi_gbl_FADT
.cst_control
, 8);
1779 if (ACPI_FAILURE(status
)) {
1780 ACPI_EXCEPTION((AE_INFO
, status
,
1781 "Notifying BIOS of _CST ability failed"));
1785 acpi_processor_get_power_info(pr
);
1786 pr
->flags
.power_setup_done
= 1;
1789 * Install the idle handler if processor power management is supported.
1790 * Note that we use previously set idle handler will be used on
1791 * platforms that only support C1.
1793 if ((pr
->flags
.power
) && (!boot_option_idle_override
)) {
1794 #ifdef CONFIG_CPU_IDLE
1795 acpi_processor_setup_cpuidle(pr
);
1796 pr
->power
.dev
.cpu
= pr
->id
;
1797 if (cpuidle_register_device(&pr
->power
.dev
))
1801 printk(KERN_INFO PREFIX
"CPU%d (power states:", pr
->id
);
1802 for (i
= 1; i
<= pr
->power
.count
; i
++)
1803 if (pr
->power
.states
[i
].valid
)
1804 printk(" C%d[C%d]", i
,
1805 pr
->power
.states
[i
].type
);
1808 #ifndef CONFIG_CPU_IDLE
1810 pm_idle_save
= pm_idle
;
1811 pm_idle
= acpi_processor_idle
;
1817 entry
= create_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1818 S_IRUGO
, acpi_device_dir(device
));
1822 entry
->proc_fops
= &acpi_processor_power_fops
;
1823 entry
->data
= acpi_driver_data(device
);
1824 entry
->owner
= THIS_MODULE
;
1830 int acpi_processor_power_exit(struct acpi_processor
*pr
,
1831 struct acpi_device
*device
)
1833 #ifdef CONFIG_CPU_IDLE
1834 if ((pr
->flags
.power
) && (!boot_option_idle_override
))
1835 cpuidle_unregister_device(&pr
->power
.dev
);
1837 pr
->flags
.power_setup_done
= 0;
1839 if (acpi_device_dir(device
))
1840 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1841 acpi_device_dir(device
));
1843 #ifndef CONFIG_CPU_IDLE
1845 /* Unregister the idle handler when processor #0 is removed. */
1847 pm_idle
= pm_idle_save
;
1850 * We are about to unload the current idle thread pm callback
1851 * (pm_idle), Wait for all processors to update cached/local
1852 * copies of pm_idle before proceeding.
1856 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY
,
1857 &acpi_processor_latency_notifier
);